1
|
Liu B, Yasunaga JI, Liang Y, Zhou R, Yang S, Yuan X, Liu J, Zuo X, Miura M, Higuchi Y, Matsumoto T, Toyoda K, Matsuoka M, Ma G. Identification of AK4 and RHOC as potential oncogenes addicted by adult T cell leukemia. Proc Natl Acad Sci U S A 2025; 122:e2416412122. [PMID: 39982744 PMCID: PMC11874535 DOI: 10.1073/pnas.2416412122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
Adult T cell leukemia (ATL) is a highly aggressive T cell malignancy characterized by human T cell leukemia virus type 1 (HTLV-1) infection. ATL has a very poor prognosis and lacks satisfactory treatments; therefore, it is critical to identify potential targets in ATL cells in order to develop effective targeted therapeutics. Here, we report the identification of two oncogenes, AK4 and RHOC, as target genes of miR-455-3p, a tumor-suppressive microRNA in ATL patients. Importantly, AK4 and RHOC are highly expressed in ATL and exhibit oncogenic potentials in vitro and in vivo. Interestingly, transcriptome and metabolome analyses reveal a functional overlap of AK4 and RHOC, including activating oncogenic pathways such as Myc targets and deregulating lipid metabolism such as enhancing the production of sphingomyelin, a tumor-promoting lipid. In particular, compared to other types of T cell malignancy such as T cell acute lymphoblastic leukemia (T-ALL) and cutaneous T cell lymphoma (CTCL), ATL is sensitive to sphingomyelin inhibition and AK4 or RHOC depletion. Altogether, we report a distinct dependency of ATL on AK4 and RHOC oncogenes and an oncometabolite sphingomyelin, which together represent targetable vulnerabilities of ATL that could be exploited for developing effective therapeutics.
Collapse
Affiliation(s)
- Benquan Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing211198, China
| | - Jun-ichirou Yasunaga
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto860-8556, Japan
- Laboratory of Virus Control, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Yi Liang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing211198, China
| | - Ruoning Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing211198, China
| | - Sikai Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing211198, China
| | - Xiaoyi Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing211198, China
| | - Jie Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing211198, China
| | - Xiaorui Zuo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing211198, China
| | - Michi Miura
- Laboratory of Virus Control, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Yusuke Higuchi
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto860-8556, Japan
- Laboratory of Virus Control, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Takashi Matsumoto
- Laboratory of Virus Control, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Kosuke Toyoda
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto860-8556, Japan
- Laboratory of Virus Control, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto860-8556, Japan
- Laboratory of Virus Control, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Guangyong Ma
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing211198, China
| |
Collapse
|
2
|
Gong HZ, Guan J, Pan YZ, Ding HJ, Shi AW, Gu N. Short communication: Upregulation of hypoxia/reoxygenation-induced Shc3 by downregulated miR-455-5p, suppresses trophoblast invasion and is associated with placental inflammation and angiogenesis in preeclampsia. PLoS One 2025; 20:e0314544. [PMID: 39792965 PMCID: PMC11723625 DOI: 10.1371/journal.pone.0314544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/12/2024] [Indexed: 01/12/2025] Open
Abstract
Preeclampsia is characterized by insufficient invasion of extravillous trophoblasts and is a consequence of failed adaption of extravillous trophoblasts to changes in the intrauterine environment developing embryo. Specific miRNAs are implicated in the development of preeclampsia (PE). miR-455-5p is present at low levels in PE but its role is not known. Combining cell and molecular biology methods, we provide evidence of the function and mechanism of miR-455-5p action, and identify its potential target, Shc3, in PE. In vitro, when miR-455-5p was overexpressed in HTR-8/SVneo cells they migrated and invaded more rapidly under hypoxia/reoxygenation (H/R) than in either hypoxic or normoxic conditions. In contrast, apoptosis of HTR-8/SVneo was reduced in H/R. Shc3 was identified as a direct downstream target gene of miR-455-5p. Overexpression of Shc3 reversed the effect of miR-455-5p, promoting apoptosis and suppressing invasion and migration of HTR-8/SVneo under H/R. Shc3 was highly expressed in H/R, but its level was reduced in isolated hypoxic or normoxic environments. Furthermore, we showed Shc3 overexpression is involved in placental inflammation and angiogenesis inhibition. Finally, we showed that the downregulation of miR-455-5p in PE contributes to increased Shc3 in extravillous trophoblasts, thereby limiting extravillous trophoblast cell invasion. Elevated Shc3 is associated with placental inflammation and angiogenesis inhibition. Thus Shc3 serves as a potential biomarker for PE diagnosis and treatment.
Collapse
Affiliation(s)
- Hui-zhi Gong
- Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing Guan
- Nanjing Women and Children’s Healthcare Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying-zi Pan
- Nanjing Women and Children’s Healthcare Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong-juan Ding
- Nanjing Women and Children’s Healthcare Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ai-wu Shi
- Nanjing Women and Children’s Healthcare Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Giannubilo SR, Cecati M, Marzioni D, Ciavattini A. Circulating miRNAs and Preeclampsia: From Implantation to Epigenetics. Int J Mol Sci 2024; 25:1418. [PMID: 38338700 PMCID: PMC10855731 DOI: 10.3390/ijms25031418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In this review, we comprehensively present the literature on circulating microRNAs (miRNAs) associated with preeclampsia, a pregnancy-specific disease considered the primary reason for maternal and fetal mortality and morbidity. miRNAs are single-stranded non-coding RNAs, 20-24 nt long, which control mRNA expression. Changes in miRNA expression can induce a variation in the relative mRNA level and influence cellular homeostasis, and the strong presence of miRNAs in all body fluids has made them useful biomarkers of several diseases. Preeclampsia is a multifactorial disease, but the etiopathogenesis remains unclear. The functions of trophoblasts, including differentiation, proliferation, migration, invasion and apoptosis, are essential for a successful pregnancy. During the early stages of placental development, trophoblasts are strictly regulated by several molecular pathways; however, an imbalance in these molecular pathways can lead to severe placental lesions and pregnancy complications. We then discuss the role of miRNAs in trophoblast invasion and in the pathogenesis, diagnosis and prediction of preeclampsia. We also discuss the potential role of miRNAs from an epigenetic perspective with possible future therapeutic implications.
Collapse
Affiliation(s)
| | - Monia Cecati
- Department of Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy; (S.R.G.); (A.C.)
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Andrea Ciavattini
- Department of Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy; (S.R.G.); (A.C.)
| |
Collapse
|
4
|
The negative regulation of gene expression by microRNAs as key driver of inducers and repressors of cardiomyocyte differentiation. Clin Sci (Lond) 2022; 136:1179-1203. [PMID: 35979890 PMCID: PMC9411751 DOI: 10.1042/cs20220391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Cardiac muscle damage-induced loss of cardiomyocytes (CMs) and dysfunction of the remaining ones leads to heart failure, which nowadays is the number one killer worldwide. Therapies fostering effective cardiac regeneration are the holy grail of cardiovascular research to stop the heart failure epidemic. The main goal of most myocardial regeneration protocols is the generation of new functional CMs through the differentiation of endogenous or exogenous cardiomyogenic cells. Understanding the cellular and molecular basis of cardiomyocyte commitment, specification, differentiation and maturation is needed to devise innovative approaches to replace the CMs lost after injury in the adult heart. The transcriptional regulation of CM differentiation is a highly conserved process that require sequential activation and/or repression of different genetic programs. Therefore, CM differentiation and specification have been depicted as a step-wise specific chemical and mechanical stimuli inducing complete myogenic commitment and cell-cycle exit. Yet, the demonstration that some microRNAs are sufficient to direct ESC differentiation into CMs and that four specific miRNAs reprogram fibroblasts into CMs show that CM differentiation must also involve negative regulatory instructions. Here, we review the mechanisms of CM differentiation during development and from regenerative stem cells with a focus on the involvement of microRNAs in the process, putting in perspective their negative gene regulation as a main modifier of effective CM regeneration in the adult heart.
Collapse
|
5
|
miR-373-3p Regulates the Proliferative and Migratory Properties of Human HTR8 Cells via SLC38A1 Modulation. DISEASE MARKERS 2022; 2022:6582357. [PMID: 35837487 PMCID: PMC9274228 DOI: 10.1155/2022/6582357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022]
Abstract
The genetic pathogenesis of selective intrauterine growth restriction (sIUGR) remains elusive, with evidence suggesting an important role of epigenetic factors such as microRNAs. In this study, we explored the relevance of miR-373-3p to the occurrence of sIUGR. Hypoxia enhanced the levels of miR-373-3p and hypoxia-inducible factor (HIF)-1α, while HIF-1α knockdown not only boosted the migration and proliferation of HTR8 cells but also suppressed the hypoxia-induced upregulation of miR-373-3p and SLC38A1. By contrast, HIF-1α overexpression induced miR-373-3p downregulation and SLC38A1 upregulation, reducing cell growth and migration, which could be reversed by a miR-373-3p inhibitor. Importantly, the miR-373-3p inhibitor and mimic reproduced phenomena similar to those induced by HIF-1α downregulation and overexpression, respectively (including altered SLC38A1 expression, mTOR activation, cell growth, and migration). Mechanistically, the miRNA regulated cell behaviors and related mTOR signaling by targeting SLC38A1 expression through an interaction with the 3′-untranslated region of SLC38A1. The placental tissues of smaller sIUGR fetuses exhibited miR-373-3p and HIF-1α upregulation, SLC38A1 downregulation, and activated mTOR. Overall, miR-373-3p appears to restrict the growth and migration of HTR8 trophoblast cells by targeting SLC38A1, as observed in the placental tissues associated with smaller sIUGR fetuses, and it could have utility in the diagnosis and treatment of this disorder.
Collapse
|
6
|
Fujii Y, Liu L, Yagasaki L, Inotsume M, Chiba T, Asahara H. Cartilage Homeostasis and Osteoarthritis. Int J Mol Sci 2022; 23:6316. [PMID: 35682994 PMCID: PMC9181530 DOI: 10.3390/ijms23116316] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 01/27/2023] Open
Abstract
Healthy limb joints are important for maintaining health and attaining longevity. Endochondral ossification (the replacement of cartilage with bone, occurring during skeletal development) is essential for bone formation, especially in long-axis bones. In contrast to endochondral ossification, chondrocyte populations in articular cartilage persist and maintain joint tissue into adulthood. Articular cartilage, a connective tissue consisting of chondrocytes and their surrounding extracellular matrices, plays an essential role in the mechanical cushioning of joints in postnatal locomotion. Osteoarthritis (OA) pathology relates to disruptions in the balance between anabolic and catabolic signals, that is, the loss of chondrocyte homeostasis due to aging or overuse of cartilages. The onset of OA increases with age, shortening a person's healthy life expectancy. Although many people with OA experience pain, the mainstay of treatment is symptomatic therapy, and no fundamental treatment has yet been established. To establish regenerative or preventative therapies for cartilage diseases, further understanding of the mechanisms of cartilage development, morphosis, and homeostasis is required. In this review, we describe the general development of cartilage and OA pathology, followed by a discussion on anabolic and catabolic signals in cartilage homeostasis, mainly microRNAs.
Collapse
Affiliation(s)
- Yuta Fujii
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
| | - Lin Liu
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
| | - Lisa Yagasaki
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-851, Japan
| | - Maiko Inotsume
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
| | - Tomoki Chiba
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
| | - Hiroshi Asahara
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Zhang X, Zhang Q, Shan Y, Xiao J, Cheng J, Ye F, Sai Y. Transcriptomic investigation of the effects of TDCPP on PC12 and GC2 cells with experimental validation. Gene X 2022; 822:146349. [PMID: 35182677 DOI: 10.1016/j.gene.2022.146349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
TDCPP is a flame retardant which has nervous and reproductive toxicity. Although there is a close association between nervous and reproductive system, the exact toxic mechanism of TDCPP in these systems is still seldom, especially in a genome scale. In this study, we explored the transcriptomic landscape of TDCPP in PC12 and GC2 cells using RNAseq method. A total of 465 co-differential expressed genes were found. These genes were mainly enriched in extra-cellular matrix, cell adhesion, cell cycle arrest, oxidoreductase activity GO terms, and PI3K/AKT, focal adhesion, ECM-receptor interaction KEGG pathways. Hub genes (ANXA1, COL27A1, GAS6, GNB4 and THBS1) were extracted using STRING and confirmed by qPCR experiment. Vimentin, HSPA5 and Caspase3 were proved to be responsible to TDCPP in GC2 and PC12 cells. Knockdown assay in PC12 cells showed that these hub genes could also affect the protein expression of vimentin, HSPA5 and Caspase3. In summary, TDCPP might exert its toxic effect through disturbing focal adhesion, ECM-receptor interaction and PI3K/Akt pathways. One of the mechanisms could be influence on the cytoskeleton (vimentin), ER stress (HSPA5) and apoptosis (Caspase3). The sequence data in this study might be a useful resource for future TDCPP related researches.
Collapse
Affiliation(s)
- Xi Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qifu Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yaohui Shan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jingsong Xiao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jin Cheng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Feng Ye
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yan Sai
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
8
|
Cirkovic A, Stanisavljevic D, Milin-Lazovic J, Rajovic N, Pavlovic V, Milicevic O, Savic M, Kostic Peric J, Aleksic N, Milic N, Stanisavljevic T, Mikovic Z, Garovic V, Milic N. Preeclamptic Women Have Disrupted Placental microRNA Expression at the Time of Preeclampsia Diagnosis: Meta-Analysis. Front Bioeng Biotechnol 2022; 9:782845. [PMID: 35004644 PMCID: PMC8740308 DOI: 10.3389/fbioe.2021.782845] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Introduction: Preeclampsia (PE) is a pregnancy-associated, multi-organ, life-threatening disease that appears after the 20th week of gestation. The aim of this study was to perform a systematic review and meta-analysis to determine whether women with PE have disrupted miRNA expression compared to women who do not have PE. Methods: We conducted a systematic review and meta-analysis of studies that reported miRNAs expression levels in placenta or peripheral blood of pregnant women with vs. without PE. Studies published before October 29, 2021 were identified through PubMed, EMBASE and Web of Science. Two reviewers used predefined forms and protocols to evaluate independently the eligibility of studies based on titles and abstracts and to perform full-text screening, data abstraction and quality assessment. Standardized mean difference (SMD) was used as a measure of effect size. Results: 229 publications were included in the systematic review and 53 in the meta-analysis. The expression levels in placenta were significantly higher in women with PE compared to women without PE for miRNA-16 (SMD = 1.51,95%CI = 0.55-2.46), miRNA-20b (SMD = 0.89, 95%CI = 0.33-1.45), miRNA-23a (SMD = 2.02, 95%CI = 1.25-2.78), miRNA-29b (SMD = 1.37, 95%CI = 0.36-2.37), miRNA-155 (SMD = 2.99, 95%CI = 0.83-5.14) and miRNA-210 (SMD = 1.63, 95%CI = 0.69-2.58), and significantly lower for miRNA-376c (SMD = -4.86, 95%CI = -9.51 to -0.20). An increased level of miRNK-155 expression was found in peripheral blood of women with PE (SMD = 2.06, 95%CI = 0.35-3.76), while the expression level of miRNA-16 was significantly lower in peripheral blood of PE women (SMD = -0.47, 95%CI = -0.91 to -0.03). The functional roles of the presented miRNAs include control of trophoblast proliferation, migration, invasion, apoptosis, differentiation, cellular metabolism and angiogenesis. Conclusion: miRNAs play an important role in the pathophysiology of PE. The identification of differentially expressed miRNAs in maternal blood creates an opportunity to define an easily accessible biomarker of PE.
Collapse
Affiliation(s)
- Andja Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dejana Stanisavljevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Milin-Lazovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nina Rajovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vedrana Pavlovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ognjen Milicevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Savic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Kostic Peric
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Natasa Aleksic
- Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Nikola Milic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Zeljko Mikovic
- Clinic for Gynecology and Obstetrics Narodni Front, Belgrade, Serbia
| | - Vesna Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Natasa Milic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
9
|
Nuh AM, You Y, Ma M. Information on dysregulation of microRNA in placenta linked to preeclampsia. Bioinformation 2021; 17:240-248. [PMID: 34393443 PMCID: PMC8340720 DOI: 10.6026/97320630017240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are single-stranded, non-coding RNA molecules, regulate gene expression at the post-transcriptional level. They are expressed in the human body and have a significant impact on the different processes of pathological illness. A developing placenta undergoes a series of stages after successful fertilization, such as cell division, migration, adhesion, apoptosis, and angiogenesis. MicroRNAs dysregulation in placenta has been linked to pregnancy-related complications such as preeclampsia. Therefore, it is of interest to document known information (list of microRNA) on this issue in the development of biological tools for diagnosis, treatment and prevention of the disease.
Collapse
Affiliation(s)
- Abdifatah Mohamed Nuh
- Department of Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, 225000, China
- Yangzhou University Medical College, Yangzhou, Jiangsu Province, 225000, China
| | - Yan You
- Department of Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, 225000, China
- Yangzhou University Medical College, Yangzhou, Jiangsu Province, 225000, China
| | - Min Ma
- Department of Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, 225000, China
- Yangzhou University Medical College, Yangzhou, Jiangsu Province, 225000, China
| |
Collapse
|
10
|
Abstract
MicroRNA-455-3p (miR-455-3p) is identify as a member of broadly conserved miRNA family expressed in most of the phylum and species. In humans, miR-455 is present on the human chromosome 9 at locus 9q32 and encoded by the human COL27A1 gene (collagen type XXVII alpha 1 chain). The role of miR-455 has been implicated in various human diseases such as cartilage development, adipogenesis, preeclampsia, and cancers, e.g., colon cancer, prostate cancer, hepatocellular carcinoma, renal cancer, oral squamous cancer, skin cancer, and non-small cell lung cancer. Recently, our laboratory discovered the biomarker and therapeutic relevance of miR-455-3p in Alzheimer's disease (AD). Our global microarray analysis of serum samples from AD patients, mild cognitive individuals (MCI), and healthy subjects unveiled the high level of miR-455-3p in AD patients relative to MCI and healthy controls. Further, validation analysis using different kinds of AD samples such as serum, postmortem brains, AD fibroblasts, AD B-lymphocytes, AD cell lines, AD mouse models, and AD cerebrospinal fluid confirmed the biomarker potential of miR-455-3p. The mechanistic link of miR-455-3p in AD was determined via modulation of amyloid-β protein precursor (AβPP) and amyloid-β (Aβ) levels. Luciferase reporter assay confirmed AβPP as validated target of miR-455-3p. Our study on mouse neuroblastoma cells revealed the protective role of miR-455-3p against Aβ-induced toxicities. We also noticed that miR-455-3p enhances cell survival and lifespan extension. High level of miR-455-3p reduces Aβ toxicity, enhances mitochondrial biogenesis and synaptic activity, and maintains healthy mitochondrial dynamics. Based on these evidences, we cautiously conclude that miR-455-3p is a promising peripheral biomarker and therapeutic candidate for AD.
Collapse
Affiliation(s)
- Subodh Kumar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Departments of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
11
|
Song P, Feng L, Li J, Dai D, Zhu L, Wang C, Li J, Li L, Zhou Q, Shi R, Wang X, Jin H. β-catenin represses miR455-3p to stimulate m6A modification of HSF1 mRNA and promote its translation in colorectal cancer. Mol Cancer 2020; 19:129. [PMID: 32838807 PMCID: PMC7446108 DOI: 10.1186/s12943-020-01244-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/12/2020] [Indexed: 01/22/2023] Open
Abstract
Background Heat shock transcription factor1 (HSF1) was overexpressed to promote glutaminolysis and activate mTOR in colorectal cancer (CRC). Here, we investigated the mechanism for cancer-specific overexpression of HSF1. Methods HSF1 expression was analyzed by chromatin immunoprecipitation, qRT-PCR, immunohistochemistry staining and immunoblotting. HSF1 translation was explored by polysome profiling and nascent protein analysis. Biotin pulldown and m6A RNA immunoprecipitation were applied to investigate RNA/RNA interaction and m6A modification. The relevance of HSF1 to CRC was analyzed in APCmin/+ and APCmin/+ HSF1+/−mice. Results HSF1 expression and activity were reduced after the inhibition of WNT/β-catenin signaling by pyrvinium or β-catenin knockdown, but elevated upon its activation by lithium chloride (LiCl) or β-catenin overexpression. There are much less upregulated genes in HSF1-KO MEF treated with LiCl when compared with LiCl-treated WT MEF. HSF1 protein expression was positively correlated with β-catenin expression in cell lines and primary tissues. After β-catenin depletion, HSF1 mRNA translation was impaired, accompanied by the reduction of its m6A modification and the upregulation of miR455-3p, which can interact with 3′-UTR of HSF1 mRNA to repress its translation. Interestingly, inhibition of miR455-3p rescued β-catenin depletion-induced reduction of HSF1 m6A modification and METTL3 interaction. Both the size and number of tumors were significantly reduced in APCmin/+ mice when HSF1 was genetically knocked-out or chemically inhibited. Conclusions β-catenin suppresses miR455-3p generation to stimulate m6A modification and subsequent translation of HSF1 mRNA. HSF1 is important for β-catenin to promote CRC development. Targeting HSF1 could be a potential strategy for the intervention of β-catenin-driven cancers.
Collapse
Affiliation(s)
- Ping Song
- Department of Medical Oncology, Cancer Institute of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lifeng Feng
- Labortary of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaqiu Li
- Department of Medical Oncology, Cancer Institute of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dongjun Dai
- Department of Medical Oncology, Cancer Institute of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liyuan Zhu
- Labortary of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chaoqun Wang
- Department of pathology, People's Hospital of Dongyang, Zhejiang, China
| | - Jingyi Li
- Labortary of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ling Li
- Labortary of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiyin Zhou
- Department of Medical Oncology, Cancer Institute of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Rongkai Shi
- Department of Medical Oncology, Cancer Institute of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xian Wang
- Department of Medical Oncology, Cancer Institute of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hongchuan Jin
- Labortary of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
12
|
Tang J, Wang D, Lu J, Zhou X. MiR-125b participates in the occurrence of preeclampsia by regulating the migration and invasion of extravillous trophoblastic cells through STAT3 signaling pathway. J Recept Signal Transduct Res 2020; 41:202-208. [PMID: 32787544 DOI: 10.1080/10799893.2020.1806318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Preeclampsia (PE) is a major risk factor for maternal and fetal mortality. Studies showed that microRNAs (miRNAs) play important roles in PE, and are closely related to extra-villous trophoblastic proliferation and invasion. The current study determined miR-125b expression in PE patients, and explored the role of miR-125b in the occurrence and development of PE and its possible mechanism, aiming to provide a novel basis for the diagnosis and treatment of PE. The level of miR-125b in serum derived from pregnant women was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, invasion and migration of HTR-8/SVneo were determined by Cell Counting Kit-8 (CCK-8), Transwell and scratch assay, respectively. The target gene of miR-125b was predicted by Targetscan, and verified by luciferase reporter assay. The expressions of related proteins were determined by Western Blotting. The miR-125b level in the serum of PE patients was up-regulated as compared with normal pregnant women, and high level of miR-125b reduced cell proliferation, inhibited invasion and migration of HTR-8/SVneo as well as the expressions of STAT3, p-STAT3 and SOCS3, while low level of miR-125b produced the opposite results. STAT3 was predicted as the target gene of miR-125b, and the high level of miR-125b inhibited STAT3 signaling pathway. High expression of miR-125b may be involved in the occurrence of PE through inhibiting STAT3 pathway to inhibit the migration and invasion of extra-villous trophoblastic cells.
Collapse
Affiliation(s)
- Jiani Tang
- Department of Obstetrics, Changzhou Second People's Hospital, Changzhou, China
| | - Dan Wang
- Department of Obstetrics, Changzhou Second People's Hospital, Changzhou, China
| | - Jing Lu
- Department of Obstetrics, Changzhou Second People's Hospital, Changzhou, China
| | - Xiaoyu Zhou
- Department of Obstetrics, Changzhou Second People's Hospital, Changzhou, China
| |
Collapse
|
13
|
Arthurs AL, Lumbers ER, Pringle KG. MicroRNA mimics that target the placental renin-angiotensin system inhibit trophoblast proliferation. Mol Hum Reprod 2020; 25:218-227. [PMID: 30869150 DOI: 10.1093/molehr/gaz010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/29/2019] [Accepted: 03/12/2019] [Indexed: 12/15/2022] Open
Abstract
In early gestation, the human placental renin-angiotensin system (RAS) is upregulated and plays a role in placental development. Among other functions, signalling through the angiotensin II type 1 receptor (AT1R) initiates proliferation. Many microRNAs (miRNAs) targeting placental RAS mRNAs are downregulated at this time. We propose that in early gestation miRNAs that target the placental RAS are downregulated, allowing for the increased RAS expression and proliferation required for adequate placentation. HTR-8/SVneo cells (an immortalized human trophoblast cell line) were used to assess the effect of nine miRNA mimics (at 0.08, 0.16, 0.32 and 0.64 ng/μL) on trophoblast cell proliferation and predicted RAS target mRNAs. The effect of the miRNA mimics on the rate of cell proliferation was assessed using the xCELLigence real-time cell analysis system over 48 h. Levels of miRNAs and predicted RAS target mRNAs were determined by RT-PCR (qPCR, n = 9/group). Statistically different levels of expression were determined (P < 0.05). All nine miRNA mimics significantly affected the proliferation rates of HTR-8/SVneo cells. Five of the miRNA mimics (miR-181a-5p (predicted to target: renin (REN), angiotensin converting enzyme (ACE)), miR-378 (REN, ACE), miR-663 (REN), miR-483-3p (ACE, ACE2, angiotensinogen (AGT), angiotensin II type 1 receptor (AGTR1)) and miR-514 (AGT)) were associated with a dose-dependent reduction in cell proliferation. Seven of the mimics significantly decreased expression of at least one of their predicted target RAS mRNAs. Our study shows that miRNAs targeting placental RAS mRNAs play a role in controlling trophoblast proliferation. As placentation is largely a process of proliferation, changes in expression of these miRNAs may be partly responsible for the expression of the placental RAS, proliferation and placentation.
Collapse
Affiliation(s)
- Anya L Arthurs
- Priority Research Centre for Reproductive Sciences, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Eugenie R Lumbers
- Priority Research Centre for Reproductive Sciences, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Kirsty G Pringle
- Priority Research Centre for Reproductive Sciences, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| |
Collapse
|
14
|
Frazier S, McBride MW, Mulvana H, Graham D. From animal models to patients: the role of placental microRNAs, miR-210, miR-126, and miR-148a/152 in preeclampsia. Clin Sci (Lond) 2020; 134:1001-1025. [PMID: 32337535 PMCID: PMC7239341 DOI: 10.1042/cs20200023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/23/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Placental microRNAs (miRNAs) regulate the placental transcriptome and play a pathological role in preeclampsia (PE), a hypertensive disorder of pregnancy. Three PE rodent model studies explored the role of placental miRNAs, miR-210, miR-126, and miR-148/152 respectively, by examining expression of the miRNAs, their inducers, and potential gene targets. This review evaluates the role of miR-210, miR-126, and miR-148/152 in PE by comparing findings from the three rodent model studies with in vitro studies, other animal models, and preeclamptic patients to provide comprehensive insight into genetic components and pathological processes in the placenta contributing to PE. The majority of studies demonstrate miR-210 is upregulated in PE in part driven by HIF-1α and NF-κBp50, stimulated by hypoxia and/or immune-mediated processes. Elevated miR-210 may contribute to PE via inhibiting anti-inflammatory Th2-cytokines. Studies report an up- and downregulation of miR-126, arguably reflecting differences in expression between cell types and its multifunctional capacity. MiR-126 may play a pro-angiogenic role by mediating the PI3K-Akt pathway. Most studies report miR-148/152 family members are upregulated in PE. Evidence suggests they may inhibit DNA methylation of genes involved in metabolic and inflammatory pathways. Given the genetic heterogeneity of PE, it is unlikely that a single placental miRNA is a suitable therapeutic target for all patients. Investigating miRNAs in PE subtypes in patients and animal models may represent a more appropriate approach going forward. Developing methods for targeting placental miRNAs and specific placental cell types remains crucial for research seeking to target placental miRNAs as a novel treatment for PE.
Collapse
Affiliation(s)
- Sonya Frazier
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Martin W. McBride
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Helen Mulvana
- Biomedical Engineering, University of Strathclyde, Glasgow, U.K
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| |
Collapse
|
15
|
Preeclampsia: The Interplay Between Oxygen-Sensitive miRNAs and Erythropoietin. J Clin Med 2020; 9:jcm9020574. [PMID: 32093169 PMCID: PMC7073952 DOI: 10.3390/jcm9020574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022] Open
Abstract
Changes in the oxygen partial pressure caused by a violation of uteroplacental perfusion are considered a powerful inducer of a cascade of reactions leading to the clinical manifestation of preeclampsia (PE). At the same time, the induction of oxygen-dependent molecule expression, in particular, miRNA and erythropoietin, is modulated. Therefore, the focus of our study was aimed at estimating the miRNA expression profile of placental tissue and blood plasma in pregnant women with preeclampsia using deep sequencing and quantitative RT-PCR, as well as determining the concentration of erythropoietin. The expression of miR-27b-3p, miR-92b-3p, miR-125b-5p, miR-181a-5p, and miR-186-5p, as regulated by hypoxia/reoxygenation, was significantly increased in blood plasma during early-onset preeclampsia. The possibility of detecting early PE according to the logistic regression model (miR-92b-3p, miR-125b-5p, and miR-181a-5p (AUC = 0.91)) was evaluated. Furthermore, the erythropoietin level, which is regulated by miR-125b-5p, was significantly increased. According to PANTHER14.1, the participation of these miRNAs in the regulation of pathways, such as the hypoxia’s response via HIF activation, oxidative stress response, angiogenesis, and the VEGF signaling pathway, were determined.
Collapse
|
16
|
Yang X, Meng T. miR-215-5p decreases migration and invasion of trophoblast cells through regulating CDC6 in preeclampsia. Cell Biochem Funct 2020; 38:472-479. [PMID: 31972053 DOI: 10.1002/cbf.3492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022]
Abstract
Preeclampsia (PE) is a serious disease that occurs after 20 weeks during pregnancy. There are some aberrant microRNAs (miRNAs) that are associated with the etiology of PE. As discovered by scholars, there was an increased level of miR-215-5p in plasma of PE patients compared with the control group; nonetheless, there is still no knowledge of the mechanism of miR-215-5p in PE. We carried out the comparison of the expression levels of miR-215-5p, and the supposed target gene cell division cycle 6 (CDC6) in 30 placentas from PE patients as well as 30 placentas from normal pregnant women. The verification of the impacts of miR-215-5p and CDC6 was carried out by functional assays in HTR-8/SVneo cells transfected with the miR-215-5p mimic or siR-CDC6. As indicated by findings, miR-215-5p showed an apparent increase; conversely, CDC6 was inhibited in the experiment group. The upregulation of miR-215-5p inhibited both the migration and invasive potential of trophoblasts, besides decreasing the G1-S transition and downregulating CDC6 in HTR-8/SVneo cells; nonetheless, it did not significantly impact the cell proliferation. Furthermore, siR-CDC6 replicated the functions of the miR-215-5p mimic. Also, the miR-215-5p mimic and siR-CDC6 both decreased the epithelial-mesenchymal transition (EMT) with additional E-cadherin level and decreased the expressions of N-cadherin as well as vimentin in trophoblast cells. To conclude, miR-215-5p decreased not only the migration but also the invasion of trophoblasts through regulating CDC6, which indicated that miR-215-5p might be associated with the etiology of PE. SIGNIFICANCE OF THE STUDY: More and more attention has been paid on the roles of miRNAs in the pathogenesis of PE. However, there is no study of miR-215-5p in the etiology of PE. We first investigated the mechanism of miR-215-5p in placental tissues and HTR-8/SVneo cells. It was suggested that miR-215-5p decreased the abilities of migration and invasion of trophoblasts through regulating CDC6 in PE. miR-215-5p might be used as an target for the early diagnosis and treatment of PE in the future.
Collapse
Affiliation(s)
- Xiuhua Yang
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China
| | - Tao Meng
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Hu XQ, Zhang L. MicroRNAs in Uteroplacental Vascular Dysfunction. Cells 2019; 8:E1344. [PMID: 31671866 PMCID: PMC6912833 DOI: 10.3390/cells8111344] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pregnancy complications of preeclampsia and intrauterine growth restriction (IUGR) are major causes of maternal and perinatal/neonatal morbidity and mortality. Although their etiologies remain elusive, it is generally accepted that they are secondary to placental insufficiency conferred by both failure in spiral artery remodeling and uteroplacental vascular malfunction. MicroRNAs (miRNAs) are small no-coding RNA molecules that regulate gene expression at the post-transcriptional level. Increasing evidence suggests that miRNAs participate in virtually all biological processes and are involved in numerous human diseases. Differentially expressed miRNAs in the placenta are typical features of both preeclampsia and IUGR. Dysregulated miRNAs target genes of various signaling pathways in uteroplacental tissues, contributing to the development of both complications. In this review, we provide an overview of how aberrant miRNA expression in preeclampsia and IUGR impacts the expression of genes involved in trophoblast invasion and uteroplacental vascular adaptation.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| |
Collapse
|
18
|
Kumar N, Dougherty JA, Manring HR, Elmadbouh I, Mergaye M, Czirok A, Greta Isai D, Belevych AE, Yu L, Janssen PML, Fadda P, Gyorke S, Ackermann MA, Angelos MG, Khan M. Assessment of temporal functional changes and miRNA profiling of human iPSC-derived cardiomyocytes. Sci Rep 2019; 9:13188. [PMID: 31515494 PMCID: PMC6742647 DOI: 10.1038/s41598-019-49653-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been developed for cardiac cell transplantation studies more than a decade ago. In order to establish the hiPSC-CM-based platform as an autologous source for cardiac repair and drug toxicity, it is vital to understand the functionality of cardiomyocytes. Therefore, the goal of this study was to assess functional physiology, ultrastructural morphology, gene expression, and microRNA (miRNA) profiling at Wk-1, Wk-2 & Wk-4 in hiPSC-CMs in vitro. Functional assessment of hiPSC-CMs was determined by multielectrode array (MEA), Ca2+ cycling and particle image velocimetry (PIV). Results demonstrated that Wk-4 cardiomyocytes showed enhanced synchronization and maturation as compared to Wk-1 & Wk-2. Furthermore, ultrastructural morphology of Wk-4 cardiomyocytes closely mimicked the non-failing (NF) adult human heart. Additionally, modulation of cardiac genes, cell cycle genes, and pluripotency markers were analyzed by real-time PCR and compared with NF human heart. Increasing expression of fatty acid oxidation enzymes at Wk-4 supported the switching to lipid metabolism. Differential regulation of 12 miRNAs was observed in Wk-1 vs Wk-4 cardiomyocytes. Overall, this study demonstrated that Wk-4 hiPSC-CMs showed improved functional, metabolic and ultrastructural maturation, which could play a crucial role in optimizing timing for cell transplantation studies and drug screening.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Julie A Dougherty
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Heather R Manring
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ibrahim Elmadbouh
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Muhamad Mergaye
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Dona Greta Isai
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andriy E Belevych
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lianbo Yu
- Center for Biostatistics, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Paolo Fadda
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sandor Gyorke
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Maegen A Ackermann
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mark G Angelos
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mahmood Khan
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA. .,Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
19
|
Zeng Y, Gao T, Huang W, Yang Y, Qiu R, Hou Y, Yu W, Leng S, Feng D, Liu W, Teng X, Yu H, Wang Y. MicroRNA-455-3p mediates GATA3 tumor suppression in mammary epithelial cells by inhibiting TGF-β signaling. J Biol Chem 2019; 294:15808-15825. [PMID: 31492753 DOI: 10.1074/jbc.ra119.010800] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/02/2019] [Indexed: 12/27/2022] Open
Abstract
GATA3 is a basic and essential transcription factor that regulates many pathophysiological processes and is required for the development of mammary luminal epithelial cells. Loss-of-function GATA3 alterations in breast cancer are associated with poor prognosis. Here, we sought to understand the tumor-suppressive functions GATA3 normally performs. We discovered a role for GATA3 in suppressing epithelial-to-mesenchymal transition (EMT) in breast cancer by activating miR-455-3p expression. Enforced expression of miR-455-3p alone partially prevented EMT induced by transforming growth factor β (TGF-β) both in cells and tumor xenografts by directly inhibiting key components of TGF-β signaling. Pathway and biochemical analyses showed that one miRNA-455-3p target, the TGF-β-induced protein ZEB1, recruits the Mi-2/nucleosome remodeling and deacetylase (NuRD) complex to the promotor region of miR-455 to strictly repress the GATA3-induced transcription of this microRNA. Considering that ZEB1 enhances TGF-β signaling, we delineated a double-feedback interaction between ZEB1 and miR-455-3p, in addition to the repressive effect of miR-455-3p on TGF-β signaling. Our study revealed that a feedback loop between these two axes, specifically GATA3-induced miR-455-3p expression, could repress ZEB1 and its recruitment of NuRD (MTA1) to suppress miR-455, which ultimately regulates TGF-β signaling. In conclusion, we identified that miR-455-3p plays a pivotal role in inhibiting the EMT and TGF-β signaling pathway and maintaining cell differentiation. This forms the basis of that miR-455-3p might be a promising therapeutic intervention for breast cancer.
Collapse
Affiliation(s)
- Yi Zeng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,Department of Biochemistry and Molecular Biology, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tianyang Gao
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wei Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yang Yang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Rongfang Qiu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yongqiang Hou
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wenqian Yu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Shuai Leng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Dandan Feng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wei Liu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xu Teng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hefen Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China .,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
20
|
Nalivaeva NN, Turner AJ, Zhuravin IA. Role of Prenatal Hypoxia in Brain Development, Cognitive Functions, and Neurodegeneration. Front Neurosci 2018; 12:825. [PMID: 30510498 PMCID: PMC6254649 DOI: 10.3389/fnins.2018.00825] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022] Open
Abstract
This review focuses on the role of prenatal hypoxia in the development of brain functions in the postnatal period and subsequent increased risk of neurodegenerative disorders in later life. Accumulating evidence suggests that prenatal hypoxia in critical periods of brain formation results in significant changes in development of cognitive functions at various stages of postnatal life which correlate with morphological changes in brain structures involved in learning and memory. Prenatal hypoxia also leads to a decrease in brain adaptive potential and plasticity due to the disturbance in the process of formation of new contacts between cells and propagation of neuronal stimuli, especially in the cortex and hippocampus. On the other hand, prenatal hypoxia has a significant impact on expression and processing of a variety of genes involved in normal brain function and their epigenetic regulation. This results in changes in the patterns of mRNA and protein expression and their post-translational modifications, including protein misfolding and clearance. Among proteins affected by prenatal hypoxia are a key enzyme of the cholinergic system-acetylcholinesterase, and the amyloid precursor protein (APP), both of which have important roles in brain function. Disruption of their expression and metabolism caused by prenatal hypoxia can also result, apart from early cognitive dysfunctions, in development of neurodegeneration in later life. Another group of enzymes affected by prenatal hypoxia are peptidases involved in catabolism of neuropeptides, including amyloid-β peptide (Aβ). The decrease in the activity of neprilysin and other amyloid-degrading enzymes observed after prenatal hypoxia could result over the years in an Aβ clearance deficit and accumulation of its toxic species which cause neuronal cell death and development of neurodegeneration. Applying various approaches to restore expression of neuronal genes disrupted by prenatal hypoxia during postnatal development opens an avenue for therapeutic compensation of cognitive dysfunctions and prevention of Aβ accumulation in the aging brain and the model of prenatal hypoxia in rodents can be used as a reliable tool for assessment of their efficacy.
Collapse
Affiliation(s)
- Natalia N. Nalivaeva
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Anthony J. Turner
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Igor A. Zhuravin
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Research Centre, Saint-Petersburg State Pediatric Medical University, St. Petersburg, Russia
| |
Collapse
|
21
|
Xu XX, Jia SZ, Dai Y, Zhang JJ, Li XY, Shi JH, Leng JH, Lang JH. Identification of Circular RNAs as a Novel Biomarker for Ovarian Endometriosis. Chin Med J (Engl) 2018; 131:559-566. [PMID: 29483390 PMCID: PMC5850672 DOI: 10.4103/0366-6999.226070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Endometriosis is a challenging disease with symptoms such as dysmenorrhea and infertility. However, its etiology is still vague and there is still no effective markers or treatment. This study aimed to profile the circular RNAs (circRNAs) expressed in eutopic endometrium from patients with ovarian endometriosis and explore potential clues to the pathogenesis of endometriosis, providing an evidence for clinical diagnosis and treatment. Methods A total of 63 clinical samples, including control endometrium (n = 22) and eutopic endometrium (n = 41), were collected from Peking Union Medical College Hospital between May 1, 2016, and December 31, 2016. Of them, four samples in each group were used for circRNA microarray. Then, four upregulated circRNAs were screened out for quantitative real-time polymerase chain reaction (qRT-PCR) validation. After that, bioinformatics analysis was performed to predict miRNAs targeted by validated circRNAs and investigate the circRNA-miRNA-mRNA interactions. Results Among 88 differentially expressed circRNAs, 11 were upregulated and 77 were downregulated in eutopic endometrium of patients with endometriosis. qRT-PCR validation results for two upregulated circRNAs (circ_0004712 and circ_0002198) matched the microarray results. The area under the receiver operating characteristic curve of circ_0002198 for distinguishing ovarian endometriosis was 0.846 (95% confidence interval [CI]: 0.752-0.939; P < 0.001) while that of circ_0004712 was 0.704 (95% CI: 0.571-0.837; P = 0.008). On the basis of target prediction, we depicted the molecular interactions between the identified circRNAs and their dominant target miRNAs, as well as constructed a circRNA-miRNA-mRNA network. Conclusions This study provides evidence that circRNAs are differentially expressed between eutopic and normal endometrium, which suggests that circRNAs are candidate factors in the activation of endometriosis. circ_0002198 and circ_0004712 may be potential novel biomarkers for the diagnosis of ovarian endometriosis.
Collapse
Affiliation(s)
- Xiao-Xuan Xu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shuang-Zheng Jia
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yi Dai
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jun-Ji Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiao-Yan Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jing-Hua Shi
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jin-Hua Leng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jing-He Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
22
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
23
|
Sun H, Zhao X, Zhang C, Zhang Z, Lun J, Liao W, Zhang Z. MiR-455-3p inhibits the degenerate process of chondrogenic differentiation through modification of DNA methylation. Cell Death Dis 2018; 9:537. [PMID: 29748607 PMCID: PMC5945650 DOI: 10.1038/s41419-018-0565-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/19/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022]
Abstract
The aim of this work was to determine whether miR-455-3p regulates DNA methylation during chondrogenic differentiation of hMSCs. The expression of miR-455-3p and de novo methyltransferase DNMT3A was assessed in micromass culture of hBMSCs, which induced chondrogenic differentiation in vitro, and in E16.5 mice in vivo. A luciferase reporter assay was used to confirm whether miR-455-3p directly targets DNMT3A by interaction with the 3′-UTR. Using an Illumina Infinium Methylation EPIC microarray, genome-wide DNA methylation of hBMSCs with or without overexpressed miR-455-3p was examined for 28 days during induced chondrogenic differentiation. Here, we showed that miR-455-3p was more expressed during the middle stage of hBMSC chondrogenic differentiation, and less expressed in the late stage. DNMT3A was less expressed in the middle stage and more expressed in the late stage, and was also more expressed in the palms of miR-455-3p deletion mice compared to those of wild-type mice. The luciferase reporter assay demonstrated that miR-455-3p directly targets DNMT3A 3′-UTR. miR-455-3p overexpression inhibits the degenerate process during chondrogenic differentiation, while deletion of miR-455-3p in mice accelerated cartilage degeneration. Genome-wide DNA methylation analysis showed miR-455-3p overexpression regulates DNA methylation of cartilage-specific genes. GO analysis revealed PI3K-Akt signaling pathway was most hypomethylated. Our data show that miR-455-3p can regulate hMSC chondrogenic differentiation by affecting DNA methylation. Overexpression of miR-455-3p and DNA methylation inhibitors can thus potentially be utilized to optimize chondrogenic differentiation.
Collapse
Affiliation(s)
- Hao Sun
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, Guangdong, China
| | - Xiaoyi Zhao
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, Guangdong, China
| | - Chengyun Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, Guangdong, China
| | - Ziji Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, Guangdong, China
| | - Jiayong Lun
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, Guangdong, China
| | - Weiming Liao
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, Guangdong, China.
| | - Zhiqi Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, Guangdong, China.
| |
Collapse
|
24
|
miR-181a-5p suppresses invasion and migration of HTR-8/SVneo cells by directly targeting IGF2BP2. Cell Death Dis 2018; 9:16. [PMID: 29339719 PMCID: PMC5833820 DOI: 10.1038/s41419-017-0045-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 09/25/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
Pre-eclampsia is a pregnancy-related disease that may cause maternal, neonatal and fetal morbidity and mortality and exists in 3–5% of pregnancies worldwide. The discovery of dysregulated microRNAs and their roles in placental development has provided a new avenue for elucidating the mechanism involved in this pregnancy-specific disorder. Here, the roles of human miR-181a-5p, a microRNA that is increased in both the plasma and placenta of severe pre-eclamptic patients, in invasion and migration of trophoblasts were investigated. Ectopic-expression of miR-181a-5p impaired the invasion and migration of HTR-8/SVneo cells, whereas miR-181a-5p inhibition had the opposite effects. IGF2BP2, which harbors a highly conserved miR-181a-5p-binding site within its 3ʹ-UTR, was identified to be directly inhibited by miR-181a-5p. Moreover, siRNAs targeting IGF2BP2 imitated the effects of overexpressed miR-181a-5p on HTR-8/SVneo cell invasion and migration, whereas restoring IGF2BP2 expression by overexpressing a plasmid encoding IGF2BP2 partially reversed the studied inhibitory functions of miR-181a-5p. Thus, we demonstrated here that miR-181a-5p suppresses the invasion and migration of cytotrophoblasts, and its inhibitory effects were at least partially mediated by the suppression of IGF2BP2 expression, thus shedding new light on the roles of miR-181a-5p in the pathogenesis of severe pre-eclampsia.
Collapse
|
25
|
Nagosa S, Leesch F, Putin D, Bhattacharya S, Altshuler A, Serror L, Amitai-Lange A, Nasser W, Aberdam E, Rouleau M, Tattikota SG, Poy MN, Aberdam D, Shalom-Feuerstein R. microRNA-184 Induces a Commitment Switch to Epidermal Differentiation. Stem Cell Reports 2017; 9. [PMID: 29198823 PMCID: PMC5785777 DOI: 10.1016/j.stemcr.2017.10.030 10.13039/501100003977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
miR-184 is a highly evolutionary conserved microRNA (miRNA) from fly to human. The importance of miR-184 was underscored by the discovery that point mutations in miR-184 gene led to corneal/lens blinding disease. However, miR-184-related function in vivo remained unclear. Here, we report that the miR-184 knockout mouse model displayed increased p63 expression in line with epidermal hyperplasia, while forced expression of miR-184 by stem/progenitor cells enhanced the Notch pathway and induced epidermal hypoplasia. In line, miR-184 reduced clonogenicity and accelerated differentiation of human epidermal cells. We showed that by directly repressing cytokeratin 15 (K15) and FIH1, miR-184 induces Notch activation and epidermal differentiation. The disease-causing miR-184C57U mutant failed to repress K15 and FIH1 and to induce Notch activation, suggesting a loss-of-function mechanism. Altogether, we propose that, by targeting K15 and FIH1, miR-184 regulates the transition from proliferation to early differentiation, while mis-expression or mutation in miR-184 results in impaired homeostasis.
Collapse
Affiliation(s)
- Sara Nagosa
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Friederike Leesch
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Daria Putin
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Swarnabh Bhattacharya
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Anna Altshuler
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Laura Serror
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Aya Amitai-Lange
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Waseem Nasser
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Edith Aberdam
- University Paris Diderot, Sorbonne Paris Cité, Paris 75475, France; INSERM U976, Hôpital St-Louis, Paris 75010, France
| | - Matthieu Rouleau
- CNRS, LP2M, UMR7370, Faculté de Médecine, Nice, France; Université Nice Sophia Antipolis, Nice, France
| | - Sudhir G Tattikota
- Max Delbrueck Center for Molecular Medicine, Robert Roessle Strasse 10, Berlin 13125, Germany
| | - Matthew N Poy
- Max Delbrueck Center for Molecular Medicine, Robert Roessle Strasse 10, Berlin 13125, Germany
| | - Daniel Aberdam
- University Paris Diderot, Sorbonne Paris Cité, Paris 75475, France; INSERM U976, Hôpital St-Louis, Paris 75010, France
| | - Ruby Shalom-Feuerstein
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
26
|
Nagosa S, Leesch F, Putin D, Bhattacharya S, Altshuler A, Serror L, Amitai-Lange A, Nasser W, Aberdam E, Rouleau M, Tattikota SG, Poy MN, Aberdam D, Shalom-Feuerstein R. microRNA-184 Induces a Commitment Switch to Epidermal Differentiation. Stem Cell Reports 2017; 9:1991-2004. [PMID: 29198823 PMCID: PMC5785777 DOI: 10.1016/j.stemcr.2017.10.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/28/2022] Open
Abstract
miR-184 is a highly evolutionary conserved microRNA (miRNA) from fly to human. The importance of miR-184 was underscored by the discovery that point mutations in miR-184 gene led to corneal/lens blinding disease. However, miR-184-related function in vivo remained unclear. Here, we report that the miR-184 knockout mouse model displayed increased p63 expression in line with epidermal hyperplasia, while forced expression of miR-184 by stem/progenitor cells enhanced the Notch pathway and induced epidermal hypoplasia. In line, miR-184 reduced clonogenicity and accelerated differentiation of human epidermal cells. We showed that by directly repressing cytokeratin 15 (K15) and FIH1, miR-184 induces Notch activation and epidermal differentiation. The disease-causing miR-184C57U mutant failed to repress K15 and FIH1 and to induce Notch activation, suggesting a loss-of-function mechanism. Altogether, we propose that, by targeting K15 and FIH1, miR-184 regulates the transition from proliferation to early differentiation, while mis-expression or mutation in miR-184 results in impaired homeostasis.
Collapse
Affiliation(s)
- Sara Nagosa
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Friederike Leesch
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Daria Putin
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Swarnabh Bhattacharya
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Anna Altshuler
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Laura Serror
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Aya Amitai-Lange
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Waseem Nasser
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Edith Aberdam
- University Paris Diderot, Sorbonne Paris Cité, Paris 75475, France; INSERM U976, Hôpital St-Louis, Paris 75010, France
| | - Matthieu Rouleau
- CNRS, LP2M, UMR7370, Faculté de Médecine, Nice, France; Université Nice Sophia Antipolis, Nice, France
| | - Sudhir G Tattikota
- Max Delbrueck Center for Molecular Medicine, Robert Roessle Strasse 10, Berlin 13125, Germany
| | - Matthew N Poy
- Max Delbrueck Center for Molecular Medicine, Robert Roessle Strasse 10, Berlin 13125, Germany
| | - Daniel Aberdam
- University Paris Diderot, Sorbonne Paris Cité, Paris 75475, France; INSERM U976, Hôpital St-Louis, Paris 75010, France
| | - Ruby Shalom-Feuerstein
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
27
|
Kumar S, Vijayan M, Reddy PH. MicroRNA-455-3p as a potential peripheral biomarker for Alzheimer's disease. Hum Mol Genet 2017; 26:3808-3822. [PMID: 28934394 PMCID: PMC6075184 DOI: 10.1093/hmg/ddx267] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 01/15/2023] Open
Abstract
The purpose of our study was to identify microRNAs (miRNAs) as early detectable peripheral biomarkers in Alzheimer's disease (AD). To achieve our objective, we assessed miRNAs in serum samples from AD patients and Mild cognitive impairment (MCI) subjects relative to healthy controls. We used Affymetrix microarray analysis and validated differentially expressed miRNAs using qRT-PCR. We further validated miRNA data using AD postmortem brains, amyloid precursor protein transgenic mice and AD cell lines. We identified a gradual upregulation of four miRNAs: miR-455-3p, miR-4668-5p, miR-3613-3p and miR-4674. A fifth miRNA, mir-6722, was down-regulated in persons with AD and mild cognitive impairment compared with controls. Validation analysis by qRT-PCR showed significant upregulation of only miR-455-3p (P = 0.007) and miR-4668-5p (P = 0.016) in AD patients compared with healthy controls. Furthermore, qRT-PCR analysis of the AD postmortem brains with different Braak stages also showed upregulation of miR-455-3p (P = 0.016). However, receiver operating characteristic curves (ROC) curve analysis revealed a significant area under curve (AUC) value only for miR-455-3p in the serum (AUROC = 0.79; P = 0.015) and brains (AUROC = 0.86; P = 0.016) of AD patients. Expression analysis of amyloid precursor protein transgenic mice also revealed high level of mmu-miR-455-3p (P = 0.004) in the cerebral cortex (AD-affected) region of brain and low in the non-affected area, i.e. cerebellum. Furthermore, human and mouse neuroblastoma cells treated with the amyloid-β(1-42) peptide also showed a similarly higher expression of miR-455-3p. Functional analysis of differentially expressed miRNAs via the miR-path indicated that miR-455-3p was associated in the regulation of several biological pathways. Genes associated with these pathways were found to have a crucial role in AD pathogenesis. An increase in miR-455-3p expression found in AD patients and Aβ pathologies unveiled its biomarker characteristics and a precise role in AD pathogenesis.
Collapse
Affiliation(s)
| | | | - P. Hemachandra Reddy
- Biomarker Unit, Garrison Institute on Aging
- Department of Cell Biology & Biochemistry
- Department of Pharmacology & Neuroscience
- Department of Neurology
- Department of Speech, Language and Hearing Sciences
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
28
|
Salomon C, Guanzon D, Scholz-Romero K, Longo S, Correa P, Illanes SE, Rice GE. Placental Exosomes as Early Biomarker of Preeclampsia: Potential Role of Exosomal MicroRNAs Across Gestation. J Clin Endocrinol Metab 2017; 102:3182-3194. [PMID: 28531338 DOI: 10.1210/jc.2017-00672] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/17/2017] [Indexed: 12/14/2022]
Abstract
CONTEXT There is a need to develop strategies for early prediction of patients who will develop preeclampsia (PE) to establish preventive strategies to reduce the prevalence and severity of the disease and their associated complications. OBJECTIVE The objective of this study was to investigate whether exosomes and their microRNA cargo present in maternal circulation can be used as early biomarker for PE. DESIGN, SETTING, PATIENTS, AND INTERVENTIONS A retrospective stratified study design was used to quantify total exosomes and placenta-derived exosomes present in maternal plasma of normal (n = 32 per time point) and PE (n = 15 per time point) pregnancies. Exosomes present in maternal circulation were determined by nanoparticle tracking analysis. An Illumina TruSeq® Small RNA Library Prep Kit was used to construct a small RNA library from exosomal RNA obtained from plasma samples. RESULTS In presymptomatic women, who subsequently developed PE, the concentration of total exosomes and placenta-derived exosomes in maternal plasma was significantly greater than those observed in controls, throughout pregnancy. The area under the receiver operating characteristic curves for total exosome and placenta-derived exosome concentrations were 0.745 ± 0.094 and 0.829 ± 0.077, respectively. In total, over 300 microRNAs were identified in exosomes across gestation, where hsa-miR-486-1-5p and hsa-miR-486-2-5p were identified as the candidate microRNAs. CONCLUSIONS Although the role of exosomes during PE remains to be fully elucidated, we suggest that the concentration and content of exosomes may be of diagnostic utility for women at risk for developing PE.
Collapse
Affiliation(s)
- Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland 4029, Australia
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, Louisiana 70121
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
| | - Dominic Guanzon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland 4029, Australia
| | - Katherin Scholz-Romero
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland 4029, Australia
| | - Sherri Longo
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, Louisiana 70121
| | - Paula Correa
- Department of Obstetric and Gynecology and Laboratory of Reproductive Biology, Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile
| | - Sebastian E Illanes
- Department of Obstetric and Gynecology and Laboratory of Reproductive Biology, Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile
| | - Gregory E Rice
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland 4029, Australia
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, Louisiana 70121
- Department of Obstetric and Gynecology and Laboratory of Reproductive Biology, Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile
| |
Collapse
|
29
|
Mao QD, Zhang W, Zhao K, Cao B, Yuan H, Wei LZ, Song MQ, Liu XS. MicroRNA-455 suppresses the oncogenic function of HDAC2 in human colorectal cancer. ACTA ACUST UNITED AC 2017; 50:e6103. [PMID: 28538837 PMCID: PMC5479389 DOI: 10.1590/1414-431x20176103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/05/2017] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer-induced mortality. Histone deacetylase 2 (HDAC2) is involved in prognosis and therapy of CRC. This study aimed to explore novel therapeutic targets for CRC. The alteration of HDAC2 expression in CRC tissues was estimated by qRT-PCR. After lentivirus transfection, HDAC2 knockdown was confirmed by western blot analysis. The effect of HDAC2 knockdown on cell proliferation was then assessed by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Screened by TargetScan, microRNA (miR)-455 was predicted to bind to 3′UTR of HDAC2 and the prediction was verified by luciferase assay. Finally, cells were transfected, respectively, with miR-455 mimics or miR-455 negative control (miR-NC) and the expression of HDAC2, cell proliferation and apoptosis of transfected cells were respectively evaluated by western blot analysis, MTT assay and flow cytometry. Results showed that the HDAC2 expression was up-regulated in CRC tissues (P<0.05). HDAC2 knockdown significantly decreased cell viability at day 3 (P<0.05), day 4 (P<0.01), and day 5 (P<0.001) after infection. Then, miR-455 was verified to directly target HDAC2, resulting in a significant difference in luciferase activity (P<0.01). Moreover, miR-455 decreased the expression of HDAC2 (P<0.01). miR-455 remarkably decreased cell viability at day 3 (P<0.05), day 4 (P<0.01), and day 5 (P<0.001) after transfection while inducing cell apoptosis (P<0.001). In conclusion, miR-455 inhibited cell proliferation while inducing cell apoptosis by targeting HDAC2 in CRC cells.
Collapse
Affiliation(s)
- Q D Mao
- Department of Gastroenterology, Huangdao Division, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - W Zhang
- Department of Gastroenterology, Huangdao Division, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - K Zhao
- Department of Gastroenterology, Huangdao Division, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - B Cao
- Department of Gastroenterology, Huangdao Division, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - H Yuan
- Department of Gastroenterology, Huangdao Division, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - L Z Wei
- Department of Gastroenterology, Huangdao Division, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - M Q Song
- Department of Gastroenterology, Huangdao Division, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - X S Liu
- Department of Gastroenterology, Laoshan Division, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
30
|
Zhao Y, Yan M, Yun Y, Zhang J, Zhang R, Li Y, Wu X, Liu Q, Miao W, Jiang H. MicroRNA-455-3p functions as a tumor suppressor by targeting eIF4E in prostate cancer. Oncol Rep 2017; 37:2449-2458. [PMID: 28350134 DOI: 10.3892/or.2017.5502] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/23/2017] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are strongly implicated in various cancers, including prostate cancer. Recently, microRNA-455-3p (miR-455-3p) has been shown to be aberrantly expressed in many tumor tissues, but its functions in tumorigenesis remain unknown. In this study, we investigated the role of miR-455-3p in prostate cancer. We found that miR-455-3p is markedly downregulated in prostate cancer cell lines and clinical tumor specimens. Gain-of-function and loss-of-function studies showed that miR-455-3p promotes prostate cancer cell growth both in vitro and in vivo. Bioinformatics analysis and Luciferase reporter assays demonstrated that miR-455-3p directly targets and suppresses eIF4E, the rate-limiting factor for cap-dependent translation, which plays important roles in the initiation and progression of prostate cancers. Further studies demonstrated that miR-455-3p inhibits cap-dependent translation and the proliferation of prostate cancer cells through targeting eIF4E. Taken together, our findings suggest that miR-455-3p functions as a tumor suppressor by directly targeting eIF4E in prostate carcinogenesis and may be used as a potential target for therapeutic intervention in prostate cancer.
Collapse
Affiliation(s)
- Yongxiang Zhao
- Department of Urinary Surgery of The Fourth Hospital of Baotou, Baotou, Inner Mongolia, P.R. China
| | - Mingyu Yan
- The Third Affiliated Hospital, Inner Mongolia Medical University, Baotou, Inner Mongolia, P.R. China
| | - Ye Yun
- Department of Urinary Surgery of The Fourth Hospital of Baotou, Baotou, Inner Mongolia, P.R. China
| | - Jianguo Zhang
- Department of Urinary Surgery of The Fourth Hospital of Baotou, Baotou, Inner Mongolia, P.R. China
| | - Ruimin Zhang
- Department of Urinary Surgery of The Fourth Hospital of Baotou, Baotou, Inner Mongolia, P.R. China
| | - Yan Li
- Baotou Center for Disease Control and Prevention, Baotou, Inner Mongolia, P.R. China
| | - Xiangming Wu
- Department of Urinary Surgery of The Fourth Hospital of Baotou, Baotou, Inner Mongolia, P.R. China
| | - Qiang Liu
- Department of Urinary Surgery of The Fourth Hospital of Baotou, Baotou, Inner Mongolia, P.R. China
| | - Wei Miao
- Department of Urinary Surgery of The Fourth Hospital of Baotou, Baotou, Inner Mongolia, P.R. China
| | - Haishan Jiang
- Department of Urinary Surgery of The Fourth Hospital of Baotou, Baotou, Inner Mongolia, P.R. China
| |
Collapse
|
31
|
Agarwal S, Nagpure NS, Srivastava P, Kumar R, Pandey M, Srivastava S, Jena JK, Das P, Kushwaha B. In Silico Mining of Conserved miRNAs of Indian Catfish Clarias batrachus (Linnaeus, 1758) from the Contigs, ESTs, and BAC End Sequences. Appl Biochem Biotechnol 2016; 182:956-966. [DOI: 10.1007/s12010-016-2373-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022]
|
32
|
Yang W, Wang A, Zhao C, Li Q, Pan Z, Han X, Zhang C, Wang G, Ji C, Wang G, Jia G, Ju J, Gao W, Yu W, Liu X, Chen X, Feng W, Gao Z, Li J, Ren C. miR-125b Enhances IL-8 Production in Early-Onset Severe Preeclampsia by Targeting Sphingosine-1-Phosphate Lyase 1. PLoS One 2016; 11:e0166940. [PMID: 27935985 PMCID: PMC5147846 DOI: 10.1371/journal.pone.0166940] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Preeclampsia (PE) is one of the leading causes of maternal and perinatal mortality and morbidity. One of the main hallmarks observed in PE is impaired inflammation state. In the current study, we found that miR-125b was deregulated in placental tissues and plasma derived from PE patients, which suggest a potential association between this miRNA and the pathogenesis of PE. Overexpression of miR-125b significantly reduced SGPL1 expression, and luciferase assays confirmed that SGPL1 is a direct target of miR-125b. We also found that miR-125b enhanced IL-8 production by directly targeting sphingosine-1-phosphate lyase 1 (SGPL1), and this effect could be reversed by SGPL1 overexpression. In placentas derived from PE patients, a negative correlation of miR-125b and SGPL1 was observed, and IL-8 was validated to be increased in the circulation of PE patients. Our data demonstrated a critical role of miR-125b in IL-8 production and the development of PE.
Collapse
Affiliation(s)
- Weiwei Yang
- School of Biological Sciences, Weifang Medical University, Weifang, China
- Biopharmaceutical Laboratory of Health and Family Planning Commission of Shandong Province, Weifang Medical University, Weifang, China
| | - Anning Wang
- Department of Cardiology, Weifang People’s Hospital, Weifang, China
| | - Chunling Zhao
- School of Biological Sciences, Weifang Medical University, Weifang, China
- Biopharmaceutical Laboratory of Health and Family Planning Commission of Shandong Province, Weifang Medical University, Weifang, China
| | - Qinghua Li
- Public Health College, Weifang Medical University, Weifang, China
| | - Zhifang Pan
- School of Biological Sciences, Weifang Medical University, Weifang, China
| | - Xuefu Han
- Department of Cardiology, Weifang People’s Hospital, Weifang, China
| | - Cuijuan Zhang
- Department of Obstetrics, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Guohui Wang
- School of Biological Sciences, Weifang Medical University, Weifang, China
| | - Chao Ji
- School of Biological Sciences, Weifang Medical University, Weifang, China
| | - Guili Wang
- Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Guangtao Jia
- School of Biological Sciences, Weifang Medical University, Weifang, China
| | - Jiyu Ju
- School of Biological Sciences, Weifang Medical University, Weifang, China
| | - Wei Gao
- School of Biological Sciences, Weifang Medical University, Weifang, China
| | - Wenjing Yu
- School of Biological Sciences, Weifang Medical University, Weifang, China
| | - Xiaoying Liu
- School of Biological Sciences, Weifang Medical University, Weifang, China
| | - Xi Chen
- Department of Dentistry, Weifang Maternity and Child Care Hospital, Weifang, China
| | - Weiguo Feng
- School of Biological Sciences, Weifang Medical University, Weifang, China
| | - Zhiqin Gao
- School of Biological Sciences, Weifang Medical University, Weifang, China
- Biopharmaceutical Laboratory of Health and Family Planning Commission of Shandong Province, Weifang Medical University, Weifang, China
- * E-mail:
| | - Jie Li
- Department of Obstetrics, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chune Ren
- Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
33
|
Prabhakar N, Zhang J, Desai D, Casals E, Gulin-Sarfraz T, Näreoja T, Westermarck J, Rosenholm JM. Stimuli-responsive hybrid nanocarriers developed by controllable integration of hyperbranched PEI with mesoporous silica nanoparticles for sustained intracellular siRNA delivery. Int J Nanomedicine 2016; 11:6591-6608. [PMID: 27994460 PMCID: PMC5154729 DOI: 10.2147/ijn.s120611] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Small interfering RNA (siRNA) is a highly potent drug in gene-based therapy with the challenge being to deliver it in a sustained manner. The combination of mesoporous silica nanoparticles (MSNs) and polycations in the confined pore space allows for incorporation and controlled release of therapeutic siRNA payloads. We hereby constructed MSNs with expanded mesopores and pore-surface-hyperbranched poly(ethyleneimine) (PEI) tethered with redox-cleavable linkers that could carry a high payload of siRNA (120 mg·g−1). The developed nanocarriers were efficiently taken up by cancer cells and were subsequently able to escape to the cytoplasm from the endosomes, most likely owing to the integrated PEI. Triggered by the intracellular redox conditions, the siRNA was sustainably released inside the cells over a period of several days. Functionality of siRNAs was demonstrated by using cell-killing siRNA as cargo. Despite not being the aim of the developed system, in vitro experiments using cell-killing siRNAs showed that the efficacy of siRNA transfection was comparable to the commercial in vitro transfection agent Lipofectamine. Consequently, the developed MSN-based delivery system offers a potential approach to hybrid nanocarriers for more efficient and long-term siRNA delivery and, in a longer perspective, in vivo gene silencing for RNA interference (RNAi) therapy.
Collapse
Affiliation(s)
- Neeraj Prabhakar
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University; Laboratory of Biophysics, Faculty of Medicine, University of Turku, Turku, Finland
| | - Jixi Zhang
- College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Diti Desai
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University
| | - Eudald Casals
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University
| | - Tina Gulin-Sarfraz
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University
| | - Tuomas Näreoja
- Laboratory of Biophysics, Faculty of Medicine, University of Turku, Turku, Finland; Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Jukka Westermarck
- Centre for Biotechnology, University of Turku and Åbo Akademi; Department of Pathology, University of Turku, Turku, Finland
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University
| |
Collapse
|
34
|
Lu TM, Lu W, Zhao LJ. MicroRNA-137 Affects Proliferation and Migration of Placenta Trophoblast Cells in Preeclampsia by Targeting ERRα. Reprod Sci 2016; 24:85-96. [DOI: 10.1177/1933719116650754] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Tan-Min Lu
- Department of Gynecology and Obstetrics, Liaocheng People’s Hospital, Liaocheng, China
| | - Wei Lu
- Department of Gynecology and Obstetrics, Liaocheng People’s Hospital, Liaocheng, China
| | - Long-Jun Zhao
- Department of Gynecology and Obstetrics, Liaocheng People’s Hospital, Liaocheng, China
| |
Collapse
|
35
|
RhoB/ROCK mediates oxygen–glucose deprivation-stimulated syncytiotrophoblast microparticle shedding in preeclampsia. Cell Tissue Res 2016; 366:411-425. [DOI: 10.1007/s00441-016-2436-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/12/2016] [Indexed: 02/06/2023]
|
36
|
Li J, Chen L, Qiuqin Tang, Wu W, Hao Gu, Lou Liu, Jie Wu, Hua Jiang, Hongjuan Ding, Xia Y, Chen D, Hu Y, Wang X. The role, mechanism and potentially novel biomarker of microRNA-17-92 cluster in macrosomia. Sci Rep 2015; 5:17212. [PMID: 26598317 PMCID: PMC4657041 DOI: 10.1038/srep17212] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022] Open
Abstract
Macrosomia is one of the most common perinatal complications of pregnancy and has life-long health implications for the infant. microRNAs (miRNAs) have been identified to regulate placental development, yet the role of miRNAs in macrosomia remains poorly understood. Here we investigated the role of miR-17-92 cluster in macrosomia. The expression levels of five miRNAs in miR-17-92 cluster were significantly elevated in placentas of macrosomia, which may due to the up-regulation of miRNA-processing enzyme Drosha and Dicer. Cell cycle pathway was identified to be the most relevant pathways regulated by miR-17-92 cluster miRNAs. Importantly, miR-17-92 cluster increased proliferation, attenuated cell apoptosis and accelerated cells entering S phase by targeting SMAD4 and RB1 in HTR8/SVneo cells. Furthermore, we found that expression of miR-17-92 cluster in serum had a high diagnostic sensitivity and specificity for macrosomia (AUC: 80.53%; sensitivity: 82.61%; specificity: 69.57%). Our results suggested that miR-17-92 cluster contribute to macrosomia development by targeting regulators of cell cycle pathway. Our findings not only provide a novel insight into the molecular mechanisms of macrosomia, but also the clinical value of miR-17-92 cluster as a predictive biomarker for macrosomia.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Public Health, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Liping Chen
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Qiuqin Tang
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine, Wuxi Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Hao Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lou Liu
- State Key Laboratory of Reproductive Medicine, Wuxi Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Jie Wu
- State Key Laboratory of Reproductive Medicine, Wuxi Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Hua Jiang
- Perinatology Unit, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, China
| | - Hongjuan Ding
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Daozhen Chen
- State Key Laboratory of Reproductive Medicine, Wuxi Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Yali Hu
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
37
|
Barter MJ, Tselepi M, Gómez R, Woods S, Hui W, Smith GR, Shanley DP, Clark IM, Young DA. Genome-Wide MicroRNA and Gene Analysis of Mesenchymal Stem Cell Chondrogenesis Identifies an Essential Role and Multiple Targets for miR-140-5p. Stem Cells 2015; 33:3266-80. [PMID: 26175215 PMCID: PMC4737122 DOI: 10.1002/stem.2093] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/20/2015] [Accepted: 06/01/2015] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNAs) are abundantly expressed in development where they are critical determinants of cell differentiation and phenotype. Accordingly miRNAs are essential for normal skeletal development and chondrogenesis in particular. However, the question of which miRNAs are specific to the chondrocyte phenotype has not been fully addressed. Using microarray analysis of miRNA expression during mesenchymal stem cell chondrogenic differentiation and detailed examination of the role of essential differentiation factors, such as SOX9, TGF-β, and the cell condensation phase, we characterize the repertoire of specific miRNAs involved in chondrocyte development, highlighting in particular miR-140 and miR-455. Further with the use of mRNA microarray data we integrate miRNA expression and mRNA expression during chondrogenesis to underline the particular importance of miR-140, especially the -5p strand. We provide a detailed identification and validation of direct targets of miR-140-5p in both chondrogenesis and adult chondrocytes with the use of microarray and 3'UTR analysis. This emphasizes the diverse array of targets and pathways regulated by miR-140-5p. We are also able to confirm previous experimentally identified targets but, additionally, identify a novel positive regulation of the Wnt signaling pathway by miR-140-5p. Wnt signaling has a complex role in chondrogenesis and skeletal development and these findings illustrate a previously unidentified role for miR-140-5p in regulation of Wnt signaling in these processes. Together these developments further highlight the role of miRNAs during chondrogenesis to improve our understanding of chondrocyte development and guide cartilage tissue engineering.
Collapse
Affiliation(s)
- Matt J. Barter
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Maria Tselepi
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Rodolfo Gómez
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Steven Woods
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Wang Hui
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Graham R. Smith
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Daryl P. Shanley
- Institute for Ageing and HealthNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Ian M. Clark
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| | - David A. Young
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUnited Kingdom
| |
Collapse
|
38
|
Harapan H, Yeni CM. The role of microRNAs on angiogenesis and vascular pressure in preeclampsia: The evidence from systematic review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2015. [DOI: 10.1016/j.ejmhg.2015.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
39
|
Zhong W, Peng H, Tian A, Wei Y, Li H, Tian J, Zhao X. Expression of miRNA-1233 in placenta from patients with hypertensive disorder complicating pregnancy and its role in disease pathogenesis. Int J Clin Exp Med 2015; 8:9121-9127. [PMID: 26309567 PMCID: PMC4538019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/07/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE This study is to investigate the expression of miRNA-1233 in placental tissue from patients with hypertensive disorder complicating pregnancy (HDCP) and its role in disease pathogenesis. METHODS The expression levels of miRNA-1233 and HoxB3 in placental tissue from HDCP patients and normal control subjects, as well as in the in vitro trophoblast cells, were detected with real-time PCR and Western blot analysis. The proliferation and invasion abilities of trophoblast cells were assessed by the cell counting kit (CCK)-8 and transwell chamber assays, respectively. Dual-luciferase reporter assay was performed to evaluate the interaction between miRNA-1233 and Hoxb3. RESULTS Real-time PCR showed that, compared with the control group, the expression levels of miRNA-1233 were significantly elevated in placental tissue from HDCP patients. On the other hand, both the mRNA and protein expression levels of HoxB3 were significantly decreased in the HDCP group. Moreover, the mRNA and protein expression levels of HoxB3 were significantly declined by the transfection of miRNA-1233 mimics in trophoblast cells. Bioinformatics analysis and the dual-luciferase reporter gene assay showed that, miRNA-1233 targeted HoxB3 in the 3'-UTR and suppressed the gene expression. In addition, the results from the CCK-8 and transwell chamber assays showed that, the transfection of miRNA-1233 significantly decreased the proliferation and invasion abilities of the trophoblast cells. CONCLUSION In placental tissue from HDCP patients, up-regulated miR-1233 could suppress the expression of HoxB3, and then inhibit the invasion of trophoblast cells, which might contribute to the disease pathogenesis.
Collapse
Affiliation(s)
- Wenyu Zhong
- Department of Obstetrics & Gynecology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, Shandong, China
- Department of Obstetrics & Gynecology, Jinan Central Hospital Affiliated to Shandong UniversityJinan 250013, Shandong, China
| | - Hui Peng
- Department of Pediatrics, Jinan Central Hospital Affiliated to Shandong UniversityJinan 250013, Shandong, China
| | - Ailing Tian
- Department of Obstetrics & Gynecology, Qilu Hospital of Shandong University (Qingdao)Qingdao 266000, Shandong, China
| | - Yongqing Wei
- Department of Obstetrics & Gynecology, Jinan Central Hospital Affiliated to Shandong UniversityJinan 250013, Shandong, China
| | - Hua Li
- Department of Obstetrics & Gynecology, Jinan Central Hospital Affiliated to Shandong UniversityJinan 250013, Shandong, China
| | - Jingxia Tian
- Department of Obstetrics & Gynecology, Jinan Central Hospital Affiliated to Shandong UniversityJinan 250013, Shandong, China
| | - Xingbo Zhao
- Department of Obstetrics & Gynecology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, Shandong, China
| |
Collapse
|
40
|
Harapan H, Andalas M. The role of microRNAs in the proliferation, differentiation, invasion, and apoptosis of trophoblasts during the occurrence of preeclampsia—A systematic review. Tzu Chi Med J 2015. [DOI: 10.1016/j.tcmj.2015.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
41
|
Miao P, Meng F, Wang B, Zhu X, Tang Y. Highly sensitive microRNA quantification with zero background signal from silver nanoparticles. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2014.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|