1
|
Fan L, Tong W, Wei A, Mu X. Progress of proteolysis-targeting chimeras (PROTACs) delivery system in tumor treatment. Int J Biol Macromol 2024; 275:133680. [PMID: 38971291 DOI: 10.1016/j.ijbiomac.2024.133680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) can use the intrinsic protein degradation system in cells to degrade pathogenic target proteins, and are currently a revolutionary frontier of development strategy for tumor treatment with small molecules. However, the poor water solubility, low cellular permeability, and off-target side effects of most PROTACs have prevented them from passing the preclinical research stage of drug development. This requires the use of appropriate delivery systems to overcome these challenging hurdles and ensure precise delivery of PROTACs towards the tumor site. Therefore, the combination of PROTACs and multifunctional delivery systems will open up new research directions for targeted degradation of tumor proteins. In this review, we systematically reviewed the design principles and the most recent advances of various PROTACs delivery systems. Moreover, the constructive strategies for developing multifunctional PROTACs delivery systems were proposed comprehensively. This review aims to deepen the understanding of PROTACs drugs and promote the further development of PROTACs delivery system.
Collapse
Affiliation(s)
- Lianlian Fan
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Weifang Tong
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130021, China
| | - Anhui Wei
- Jilin University School of Pharmaceutical Sciences, Changchun 130021, China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
2
|
Liang X, Ren H, Han F, Liang R, Zhao J, Liu H. The new direction of drug development: Degradation of undruggable targets through targeting chimera technology. Med Res Rev 2024; 44:632-685. [PMID: 37983964 DOI: 10.1002/med.21992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/13/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Imbalances in protein and noncoding RNA levels in vivo lead to the occurrence of many diseases. In addition to the use of small molecule inhibitors and agonists to restore these imbalances, recently emerged targeted degradation technologies provide a new direction for disease treatment. Targeted degradation technology directly degrades target proteins or RNA by utilizing the inherent degradation pathways, thereby eliminating the functions of pathogenic proteins (or RNA) to treat diseases. Compared with traditional therapies, targeted degradation technology which avoids the principle of traditional inhibitor occupation drive, has higher efficiency and selectivity, and widely expands the range of drug targets. It is one of the most promising and hottest areas for future drug development. Herein, we systematically introduced the in vivo degradation systems applied to degrader design: ubiquitin-proteasome system, lysosomal degradation system, and RNA degradation system. We summarized the development progress, structural characteristics, and limitations of novel chimeric design technologies based on different degradation systems. In addition, due to the lack of clear ligand-binding pockets, about 80% of disease-associated proteins cannot be effectively intervened with through traditional therapies. We deeply elucidated how to use targeted degradation technology to discover and design molecules for representative undruggable targets including transcription factors, small GTPases, and phosphatases. Overall, this review provides a comprehensive and systematic overview of targeted degradation technology-related research advances and a new guidance for the chimeric design of undruggable targets.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hairu Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Fengyang Han
- School of Pharmacy, Fudan University, Shanghai, China
| | - Renwen Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiayan Zhao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
3
|
Zhang Y, Wu X, Sun X, Yang J, Liu C, Tang G, Lei X, Huang H, Peng J. The Progress of Small Molecule Targeting BCR-ABL in the Treatment of Chronic Myeloid Leukemia. Mini Rev Med Chem 2024; 24:642-663. [PMID: 37855278 DOI: 10.2174/0113895575218335230926070130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/14/2023] [Accepted: 07/14/2023] [Indexed: 10/20/2023]
Abstract
Chronic myelogenous leukemia (CML) is a malignant myeloproliferative disease. According to the American Cancer Society's 2021 cancer data report, new cases of CML account for about 15% of all leukemias. CML is generally divided into three stages: chronic phase, accelerated phase, and blast phase. Nearly 90% of patients are diagnosed as a chronic phase. Allogeneic stem cell transplantation and chemotherapeutic drugs, such as interferon IFN-α were used as the earliest treatments for CML. However, they could generate obvious side effects, and scientists had to seek new treatments for CML. A new era of targeted therapy for CML began with the introduction of imatinib, the first-generation BCR-ABL kinase inhibitor. However, the ensuing drug resistance and mutant strains led by T315I limited the further use of imatinib. With the continuous advancement of research, tyrosine kinase inhibitors (TKI) and BCR-ABL protein degraders with novel structures and therapeutic mechanisms have been discovered. From biological macromolecules to classical target protein inhibitors, a growing number of compounds are being developed to treat chronic myelogenous leukemia. In this review, we focus on summarizing the current situation of a series of candidate small-molecule drugs in CML therapy, including TKIs and BCR-ABL protein degrader. The examples provided herein describe the pharmacology activity of small-molecule drugs. These drugs will provide new enlightenment for future treatment directions.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Xin Wu
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Xueyan Sun
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Jun Yang
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Chang Liu
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Guotao Tang
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyong Lei
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Honglin Huang
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Junmei Peng
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
4
|
He T, Wen C, Yang G, Yang X. Targeted Protein Degradation: Principles, Strategies, and Applications. Adv Biol (Weinh) 2023; 7:e2300083. [PMID: 37518856 DOI: 10.1002/adbi.202300083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/11/2023] [Indexed: 08/01/2023]
Abstract
Protein degradation is a general process to maintain cell homeostasis. The intracellular protein quality control system mainly includes the ubiquitin-proteasome system and the lysosome pathway. Inspired by the physiological process, strategies to degrade specific proteins have developed, which emerge as potent and effective tools in biological research and drug discovery. This review focuses on recent advances in targeted protein degradation techniques, summarizing the principles, advantages, and challenges. Moreover, the potential applications and future direction in biological science and clinics are also discussed.
Collapse
Affiliation(s)
- Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Chenxi Wen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| |
Collapse
|
5
|
Saatci O, Sahin O. TACC3: a multi-functional protein promoting cancer cell survival and aggressiveness. Cell Cycle 2023; 22:2637-2655. [PMID: 38197196 PMCID: PMC10936615 DOI: 10.1080/15384101.2024.2302243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
TACC3 is the most oncogenic member of the transforming acidic coiled-coil domain-containing protein (TACC) family. It is one of the major recruitment factors of distinct multi-protein complexes. TACC3 is localized to spindles, centrosomes, and nucleus, and regulates key oncogenic processes, including cell proliferation, migration, invasion, and stemness. Recently, TACC3 inhibition has been identified as a vulnerability in highly aggressive cancers, such as cancers with centrosome amplification (CA). TACC3 has spatiotemporal functions throughout the cell cycle; therefore, targeting TACC3 causes cell death in mitosis and interphase in cancer cells with CA. In the clinics, TACC3 is highly expressed and associated with worse survival in multiple cancers. Furthermore, TACC3 is a part of one of the most common fusions of FGFR, FGFR3-TACC3 and is important for the oncogenicity of the fusion. A detailed understanding of the regulation of TACC3 expression, its key partners, and molecular functions in cancer cells is vital for uncovering the most vulnerable tumors and maximizing the therapeutic potential of targeting this highly oncogenic protein. In this review, we summarize the established and emerging interactors and spatiotemporal functions of TACC3 in cancer cells, discuss the potential of TACC3 as a biomarker in cancer, and therapeutic potential of its inhibition.
Collapse
Affiliation(s)
- Ozge Saatci
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
6
|
Belcher BP, Ward CC, Nomura DK. Ligandability of E3 Ligases for Targeted Protein Degradation Applications. Biochemistry 2023; 62:588-600. [PMID: 34473924 PMCID: PMC8928483 DOI: 10.1021/acs.biochem.1c00464] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Targeted protein degradation (TPD) using proteolysis targeting chimeras (PROTACs) and molecular glue degraders has arisen as a powerful therapeutic modality for eliminating disease-causing proteins from cells. PROTACs and molecular glue degraders employ heterobifunctional or monovalent small molecules, respectively, to chemically induce the proximity of target proteins with E3 ubiquitin ligases to ubiquitinate and degrade specific proteins via the proteasome. Whereas TPD is an attractive therapeutic strategy for expanding the druggable proteome, only a relatively small number of E3 ligases out of the >600 E3 ligases encoded by the human genome have been exploited by small molecules for TPD applications. Here we review the existing E3 ligases that have thus far been successfully exploited for TPD and discuss chemoproteomics-enabled covalent screening strategies for discovering new E3 ligase recruiters. We also provide a chemoproteomic map of reactive cysteines within hundreds of E3 ligases that may represent potential ligandable sites that can be pharmacologically interrogated to uncover additional E3 ligase recruiters.
Collapse
Affiliation(s)
- Bridget P. Belcher
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA,Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720,Innovative Genomics Institute, Berkeley, CA 94720 USA
| | - Carl C. Ward
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA,Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720,Innovative Genomics Institute, Berkeley, CA 94720 USA,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Daniel K. Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA,Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720,Innovative Genomics Institute, Berkeley, CA 94720 USA,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA,correspondence to
| |
Collapse
|
7
|
Zhao HY, Xin M, Zhang SQ. Progress of small molecules for targeted protein degradation: PROTACs and other technologies. Drug Dev Res 2023; 84:337-394. [PMID: 36606428 DOI: 10.1002/ddr.22026] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/01/2022] [Accepted: 12/17/2022] [Indexed: 01/07/2023]
Abstract
Recent years have witnessed the rapid development of targeted protein degradation (TPD), especially proteolysis targeting chimeras. These degraders have manifested many advantages over small molecule inhibitors. To date, a huge number of degraders have been excavated against over 70 disease-related targets. In particular, degraders against estrogen receptor and androgen receptor have crowded into phase II clinical trial. TPD technologies largely expand the scope of druggable targets, and provide powerful tools for addressing intractable problems that can not be tackled by traditional small molecule inhibitors. In this review, we mainly focus on the structures and biological activities of small molecule degraders as well as the elucidation of mechanisms of emerging TPD technologies. We also propose the challenges that exist in the TPD field at present.
Collapse
Affiliation(s)
- Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
8
|
Li D, Yu D, Li Y, Yang R. A bibliometric analysis of PROTAC from 2001 to 2021. Eur J Med Chem 2022; 244:114838. [DOI: 10.1016/j.ejmech.2022.114838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022]
|
9
|
Li J, Cai Z, Li XW, Zhuang C. Natural Product-Inspired Targeted Protein Degraders: Advances and Perspectives. J Med Chem 2022; 65:13533-13560. [PMID: 36205223 DOI: 10.1021/acs.jmedchem.2c01223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeted protein degradation (TPD), a promising therapeutic strategy in drug discovery, has great potential to regulate the endogenous degradation of undruggable targets with small molecules. As vital resources that provide diverse structural templates for drug discovery, natural products (NPs) are a rising and robust arsenal for the development of therapeutic TPD. The first proof-of-concept study of proteolysis-targeting chimeras (PROTACs) was a natural polyketide ovalicin-derived degrader; since then, NPs have shown great potential to promote TPD technology. The use of NP-inspired targeted protein degraders has been confirmed to be a promising strategy to treat many human conditions, including cancer, inflammation, and nonalcoholic fatty liver disease. Nevertheless, the development of NP-inspired degraders is challenging, and the field is currently in its infancy. In this review, we summarize the bioactivities and mechanisms of NP-inspired degraders and discuss the associated challenges and future opportunities in this field.
Collapse
Affiliation(s)
- Jiao Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhenyu Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Chunlin Zhuang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
10
|
Sasso J, Tenchov R, Wang D, Johnson LS, Wang X, Zhou QA. Molecular Glues: The Adhesive Connecting Targeted Protein Degradation to the Clinic. Biochemistry 2022; 62:601-623. [PMID: 35856839 PMCID: PMC9910052 DOI: 10.1021/acs.biochem.2c00245] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Targeted protein degradation is a rapidly exploding drug discovery strategy that uses small molecules to recruit disease-causing proteins for rapid destruction mainly via the ubiquitin-proteasome pathway. It shows great potential for treating diseases such as cancer and infectious, inflammatory, and neurodegenerative diseases, especially for those with "undruggable" pathogenic protein targets. With the recent rise of the "molecular glue" type of protein degraders, which tighten and simplify the connection of an E3 ligase with a disease-causing protein for ubiquitination and subsequent degradation, new therapies for unmet medical needs are being designed and developed. Here we use data from the CAS Content Collection and the publication landscape of recent research on targeted protein degraders to provide insights into these molecules, with a special focus on molecular glues. We also outline the advantages of the molecular glues and summarize the advances in drug discovery practices for molecular glue degraders. We further provide a thorough review of drug candidates in targeted protein degradation through E3 ligase recruitment. Finally, we highlight the progression of molecular glues in drug discovery pipelines and their targeted diseases. Overall, our paper provides a comprehensive reference to support the future development of molecular glues in medicine.
Collapse
|
11
|
Wang C, Zhang Y, Shi L, Yang S, Chang J, Zhong Y, Li Q, Xing D. Recent advances in IAP-based PROTACs (SNIPERs) as potential therapeutic agents. J Enzyme Inhib Med Chem 2022; 37:1437-1453. [PMID: 35589670 PMCID: PMC9122363 DOI: 10.1080/14756366.2022.2074414] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proteolytic targeting chimaeras (PROTACs) have been developed as an effective technology for targeted protein degradation. PROTACs are heterobifunctional molecules that can trigger the polyubiquitination of proteins of interest (POIs) by recruiting the ubiquitin-proteasome system, thereby inhibiting the intracellular level of POIs. To date, a variety of small-molecule PROTACs (CRBN, VHL, IAP, and MDM2-based PROTACs) have been developed. IAP-based PROTACs, also known as specific and nongenetic IAP-dependent protein erasers (SNIPERs), are used to degrade the target proteins closely related to diseases. Their structures consist of three parts, including target protein ligand, E3 ligase ligand, and the linker between them. So far, many SNIPERs have been extensively studied worldwide and have performed well in multiple diseases, especially cancer. In this review, we will present the most relevant advances in the field of SNIPERs and provide our perspective on the opportunities and challenges for SNIPERs to become therapeutic agents.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lingyu Shi
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Shanbo Yang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Jing Chang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Yingjie Zhong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Qian Li
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Naito M. Targeted Protein Degradation and Drug Discovery. J Biochem 2022; 172:61-69. [PMID: 35468190 DOI: 10.1093/jb/mvac041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/19/2022] [Indexed: 11/12/2022] Open
Abstract
Targeted protein degradation attracts attention as a novel modality for drug discovery as well as for basic research. Various types of degrader molecules have been developed so far, which include PROTACs and SNIPERs, E3 modulators, hydrophobic tagging molecules, IAP antagonists, and deubiquitylase inhibitors. PROTACs and SNIPERs are chimeric degrader molecules consisting of a target ligand linked to another ligand that binds to an E3 ubiquitin ligase. In the cells, they recruit an E3 ligase to the target protein, thereby inducing ubiquitylation and proteasomal degradation of the target protein. Because of their modular structure, novel PROTACs and SNIPERs targeting proteins of your interest can be rationally developed by substituting target ligands. In this article, various compounds capable of inducing protein degradation were overviewed, including SNIPER compounds developed in our laboratory.
Collapse
Affiliation(s)
- Mikihiko Naito
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
13
|
Li X, Pu W, Zheng Q, Ai M, Chen S, Peng Y. Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Mol Cancer 2022; 21:99. [PMID: 35410300 PMCID: PMC8996410 DOI: 10.1186/s12943-021-01434-3] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022] Open
Abstract
AbstractProteolysis-targeting chimeras (PROTACs) are engineered techniques for targeted protein degradation. A bifunctional PROTAC molecule with two covalently-linked ligands recruits target protein and E3 ubiquitin ligase together to trigger proteasomal degradation of target protein by the ubiquitin-proteasome system. PROTAC has emerged as a promising approach for targeted therapy in various diseases, particularly in cancers. In this review, we introduce the principle and development of PROTAC technology, as well as the advantages of PROTACs over traditional anti-cancer therapies. Moreover, we summarize the application of PROTACs in targeting critical oncoproteins, provide the guidelines for the molecular design of PROTACs and discuss the challenges in the targeted degradation by PROTACs.
Collapse
|
14
|
Sosič I, Bricelj A, Steinebach C. E3 ligase ligand chemistries: from building blocks to protein degraders. Chem Soc Rev 2022; 51:3487-3534. [PMID: 35393989 DOI: 10.1039/d2cs00148a] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, proteolysis-targeting chimeras (PROTACs), capable of achieving targeted protein degradation, have proven their great therapeutic potential and usefulness as molecular biology tools. These heterobifunctional compounds are comprised of a protein-targeting ligand, an appropriate linker, and a ligand binding to the E3 ligase of choice. A successful PROTAC induces the formation of a ternary complex, leading to the E3 ligase-mediated ubiquitination of the targeted protein and its proteasomal degradation. In over 20 years since the concept was first demonstrated, the field has grown substantially, mainly due to the advancements in the discovery of non-peptidic E3 ligase ligands. Development of small-molecule E3 binders with favourable physicochemical profiles aided the design of PROTACs, which are known for breaking the rules of established guidelines for discovering small molecules. Synthetic accessibility of the ligands and numerous successful applications led to the prevalent use of cereblon and von Hippel-Lindau as the hijacked E3 ligase. However, the pool of over 600 human E3 ligases is full of untapped potential, which is why expanding the artillery of E3 ligands could contribute to broadening the scope of targeted protein degradation. In this comprehensive review, we focus on the chemistry aspect of the PROTAC design process by providing an overview of liganded E3 ligases, their chemistries, appropriate derivatisation, and synthetic approaches towards their incorporation into heterobifunctional degraders. By covering syntheses of both established and underexploited E3 ligases, this review can serve as a chemistry blueprint for PROTAC researchers during their future ventures into the complex field of targeted protein degradation.
Collapse
Affiliation(s)
- Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Aleša Bricelj
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
15
|
Shibata N, Cho N, Koyama H, Naito M. Development of a degrader against oncogenic fusion protein FGFR3-TACC3. Bioorg Med Chem Lett 2022; 60:128584. [PMID: 35085722 DOI: 10.1016/j.bmcl.2022.128584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 11/02/2022]
Abstract
Fibroblast growth factor receptor 3-transforming acidic coiled-coil containing protein 3 (FGFR3-TACC3), which has been identified in many cancers such as glioblastoma and bladder cancer, is a potent oncogenic fusion protein that induces constitutive activation of FGFR signaling, resulting in uncontrolled cell proliferation. Although several tyrosine kinase inhibitors against FGFR are currently under development, resistance to such types of inhibitors in patients has become a concern. In this study, a chimeric molecule SNIPER(TACC3)-11 (5a) was developed and found to reduce FGFR3-TACC3 levels effectively. Compound 5a conjugated KHS108 (a TACC3 ligand) to an LCL161 derivative (11) (an inhibitor of apoptosis protein [IAP] ligand) with a PEG linker (n = 2). Mechanistical analysis showed that cellular IAP1 was required for the reduction of FGFR3-TACC3 levels. Consistent with the decrease in FGFR3-TACC3 levels, compound 5a suppressed the growth of FGFR3-TACC3 positive cells. Thus, compound 5a is a candidate therapeutic with a novel drug modality against cancers that exhibit FGFR3-TACC3-dependent proliferation and exerts pharmacological effects distinct from FGFR3 kinase inhibitors because it lacks substructures crucial for kinase inhibition.
Collapse
Affiliation(s)
- Norihito Shibata
- Division of Biochemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan.
| | - Nobuo Cho
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroo Koyama
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikihiko Naito
- Social Cooperation Program of Targeted Protein Degradation, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
16
|
Wang C, Zhang Y, Wang J, Xing D. VHL-based PROTACs as potential therapeutic agents: Recent progress and perspectives. Eur J Med Chem 2022; 227:113906. [PMID: 34656901 DOI: 10.1016/j.ejmech.2021.113906] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023]
Abstract
Proteolysis targeting chimeras (PROTACs), which hijack proteins of interest (POIs) and recruit E3 ligases for target degradation via the ubiquitin-proteasome pathway, are a novel drug discovery paradigm that has been widely used as biological tools and medicinal molecules with the potential of clinical application value. To date, a wide variety of small molecule PROTACs have been developed. Importantly, VHL-based PROTACs have emerged to be a promising approach for proteins, including those non-druggable ones, such as transcriptional factors and scaffold proteins. VHL-based PRTOACs have been developed for the treatment of diseases that are difficult to be dealt with by conventional methods, such as radiotherapy, chemotherapy, and small molecule inhibitors. In this review, the recent advances of VHL-based PRTOACs were summarized, and the chances and challenges associated with this area were also highlighted.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; School of Pharmacy, Qingdao University, Qingdao, 266021, Shandong, China.
| | - Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Dongming Xing
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Eron SJ, Huang H, Agafonov RV, Fitzgerald ME, Patel J, Michael RE, Lee TD, Hart AA, Shaulsky J, Nasveschuk CG, Phillips AJ, Fisher SL, Good A. Structural Characterization of Degrader-Induced Ternary Complexes Using Hydrogen-Deuterium Exchange Mass Spectrometry and Computational Modeling: Implications for Structure-Based Design. ACS Chem Biol 2021; 16:2228-2243. [PMID: 34582690 DOI: 10.1021/acschembio.1c00376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The field of targeted protein degradation (TPD) has grown exponentially over the past decade with the goal of developing therapies that mark proteins for destruction leveraging the ubiquitin-proteasome system. One common approach to achieve TPD is to employ a heterobifunctional molecule, termed as a degrader, to recruit the protein target of interest to the E3 ligase machinery. The resultant generation of an intermediary ternary complex (target-degrader-ligase) is pivotal in the degradation process. Understanding the ternary complex geometry offers valuable insight into selectivity, catalytic efficiency, linker chemistry, and rational degrader design. In this study, we utilize hydrogen-deuterium exchange mass spectrometry (HDX-MS) to identify degrader-induced protein-protein interfaces. We then use these data in conjunction with constrained protein docking to build three-dimensional models of the ternary complex. The approach was used to characterize complex formation between the E3 ligase CRBN and the first bromodomain of BRD4, a prominent oncology target. We show marked differences in the ternary complexes formed in solution based on distinct patterns of deuterium uptake for two degraders, CFT-1297 and dBET6. CFT-1297, which exhibited positive cooperativity, altered the deuterium uptake profile revealing the degrader-induced protein-protein interface of the ternary complex. For CFT-1297, the ternary complexes generated by the highest scoring HDX-constrained docking models differ markedly from those observed in the published crystal structures. These results highlight the potential utility of HDX-MS to provide rapidly accessible structural insights into degrader-induced protein-protein interfaces in solution. They further suggest that degrader ternary complexes exhibit significant conformation flexibility and that biologically relevant complexes may well not exhibit the largest interaction surfaces between proteins. Taken together, the results indicate that methods capable of incorporating linker conformation uncertainty may prove an important component in degrader design moving forward. In addition, the development of scoring functions modified to handle interfaces with no evolved complementarity, for example, through consideration of high levels of water infiltration, may prove valuable. Furthermore, the use of crystal structures as validation tools for novel degrader methods needs to be considered with caution.
Collapse
Affiliation(s)
- Scott J. Eron
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Hongwei Huang
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Roman V. Agafonov
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Mark E. Fitzgerald
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Joe Patel
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Ryan E. Michael
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Tobie D. Lee
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Ashley A. Hart
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Jodi Shaulsky
- Dassault Systèmes BIOVIA, 5005 Wateridge Vista Dr, San Diego, California 92121, United States
| | | | - Andrew J. Phillips
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Stewart L. Fisher
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Andrew Good
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| |
Collapse
|
18
|
Dale B, Cheng M, Park KS, Kaniskan HÜ, Xiong Y, Jin J. Advancing targeted protein degradation for cancer therapy. Nat Rev Cancer 2021; 21:638-654. [PMID: 34131295 PMCID: PMC8463487 DOI: 10.1038/s41568-021-00365-x] [Citation(s) in RCA: 369] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
The human proteome contains approximately 20,000 proteins, and it is estimated that more than 600 of them are functionally important for various types of cancers, including nearly 400 non-enzyme proteins that are challenging to target by traditional occupancy-driven pharmacology. Recent advances in the development of small-molecule degraders, including molecular glues and heterobifunctional degraders such as proteolysis-targeting chimeras (PROTACs), have made it possible to target many proteins that were previously considered undruggable. In particular, PROTACs form a ternary complex with a hijacked E3 ubiquitin ligase and a target protein, leading to polyubiquitination and degradation of the target protein. The broad applicability of this approach is facilitated by the flexibility of individual E3 ligases to recognize different substrates. The vast majority of the approximately 600 human E3 ligases have not been explored, thus presenting enormous opportunities to develop degraders that target oncoproteins with tissue, tumour and subcellular selectivity. In this Review, we first discuss the molecular basis of targeted protein degradation. We then offer a comprehensive account of the most promising degraders in development as cancer therapies to date. Lastly, we provide an overview of opportunities and challenges in this exciting field.
Collapse
Affiliation(s)
- Brandon Dale
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meng Cheng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Cullgen Inc., San Diego, CA, USA.
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
19
|
Liu J, Peng Y, Wei W. Light-Controllable PROTACs for Temporospatial Control of Protein Degradation. Front Cell Dev Biol 2021; 9:678077. [PMID: 34350175 PMCID: PMC8326567 DOI: 10.3389/fcell.2021.678077] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022] Open
Abstract
PROteolysis-TArgeting Chimeras (PROTACs) is an emerging and promising approach to target intracellular proteins for ubiquitination-mediated degradation, including those so-called undruggable protein targets, such as transcriptional factors and scaffold proteins. To date, plenty of PROTACs have been developed to degrade various disease-relevant proteins, such as estrogen receptor (ER), androgen receptor (AR), RTK, and CDKs. However, the on-target off-tissue and off-target effect is one of the major limitation that prevents the usage of PROTACs in clinic. To this end, we and several other groups have recently developed light-controllable PROTACs, as the representative for the third generation controllable PROTACs, by using either photo-caging or photo-switch approaches. In this review, we summarize the emerging light-controllable PROTACs and the prospective for other potential ways to achieve temporospatial control of PROTACs.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Yunhua Peng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Bricelj A, Steinebach C, Kuchta R, Gütschow M, Sosič I. E3 Ligase Ligands in Successful PROTACs: An Overview of Syntheses and Linker Attachment Points. Front Chem 2021; 9:707317. [PMID: 34291038 PMCID: PMC8287636 DOI: 10.3389/fchem.2021.707317] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/04/2021] [Indexed: 12/16/2022] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) have received tremendous attention as a new and exciting class of therapeutic agents that promise to significantly impact drug discovery. These bifunctional molecules consist of a target binding unit, a linker, and an E3 ligase binding moiety. The chemically-induced formation of ternary complexes leads to ubiquitination and proteasomal degradation of target proteins. Among the plethora of E3 ligases, only a few have been utilized for the novel PROTAC technology. However, extensive knowledge on the preparation of E3 ligands and their utilization for PROTACs has already been acquired. This review provides an in-depth analysis of synthetic entries to functionalized ligands for the most relevant E3 ligase ligands, i.e. CRBN, VHL, IAP, and MDM2. Less commonly used E3 ligase and their ligands are also presented. We compare different preparative routes to E3 ligands with respect to feasibility and productivity. A particular focus was set on the chemistry of the linker attachment by discussing the synthetic opportunities to connect the E3 ligand at an appropriate exit vector with a linker to assemble the final PROTAC. This comprehensive review includes many facets involved in the synthesis of such complex molecules and is expected to serve as a compendium to support future synthetic attempts towards PROTACs.
Collapse
Affiliation(s)
- Aleša Bricelj
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | | - Robert Kuchta
- Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | | | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
21
|
Alabi SB, Crews CM. Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs. J Biol Chem 2021; 296:100647. [PMID: 33839157 PMCID: PMC8131913 DOI: 10.1016/j.jbc.2021.100647] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Of late, targeted protein degradation (TPD) has surfaced as a novel and innovative chemical tool and therapeutic modality. By co-opting protein degradation pathways, TPD facilitates complete removal of the protein molecules from within or outside the cell. While the pioneering Proteolysis-Targeting Chimera (PROTAC) technology and molecular glues hijack the ubiquitin-proteasome system, newer modalities co-opt autophagy or the endo-lysosomal pathway. Using this mechanism, TPD is posited to largely expand the druggable space far beyond small-molecule inhibitors. In this review, we discuss the major advances in TPD, highlight our current understanding, and explore outstanding questions in the field.
Collapse
Affiliation(s)
- Shanique B Alabi
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Craig M Crews
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA; Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA; Department of Chemistry, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
22
|
Chen X, Shen H, Shao Y, Ma Q, Niu Y, Shang Z. A narrative review of proteolytic targeting chimeras (PROTACs): future perspective for prostate cancer therapy. Transl Androl Urol 2021; 10:954-962. [PMID: 33718095 PMCID: PMC7947434 DOI: 10.21037/tau-20-1357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteolysis-TArgeting Chimeras (PROTACs) technology, as a strategy to chemically knock down transcription factors at the protein levels, can hijack the ubiquitin-proteasome degradation system to initiate the intracellular ubiquitin-proteasome hydrolysis process to degrade proteins. In the past, the development of drugs that target transcription factors has been greatly restricted, and even historically transcription factors have been regarded as “undruggable targets”. PROTAC technology breaks through this limitation with its unique targeting design. With several generations of technical innovation, PROTACs have become more mature and continue to make breakthroughs in the field of targeted therapy including prostate cancer (PCa), with a new strategy for the development of anti-tumor targeted drugs. PROTACs have all the advantages of existing small molecule inhibitors, are easy to administer orally, have good cell permeability, and have wider targeting profiles compared to conventional inhibitors. The disadvantage of PROTACs is the noncancer specificity, off-target and sustained-release control, due to its catalytic role. Some androgen receptor (AR) and CDK4/6 degraders have advanced the field of PCa treatment, which is being further modified given the effects of these degraders in preclinical and clinical studies. This review summarizes in detail the technological progress and challenges that have been faced with PROTACs, the progress of research on PCa, and the prospective future of PROTACs development.
Collapse
Affiliation(s)
- Xuanrong Chen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haishan Shen
- Urology Development, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yi Shao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qianwang Ma
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiqun Shang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
23
|
Ma Z, Ji Y, Yu Y, Liang D. Specific non-genetic IAP-based protein erasers (SNIPERs) as a potential therapeutic strategy. Eur J Med Chem 2021; 216:113247. [PMID: 33652355 DOI: 10.1016/j.ejmech.2021.113247] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 12/29/2022]
Abstract
As a newly emerged technology, PROTAC (proteolysis targeting chimera) is a promising therapeutic strategy for varieties of diseases. Unlike small molecule inhibitors, PROTACs catalytically induce target proteins degradation, including currently "undruggable" target proteins. In addition, PROTACs can be a potentially successful strategy to overcome drug resistance. IAPs can inhibit apoptosis by inhibiting caspase, and also exhibits the activity of E3 ubiquitin ligase. Specific and nongenetic IAP-based protein erasers (SNIPERs) are hybrid molecules that designed based on IAPs, and used to degrade the target proteins closely associated with diseases. Their structures consist of three parts, including target protein ligand, E3 ligase ligand and the linker between them. SNIPERs (PROTACs) degrade diseases-associated proteins through human inherent ubiquitin-proteasome system. So far, many SNIPERs have been developed to treat diseases that difficult to handle by traditional methods, such as radiotherapy, chemotherapy and small molecule inhibitors, and showed promising prospects in application. In this paper, the recent advances of SNIPERs were summarized, and the chances and challenges associated with this area were also highlighted.
Collapse
Affiliation(s)
- Zonghui Ma
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China.
| | - Yu Ji
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Yifan Yu
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Dailin Liang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| |
Collapse
|
24
|
Abstract
Inducing degradation of undruggable target proteins by the use of chimeric small molecules, represented by proteolysis-targeting chimeras, is a promising strategy for drug development. We developed a series of chimeric molecules, termed "specific and nongenetic inhibitor of apoptosis protein (IAP)-dependent protein erasers" (SNIPERs) that recruit IAP ubiquitin ligases to induce degradation of target proteins. SNIPERs also induce degradation of some IAPs, including cIAP1 and XIAP, which are antiapoptotic proteins that are overexpressed in many cancers. Such protein degraders have unique properties that could be especially useful in cancer therapy. This chapter describes (1) the design and synthesis of SNIPER compounds, (2) the methods used for the detection of target protein degradation and ubiquitylation, and (3) the protocol to evaluate the antitumor activity of SNIPER.
Collapse
|
25
|
The Potential of Proteolytic Chimeras as Pharmacological Tools and Therapeutic Agents. Molecules 2020; 25:molecules25245956. [PMID: 33339292 PMCID: PMC7766482 DOI: 10.3390/molecules25245956] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The induction of protein degradation in a highly selective and efficient way by means of druggable molecules is known as targeted protein degradation (TPD). TPD emerged in the literature as a revolutionary idea: a heterobifunctional chimera with the capacity of creating an interaction between a protein of interest (POI) and a E3 ubiquitin ligase will induce a process of events in the POI, including ubiquitination, targeting to the proteasome, proteolysis and functional silencing, acting as a sort of degradative knockdown. With this programmed protein degradation, toxic and disease-causing proteins could be depleted from cells with potentially effective low drug doses. The proof-of-principle validation of this hypothesis in many studies has made the TPD strategy become a new attractive paradigm for the development of therapies for the treatment of multiple unmet diseases. Indeed, since the initial protacs (Proteolysis targeting chimeras) were posited in the 2000s, the TPD field has expanded extraordinarily, developing innovative chemistry and exploiting multiple degradation approaches. In this article, we review the breakthroughs and recent novel concepts in this highly active discipline.
Collapse
|
26
|
The NEDD8-activating enzyme inhibition with MLN4924 sensitizes human cancer cells of different origins to apoptosis and necroptosis. Arch Biochem Biophys 2020; 691:108513. [PMID: 32721435 DOI: 10.1016/j.abb.2020.108513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/05/2020] [Accepted: 07/22/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVES MLN4924 is an inhibitor of NEDD8-activating enzyme (NAE) that interferes with the cullin-RING ubiquitin ligase complexes formation and the nuclear factor kappa B (NF-κB) activation. Here, we investigated the cytotoxic effect of MLN4924 and its ability to sensitize a broad range of cancer cells of different origins to tumour necrosis factor-α (TNF)-induced cell death alongside unravelling its mechanism of action. MATERIALS AND METHODS Cell viability and caspases processing were determined after MLN4924 treatment either alone or with zVAD-fmk (pan caspase inhibitor), necrostatin-1 (nec-1, RIPK1 inhibitor) and necrosulfonamide (NSA, MLKL inhibitor). Moreover, MLN4924 ability to potentiate TNF-induced cell death was evaluated in 24 cell lines of different cancer origins. The impact of NAE inhibition with MLN4924 on TNF-induced apoptosis and necroptosis was evaluated using zVAD-fmk and nec-1, respectively. RESULTS MLN4924 alone was able to induce cell death in different cell lines that was attributed to apoptosis induction. Also, MLN4924 sensitized different cancer cell lines to TNF-induced cell death. MLN4924/TNF-induced cell death was apoptosis and necroptosis dependent that may be attributed to MLN4924 inhibition of NF-κB pathway activation. CONCLUSIONS Targeting NAE and NF-κB pathway with MLN4924 represents a substantial approach to enhance the sensitivity of diverse types of cancer cells. Moreover, the broad in vitro screening of MLN4924 anticancer activity provides a valuable guidance for elucidating the susceptible cancer types for the prospective clinical application of MLN4924.
Collapse
|
27
|
Li Z, Lin Y, Song H, Qin X, Yu Z, Zhang Z, Dong G, Li X, Shi X, Du L, Zhao W, Li M. First small-molecule PROTACs for G protein-coupled receptors: inducing α 1A-adrenergic receptor degradation. Acta Pharm Sin B 2020; 10:1669-1679. [PMID: 33088687 PMCID: PMC7563999 DOI: 10.1016/j.apsb.2020.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/18/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022] Open
Abstract
Proteolysis targeting chimeras (PROTACs) are dual-functional hybrid molecules that can selectively recruit an E3 ubiquitin ligase to a target protein to direct the protein into the ubiquitin-proteasome system (UPS), thereby selectively reducing the target protein level by the ubiquitin-proteasome pathway. Nowadays, small-molecule PROTACs are gaining popularity as tools to degrade pathogenic protein. Herein, we present the first small-molecule PROTACs that can induce the α1A-adrenergic receptor (α1A-AR) degradation, which is also the first small-molecule PROTACs for G protein-coupled receptors (GPCRs) to our knowledge. These degradation inducers were developed through conjugation of known α1-adrenergic receptors (α1-ARs) inhibitor prazosin and cereblon (CRBN) ligand pomalidomide through the different linkers. The representative compound 9c is proved to inhibit the proliferation of PC-3 cells and result in tumor growth regression, which highlighted the potential of our study as a new therapeutic strategy for prostate cancer.
Collapse
Key Words
- BPH, benign prostatic hyperplasia
- CRBN, cereblon
- DCM, dichloromethane
- DMF, dimethylformamide
- DMSO, dimethylsulfoxide
- Degradation
- GPCR, G-protein-coupled receptor
- HPLC, high-performance liquid chromatography
- LUTS, lower urinary tract symptoms
- PROTACs, proteolysis targeting chimeras
- Prostate cancer
- Small-molecule PROTACs
- TEA, triethylamine
- THF, tetrahydrofuran
- Ubiquitylation
- hPCE, human prostate cancer epithelial
- α1-ARs, α1-adrenergic receptors
- α1A-AR, α1A-adrenergic receptor
- α1A-Adrenergic receptor
- α1B-AR, α1B-adrenergic receptor
- α1D-AR, α1D-adrenergic receptor
Collapse
Affiliation(s)
- Zhenzhen Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
| | - Yuxing Lin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
| | - Hui Song
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan 250012, China
| | - Xiaojun Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
| | - Zhongxia Yu
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan 250012, China
| | - Zheng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
| | - Gaopan Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
| | - Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
| | - Wei Zhao
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan 250012, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan 250012, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
- Corresponding author. Tel./fax: +86 531 88382076.
| |
Collapse
|
28
|
PROTACs: An Emerging Therapeutic Modality in Precision Medicine. Cell Chem Biol 2020; 27:998-1014. [DOI: 10.1016/j.chembiol.2020.07.020] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022]
|
29
|
Yang J, Wang Q, Feng G, Zeng M. Significance of Selective Protein Degradation in the Development of Novel Targeted Drugs and Its Implications in Cancer Therapy. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Yang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Qiaoli Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Guo‐Kai Feng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Mu‐Sheng Zeng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center Guangzhou 510060 China
| |
Collapse
|
30
|
Khan S, He Y, Zhang X, Yuan Y, Pu S, Kong Q, Zheng G, Zhou D. PROteolysis TArgeting Chimeras (PROTACs) as emerging anticancer therapeutics. Oncogene 2020; 39:4909-4924. [PMID: 32475992 PMCID: PMC7319888 DOI: 10.1038/s41388-020-1336-y] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/21/2022]
Abstract
Using PROteolysis TArgeting Chimeras (PROTACs) to degrade proteins that are important for tumorigenesis has emerged as a potential therapeutic strategy for cancer. PROTACs are heterobifunctional molecules consisting of one ligand for binding to a protein of interest (POI) and another to an E3 ubiquitin (E3) ligase, connected via a linker. PROTACs recruit the E3 ligase to the POI and cause proximity-induced ubiquitination and degradation of the POI by the ubiquitin proteasome system (UPS). PROTACs have been developed to degrade a variety of cancer targets with unprecedented efficacy against a multitude of tumor types. To date, most of the PROTACs developed have utilized ligands to recruit E3 ligases that are ubiquitously expressed in both tumor and normal tissues. These PROTACs can cause on-target toxicities if the POIs are not tumor-specific. Therefore, identifying and recruiting the E3 ligases that are enriched in tumors with minimal expression in normal tissues holds the potential to develop tumor-specific/selective PROTACs. In this review, we will discuss the potential of PROTACs to become anticancer therapeutics, chemical and bioinformatics approaches for PROTAC design, and safety concerns with a special focus on the development of tumor-specific/selective PROTACs. In addition, the identification of tumor types in terms of solid versus hematological malignancies that can be best targeted with PROTAC approach will be briefly discussed.
Collapse
Affiliation(s)
- Sajid Khan
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Yonghan He
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Xuan Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Yaxia Yuan
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Shaoyan Pu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Qingpeng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
31
|
Abstract
Proteolysis-targeting chimera (PROTAC) is a new technology to selectively degrade target proteins via ubiquitin-proteasome system. PROTAC molecules (PROTACs) are a class of heterobifunctional molecules, which contain a ligand targeting the protein of interest, a ligand recruiting an E3 ligase and a linker connecting these two ligands. They provide several advantages over traditional inhibitors in potency, selectivity and drug resistance. Thus, many promising PROTACs have been developed in the recent two decades, especially small-molecule PROTACs. In this review, we briefly introduce the mechanism of PROTACs and focus on the progress of small-molecule PROTACs based on different E3 ligases. In addition, we also introduce the opportunities and challenges of small-molecule PROTACs for cancer therapy.
Collapse
|
32
|
Liu J, Ma J, Liu Y, Xia J, Li Y, Wang ZP, Wei W. PROTACs: A novel strategy for cancer therapy. Semin Cancer Biol 2020; 67:171-179. [PMID: 32058059 DOI: 10.1016/j.semcancer.2020.02.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 12/29/2022]
Abstract
Chemotherapeutic strategy has been widely used for treating malignance by targeting irregular expressed or mutant proteins with small molecular inhibitors (SMIs) or monoclonal antibodies (mAbs). However, most intracellular proteins lack of active sites or antigens where SMIs or mAbs bind with, and are called as non-druggable targets for a long time. From the first year of this century, PROteolysis-TArgeting Chimeras (PROTACs) has emerged to be a promising approach for proteins, including those non-druggable ones, such as transcriptional factors and scaffold proteins. The first generation of peptide-based PROTACs adopts β-TrCP and VHL as E3 ligases, but the cellular permeability and chemical stability issues restrict their clinical application. The second generation of small molecule-based PROTACs adopts MDM2, VHL, IAPs and Cereblon as E3 ligases have been tensely studied. To date, the targets of PROTACs including those overexpressed oncogenic proteins such as ER, AR and BRDs, disease-relevant fusion proteins such as NPM/EML4-ALK and BCR-ABL, cancer-driven mutant proteins such as EGFR, kinases such as CDKs and RTKs. The major disadvantage of PROTACs is the noncancer specificity and relative higher toxicity, due to its catalytic role. To overcome this, we and other have recently developed several similar light-controllable PROTACs, termed as the third generation controllable PROTACs. The degradation of targets by those PROTACs can be triggered by UVA or visible light, providing a tool box for further PROTACs design. Here in this review, we introduce the historical milestones and prospective for further PROTACs development in clinical use.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Yi Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jun Xia
- Department of Biochemistry and Molecular Biology, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Yuyun Li
- Department of Clinical Laboratory Diagnostics, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Z Peter Wang
- Department of Biochemistry and Molecular Biology, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Wang Y, Jiang X, Feng F, Liu W, Sun H. Degradation of proteins by PROTACs and other strategies. Acta Pharm Sin B 2020; 10:207-238. [PMID: 32082969 PMCID: PMC7016280 DOI: 10.1016/j.apsb.2019.08.001] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Blocking the biological functions of scaffold proteins and aggregated proteins is a challenging goal. PROTAC proteolysis-targeting chimaera (PROTAC) technology may be the solution, considering its ability to selectively degrade target proteins. Recent progress in the PROTAC strategy include identification of the structure of the first ternary eutectic complex, extra-terminal domain-4-PROTAC-Von-Hippel-Lindau (BRD4-PROTAC-VHL), and PROTAC ARV-110 has entered clinical trials for the treatment of prostate cancer in 2019. These discoveries strongly proved the value of the PROTAC strategy. In this perspective, we summarized recent meaningful research of PROTAC, including the types of degradation proteins, preliminary biological data in vitro and in vivo, and new E3 ubiquitin ligases. Importantly, the molecular design, optimization strategy and clinical application of candidate molecules are highlighted in detail. Future perspectives for development of advanced PROTAC in medical fields have also been discussed systematically.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xueyang Jiang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Feng
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
34
|
Verma R, Mohl D, Deshaies RJ. Harnessing the Power of Proteolysis for Targeted Protein Inactivation. Mol Cell 2020; 77:446-460. [PMID: 32004468 DOI: 10.1016/j.molcel.2020.01.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/26/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022]
Abstract
Two decades into the twenty-first century, a confluence of breakthrough technologies wielded at the molecular level is presenting biologists with unique opportunities to unravel the complexities of the cellular world. CRISPR/Cas9 allows gene knock-outs, knock-ins, and single-base editing at chromosomal loci. RNA-based tools such as siRNA, antisense oligos, and morpholinos can be used to silence expression of specific genes. Meanwhile, protein knockdown tools that draw inspiration from natural regulatory mechanisms and facilitate elimination of native or degron-tagged proteins from cells are rapidly emerging. The acute and reversible reduction in protein levels enabled by these methods allows for precise determination of loss-of-function phenotypes free from secondary effects or compensatory adaptation that can confound nucleic-acid-based methods that involve slow depletion or permanent loss of a protein. In this Review, we summarize the ingenious ways biologists have exploited natural mechanisms for protein degradation to direct the elimination of specific proteins at will. This has led to advancements not only in basic research but also in the therapeutic space with the introduction of PROTACs into clinical trials for cancer patients.
Collapse
Affiliation(s)
- Rati Verma
- AMGEN Research, One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | - Dane Mohl
- AMGEN Research, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | | |
Collapse
|
35
|
Xia LW, Ba MY, Liu W, Cheng W, Hu CP, Zhao Q, Yao YF, Sun MR, Duan YT. Triazol: a privileged scaffold for proteolysis targeting chimeras. Future Med Chem 2019; 11:2919-2973. [PMID: 31702389 DOI: 10.4155/fmc-2019-0159] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Current traditional drugs such as enzyme inhibitors and receptor agonists/antagonists present inherent limitations due to occupancy-driven pharmacology as the mode of action. Proteolysis targeting chimeras (PROTACs) are composed of an E3 ligand, a connecting linker and a target protein ligand, and are an attractive approach to specifically knockdown-targeted proteins utilizing an event-driven mode of action. The length, hydrophilicity and rigidity of connecting linkers play important role in creating a successful PROTAC. Some PROTACs with a triazole linker have displayed promising anticancer activity. This review provides an overview of PROTACs with a triazole scaffold and discusses its structure-activity relationship. Important milestones in the development of PROTACs are addressed and a critical analysis of this drug discovery strategy is also presented.
Collapse
Affiliation(s)
- Li-Wen Xia
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
- Collaborative Innovation Center of Henan New Drug Research & Safety Evaluation, Zhengzhou, Henan 450001, China
| | - Meng-Yu Ba
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
- Collaborative Innovation Center of Henan New Drug Research & Safety Evaluation, Zhengzhou, Henan 450001, China
| | - Wei Liu
- Henan Provincial Key Laboratory of Children's Genetics & Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou 450018, China
| | - Weyland Cheng
- Henan Provincial Key Laboratory of Children's Genetics & Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou 450018, China
| | - Chao-Ping Hu
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
- Collaborative Innovation Center of Henan New Drug Research & Safety Evaluation, Zhengzhou, Henan 450001, China
| | - Qing Zhao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
- Collaborative Innovation Center of Henan New Drug Research & Safety Evaluation, Zhengzhou, Henan 450001, China
| | - Yong-Fang Yao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
- Collaborative Innovation Center of Henan New Drug Research & Safety Evaluation, Zhengzhou, Henan 450001, China
| | - Mo-Ran Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
- Collaborative Innovation Center of Henan New Drug Research & Safety Evaluation, Zhengzhou, Henan 450001, China
| | - Yong-Tao Duan
- Henan Provincial Key Laboratory of Children's Genetics & Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou 450018, China
| |
Collapse
|
36
|
Abstract
Proteolysis-targeting chimeras (PROTACs) have received much attention for their promising therapeutic intervention in recent years. These molecules, with the mechanism of simultaneous recruitment of target protein and an E3 ligase, can trigger the cellular ubiquitin–proteasome system to degrade the target proteins. This article systematically introduces the mechanism of small-molecule PROTACs, and summarized the research progress of small-molecule PROTACs. The prospect for further application and the problems to be solved are also discussed.
Collapse
|
37
|
Konstantinidou M, Li J, Zhang B, Wang Z, Shaabani S, Ter Brake F, Essa K, Dömling A. PROTACs- a game-changing technology. Expert Opin Drug Discov 2019; 14:1255-1268. [PMID: 31538491 PMCID: PMC7008130 DOI: 10.1080/17460441.2019.1659242] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introduction: Proteolysis – targeting chimeras (PROTACs) have emerged as a new modality with the potential to revolutionize drug discovery. PROTACs are heterobifunctional molecules comprising of a ligand targeting a protein of interest, a ligand targeting an E3 ligase and a connecting linker. The aim is instead of inhibiting the target to induce its proteasomal degradation. Areas covered: PROTACs, due to their bifunctional design, possess properties that differentiate them from classical inhibitors. A structural analysis, based on published crystal aspects, kinetic features and aspects of selectivity are discussed. Specific types such as homoPROTACs, PROTACs targeting Tau protein and the first PROTACs recently entering clinical trials are examined. Expert opinion: PROTACs have shown remarkable biological responses in challenging targets, including an unprecedented selectivity over protein family members and even efficacy starting from weak or unspecific binders. Moreover, PROTACs are standing out from classical pharmacology by inducing the degradation of the target protein and not merely its inhibition. However, there are also challenges in the field, such as the rational structure optimization, the evolution of computational tools, limited structural data and the greatly anticipated clinical data. Despite the remaining hurdles, PROTACs are expected to soon become a new therapeutic category of drugs.
Collapse
Affiliation(s)
| | - Jingyao Li
- Drug Design, University of Groningen , Groningen , The Netherlands
| | - Bidong Zhang
- Drug Design, University of Groningen , Groningen , The Netherlands
| | - Zefeng Wang
- Drug Design, University of Groningen , Groningen , The Netherlands
| | - Shabnam Shaabani
- Drug Design, University of Groningen , Groningen , The Netherlands
| | - Frans Ter Brake
- Drug Design, University of Groningen , Groningen , The Netherlands
| | - Khaled Essa
- Drug Design, University of Groningen , Groningen , The Netherlands
| | | |
Collapse
|
38
|
Inducing the Degradation of Disease-Related Proteins Using Heterobifunctional Molecules. Molecules 2019; 24:molecules24183272. [PMID: 31500395 PMCID: PMC6766870 DOI: 10.3390/molecules24183272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 01/02/2023] Open
Abstract
Current drug development strategies that target either enzymatic or receptor proteins for which specific small molecule ligands can be designed for modulation, result in a large portion of the proteome being overlooked as undruggable. The recruitment of natural degradation cascades for targeted protein removal using heterobifunctional molecules (or degraders) provides a likely avenue to expand the druggable proteome. In this review, we discuss the use of this drug development strategy in relation to degradation cascade-recruiting mechanisms and successfully targeted disease-related proteins. Essential characteristics to be considered in degrader design are deliberated upon and future development challenges mentioned.
Collapse
|
39
|
Röth S, Fulcher LJ, Sapkota GP. Advances in targeted degradation of endogenous proteins. Cell Mol Life Sci 2019; 76:2761-2777. [PMID: 31030225 PMCID: PMC6588652 DOI: 10.1007/s00018-019-03112-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/23/2019] [Accepted: 04/16/2019] [Indexed: 01/07/2023]
Abstract
Protein silencing is often employed as a means to aid investigations in protein function and is increasingly desired as a therapeutic approach. Several types of protein silencing methodologies have been developed, including targeting the encoding genes, transcripts, the process of translation or the protein directly. Despite these advances, most silencing systems suffer from limitations. Silencing protein expression through genetic ablation, for example by CRISPR/Cas9 genome editing, is irreversible, time consuming and not always feasible. Similarly, RNA interference approaches warrant prolonged treatments, can lead to incomplete protein depletion and are often associated with off-target effects. Targeted proteolysis has the potential to overcome some of these limitations. The field of targeted proteolysis has witnessed the emergence of many methodologies aimed at targeting specific proteins for degradation in a spatio-temporal manner. In this review, we provide an appraisal of the different targeted proteolytic systems and discuss their applications in understanding protein function, as well as their potential in therapeutics.
Collapse
Affiliation(s)
- Sascha Röth
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Luke J Fulcher
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Gopal P Sapkota
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
40
|
Xi M, Chen Y, Yang H, Xu H, Du K, Wu C, Xu Y, Deng L, Luo X, Yu L, Wu Y, Gao X, Cai T, Chen B, Shen R, Sun H. Small molecule PROTACs in targeted therapy: An emerging strategy to induce protein degradation. Eur J Med Chem 2019; 174:159-180. [PMID: 31035238 DOI: 10.1016/j.ejmech.2019.04.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/13/2019] [Accepted: 04/13/2019] [Indexed: 01/01/2023]
Abstract
Inhibitors and nucleic acid based techniques were two main approaches to interfere with protein signaling and respective cascade in the past. Until recently, a new class of small molecules named proteolysis-targeting chimeras (PROTACs) have emerged. Each contains a target warhead, a linker and an E3 ligand. These bifunctional molecules recruit E3 ligases and target specific proteins for degradation via the ubiquitin (Ub) proteasome system (UPS). The degradation provides several advantages over inhibition in potency, selectivity and drug resistance. Thus, a variety of small molecule PROTACs have been discovered so far. In this review, we summarize the biological mechanism, advantages and recent progress of PROTACs, trying to offer an outlook in development of drugs targeting degradation in future.
Collapse
Affiliation(s)
- Meiyang Xi
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yi Chen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Hongyu Yang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Huiting Xu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Kui Du
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Chunlei Wu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yanfei Xu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Liping Deng
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Xiang Luo
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Lemao Yu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yonghua Wu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Xiaozhong Gao
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Tao Cai
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Bin Chen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Runpu Shen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
41
|
Shibata N, Ohoka N, Hattori T, Naito M. Development of a Potent Protein Degrader against Oncogenic BCR-ABL Protein. Chem Pharm Bull (Tokyo) 2019; 67:165-172. [PMID: 30827996 DOI: 10.1248/cpb.c18-00703] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromosomal translocation occurs in some cancer cells, resulting in the expression of aberrant oncogenic fusion proteins that include BCR-ABL in chronic myelogenous leukemia (CML). Inhibitors of ABL tyrosine kinase, such as imatinib and dasatinib, exhibit remarkable therapeutic effects, although emergence of drug resistance hampers the therapy during long-term treatment. An alternative approach to treat CML is to downregulate expression of the BCR-ABL protein. Recently, we have devised a protein knockdown system by hybrid molecules named Specific and Nongenetic inhibitor of apoptosis protein [IAP]-dependent Protein Erasers (SNIPER). This system is designed to induce IAP-mediated ubiquitylation and proteasomal degradation of target proteins. In this review, we describe the development of SNIPER against BCR-ABL, and discuss the features and prospect for treatment of CML.
Collapse
Affiliation(s)
- Norihito Shibata
- Divisions of Molecular Target and Gene Therapy Products, National Institute of Health Sciences
| | - Nobumichi Ohoka
- Divisions of Molecular Target and Gene Therapy Products, National Institute of Health Sciences
| | - Takayuki Hattori
- Divisions of Molecular Target and Gene Therapy Products, National Institute of Health Sciences
| | - Mikihiko Naito
- Divisions of Molecular Target and Gene Therapy Products, National Institute of Health Sciences
| |
Collapse
|
42
|
Abstract
Proteolysis-targeting chimeras (PROTACs) are an emerging tool for therapeutic intervention by reducing or eliminating disease-causing proteins. PROTACs are bifunctional molecules that consist of a target protein ligand, a linker and an E3 ligase ligand, which mediate the polyubiquitination of the target protein, ultimately leading to the target protein degradation by the ubiquitin–proteasome pathway. We review some of the main PROTACs that have been reported recently and discuss their potential therapeutic benefits over classical enzyme inhibition. Future research is expected to focus on the delivery and bioavailability of PROTACs due to their high molecular weight (700–1000 Da).
Collapse
|
43
|
Ohoka N, Ujikawa O, Shimokawa K, Sameshima T, Shibata N, Hattori T, Nara H, Cho N, Naito M. Different Degradation Mechanisms of Inhibitor of Apoptosis Proteins (IAPs) by the Specific and Nongenetic IAP-Dependent Protein Eraser (SNIPER). Chem Pharm Bull (Tokyo) 2019; 67:203-209. [DOI: 10.1248/cpb.c18-00567] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences
| | - Osamu Ujikawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd
| | | | - Tomoya Sameshima
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd
| | - Norihito Shibata
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences
| | - Takayuki Hattori
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences
| | - Hiroshi Nara
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd
| | - Nobuo Cho
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd
| | - Mikihiko Naito
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences
| |
Collapse
|
44
|
Cong H, Xu L, Wu Y, Qu Z, Bian T, Zhang W, Xing C, Zhuang C. Inhibitor of Apoptosis Protein (IAP) Antagonists in Anticancer Agent Discovery: Current Status and Perspectives. J Med Chem 2019; 62:5750-5772. [DOI: 10.1021/acs.jmedchem.8b01668] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hui Cong
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Lijuan Xu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yougen Wu
- College of Tropical Agriculture and Forestry, Hainan University, 58 Renmin Avenue, Haikou 570228, China
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Tengfei Bian
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
45
|
Lee CY, Kim HY, Kim S, Park KS, Park HG. A simple and sensitive detection of small molecule-protein interactions based on terminal protection-mediated exponential strand displacement amplification. Analyst 2019; 143:2023-2028. [PMID: 29634063 DOI: 10.1039/c8an00099a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We herein describe a simple and sensitive strategy to detect a small molecule-protein interaction based on terminal protection-mediated exponential strand displacement amplification (eSDA). In principle, the small molecule linked to a DNA probe protects the DNA probe against the exonuclease I-catalyzed degradation after its binding to the corresponding target protein. The protected DNA probe then serves as a template to promote eSDA. Consequently, a large number of duplexes are produced, which leads to a high fluorescence from a double-stranded DNA specific fluorescent dye, SYBR Green I. As a model system to prove this sensing strategy, the interaction between biotin and streptavidin (SA), which is known to be the strongest among the non-covalent biological interactions, was selected and its analytical performance was thoroughly investigated. As a result, SA was sensitively detected with the limit of detection of 16 pM. In addition, the practical applicability of this method was successfully demonstrated by reliably determining the SA in human serum.
Collapse
Affiliation(s)
- Chang Yeol Lee
- Department of Chemical and Biomolecular Engineering (BK 21 + program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | | | | | | | | |
Collapse
|
46
|
Naito M, Ohoka N, Shibata N. SNIPERs-Hijacking IAP activity to induce protein degradation. DRUG DISCOVERY TODAY. TECHNOLOGIES 2019; 31:35-42. [PMID: 31200857 DOI: 10.1016/j.ddtec.2018.12.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022]
Abstract
The induction of protein degradation by chimeric small molecules represented by proteolysis-targeting chimeras (PROTACs) is an emerging approach for novel drug development. We have developed a series of chimeric molecules termed specific and non-genetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs) that recruit IAP ubiquitin ligases to effect targeted degradation. Unlike the chimeric molecules that recruit von Hippel-Lindau and cereblon ubiquitin ligases, SNIPERs induce simultaneous degradation of IAPs such as cIAP1 and XIAP along with the target proteins. Because cancer cells often overexpress IAPs-a mechanism involved in the resistance to cancer therapy-SNIPERs could be used to kill cancer cells efficiently.
Collapse
Affiliation(s)
- Mikihiko Naito
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan.
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Norihito Shibata
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| |
Collapse
|
47
|
Zou Y, Ma D, Wang Y. The PROTAC technology in drug development. Cell Biochem Funct 2019; 37:21-30. [PMID: 30604499 PMCID: PMC6590639 DOI: 10.1002/cbf.3369] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/28/2022]
Abstract
Currently, a new technology termed PROTAC, proteolysis targeting chimera, has been developed for inducing the protein degradation by a targeting molecule. This technology takes advantage of a moiety of targeted protein and a moiety of recognizing E3 ubiquitin ligase and produces a hybrid molecule to specifically knock down a targeted protein. During the first decade, three pedigreed groups worked on the development of this technology. To date, this technology has been extended by different groups, aiming to develop new drugs against different diseases including cancers. This review summarizes the contributions of the groups for the development of PROTAC. SIGNIFICANCE OF THE STUDY: This review summarized the development of the PROTAC technology for readers and also presented the author's opinions on the application of the technology in tumor therapy.
Collapse
Affiliation(s)
- Yutian Zou
- The State Laboratory of Membrane Biology, Department of Basic Medicine, School of Medicine, Tsinghua University, Beijing, China.,Department of Science, Brookwood High School, Snellville, Georgia
| | - Danhui Ma
- The State Laboratory of Membrane Biology, Department of Basic Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Yinyin Wang
- The State Laboratory of Membrane Biology, Department of Basic Medicine, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
48
|
Pei H, Peng Y, Zhao Q, Chen Y. Small molecule PROTACs: an emerging technology for targeted therapy in drug discovery. RSC Adv 2019; 9:16967-16976. [PMID: 35519875 PMCID: PMC9064693 DOI: 10.1039/c9ra03423d] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 12/27/2022] Open
Abstract
An overview of the latest developments in PROTAC technology and the possible directions of this approach is presented.
Collapse
Affiliation(s)
- Haixiang Pei
- Shanghai Key Laboratory of Regulatory Biology
- The Institute of Biomedical Sciences
- School of Life Sciences
- East China Normal University
- Shanghai 200241
| | - Yangrui Peng
- Shanghai Key Laboratory of Regulatory Biology
- The Institute of Biomedical Sciences
- School of Life Sciences
- East China Normal University
- Shanghai 200241
| | - Qiuhua Zhao
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology
- The Institute of Biomedical Sciences
- School of Life Sciences
- East China Normal University
- Shanghai 200241
| |
Collapse
|
49
|
Cheng J, Guo J, North BJ, Tao K, Zhou P, Wei W. The emerging role for Cullin 4 family of E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2018; 1871:138-159. [PMID: 30602127 DOI: 10.1016/j.bbcan.2018.11.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
As a member of the Cullin-RING ligase family, Cullin-RING ligase 4 (CRL4) has drawn much attention due to its broad regulatory roles under physiological and pathological conditions, especially in neoplastic events. Based on evidence from knockout and transgenic mouse models, human clinical data, and biochemical interactions, we summarize the distinct roles of the CRL4 E3 ligase complexes in tumorigenesis, which appears to be tissue- and context-dependent. Notably, targeting CRL4 has recently emerged as a noval anti-cancer strategy, including thalidomide and its derivatives that bind to the substrate recognition receptor cereblon (CRBN), and anticancer sulfonamides that target DCAF15 to suppress the neoplastic proliferation of multiple myeloma and colorectal cancers, respectively. To this end, PROTACs have been developed as a group of engineered bi-functional chemical glues that induce the ubiquitination-mediated degradation of substrates via recruiting E3 ligases, such as CRL4 (CRBN) and CRL2 (pVHL). We summarize the recent major advances in the CRL4 research field towards understanding its involvement in tumorigenesis and further discuss its clinical implications. The anti-tumor effects using the PROTAC approach to target the degradation of undruggable targets are also highlighted.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
50
|
Yuan B, Chen Y, Wu Z, Zhang L, Zhuang Y, Zhao X, Niu H, Cheng JCH, Zeng Z. Proteomic Profiling of Human Hepatic Stellate Cell Line LX2 Responses to Irradiation and TGF-β1. J Proteome Res 2018; 18:508-521. [PMID: 30489086 DOI: 10.1021/acs.jproteome.8b00814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatic stellate cells (HSCs) are the main target of radiation damage and primarily contribute to the development of radiation-induced liver fibrosis. However, the molecular events underlying the radiation-induced activation of HSCs are not fully elucidated. In the present study, human HSC line LX2 was treated with X-ray irradiation and/or TGF-β1, and profibrogenic molecules were evaluated. The iTRAQ LC-MS/MS technology was performed to identify global protein expression profiles in LX2 following exposure to different stimuli. Irradiation or TGF-β1 alone increased expression of α-SMA, collagen 1, CTGF, PAI-1, and fibronectin. Irradiation and TGF-β1 cooperatively induced expression of these profibrotic markers. In total, 102, 137, 155 dysregulated proteins were identified in LX2 cell samples affected by irradiation, TGF-β1, or cotreatment, respectively. Bioinformatic analyses showed that the three differentially expressed protein sets were commonly associated with cell cycle and protein processing in endoplasmic reticulum. The expression of a set of proteins was properly validated: CDC20, PRC1, KIF20A, CCNB1, SHCBP, TACC3 were upregulated upon irradiation or irradiation and TGF-β1 costimulation, whereas SPARC and THBS1 were elevated by TGF-β1 or TGF-β1 plus irradiation treatment. Furthermore, CDC20 inhibition suppressed expression of profibrotic markers in irradiated and TGF-β1-stimulated LX2 cells. Detailed data on potential molecular mechanisms causing the radiation-induced HSC activation presented here would be instrumental in developing radiotherapy strategies that minimize radiation-induced liver fibrosis.
Collapse
Affiliation(s)
- Baoying Yuan
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Yuhan Chen
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China.,Department of Radiation Oncology, Nanfang Hospital , Southern Medical University , Guangzhou 510515 , China
| | - Zhifeng Wu
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Li Zhang
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Yuan Zhuang
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Xiaomei Zhao
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Hao Niu
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Jason Chia-Hsien Cheng
- Division of Radiation Oncology, Departments of Oncology , National Taiwan University Hospital , Taipei 100 , Taiwan
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| |
Collapse
|