1
|
Li DY, Hu XX, Tian ZR, Ning QW, Liu JQ, Yue Y, Yuan W, Meng B, Li JL, Zhang Y, Pan ZW, Zhuang YT, Lu YJ. eIF4A1 exacerbates myocardial ischemia-reperfusion injury in mice by promoting nuclear translocation of transgelin/p53. Acta Pharmacol Sin 2025; 46:1236-1249. [PMID: 39856433 PMCID: PMC12032080 DOI: 10.1038/s41401-024-01467-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025]
Abstract
Eukaryotic translation initiation factor 4A1 (eIF4A1) is an ATP-dependent RNA helicase that participates in a variety of biological and pathological processes such as cell proliferation and apoptosis, and cancer. In this study we investigated the role of eIF4A1 in ischemic heart disease. The myocardial ischemia/reperfusion (I/R) model was established in mice by ligation of the left anterior descending artery for 45 min with the subsequent reperfusion for 24 h; cultured neonatal mouse ventricular cardiomyocytes (NMVCs) treated with H2O2 (200 μM) or H/R (12 h hypoxia and 12 h reoxygenation) were used for in vitro study. We showed that the expression levels of eIF4A1 were significantly increased in I/R-treated myocardium and in H2O2- or H/R-treated NMVCs. In NMVCs, eIF4A1 overexpression drastically enhanced LDH level, caspase 3 activity, and cell apoptosis. eIF4A1 overexpression also significantly reduced anti-apoptotic protein Bcl2 and elevated pro-apoptotic protein Bax expression, whereas eIF4A1 deficiency produced the opposite responses. Importantly, cardiomyocyte-specific eIF4A1 knockout attenuated cardiomyocyte apoptosis, reduced infarct area, and improved cardiac function in myocardial I/R mice. We demonstrated that eIF4A1 directly bound to transgelin (Tagln) to prevent its ubiquitination degradation and subsequent up-regulation of p53, and then promoted nuclear translocation of Tagln and p53. Nuclear localization of Tagln and p53 was increased in H2O2-treated NMVCs. Silencing Tagln reversed the pro-apoptotic effects of eIF4A1. Noticeably, eIF4A1 exerted the similar effects in AC16 human cardiomyocytes. In conclusion, eIF4A1 is a detrimental factor in myocardial I/R injury via promoting expression and nuclear translocation of Tagln and p53 and might be a potential target for myocardial I/R injury. This study highlights a novel biological role of eIF4A1 by interacting with non-translational-related factor Tagln in myocardial I/R injury.
Collapse
Affiliation(s)
- Dan-Yang Li
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150086, China
| | - Xiao-Xi Hu
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Zhong-Rui Tian
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Qi-Wen Ning
- Scientific Research Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiang-Qi Liu
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Ying Yue
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Wei Yuan
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Bo Meng
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Jia-Liang Li
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Yang Zhang
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Zhen-Wei Pan
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150086, China.
| | - Yu-Ting Zhuang
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150086, China.
- Scientific Research Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Yan-Jie Lu
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150086, China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
2
|
Cruz-Ruiz S, Vidal R, Furlan-Magaril M, Lis JT, Zurita M. Transcriptional stress induces the overexpression of novel lncRNAs that regulate the BRCA1 locus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642677. [PMID: 40161662 PMCID: PMC11952445 DOI: 10.1101/2025.03.11.642677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play a role during transcriptional regulation in response to stress. However, their function under stress caused by transcriptional inhibition has not yet been addressed. Using genome-wide assays to elucidate the transcriptional response in human cells caused by RNA polymerase II transcription inhibition, we found three novel regulatory lncRNAs, TILR-1 , TILR-2 , and LINC00910 , that are upregulated as a response to this transcriptional stress. Knockdown experiments showed that the expression of these RNAs is interdependent, and together, they regulate transcription of the nearby BRCA1 locus. The lack of these novel regulatory transcripts also resulted in an increase in cellular proliferation and survival. Public transcriptomic data from different cell lines treated with a variety of transcriptional inhibitors or with heat shock and arsenic stress showed that TILR-1 , TILR-2 , and LINC00910 are commonly upregulated in a broad array of stress conditions. Evolutionary analysis showed that TILR-1 , TILR-2 , and LINC00910 are highly conserved among primates, and their emergence correlates with the duplication of the bidirectional promoter of BRCA1 and NBR1 . We conclude that that coordinate transcription of TILR-1 , TILR-2 , and LINC00910 is stimulated generally by stress and the resulting lncRNAs are novel, functionally-conserved regulators of the BRCA1 locus.
Collapse
|
3
|
Amiri M, Mahmood N, Tahmasebi S, Sonenberg N. eIF4F-mediated dysregulation of mRNA translation in cancer. RNA (NEW YORK, N.Y.) 2025; 31:416-428. [PMID: 39809544 PMCID: PMC11874970 DOI: 10.1261/rna.080340.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Messenger RNA (mRNA) translational control plays a pivotal role in regulating cellular proteostasis under physiological and pathological conditions. Dysregulated mRNA translation is pervasive in cancer, in which protein synthesis is elevated to support accelerated cell growth and proliferation. Consequently, targeting the mRNA translation machinery has emerged as a therapeutic strategy to treat cancer. In this Perspective, we summarize the current knowledge of translation dysregulation in cancer, with emphasis on the eukaryotic translation initiation factor 4F complex. We outline recent endeavors to apply this knowledge to develop novel treatment strategies to combat cancer.
Collapse
Affiliation(s)
- Mehdi Amiri
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Niaz Mahmood
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| |
Collapse
|
4
|
Kumar D, Kanchan R, Chaturvedi NK. Targeting protein synthesis pathways in MYC-amplified medulloblastoma. Discov Oncol 2025; 16:23. [PMID: 39779613 PMCID: PMC11711608 DOI: 10.1007/s12672-025-01761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
MYC is one of the most deregulated oncogenic transcription factors in human cancers. MYC amplification/or overexpression is most common in Group 3 medulloblastoma and is positively associated with poor prognosis. MYC is known to regulate the transcription of major components of protein synthesis (translation) machinery, leading to promoted rates of protein synthesis and tumorigenesis. MTOR signaling-driven deregulated protein synthesis is widespread in various cancers, including medulloblastoma, which can promote the stabilization of MYC. Indeed, our previous studies demonstrate that the key components of protein synthesis machinery, including mTOR signaling and MYC targets, are overexpressed and activated in MYC-amplified medulloblastoma, confirming MYC-dependent addiction of enhanced protein synthesis in medulloblastoma. Further, targeting this enhanced protein synthesis pathway with combined inhibition of MYC transcription and mTOR translation by small-molecule inhibitors, demonstrates preclinical synergistic anti-tumor potential against MYC-driven medulloblastoma in vitro and in vivo. Thus, inhibiting enhanced protein synthesis by targeting the MYC indirectly and mTOR pathways together may present a highly appropriate strategy for treating MYC-driven medulloblastoma and other MYC-addicted cancers. Evidence strongly proposes that MYC/mTOR-driven tumorigenic signaling can predominantly control the translational machinery to elicit cooperative effects on increased cell proliferation, cell cycle progression, and genome dysregulation as a mechanism of cancer initiation. Several small molecule inhibitors of targeting MYC indirectly and mTOR signaling have been developed and used clinically with immunosuppressants and chemotherapy in multiple cancers. Only a few of them have been investigated as treatments for medulloblastoma and other pediatric tumors. This review explores concurrent targeting of MYC and mTOR signaling against MYC-driven medulloblastoma. Based on existing evidence, targeting of MYC and mTOR pathways together produces functional synergy that could be the basis for effective therapies against medulloblastoma.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, 986395, USA
| | - Ranjana Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagendra K Chaturvedi
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, 986395, USA.
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
5
|
Sun F, Zhang RJ, Fang Y, Yan CY, Zhang CR, Wu FY, Yang RM, Han B, Song HD, Zhao SX. Identification of Eukaryotic Translation Initiation Factor 4B as a Novel Candidate Gene for Congenital Hypothyroidism. J Clin Endocrinol Metab 2024; 109:3282-3292. [PMID: 38654471 DOI: 10.1210/clinem/dgae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
CONTEXT Congenital hypothyroidism (CH) is the most common endocrine disorder in neonates, but its etiology is still poorly understood. OBJECTIVE We performed whole exome sequencing to identify a novel causative gene for CH and functional studies to validate its role in the occurrence of CH. METHODS Whole exome sequencing in 98 CH patients not harboring known CH candidate genes and bioinformatic analysis were performed. Functional analysis was performed using morpholino, a synthetic short antisense oligonucleotide that contains 25 DNA bases on a methylene morpholine backbone, in zebrafish and CRISPR-Cas9-mediated gene knockout in mice. RESULTS Eukaryotic translation initiation factor 4B (EIF4B) was identified as the most promising candidate gene. The EIF4B gene was inherited in an autosomal recessive model, and 1 patient with thyroid dysgenesis carried EIF4B biallelic variants (p.S430F/p.P328L). In zebrafish, the knockdown of eif4ba/b expression caused thyroid dysgenesis and growth retardation. Thyroid hormone levels were significantly decreased in morphants compared with controls. Thyroxine treatment in morphants partially rescued growth retardation. In mice, the homozygous conceptuses of Eif4b+/- parents did not survive. Eif4b knockout embryos showed severe growth retardation, including thyroid dysgenesis and embryonic lethality before E18.5. CONCLUSION These experimental data support a role for EIF4B function in the pathogenesis of the hypothyroid phenotype seen in CH patients. Our work indicates that EIF4B was identified as a novel candidate gene in CH. EIF4B is essential for animal survival, but further studies are needed to validate its role in the pathogenesis of CH.
Collapse
Affiliation(s)
- Feng Sun
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Rui-Jia Zhang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ya Fang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Cheng-Yan Yan
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chang-Run Zhang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Feng-Yao Wu
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Rui-Meng Yang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Bing Han
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Huai-Dong Song
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Shuang-Xia Zhao
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
6
|
Quintas A, Harvey R, Horvilleur E, Garland G, Schmidt T, Kalmar L, Dezi V, Marini A, Fulton A, Pöyry TA, Cole C, Turner M, Sawarkar R, Chapman M, Bushell M, Willis A. Eukaryotic initiation factor 4B is a multi-functional RNA binding protein that regulates histone mRNAs. Nucleic Acids Res 2024; 52:12039-12054. [PMID: 39225047 PMCID: PMC11514447 DOI: 10.1093/nar/gkae767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
RNA binding proteins drive proliferation and tumorigenesis by regulating the translation and stability of specific subsets of messenger RNAs (mRNAs). We have investigated the role of eukaryotic initiation factor 4B (eIF4B) in this process and identify 10-fold more RNA binding sites for eIF4B in tumour cells from patients with diffuse large B-cell lymphoma compared to control B cells and, using individual-nucleotide resolution UV cross-linking and immunoprecipitation, find that eIF4B binds the entire length of mRNA transcripts. eIF4B stimulates the helicase activity of eIF4A, thereby promoting the unwinding of RNA structure within the 5' untranslated regions of mRNAs. We have found that, in addition to its well-documented role in mRNA translation, eIF4B additionally interacts with proteins associated with RNA turnover, including UPF1 (up-frameshift protein 1), which plays a key role in histone mRNA degradation at the end of S phase. Consistent with these data, we locate an eIF4B binding site upstream of the stem-loop structure in histone mRNAs and show that decreased eIF4B expression alters histone mRNA turnover and delays cell cycle progression through S phase. Collectively, these data provide insight into how eIF4B promotes tumorigenesis.
Collapse
Affiliation(s)
- Ana Quintas
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Robert F Harvey
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Emilie Horvilleur
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Gavin D Garland
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Tobias Schmidt
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Lajos Kalmar
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Veronica Dezi
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Alberto Marini
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Alexander M Fulton
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Tuija A A Pöyry
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Cameron H Cole
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Martin Turner
- Immunology Programme, Babraham Institute, Babraham Science Campus, Cambridgeshire CB22 3AT, UK
| | - Ritwick Sawarkar
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Michael A Chapman
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
7
|
Sehrawat U. Exploiting Translation Machinery for Cancer Therapy: Translation Factors as Promising Targets. Int J Mol Sci 2024; 25:10835. [PMID: 39409166 PMCID: PMC11477148 DOI: 10.3390/ijms251910835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Eukaryotic protein translation has slowly gained the scientific community's attention for its advanced and powerful therapeutic potential. However, recent technical developments in studying ribosomes and global translation have revolutionized our understanding of this complex multistep process. These developments have improved and deepened the current knowledge of mRNA translation, sparking excitement and new possibilities in this field. Translation factors are crucial for maintaining protein synthesis homeostasis. Since actively proliferating cancer cells depend on protein synthesis, dysregulated protein translation is central to tumorigenesis. Translation factors and their abnormal expressions directly affect multiple oncogenes and tumor suppressors. Recently, small molecules have been used to target translation factors, resulting in translation inhibition in a gene-specific manner, opening the door for developing translation inhibitors that can lead to novel chemotherapeutic drugs for treating multiple cancer types caused by dysregulated translation machinery. This review comprehensively summarizes the involvement of translation factors in tumor progression and oncogenesis. Also, it sheds light on the evolution of translation factors as novel drug targets for developing future therapeutic drugs for treating cancer.
Collapse
Affiliation(s)
- Urmila Sehrawat
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
8
|
Bhattacharya P, Linnenbach A, South AP, Martinez-Outschoorn U, Curry JM, Johnson JM, Harshyne LA, Mahoney MG, Luginbuhl AJ, Vadigepalli R. Tumor microenvironment governs the prognostic landscape of immunotherapy for head and neck squamous cell carcinoma: A computational model-guided analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615149. [PMID: 39386511 PMCID: PMC11463398 DOI: 10.1101/2024.09.26.615149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Immune checkpoint inhibition (ICI) has emerged as a critical treatment strategy for squamous cell carcinoma of the head and neck (HNSCC) that halts the immune escape of the tumor cells. Increasing evidence suggests that the onset, progression, and lack of/no response of HNSCC to ICI are emergent properties arising from the interactions within the tumor microenvironment (TME). Deciphering how the diversity of cellular and molecular interactions leads to distinct HNSCC TME subtypes subsequently governing the ICI response remains largely unexplored. We developed a cellular-molecular model of the HNSCC TME that incorporates multiple cell types, cellular states, and transitions, and molecularly mediated paracrine interactions. An exhaustive simulation of the HNSCC TME network shows that distinct mechanistic balances within the TME give rise to the five clinically observed TME subtypes such as immune/non-fibrotic, immune/fibrotic, fibrotic only and immune/fibrotic desert. We predict that the cancer-associated fibroblast, beyond a critical proliferation rate, drastically worsens the ICI response by hampering the accessibility of the CD8+ killer T cells to the tumor cells. Our analysis reveals that while an Interleukin-2 (IL-2) + ICI combination therapy may improve response in the immune desert scenario, Osteopontin (OPN) and Leukemia Inhibition Factor (LIF) knockout with ICI yields the best response in a fibro-dominated scenario. Further, we predict Interleukin-8 (IL-8), and lactate can serve as crucial biomarkers for ICI-resistant HNSCC phenotypes. Overall, we provide an integrated quantitative framework that explains a wide range of TME-mediated resistance mechanisms for HNSCC and predicts TME subtype-specific targets that can lead to an improved ICI outcome.
Collapse
Affiliation(s)
- Priyan Bhattacharya
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Alban Linnenbach
- Department of Otolaryngology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Andrew P. South
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Ubaldo Martinez-Outschoorn
- Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Joseph M. Curry
- Department of Otolaryngology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Jennifer M. Johnson
- Department of Otolaryngology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
- Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Larry A. Harshyne
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Mỹ G. Mahoney
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Adam J. Luginbuhl
- Department of Otolaryngology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Rajanikanth Vadigepalli
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA19107, USA
| |
Collapse
|
9
|
Shi JY, Wen R, Chen JY, Feng YQ, Zhang YY, Hou SJ, Xi YJ, Wang JF, Zhang YF. Genetic evidence supporting potential causal roles of EIF4 family in breast cancer: a two-sample randomized Mendelian study. Sci Rep 2024; 14:20191. [PMID: 39215053 PMCID: PMC11364806 DOI: 10.1038/s41598-024-71059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Translational control plays a crucial role in the regulation of apoptosis, with the EIF4 family serving as one of the mRNA translation factors that modulate the process of mRNA translation based on mRNA characteristics. To address this potential causal role of EIF4 family proteins and breast cancer, Mendelian randomization was employed. The study incorporated four sets of genetics instrumental variables, namely EIF4E, EIF4B, EIF4A, and EIF4EBP2. The outcome variables selected for analysis were the BCAC consortium, which included estrogen receptor positive (ER+) and estrogen receptor negative (ER-) samples. To assess the potential violations of the MR assumption, the primary MR analysis employed inverse variance weighted (IVW), and several sensitivity analyses were conducted. The findings of the two-sample MR analysis indicate that EIF4E has an adverse effect on breast cancer risk (p = 0.028). However, the evidence for the relationship between EIF4E and ER status of breast cancer suggests a weak association with ER+ breast cancer (p = 0.054), but not with ER- breast cancer (p > 0.05). The study findings indicate that EIF4A is not causally linked to the risk of ER+ breast cancer, but is significantly associated with an elevated risk of ER- breast cancer (p = 0.028). However, the evidence is inadequate to support the effects of EIF4B and EIF4EBP2 on breast cancer (p > 0.05). Our results suggest that EIF4 may be a potential factor in the occurrence and development of breast cancer, which may lead to a better understanding of its causes and prevention.
Collapse
Affiliation(s)
- Jin-Yu Shi
- Department of Breast Surgery, Shanxi Provincial People's Hospital, Taiyuan, 030000, Shanxi, China
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rui Wen
- Major in Clinical Pharmacy, College of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jin-Yi Chen
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yi-Qian Feng
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Yuan-Yuan Zhang
- College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Si-Jia Hou
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Yu-Jia Xi
- Department of Urology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiang-Fen Wang
- Department of Breast Surgery, Shanxi Provincial People's Hospital, Taiyuan, 030000, Shanxi, China
| | - Ya-Fen Zhang
- Department of Breast Surgery, Shanxi Provincial People's Hospital, Taiyuan, 030000, Shanxi, China.
| |
Collapse
|
10
|
Wytock TP, Motter AE. Cell reprogramming design by transfer learning of functional transcriptional networks. Proc Natl Acad Sci U S A 2024; 121:e2312942121. [PMID: 38437548 PMCID: PMC10945810 DOI: 10.1073/pnas.2312942121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/26/2024] [Indexed: 03/06/2024] Open
Abstract
Recent developments in synthetic biology, next-generation sequencing, and machine learning provide an unprecedented opportunity to rationally design new disease treatments based on measured responses to gene perturbations and drugs to reprogram cells. The main challenges to seizing this opportunity are the incomplete knowledge of the cellular network and the combinatorial explosion of possible interventions, both of which are insurmountable by experiments. To address these challenges, we develop a transfer learning approach to control cell behavior that is pre-trained on transcriptomic data associated with human cell fates, thereby generating a model of the network dynamics that can be transferred to specific reprogramming goals. The approach combines transcriptional responses to gene perturbations to minimize the difference between a given pair of initial and target transcriptional states. We demonstrate our approach's versatility by applying it to a microarray dataset comprising >9,000 microarrays across 54 cell types and 227 unique perturbations, and an RNASeq dataset consisting of >10,000 sequencing runs across 36 cell types and 138 perturbations. Our approach reproduces known reprogramming protocols with an AUROC of 0.91 while innovating over existing methods by pre-training an adaptable model that can be tailored to specific reprogramming transitions. We show that the number of gene perturbations required to steer from one fate to another increases with decreasing developmental relatedness and that fewer genes are needed to progress along developmental paths than to regress. These findings establish a proof-of-concept for our approach to computationally design control strategies and provide insights into how gene regulatory networks govern phenotype.
Collapse
Affiliation(s)
- Thomas P. Wytock
- Department of Physics and Astronomy, Northwestern University, Evanston, IL60208
- Center for Network Dynamics, Northwestern University, Evanston, IL60208
| | - Adilson E. Motter
- Department of Physics and Astronomy, Northwestern University, Evanston, IL60208
- Center for Network Dynamics, Northwestern University, Evanston, IL60208
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL60208
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL60208
- National Institute for Theory and Mathematics in Biology, Evanston, IL60208
| |
Collapse
|
11
|
Wytock TP, Motter AE. Cell reprogramming design by transfer learning of functional transcriptional networks. ARXIV 2024:arXiv:2403.04837v1. [PMID: 38495570 PMCID: PMC10942484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Recent developments in synthetic biology, next-generation sequencing, and machine learning provide an unprecedented opportunity to rationally design new disease treatments based on measured responses to gene perturbations and drugs to reprogram cell behavior. The main challenges to seizing this opportunity are the incomplete knowledge of the cellular network and the combinatorial explosion of possible interventions, both of which are insurmountable by experiments. To address these challenges, we develop a transfer learning approach to control cell behavior that is pre-trained on transcriptomic data associated with human cell fates to generate a model of the functional network dynamics that can be transferred to specific reprogramming goals. The approach additively combines transcriptional responses to gene perturbations (single-gene knockdowns and overexpressions) to minimize the transcriptional difference between a given pair of initial and target states. We demonstrate the flexibility of our approach by applying it to a microarray dataset comprising over 9,000 microarrays across 54 cell types and 227 unique perturbations, and an RNASeq dataset consisting of over 10,000 sequencing runs across 36 cell types and 138 perturbations. Our approach reproduces known reprogramming protocols with an average AUROC of 0.91 while innovating over existing methods by pre-training an adaptable model that can be tailored to specific reprogramming transitions. We show that the number of gene perturbations required to steer from one fate to another increases as the developmental relatedness decreases. We also show that fewer genes are needed to progress along developmental paths than to regress. Together, these findings establish a proof-of-concept for our approach to computationally design control strategies and demonstrate their ability to provide insights into the dynamics of gene regulatory networks.
Collapse
Affiliation(s)
- Thomas P Wytock
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
- Center for Network Dynamics, Northwestern University, Evanston, Illinois 60208, USA
| | - Adilson E Motter
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
- Center for Network Dynamics, Northwestern University, Evanston, Illinois 60208, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208, USA
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois 60208, USA
- National Institute for Theory and Mathematics in Biology, Evanston, Illinois 60208, USA
| |
Collapse
|
12
|
Oh DS, Kim E, Lu G, Normand R, Shook LL, Lyall A, Jasset O, Demidkin S, Gilbert E, Kim J, Akinwunmi B, Tantivit J, Tirard A, Arnold BY, Slowikowski K, Goldberg MB, Filbin MR, Hacohen N, Nguyen LH, Chan AT, Yu XG, Li JZ, Yonker L, Fasano A, Perlis RH, Pasternak O, Gray KJ, Choi GB, Drew DA, Sen P, Villani AC, Edlow AG, Huh JR. SARS-CoV-2 infection elucidates unique features of pregnancy-specific immunity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.05.24301794. [PMID: 38370801 PMCID: PMC10871456 DOI: 10.1101/2024.02.05.24301794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Pregnancy is a risk factor for increased severity of SARS-CoV-2 and other respiratory infections. The mechanisms underlying this risk have not been well-established, partly due to a limited understanding of how pregnancy shapes immune responses. To gain insight into the role of pregnancy in modulating immune responses at steady state and upon perturbation, we collected peripheral blood mononuclear cells (PBMC), plasma, and stool from 226 women, including 152 pregnant individuals (n = 96 with SARS-CoV-2 infection and n = 56 healthy controls) and 74 non-pregnant women (n = 55 with SARS-CoV-2 and n = 19 healthy controls). We found that SARS-CoV-2 infection was associated with altered T cell responses in pregnant compared to non-pregnant women. Differences included a lower percentage of memory T cells, a distinct clonal expansion of CD4-expressing CD8 + T cells, and the enhanced expression of T cell exhaustion markers, such as programmed cell death-1 (PD-1) and T cell immunoglobulin and mucin domain-3 (Tim-3), in pregnant women. We identified additional evidence of immune dysfunction in severely and critically ill pregnant women, including a lack of expected elevation in regulatory T cell (Treg) levels, diminished interferon responses, and profound suppression of monocyte function. Consistent with earlier data, we found maternal obesity was also associated with altered immune responses to SARS-CoV-2 infection, including enhanced production of inflammatory cytokines by T cells. Certain gut bacterial species were altered in pregnancy and upon SARS-CoV-2 infection in pregnant individuals compared to non-pregnant women. Shifts in cytokine and chemokine levels were also identified in the sera of pregnant individuals, most notably a robust increase of interleukin-27 (IL-27), a cytokine known to drive T cell exhaustion, in the pregnant uninfected control group compared to all non-pregnant groups. IL-27 levels were also significantly higher in uninfected pregnant controls compared to pregnant SARS-CoV-2-infected individuals. Using two different preclinical mouse models of inflammation-induced fetal demise and respiratory influenza viral infection, we found that enhanced IL-27 protects developing fetuses from maternal inflammation but renders adult female mice vulnerable to viral infection. These combined findings from human and murine studies reveal nuanced pregnancy-associated immune responses, suggesting mechanisms underlying the increased susceptibility of pregnant individuals to viral respiratory infections.
Collapse
|
13
|
Cencic R, Im YK, Naineni SK, Moustafa-Kamal M, Jovanovic P, Sabourin V, Annis MG, Robert F, Schmeing TM, Koromilas A, Paquet M, Teodoro JG, Huang S, Siegel PM, Topisirovic I, Ursini-Siegel J, Pelletier J. A second-generation eIF4A RNA helicase inhibitor exploits translational reprogramming as a vulnerability in triple-negative breast cancer. Proc Natl Acad Sci U S A 2024; 121:e2318093121. [PMID: 38232291 PMCID: PMC10823175 DOI: 10.1073/pnas.2318093121] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
In this study, we aimed to address the current limitations of therapies for macro-metastatic triple-negative breast cancer (TNBC) and provide a therapeutic lead that overcomes the high degree of heterogeneity associated with this disease. Specifically, we focused on well-documented but clinically underexploited cancer-fueling perturbations in mRNA translation as a potential therapeutic vulnerability. We therefore developed an orally bioavailable rocaglate-based molecule, MG-002, which hinders ribosome recruitment and scanning via unscheduled and non-productive RNA clamping by the eukaryotic translation initiation factor (eIF) 4A RNA helicase. We demonstrate that MG-002 potently inhibits mRNA translation and primary TNBC tumor growth without causing overt toxicity in mice. Importantly, given that metastatic spread is a major cause of mortality in TNBC, we show that MG-002 attenuates metastasis in pre-clinical models. We report on MG-002, a rocaglate that shows superior properties relative to existing eIF4A inhibitors in pre-clinical models. Our study also paves the way for future clinical trials exploring the potential of MG-002 in TNBC and other oncological indications.
Collapse
Affiliation(s)
- Regina Cencic
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Young K. Im
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
| | - Sai Kiran Naineni
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Mohamed Moustafa-Kamal
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Predrag Jovanovic
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
| | - Valerie Sabourin
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
| | - Matthew G. Annis
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Francis Robert
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - T. Martin Schmeing
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Antonis Koromilas
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
| | - Marilène Paquet
- Département de pathologie et de microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Jose G. Teodoro
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Peter M. Siegel
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
- Department of Medicine, McGill University, Montreal, QCH4A 3J1, Canada
| | - Ivan Topisirovic
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
| | - Josie Ursini-Siegel
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
| |
Collapse
|
14
|
Xia T, Dai X, Sang M, Zhang X, Xu F, Wu J, Shi L, Wei J, Ding Q. IGF2BP2 Drives Cell Cycle Progression in Triple-Negative Breast Cancer by Recruiting EIF4A1 to Promote the m6A-Modified CDK6 Translation Initiation Process. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305142. [PMID: 37983610 PMCID: PMC10767445 DOI: 10.1002/advs.202305142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/02/2023] [Indexed: 11/22/2023]
Abstract
IGF2BP2 is a new identified N6-methyladenosine (m6A) reader and associated with poor prognosis in many tumors. However, its role and related mechanism in breast cancer, especially in triple-negative breast cancer (TNBC), remains unclear. In this study, it is found that IGF2BP2 is highly expressed in TNBC due to the lower methylation level in its promoter region. Functional and mechanical studies displayed that IGF2BP2 could promote TNBC proliferation and the G1/S phase transition of the cell cycle via directly regulating CDK6 in an m6A-dependent manner. Surprising, the regulation of protein levels of CDK6 by IGF2BP2 is related to the changes in translation rate during translation initiation, rather than mRNA stability. Moreover, EIF4A1 is found to be recruited by IGF2BP2 to promote the translation output of CDK6, providing new evidence for a regulatory role of IGF2BP2 between m6A methylation and translation. Downregulation of IGF2BP2 in TNBC cell could enhance the sensitivity to abemaciclib, a CDK4/6 inhibitor. To sum up, our study revealed IGF2BP2 could facilitate the translation output of CDK6 via recruiting EIF4A1 and also provided a potential therapeutic target for the diagnosis and treatment of TNBC, as well as a new strategy for broadening the drug indications for CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Tian Xia
- Jiangsu Breast Disease CenterThe First Affiliated Hospital with Nanjing Medical University300 Guangzhou RoadNanjing210029China
| | - Xin‐Yuan Dai
- Jiangsu Breast Disease CenterThe First Affiliated Hospital with Nanjing Medical University300 Guangzhou RoadNanjing210029China
| | - Ming‐Yi Sang
- Jiangsu Breast Disease CenterThe First Affiliated Hospital with Nanjing Medical University300 Guangzhou RoadNanjing210029China
| | - Xu Zhang
- Jiangsu Breast Disease CenterThe First Affiliated Hospital with Nanjing Medical University300 Guangzhou RoadNanjing210029China
| | - Feng Xu
- Jiangsu Breast Disease CenterThe First Affiliated Hospital with Nanjing Medical University300 Guangzhou RoadNanjing210029China
| | - Jing Wu
- Jiangsu Breast Disease CenterThe First Affiliated Hospital with Nanjing Medical University300 Guangzhou RoadNanjing210029China
| | - Liang Shi
- Jiangsu Breast Disease CenterThe First Affiliated Hospital with Nanjing Medical University300 Guangzhou RoadNanjing210029China
| | - Ji‐Fu Wei
- Department of PharmacyJiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjing210029China
| | - Qiang Ding
- Jiangsu Breast Disease CenterThe First Affiliated Hospital with Nanjing Medical University300 Guangzhou RoadNanjing210029China
| |
Collapse
|
15
|
Huang J, Zhang L, Yang R, Yao L, Gou J, Cao D, Pan Z, Li D, Pan Y, Zhang W. Eukaryotic translation initiation factor 4A1 in the pathogenesis and treatment of cancers. Front Mol Biosci 2023; 10:1289650. [PMID: 38028556 PMCID: PMC10666758 DOI: 10.3389/fmolb.2023.1289650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Abnormal translate regulation is an important phenomenon in cancer initiation and progression. Eukaryotic translation initiation factor 4A1 (eIF4A1) protein is an ATP-dependent Ribonucleic Acid (RNA) helicase, which is essential for translation and has bidirectional RNA unwinders function. In this review, we discuss the levels of expression, regulatory mechanisms and protein functions of eIF4A1 in different human tumors. eIF4A1 is often involved as a target of microRNAs or long non-coding RNAs during the epithelial-mesenchymal transition, associating with the proliferation and metastasis of tumor cells. eIF4A1 protein exhibits the promising biomarker for rapid diagnosis of pre-cancer lesions, histological phenotypes, clinical staging diagnosis and outcome prediction, which provides a novel strategy for precise medical care and target therapy for patients with tumors at the same time, relevant small molecule inhibitors have also been applied in clinical practice, providing reliable theoretical support and clinical basis for the development of this gene target.
Collapse
Affiliation(s)
- Jinghong Huang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Lei Zhang
- Clinical Laboratory, First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Rui Yang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Lixia Yao
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Jinming Gou
- Troops of the People’s Liberation Army, Urumqi, Xinjiang, China
| | - Dongdong Cao
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Zeming Pan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Dongmei Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yuanming Pan
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Wei Zhang
- Shihezi People’s Hospital, Shihezi, Xinjiang, China
| |
Collapse
|
16
|
Zheng B, Chen X, Ling Q, Cheng Q, Ye S. Role and therapeutic potential of DEAD-box RNA helicase family in colorectal cancer. Front Oncol 2023; 13:1278282. [PMID: 38023215 PMCID: PMC10654640 DOI: 10.3389/fonc.2023.1278282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed and the second cancer-related death worldwide, leading to more than 0.9 million deaths every year. Unfortunately, this disease is changing rapidly to a younger age, and in a more advanced stage when diagnosed. The DEAD-box RNA helicase proteins are the largest family of RNA helicases so far. They regulate almost every aspect of RNA physiological processes, including RNA transcription, editing, splicing and transport. Aberrant expression and critical roles of the DEAD-box RNA helicase proteins have been found in CRC. In this review, we first summarize the protein structure, cellular distribution, and diverse biological functions of DEAD-box RNA helicases. Then, we discuss the distinct roles of DEAD-box RNA helicase family in CRC and describe the cellular mechanism of actions based on recent studies, with an aim to provide future strategies for the treatment of CRC.
Collapse
Affiliation(s)
- Bichun Zheng
- Department of Anorectal Surgery, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | | | | | | | | |
Collapse
|
17
|
Lin Z, Wu Z, Yuan Y, Zhong W, Luo W. m7G-related genes predict prognosis and affect the immune microenvironment and drug sensitivity in osteosarcoma. Front Pharmacol 2023; 14:1158775. [PMID: 37654606 PMCID: PMC10466804 DOI: 10.3389/fphar.2023.1158775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
Background: Osteosarcoma (OS), a primary malignant bone tumor, confronts therapeutic challenges rooted in multidrug resistance. Comprehensive understanding of disease occurrence and progression is imperative for advancing treatment strategies. m7G modification, an emerging post-transcriptional modification implicated in various diseases, may provide new insights to explore OS pathogenesis and progression. Methods: The m7G-related molecular landscape in OS was probed using diverse bioinformatics analyses, encompassing LASSO Cox regression, immune infiltration assessment, and drug sensitivity analysis. Furthermore, the therapeutic potential of AZD2014 for OS was investigated through cell apoptosis and cycle assays. Eventually, multivariate Cox analysis and experimental validations, were conducted to investigate the independent prognostic m7G-related genes. Results: A comprehensive m7G-related risk model incorporating eight signatures was established, with corresponding risk scores correlated with immune infiltration and drug sensitivity. Drug sensitivity analysis spotlighted AZD2014 as a potential therapeutic candidate for OS. Subsequent experiments corroborated AZD2014's capability to induce G1-phase cell cycle arrest and apoptosis in OS cells. Ultimately, multivariate Cox regression analysis unveiled the independent prognostic importance of CYFIP1 and EIF4A1, differential expressions of which were validated at histological and cytological levels. Conclusion: This study furnishes a profound understanding of the contribution of m7G-related genes to the pathogenesis of OS. The discerned therapeutic potential of AZD2014, in conjunction with the identification of CYFIP1 and EIF4A1 as independent risk factors, opens novel vistas for the treatment of OS.
Collapse
Affiliation(s)
- Zili Lin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Ziyi Wu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuhao Yuan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Wei Zhong
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| |
Collapse
|
18
|
Cacioppo R, Akman HB, Tuncer T, Erson-Bensan AE, Lindon C. Differential translation of mRNA isoforms underlies oncogenic activation of cell cycle kinase Aurora A. eLife 2023; 12:RP87253. [PMID: 37384380 DOI: 10.7554/elife.87253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
Aurora Kinase A (AURKA) is an oncogenic kinase with major roles in mitosis, but also exerts cell cycle- and kinase-independent functions linked to cancer. Therefore, control of its expression, as well as its activity, is crucial. A short and a long 3'UTR isoform exist for AURKA mRNA, resulting from alternative polyadenylation (APA). We initially observed that in triple-negative breast cancer, where AURKA is typically overexpressed, the short isoform is predominant and this correlates with faster relapse times of patients. The short isoform is characterized by higher translational efficiency since translation and decay rate of the long isoform are targeted by hsa-let-7a tumor-suppressor miRNA. Additionally, hsa-let-7a regulates the cell cycle periodicity of translation of the long isoform, whereas the short isoform is translated highly and constantly throughout interphase. Finally, disrupted production of the long isoform led to an increase in proliferation and migration rates of cells. In summary, we uncovered a new mechanism dependent on the cooperation between APA and miRNA targeting likely to be a route of oncogenic activation of human AURKA.
Collapse
Affiliation(s)
- Roberta Cacioppo
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Hesna Begum Akman
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Taner Tuncer
- Department of Biology, Ondokuz Mayis Universitesi, Samsun, Turkey
| | | | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Wu C, Liu D, Zhang L, Wang J, Ding Y, Sun Z, Wang W. 5'-tiRNA-Gln inhibits hepatocellular carcinoma progression by repressing translation through the interaction with eukaryotic initiation factor 4A-I. Front Med 2023; 17:476-492. [PMID: 36973570 DOI: 10.1007/s11684-022-0966-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/01/2022] [Indexed: 03/29/2023]
Abstract
tRNA-derived small RNAs (tsRNAs) are novel non-coding RNAs that are involved in the occurrence and progression of diverse diseases. However, their exact presence and function in hepatocellular carcinoma (HCC) remain unclear. Here, differentially expressed tsRNAs in HCC were profiled. A novel tsRNA, tRNAGln-TTG derived 5'-tiRNA-Gln, is significantly downregulated, and its expression level is correlated with progression in patients. In HCC cells, 5'-tiRNA-Gln overexpression impaired the proliferation, migration, and invasion in vitro and in vivo, while 5'-tiRNA-Gln knockdown yielded opposite results. 5'-tiRNA-Gln exerted its function by binding eukaryotic initiation factor 4A-I (EIF4A1), which unwinds complex RNA secondary structures during translation initiation, causing the partial inhibition of translation. The suppressed downregulated proteins include ARAF, MEK1/2 and STAT3, causing the impaired signaling pathway related to HCC progression. Furthermore, based on the construction of a mutant 5'-tiRNA-Gln, the sequence of forming intramolecular G-quadruplex structure is crucial for 5'-tiRNA-Gln to strongly bind EIF4A1 and repress translation. Clinically, 5'-tiRNA-Gln expression level is negatively correlated with ARAF, MEK1/2, and STAT3 in HCC tissues. Collectively, these findings reveal that 5'-tiRJNA-Gln interacts with EIF4A1 to reduce related mRNA binding through the intramolecular G-quadruplex structure, and this process partially inhibits translation and HCC progression.
Collapse
Affiliation(s)
- Chengdong Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310009, China
| | - Dekai Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310009, China
| | - Lufei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310009, China
| | - Jingjie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310009, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310009, China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310009, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China.
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, China.
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, China.
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
20
|
Montiel-Dávalos A, Ayala Y, Hernández G. The dark side of mRNA translation and the translation machinery in glioblastoma. Front Cell Dev Biol 2023; 11:1086964. [PMID: 36994107 PMCID: PMC10042294 DOI: 10.3389/fcell.2023.1086964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
Among the different types of cancer affecting the central nervous system (CNS), glioblastoma (GB) is classified by the World Health Organization (WHO) as the most common and aggressive CNS cancer in adults. GB incidence is more frequent among persons aged 45–55 years old. GB treatments are based on tumor resection, radiation, and chemotherapies. The current development of novel molecular biomarkers (MB) has led to a more accurate prediction of GB progression. Moreover, clinical, epidemiological, and experimental studies have established genetic variants consistently associated with the risk of suffering GB. However, despite the advances in these fields, the survival expectancy of GB patients is still shorter than 2 years. Thus, fundamental processes inducing tumor onset and progression remain to be elucidated. In recent years, mRNA translation has been in the spotlight, as its dysregulation is emerging as a key cause of GB. In particular, the initiation phase of translation is most involved in this process. Among the crucial events, the machinery performing this phase undergoes a reconfiguration under the hypoxic conditions in the tumor microenvironment. In addition, ribosomal proteins (RPs) have been reported to play translation-independent roles in GB development. This review focuses on the research elucidating the tight relationship between translation initiation, the translation machinery, and GB. We also summarize the state-of-the-art drugs targeting the translation machinery to improve patients’ survival. Overall, the recent advances in this field are shedding new light on the dark side of translation in GB.
Collapse
|
21
|
Schmidt T, Dabrowska A, Waldron JA, Hodge K, Koulouras G, Gabrielsen M, Munro J, Tack DC, Harris G, McGhee E, Scott D, Carlin L, Huang D, Le Quesne J, Zanivan S, Wilczynska A, Bushell M. eIF4A1-dependent mRNAs employ purine-rich 5'UTR sequences to activate localised eIF4A1-unwinding through eIF4A1-multimerisation to facilitate translation. Nucleic Acids Res 2023; 51:1859-1879. [PMID: 36727461 PMCID: PMC9976904 DOI: 10.1093/nar/gkad030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
Altered eIF4A1 activity promotes translation of highly structured, eIF4A1-dependent oncogene mRNAs at root of oncogenic translational programmes. It remains unclear how these mRNAs recruit and activate eIF4A1 unwinding specifically to facilitate their preferential translation. Here, we show that single-stranded RNA sequence motifs specifically activate eIF4A1 unwinding allowing local RNA structural rearrangement and translation of eIF4A1-dependent mRNAs in cells. Our data demonstrate that eIF4A1-dependent mRNAs contain AG-rich motifs within their 5'UTR which specifically activate eIF4A1 unwinding of local RNA structure to facilitate translation. This mode of eIF4A1 regulation is used by mRNAs encoding components of mTORC-signalling and cell cycle progression, and renders these mRNAs particularly sensitive to eIF4A1-inhibition. Mechanistically, we show that binding of eIF4A1 to AG-rich sequences leads to multimerization of eIF4A1 with eIF4A1 subunits performing distinct enzymatic activities. Our structural data suggest that RNA-binding of multimeric eIF4A1 induces conformational changes in the RNA resulting in an optimal positioning of eIF4A1 proximal to the RNA duplex enabling efficient unwinding. Our data proposes a model in which AG-motifs in the 5'UTR of eIF4A1-dependent mRNAs specifically activate eIF4A1, enabling assembly of the helicase-competent multimeric eIF4A1 complex, and positioning these complexes proximal to stable localised RNA structure allowing ribosomal subunit scanning.
Collapse
Affiliation(s)
- Tobias Schmidt
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Adrianna Dabrowska
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
- Department of Urology, University of California, San Francisco, CA 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph A Waldron
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Kelly Hodge
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Grigorios Koulouras
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Mads Gabrielsen
- MVLS Structural Biology and Biophysical Characterisation Facility, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - June Munro
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - David C Tack
- Spectrum Health Office of Research and Education, Spectrum Health System, 15 Michigan Street NE, Grand Rapids, MI 49503, USA
| | - Gemma Harris
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
| | - Ewan McGhee
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - David Scott
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
- ISIS Spallation Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, DidcotOX11 0QX, UK
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Leo M Carlin
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Danny Huang
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - John Le Quesne
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Ania Wilczynska
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
22
|
Qin H, Sheng W, Weng J, Li G, Chen Y, Zhu Y, Wang Q, Chen Y, Yang Q, Yu F, Zeng H, Xiong A. Identification and verification of m7G-Related genes as biomarkers for prognosis of sarcoma. Front Genet 2023; 14:1101683. [PMID: 36816047 PMCID: PMC9935680 DOI: 10.3389/fgene.2023.1101683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Background: Increasing evidence indicates a crucial role for N7-methylguanosine (m7G) methylation modification in human disease development, particularly cancer, and aberrant m7G levels are closely associated with tumorigenesis and progression via regulation of the expression of multiple oncogenes and tumor suppressor genes. However, the role of m7G in sarcomas (SARC) has not been adequately evaluated. Materials and methods: Transcriptome and clinical data were gathered from the TCGA database for this study. Normal and SARC groups were compared for the expression of m7G-related genes (m7GRGs). The expression of m7GRGs was verified using real-time quantitative PCR (RT-qPCR) in SARC cell lines. Then, differentially expressed genes (DEGs) were identified between high and low m7GRGs expression groups in SARC samples, and GO enrichment and KEGG pathways were evaluated. Next, prognostic values of m7GRGs were evaluated by Cox regression analysis. Subsequently, a prognostic model was constructed using m7GRGs with good prognostic values by Lasso regression analysis. Besides, the relationships between prognostic m7GRGs and immune infiltration, clinical features, cuproptosis-related genes, and antitumor drugs were investigated in patients with SARC. Finally, a ceRNA regulatory network based on m7GRGs was constructed. Results: The expression of ten m7GRGs was higher in the SARC group than in the control group. DEGs across groups with high and low m7GRGs expression were enriched for adhesion sites and cGMP-PKG. Besides, we constructed a prognostic model that consists of EIF4A1, EIF4G3, NCBP1, and WDR4 m7GRGs for predicting the survival likelihood of sarcoma patients. And the elevated expression of these four prognostic m7GRGs was substantially associated with poor prognosis and elevated expression in SARC cell lines. Moreover, we discovered that these four m7GRGs expressions were negatively correlated with CD4+ T cell levels, dendritic cell level and tumor purity, and positively correlated with tumor mutational burden, microsatellite instability, drug sensitivity and cuproptosis-related genes in patients with sarcomas. Then, a triple regulatory network of mRNA, miRNA, and lncRNA was established. Conclusion: The current study identified EIF4A1, EIF4G3, NCBP1, and WDR4 as prognostic genes for SARC that are associated with m7G.These findings extend our knowledge of m7G methylation in SARC and may guide the development of innovative treatment options.
Collapse
Affiliation(s)
- Haotian Qin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Weibei Sheng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Weng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guoqing Li
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yingqi Chen
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuanchao Zhu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qichang Wang
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yixiao Chen
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qi Yang
- Department of Medical Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fei Yu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,*Correspondence: Fei Yu, ; Hui Zeng, ; Ao Xiong,
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,*Correspondence: Fei Yu, ; Hui Zeng, ; Ao Xiong,
| | - Ao Xiong
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,*Correspondence: Fei Yu, ; Hui Zeng, ; Ao Xiong,
| |
Collapse
|
23
|
eIF4A1 Is a Prognostic Marker and Actionable Target in Human Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24032055. [PMID: 36768380 PMCID: PMC9917075 DOI: 10.3390/ijms24032055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver tumor with high lethality and increasing incidence worldwide. While tumor resection or liver transplantation is effective in the early stages of the disease, the therapeutic options for advanced HCC remain limited and the benefits are temporary. Thus, novel therapeutic targets and more efficacious treatments against this deadly cancer are urgently needed. Here, we investigated the pathogenetic and therapeutic role of eukaryotic initiation factor 4A1 (eIF4A1) in this tumor type. We observed consistent eIF4A1 upregulation in HCC lesions compared with non-tumorous surrounding liver tissues. In addition, eIF4A1 levels were negatively correlated with the prognosis of HCC patients. In HCC lines, the exposure to various eIF4A inhibitors triggered a remarkable decline in proliferation and augmented apoptosis, paralleled by the inhibition of several oncogenic pathways. Significantly, anti-growth effects were achieved at nanomolar concentrations of the eIF4A1 inhibitors and were further increased by the simultaneous administration of the pan mTOR inhibitor, Rapalink-1. In conclusion, our results highlight the pathogenetic relevance of eIF4A1 in HCC and recommend further evaluation of the potential usefulness of pharmacological combinations based on eIF4A and mTOR inhibitors in treating this aggressive tumor.
Collapse
|
24
|
Tang L, Li Y, Shen L, Li N, Shen L, Li Z. Integrative analyses reveal prognostic and immunogenic characteristics of m7G methylation regulators in patients with glioma. Am J Transl Res 2023; 15:288-309. [PMID: 36777864 PMCID: PMC9908444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 12/03/2022] [Indexed: 02/14/2023]
Abstract
OBJECTIVES The expression profiles, biological mechanisms, and clinical relevance of m7G regulators in glioma were studied in this research. METHODS Based on the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) datasets, glioma patients, can be categorized into three groups according to 29 m7G regulators, and different subtypes of glioma show different immune cell infiltration characteristics, function enrichment, and clinical prognosis. Three gene clusters were confirmed by utilizing the differentially expressed genes (DEGs) across the three m7G clusters. RESULTS A prognostic signature based on 12 m7G regulators was established and validated, producing an effective tool for predicting overall survival (OS) in glioma patients. High m7G scores indicated elevated tumor mutation burden and activation of immunity, suggesting an inflamed tumor microenvironment phenotype with poor overall survival. Low m7G scores characterized by a lack of immune infiltration and low mutation burden indicated a non-inflamed phenotype with a favorable clinical prognosis. It was also found that the m7G risk scores can affect chemotherapy sensitivity and prognosis of patients who received immunotherapy. The hub gene EIF4E1B of m7G regulators can inhibit the in vitro progression of glioma cells by regulating PD-L1 expression through p53 signaling pathway-related inactivation. CONCLUSIONS The m7G prognostic signature can be a biomarker of the overall survival of patients with glioma. An initial in-vitro experiment suggested the potential biological mechanisms of immune regulation, with m7G regulators affecting glioma progression by modulating immune responses. The present research provides a better understanding of how m7G regulators function in glioma progression as well as the impact on clinical outcomes, which can provide new insights that might be beneficial for precision therapy of glioma.
Collapse
Affiliation(s)
- Lingwei Tang
- Department of Oncology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
| | - Yanyan Li
- Department of Nursing, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
| | - Lin Shen
- Department of Oncology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
| | - Na Li
- Department of Oncology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
| |
Collapse
|
25
|
Fu Y, Wang J, Hu Z, Gou Y, Li Y, Jiang Q. A Novel 7-Methylguanosine (m7G)-Related Gene Signature for Overall Survival Prediction in Patient with Clear Cell Renal Cell Carcinoma. JOURNAL OF ONCOLOGY 2023; 2023:9645038. [PMID: 37089261 PMCID: PMC10118881 DOI: 10.1155/2023/9645038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/14/2022] [Indexed: 04/25/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common pathology type of renal cancer that has an abysmal prognosis. Although a crucial role for 7-methylguanosine modification in cancer cell development has been reported, its role in ccRCC remains uncertain. This study was conducted to determine the efficacy of predictive biomarkers based on m7G-related genes in ccRCC. Firstly, we extracted clinical data and gene expression profiles of ccRCC patients from publicly accessible databases. It identified that 22 of the m7G-related 34 genes were related to overall survival, and 5 of the 22 genes were significantly expressed differently in tumor tissues. Based on Lasso regression analysis, five optimal genes (CYFIP2, EIF4A1, NUDT1, NUDT10, and NUDT4) were chosen to build a new predictive risk model in the TCGA cohort. Validation was carried out with the E-MTAB-1980 cohort. Then, a prognostic nomogram was erected, including the m7G-related gene risk score, age, histological grade, and stage status. Further studies and analysis showed that immune cell infiltration might be associated with the m7G-related risk genes. In addition, the relationship between gene expression and drug response was evaluated by the Pearson correlation test. Therefore, the risk signature with five selected m7G-related genes may be a promising prognostic biomarker and contribute to standardized prognostic assessment for ccRCC.
Collapse
Affiliation(s)
- Yongxin Fu
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiawu Wang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiya Hu
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Gou
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yisen Li
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Jiang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Fooks K, Galicia-Vazquez G, Gife V, Schcolnik-Cabrera A, Nouhi Z, Poon WWL, Luo V, Rys RN, Aloyz R, Orthwein A, Johnson NA, Hulea L, Mercier FE. EIF4A inhibition targets bioenergetic homeostasis in AML MOLM-14 cells in vitro and in vivo and synergizes with cytarabine and venetoclax. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:340. [PMID: 36482393 PMCID: PMC9733142 DOI: 10.1186/s13046-022-02542-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is an aggressive hematological cancer resulting from uncontrolled proliferation of differentiation-blocked myeloid cells. Seventy percent of AML patients are currently not cured with available treatments, highlighting the need of novel therapeutic strategies. A promising target in AML is the mammalian target of rapamycin complex 1 (mTORC1). Clinical inhibition of mTORC1 is limited by its reactivation through compensatory and regulatory feedback loops. Here, we explored a strategy to curtail these drawbacks through inhibition of an important effector of the mTORC1signaling pathway, the eukaryotic initiation factor 4A (eIF4A). METHODS We tested the anti-leukemic effect of a potent and specific eIF4A inhibitor (eIF4Ai), CR-1-31-B, in combination with cytosine arabinoside (araC) or the BCL2 inhibitor venetoclax. We utilized the MOLM-14 human AML cell line to model chemoresistant disease both in vitro and in vivo. In eIF4Ai-treated cells, we assessed for changes in survival, apoptotic priming, de novo protein synthesis, targeted intracellular metabolite content, bioenergetic profile, mitochondrial reactive oxygen species (mtROS) and mitochondrial membrane potential (MMP). RESULTS eIF4Ai exhibits anti-leukemia activity in vivo while sparing non-malignant myeloid cells. In vitro, eIF4Ai synergizes with two therapeutic agents in AML, araC and venetoclax. EIF4Ai reduces mitochondrial membrane potential (MMP) and the rate of ATP synthesis from mitochondrial respiration and glycolysis. Furthermore, eIF4i enhanced apoptotic priming while reducing the expression levels of the antiapoptotic factors BCL2, BCL-XL and MCL1. Concomitantly, eIF4Ai decreases intracellular levels of specific metabolic intermediates of the tricarboxylic acid cycle (TCA cycle) and glucose metabolism, while enhancing mtROS. In vitro redox stress contributes to eIF4Ai cytotoxicity, as treatment with a ROS scavenger partially rescued the viability of eIF4A inhibition. CONCLUSIONS We discovered that chemoresistant MOLM-14 cells rely on eIF4A-dependent cap translation for survival in vitro and in vivo. EIF4A drives an intrinsic metabolic program sustaining bioenergetic and redox homeostasis and regulates the expression of anti-apoptotic proteins. Overall, our work suggests that eIF4A-dependent cap translation contributes to adaptive processes involved in resistance to relevant therapeutic agents in AML.
Collapse
Affiliation(s)
- Katie Fooks
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada
| | | | - Victor Gife
- grid.414216.40000 0001 0742 1666Maisonneuve-Rosemont Hospital Research Centre, Montreal, Canada ,grid.14848.310000 0001 2292 3357Present Address: Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, Canada
| | | | - Zaynab Nouhi
- grid.414216.40000 0001 0742 1666Maisonneuve-Rosemont Hospital Research Centre, Montreal, Canada
| | - William W. L. Poon
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada
| | - Vincent Luo
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada
| | - Ryan N. Rys
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, Montreal, Canada
| | - Raquel Aloyz
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| | - Alexandre Orthwein
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada ,grid.189967.80000 0001 0941 6502Present Address: Department of Radiation Oncology, Emory School of Medicine, Atlanta, USA
| | - Nathalie A. Johnson
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| | - Laura Hulea
- grid.414216.40000 0001 0742 1666Maisonneuve-Rosemont Hospital Research Centre, Montreal, Canada ,grid.14848.310000 0001 2292 3357Present Address: Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, Canada ,grid.14848.310000 0001 2292 3357Département de Médecine, Université de Montréal, Montreal, Canada
| | - Francois E. Mercier
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
27
|
Rubio A, Garland GD, Sfakianos A, Harvey RF, Willis AE. Aberrant protein synthesis and cancer development: The role of canonical eukaryotic initiation, elongation and termination factors in tumorigenesis. Semin Cancer Biol 2022; 86:151-165. [PMID: 35487398 DOI: 10.1016/j.semcancer.2022.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023]
Abstract
In tumourigenesis, oncogenes or dysregulated tumour suppressor genes alter the canonical translation machinery leading to a reprogramming of the translatome that, in turn, promotes the translation of selected mRNAs encoding proteins involved in proliferation and metastasis. It is therefore unsurprising that abnormal expression levels and activities of eukaryotic initiation factors (eIFs), elongation factors (eEFs) or termination factors (eRFs) are associated with poor outcome for patients with a wide range of cancers. In this review we discuss how RNA binding proteins (RBPs) within the canonical translation factor machinery are dysregulated in cancers and how targeting such proteins is leading to new therapeutic avenues.
Collapse
Affiliation(s)
- Angela Rubio
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Gavin D Garland
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Aristeidis Sfakianos
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Robert F Harvey
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK.
| |
Collapse
|
28
|
Rahman MFU, Yang Y, Le BT, Dutta A, Posyniak J, Faughnan P, Sayem MA, Aguilera NS, Mohi G. Interleukin-1 contributes to clonal expansion and progression of bone marrow fibrosis in JAK2V617F-induced myeloproliferative neoplasm. Nat Commun 2022; 13:5347. [PMID: 36100596 PMCID: PMC9470702 DOI: 10.1038/s41467-022-32928-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/24/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation is frequently associated with myeloproliferative neoplasms (MPN), but the role of inflammation in the pathogenesis of MPN remains unclear. Expression of the proinflammatory cytokine interleukin-1 (IL-1) is elevated in patients with MPN as well as in Jak2V617F knock-in mice. Here, we show that genetic deletion of IL-1 receptor 1 (IL-1R1) normalizes peripheral blood counts, reduces splenomegaly and ameliorates bone marrow fibrosis in homozygous Jak2V617F mouse model of myelofibrosis. Deletion of IL-1R1 also significantly reduces Jak2V617F mutant hematopoietic stem/progenitor cells. Exogenous administration of IL-1β enhances myeloid cell expansion and accelerates the development of bone marrow fibrosis in heterozygous Jak2V617F mice. Furthermore, treatment with anti-IL-1R1 antibodies significantly reduces leukocytosis and splenomegaly, and ameliorates bone marrow fibrosis in homozygous Jak2V617F mice. Collectively, these results suggest that IL-1 signaling plays a pathogenic role in MPN disease progression, and targeting of IL-1R1 could be a useful strategy for the treatment of myelofibrosis.
Collapse
Affiliation(s)
- Mohammed Ferdous-Ur Rahman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Yue Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Bao T Le
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Avik Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Julia Posyniak
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Patrick Faughnan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Mohammad A Sayem
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Nadine S Aguilera
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Golam Mohi
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- University of Virginia Cancer Center, Charlottesville, VA, 22908, USA.
| |
Collapse
|
29
|
Lehman SL, Wechsler T, Schwartz K, Brown LE, Porco JA, Devine WG, Pelletier J, Shankavaram UT, Camphausen K, Tofilon PJ. Inhibition of the Translation Initiation Factor eIF4A Enhances Tumor Cell Radiosensitivity. Mol Cancer Ther 2022; 21:1406-1414. [PMID: 35732578 PMCID: PMC9452469 DOI: 10.1158/1535-7163.mct-22-0037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/12/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
A fundamental component of cellular radioresponse is the translational control of gene expression. Because a critical regulator of translational control is the eukaryotic translation initiation factor 4F (eIF4F) cap binding complex, we investigated whether eIF4A, the RNA helicase component of eIF4F, can serve as a target for radiosensitization. Knockdown of eIF4A using siRNA reduced translational efficiency, as determined from polysome profiles, and enhanced tumor cell radiosensitivity as determined by clonogenic survival. The increased radiosensitivity was accompanied by a delayed dispersion of radiation-induced γH2AX foci, suggestive of an inhibition of DNA double-strand break repair. Studies were then extended to (-)-SDS-1-021, a pharmacologic inhibitor of eIF4A. Treatment of cells with the rocaglate (-)-SDS-1-021 resulted in a decrease in translational efficiency as well as protein synthesis. (-)-SDS-1-021 treatment also enhanced the radiosensitivity of tumor cell lines. This (-)-SDS-1-021-induced radiosensitization was accompanied by a delay in radiation-induced γH2AX foci dispersal, consistent with a causative role for the inhibition of double-strand break repair. In contrast, although (-)-SDS-1-021 inhibited translation and protein synthesis in a normal fibroblast cell line, it had no effect on radiosensitivity of normal cells. Subcutaneous xenografts were then used to evaluate the in vivo response to (-)-SDS-1-021 and radiation. Treatment of mice bearing subcutaneous xenografts with (-)-SDS-1-021 decreased tumor translational efficiency as determined by polysome profiles. Although (-)-SDS-1-021 treatment alone had no effect on tumor growth, it significantly enhanced the radiation-induced growth delay. These results suggest that eIF4A is a tumor-selective target for radiosensitization.
Collapse
Affiliation(s)
- Stacey L. Lehman
- Radation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Theresa Wechsler
- Radation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Kayla Schwartz
- Radation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Lauren E. Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - John A. Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - William G. Devine
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Jerry Pelletier
- Department of Biochemistry, Oncology and Goodman Cancer Centre, McGill University, Montreal, H3G 1Y6, QC, Canada
| | | | - Kevin Camphausen
- Radation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Philip J. Tofilon
- Radation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
30
|
Kayastha F, Herrington NB, Kapadia B, Roychowdhury A, Nanaji N, Kellogg GE, Gartenhaus RB. Novel eIF4A1 inhibitors with anti-tumor activity in lymphoma. Mol Med 2022; 28:101. [PMID: 36058921 PMCID: PMC9441068 DOI: 10.1186/s10020-022-00534-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deregulated translation initiation is implicated extensively in cancer initiation and progression. It is actively pursued as a viable target that circumvents the dependency on oncogenic signaling, a significant factor in current strategies. Eukaryotic translation initiation factor (eIF) 4A plays an essential role in translation initiation by unwinding the secondary structure of messenger RNA (mRNA) upstream of the start codon, enabling active ribosomal recruitment on the downstream genes. Several natural product molecules with similar scaffolds, such as Rocaglamide A (RocA), targeting eIF4A have been reported in the last decade. However, their clinical utilization is still elusive due to several pharmacological limitations. In this study we identified new eIF4A1 inhibitors and their possible mechanisms. METHODS In this report, we conducted a pharmacophore-based virtual screen of RocA complexed with eIF4A and a polypurine RNA strand for novel eIF4A inhibitors from commercially available compounds in the MolPort Database. We performed target-based screening and optimization of active pharmacophores. We assessed the effects of novel compounds on biochemical and cell-based assays for efficacy and mechanistic evaluation. RESULTS We validated three new potent eIF4A inhibitors, RBF197, RBF 203, and RBF 208, which decreased diffuse large B-cell lymphoma (DLBCL) cell viability. Biochemical and cellular studies, molecular docking, and functional assays revealed that thosenovel compounds clamp eIF4A into mRNA in an ATP-independent manner. Moreover, we found that RBF197 and RBF208 significantly depressed eIF4A-dependent oncogene expression as well as the colony formation capacity of DLBCL. Interestingly, exposure of these compounds to non-malignant cells had only minimal impact on their growth and viability. CONCLUSIONS Identified compounds suggest a new strategy for designing novel eIF4A inhibitors.
Collapse
Affiliation(s)
- Forum Kayastha
- McGuire Cancer Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
- Division of Hematology, Oncology, and Palliative care, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Noah B Herrington
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - Bandish Kapadia
- McGuire Cancer Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
- Division of Hematology, Oncology, and Palliative care, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Anirban Roychowdhury
- McGuire Cancer Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
- Division of Hematology, Oncology, and Palliative care, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Nahid Nanaji
- Department of Veteran Affairs, Maryland Healthcare System, Baltimore, MD, USA
| | - Glen E Kellogg
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - Ronald B Gartenhaus
- McGuire Cancer Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.
- Division of Hematology, Oncology, and Palliative care, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
31
|
Zhang LL, Chang W, He SB, Zhang B, Ma G, Shang PF, Yue ZJ. High expression of eIF4A1 predicts unfavorable prognosis in clear cell renal cell carcinoma. Mol Cell Probes 2022; 65:101845. [PMID: 35820642 DOI: 10.1016/j.mcp.2022.101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a worldwide malignancy with high morbidity and mortality. Translation initiation factor 4A1 (eIF4A1), which is an ATP-dependent RNA helicase as a part of eIF4F complex, has been linked to malignant transformation and progression, and a variety of cancers display dysregulation of this enzyme. However, its role in ccRCC remains unclear. In our study, we examined its potential effects in ccRCC. METHODS Based on Proteomic data, TCGA and ONCOMINE database, RCC cell lines and tissues, the expression of eIF4A1 between ccRCC and normal tissues were investigated. A correlation was evaluated between the prognostic model for OS and ccRCC progression. Analysis of functional enrichment and PPI network were performed. After examining differentially expressed genes between the eIF4A1 high and low-expression groups, we performed GSEA analysis. Furthermore, we investigated immune cell infiltration of eIF4A1. Then we determined eIF4A1 functions in the establishment and maintenance of cell viability, migration and invasion of cell lines. Flow cytometry was utilized to detect cell cycle. RESULTS The eIF4A1 was up-regulated in ccRCC tissues and cell lines. An increased level of eIF4A1 was linked to lower survival rates and impaired immunity. Depletion of eIF4A1 could arrest tumor cells in G1 phase, so as to seriously limit cell proliferation and weaken the capacity of cell migration. CONCLUSION ccRCC patients with high eIF4A1 expression are at increased risk of poor prognosis, furthermore eIF4A1 plays a prominent role in facilitating tumor cell proliferation and migration which may further be a potential prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Li-Li Zhang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, No.82 Cui Ying Gate, Cheng guan District, Lanzhou, 730030, Gansu, China.
| | - Wei Chang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, No.82 Cui Ying Gate, Cheng guan District, Lanzhou, 730030, Gansu, China.
| | - Shen-Bao He
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, No.82 Cui Ying Gate, Cheng guan District, Lanzhou, 730030, Gansu, China.
| | - Bin Zhang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, No.82 Cui Ying Gate, Cheng guan District, Lanzhou, 730030, Gansu, China.
| | - Gui Ma
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, No.82 Cui Ying Gate, Cheng guan District, Lanzhou, 730030, Gansu, China.
| | - Pan-Feng Shang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, No.82 Cui Ying Gate, Cheng guan District, Lanzhou, 730030, Gansu, China.
| | - Zhong-Jin Yue
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, No.82 Cui Ying Gate, Cheng guan District, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
32
|
Relationship of micro-RNA, mRNA and eIF Expression in Tamoxifen-Adapted MCF-7 Breast Cancer Cells: Impact of miR-1972 on Gene Expression, Proliferation and Migration. Biomolecules 2022; 12:biom12070916. [PMID: 35883472 PMCID: PMC9312698 DOI: 10.3390/biom12070916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Tamoxifen-adapted MCF-7-Tam cells represent an in-vitro model for acquired tamoxifen resistance, which is still a problem in clinics. We here investigated the correlation of microRNA-, mRNA- and eukaryotic initiation factors (eIFs) expression in this model. Methods: MicroRNA- and gene expression were analyzed by nCounter and qRT-PCR technology; eIFs by Western blotting. Protein translation mode was determined using a reporter gene assay. Cells were transfected with a miR-1972-mimic. Results: miR-181b-5p,-3p and miR-455-5p were up-, miR-375, and miR-1972 down-regulated and are significant in survival analysis. About 5% of the predicted target genes were significantly altered. Pathway enrichment analysis suggested a contribution of the FoxO1 pathway. The ratio of polio-IRES driven to cap-dependent protein translation shifted towards cap-dependent initiation. Protein expression of eIF2A, -4G, -4H and -6 decreased, whereas eIF3H was higher in MCF-7-Tam. Significant correlations between tamoxifen-regulated miRNAs and eIFs were found in representative breast cancer cell lines. Transfection with a miR-1972-mimic reverses tamoxifen-induced expression for a subset of genes and increased proliferation in MCF-7, but reduced proliferation in MCF-7-Tam, especially in the presence of 4OH-tamoxifen. Migration was inhibited in MCF-7-Tam cells. Translation mode remained unaffected. Conclusions: miR-1972 contributes to the orchestration of gene-expression and physiological consequences of tamoxifen adaption.
Collapse
|
33
|
Cai Q, Yang HS, Li YC, Zhu J. Dissecting the Roles of PDCD4 in Breast Cancer. Front Oncol 2022; 12:855807. [PMID: 35795053 PMCID: PMC9251513 DOI: 10.3389/fonc.2022.855807] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
The human programmed cell death 4 (PDCD4) gene was mapped at chromosome 10q24 and encodes the PDCD4 protein comprised of 469 amino acids. PDCD4 inhibits protein translation PDCD4 inhibits protein translation to suppress tumor progression, and its expression is frequently decreased in breast cancer. PDCD4 blocks translation initiation complex by binding eIF4A via MA-3 domains or by directly binding 5’ mRNA internal ribosome entry sites with an RNA binding domain to suppress breast cancer progression and proliferation. Numerous regulators and biological processes including non-coding RNAs, proteasomes, estrogen, natural compounds and inflammation control PDCD4 expression in breast cancer. Loss of PDCD4 expression is also responsible for drug resistance in breast cancer. HER2 activation downregulates PDCD4 expression by activating MAPK, AKT, and miR-21 in aromatase inhibitor-resistant breast cancer cells. Moreover, modulating the microRNA/PDCD4 axis maybe an effective strategy for overcoming chemoresistance in breast cancer. Down-regulation of PDCD4 is significantly associated with short overall survival of patients, which suggests that PDCD4 may be an independent prognostic marker for breast cancer.
Collapse
Affiliation(s)
- Qian Cai
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovasular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Hsin-Sheng Yang
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY, United States
| | - Yi-Chen Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Jiang Zhu
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Jiang Zhu,
| |
Collapse
|
34
|
Dong K, Gu D, Shi J, Bao Y, Fu Z, Fang Y, Qu L, Zhu W, Jiang A, Wang L. Identification and Verification of m 7G Modification Patterns and Characterization of Tumor Microenvironment Infiltration via Multi-Omics Analysis in Clear Cell Renal Cell Carcinoma. Front Immunol 2022; 13:874792. [PMID: 35592316 PMCID: PMC9113293 DOI: 10.3389/fimmu.2022.874792] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
The epigenetic modification of tumorigenesis and progression in neoplasm has been demonstrated in recent studies. Nevertheless, the underlying association of N7-methylguanosine (m7G) regulation with molecular heterogeneity and tumor microenvironment (TME) in clear cell renal cell carcinoma (ccRCC) remains unknown. We explored the expression profiles and genetic variation features of m7G regulators and identified their correlations with patient outcomes in pan-cancer. Three distinct m7G modification patterns, including MGCS1, MGCS2, and MGCS3, were further determined and systematically characterized via multi-omics data in ccRCC. Compared with the other two subtypes, patients in MGCS3 exhibited a lower clinical stage/grade and better prognosis. MGCS1 showed the lowest enrichment of metabolic activities. MGCS2 was characterized by the suppression of immunity. We then established and validated a scoring tool named m7Sig, which could predict the prognosis of ccRCC patients. This study revealed that m7G modification played a vital role in the formation of the tumor microenvironment in ccRCC. Evaluating the m7G modification landscape helps us to raise awareness and strengthen the understanding of ccRCC’s characterization and, furthermore, to guide future clinical decision making.
Collapse
Affiliation(s)
- Kai Dong
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Di Gu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jiazi Shi
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yewei Bao
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhibin Fu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu Fang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Le Qu
- Department of Urology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wentong Zhu
- School of Chinese Medicine, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
35
|
A N7-Methylguanine-Related Gene Signature Applicable for the Prognosis and Microenvironment of Prostate Cancer. JOURNAL OF ONCOLOGY 2022; 2022:8604216. [PMID: 35602299 PMCID: PMC9122703 DOI: 10.1155/2022/8604216] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 01/02/2023]
Abstract
Background Despite the constant iteration of small-molecule inhibitors and immune checkpoint inhibitors, PRAD (prostate adenocarcinoma) patients with distant metastases and biochemical recurrence maintain a poor survival outcome along with an increasing morbidity in recent years. N7-Methylguanine, a new-found type of RNA modification, has demonstrated an essential role in tumor progression but has hardly been studied for its effect on prostate carcinoma. The current study aimed to seek m7G (N7-methylguanosine) related prognostic biomarkers and potential targets for PRAD treatment. Methods 42 genes related to m7G were collected from former literatures and GSEA (Gene Set Enrichment Analysis) website. Then, RNA-seq (RNA sequencing) and clinical data from TCGA-PRAD (The Cancer Genome Atlas-Prostate) cohort were retrieved to screen the differentially expressed m7G genes to further construct a multivariate Cox prognostic model for PRAD. Next, GSE116918, a prostate cancer cohort acquired from GEO (Gene Expression Omnibus) database, was analyzed for the external validation group to assess the ability to predict BFFS (biochemical failure-free survival) of our m7G prognostic signature. Kaplan-Meier, ROC (receiver operator characteristic), AUC (areas under ROC curve), and calibration curves were adopted to display the performance of this prognostic signature. In addition, immune infiltration analysis was implemented to evaluate the effect of these m7G genes on immunoinfiltrating cells. Correlation with drug susceptibility of the m7G signature was also analyzed by matching drug information in CellMiner database. Results The m7G-related prognostic signature, including three genes (EIF3D, EIF4A1, LARP1) illustrated superior prognostic ability for PRAD in both training and validation cohorts. The 5-year AUC were 0.768 for TCGA-PRAD and 0.608 for GSE116918. It can well distinguish patients into different risk groups of biochemical recurrence (p =1e-04 for TCGA-PRAD and p =0.0186 for GSE116918). Immune infiltration analysis suggested potential regulation of m7G genes on neutrophils and dendritic cells in PRAD. Conclusions A m7G-related prognostic signature was constructed and validated in the current study, giving new sights of m7G methylation in predicting the prognostic and improving the treatment of PRAD.
Collapse
|
36
|
Kovalski JR, Kuzuoglu‐Ozturk D, Ruggero D. Protein synthesis control in cancer: selectivity and therapeutic targeting. EMBO J 2022; 41:e109823. [PMID: 35315941 PMCID: PMC9016353 DOI: 10.15252/embj.2021109823] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 11/09/2022] Open
Abstract
Translational control of mRNAs is a point of convergence for many oncogenic signals through which cancer cells tune protein expression in tumorigenesis. Cancer cells rely on translational control to appropriately adapt to limited resources while maintaining cell growth and survival, which creates a selective therapeutic window compared to non-transformed cells. In this review, we first discuss how cancer cells modulate the translational machinery to rapidly and selectively synthesize proteins in response to internal oncogenic demands and external factors in the tumor microenvironment. We highlight the clinical potential of compounds that target different translation factors as anti-cancer therapies. Next, we detail how RNA sequence and structural elements interface with the translational machinery and RNA-binding proteins to coordinate the translation of specific pro-survival and pro-growth programs. Finally, we provide an overview of the current and emerging technologies that can be used to illuminate the mechanisms of selective translational control in cancer cells as well as within the microenvironment.
Collapse
Affiliation(s)
- Joanna R Kovalski
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Duygu Kuzuoglu‐Ozturk
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoCAUSA
| |
Collapse
|
37
|
Epigenetic regulation of EIF4A1 through DNA methylation and an oncogenic role of eIF4A1 through BRD2 signaling in prostate cancer. Oncogene 2022; 41:2778-2785. [PMID: 35361883 PMCID: PMC9215223 DOI: 10.1038/s41388-022-02272-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 01/10/2023]
Abstract
In prostate cancers, elongation initiation factor 4A1 (eIF4A1) supports an oncogenic translation program and is highly expressed, but its role remains elusive. By use of human specimens and cell models, we addressed the role of eIF4A1 in prostate cancer in vitro and in vivo. EIF4A1 expression, as determined by mRNA and protein levels, was higher in primary prostate cancers relative to normal prostate tissue. Also, for primary prostate cancers, elevated mRNA levels of EIF4A1 correlated with DNA hypomethylation levels in the CpG-rich island of EIF4A1. Using a DNMT3a CRISPR-Cas9-based tool for specific targeting of DNA methylation, we characterized, in human prostate cancer cells, the epigenetic regulation of EIF4A1 transcripts through DNA methylation in the CpG-rich island of EIF4A1. Next, we investigated the oncogenic effect of EIF4A1 on cancer cell proliferation in vitro and tumor growth in vivo. For prostate cancer cells, EIF4A1 heterozygous knockout or knockdown inhibited protein translation and tumor growth. In addition, using RNA immunoprecipitation with RNA sequencing, we discovered the eIF4A1-mediated translational regulation of the oncogene BRD2, which contains the most enriched eIF4A1-binding motifs in its 5’ untranslated region, establishing an eIF4A1-BRD2 axis for oncogenic translation. Finally, we found a positive correlation between expression levels of eIF4A1 and BRD2 in primary prostate cancers. Our results demonstrate, for prostate cancer cells, epigenetic regulation of EIF4A1 transcripts through DNA methylation and an oncogenic roles of eIF4A1 through BRD2 signaling.
Collapse
|
38
|
Rossi F, Paiardini A. A Machine Learning Perspective on DNA and RNA G-quadruplexes. Curr Bioinform 2022. [DOI: 10.2174/1574893617666220224105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
G-quadruplexes (G4s) are particular structures found in guanine-rich DNA and RNA sequences that exhibit a wide diversity of three-dimensional conformations and exert key functions in the control of gene expression. G4s are able to interact with numerous small molecules and endogenous proteins, and their dysregulation can lead to a variety of disorders and diseases. Characterization and prediction of G4-forming sequences could elucidate their mechanism of action and could thus represent an important step in the discovery of potential therapeutic drugs. In this perspective, we propose an overview of G4s, discussing the state of the art of methodologies and tools developed to characterize and predict the presence of these structures in genomic sequences. In particular, we report on machine learning (ML) approaches and artificial neural networks (ANNs) that could open new avenues for the accurate analysis of quadruplexes, given their potential to derive informative features by learning from large, high-density datasets.
Collapse
Affiliation(s)
- Fabiana Rossi
- Department of Biochemical Sciences \'A. Rossi Fanelli\', University of Rome La Sapienza, Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences \'A. Rossi Fanelli\', University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
39
|
Gerson-Gurwitz A, Young NP, Goel VK, Eam B, Stumpf CR, Chen J, Fish S, Barrera M, Sung E, Staunton J, Chiang GG, Webster KR, Thompson PA. Zotatifin, an eIF4A-Selective Inhibitor, Blocks Tumor Growth in Receptor Tyrosine Kinase Driven Tumors. Front Oncol 2021; 11:766298. [PMID: 34900714 PMCID: PMC8663026 DOI: 10.3389/fonc.2021.766298] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Oncoprotein expression is controlled at the level of mRNA translation and is regulated by the eukaryotic translation initiation factor 4F (eIF4F) complex. eIF4A, a component of eIF4F, catalyzes the unwinding of secondary structure in the 5'-untranslated region (5'-UTR) of mRNA to facilitate ribosome scanning and translation initiation. Zotatifin (eFT226) is a selective eIF4A inhibitor that increases the affinity between eIF4A and specific polypurine sequence motifs and has been reported to inhibit translation of driver oncogenes in models of lymphoma. Here we report the identification of zotatifin binding motifs in the 5'-UTRs of HER2 and FGFR1/2 Receptor Tyrosine Kinases (RTKs). Dysregulation of HER2 or FGFR1/2 in human cancers leads to activation of the PI3K/AKT and RAS/ERK signaling pathways, thus enhancing eIF4A activity and promoting the translation of select oncogenes that are required for tumor cell growth and survival. In solid tumor models driven by alterations in HER2 or FGFR1/2, downregulation of oncoprotein expression by zotatifin induces sustained pathway-dependent anti-tumor activity resulting in potent inhibition of cell proliferation, induction of apoptosis, and significant in vivo tumor growth inhibition or regression. Sensitivity of RTK-driven tumor models to zotatifin correlated with high basal levels of mTOR activity and elevated translational capacity highlighting the unique circuitry generated by the RTK-driven signaling pathway. This dependency identifies the potential for rational combination strategies aimed at vertical inhibition of the PI3K/AKT/eIF4F pathway. Combination of zotatifin with PI3K or AKT inhibitors was beneficial across RTK-driven cancer models by blocking RTK-driven resistance mechanisms demonstrating the clinical potential of these combination strategies.
Collapse
Affiliation(s)
- Adina Gerson-Gurwitz
- Department of Cancer Biology, eFFECTOR Therapeutics, Inc., San Diego, CA, United States
| | - Nathan P Young
- Department of Cancer Biology, eFFECTOR Therapeutics, Inc., San Diego, CA, United States
| | - Vikas K Goel
- Department of Cancer Biology, eFFECTOR Therapeutics, Inc., San Diego, CA, United States
| | - Boreth Eam
- Department of Cancer Biology, eFFECTOR Therapeutics, Inc., San Diego, CA, United States
| | - Craig R Stumpf
- Department of Cancer Biology, eFFECTOR Therapeutics, Inc., San Diego, CA, United States
| | - Joan Chen
- Department of Cancer Biology, eFFECTOR Therapeutics, Inc., San Diego, CA, United States
| | - Sarah Fish
- Department of Cancer Biology, eFFECTOR Therapeutics, Inc., San Diego, CA, United States
| | - Maria Barrera
- Department of Cancer Biology, eFFECTOR Therapeutics, Inc., San Diego, CA, United States
| | - Eric Sung
- Department of Cancer Biology, eFFECTOR Therapeutics, Inc., San Diego, CA, United States
| | - Jocelyn Staunton
- Department of Cancer Biology, eFFECTOR Therapeutics, Inc., San Diego, CA, United States
| | - Gary G Chiang
- Department of Cancer Biology, eFFECTOR Therapeutics, Inc., San Diego, CA, United States
| | - Kevin R Webster
- Department of Cancer Biology, eFFECTOR Therapeutics, Inc., San Diego, CA, United States
| | - Peggy A Thompson
- Department of Cancer Biology, eFFECTOR Therapeutics, Inc., San Diego, CA, United States
| |
Collapse
|
40
|
Xue C, Gu X, Li G, Bao Z, Li L. Expression and Functional Roles of Eukaryotic Initiation Factor 4A Family Proteins in Human Cancers. Front Cell Dev Biol 2021; 9:711965. [PMID: 34869305 PMCID: PMC8640450 DOI: 10.3389/fcell.2021.711965] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/05/2021] [Indexed: 01/11/2023] Open
Abstract
The dysregulation of mRNA translation is common in malignancies and may lead to tumorigenesis and progression. Eukaryotic initiation factor 4A (eIF4A) proteins are essential for translation, exhibit bidirectional RNA helicase function, and act as RNA-dependent ATPases. In this review, we explored the predicted structures of the three eIF4A isoforms (eIF4A1, eIF4A2, and eIF4A3), and discussed possible explanations for which function during different translation stages (initiation, mRNA localization, export, and mRNA splicing). These proteins also frequently served as targets of microRNAs (miRNAs) or long noncoding RNAs (lncRNAs) to mediate epithelial-mesenchymal transition (EMT), which was associated with tumor cell invasion and metastasis. To define the differential expression of eIF4A family members, we applied the Tumor Immune Estimation Resource website. We figured out that the eIF4A family genes were differently expressed in specific cancer types. We also found that the level of the eIF4A family genes were associated with abundant immune cells infiltration and tumor purity. The associations between eIF4A proteins and cancer patient clinicopathological features suggested that eIF4A proteins might serve as biomarkers for early tumor diagnosis, histological classification, and clinical grading/staging, providing new tools for precise and individualized cancer treatment.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Varshney D, Cuesta SM, Herdy B, Abdullah UB, Tannahill D, Balasubramanian S. RNA G-quadruplex structures control ribosomal protein production. Sci Rep 2021; 11:22735. [PMID: 34815422 PMCID: PMC8611094 DOI: 10.1038/s41598-021-01847-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Four-stranded G-quadruplex (G4) structures form from guanine-rich tracts, but the extent of their formation in cellular RNA and details of their role in RNA biology remain poorly defined. Herein, we first delineate the presence of endogenous RNA G4s in the human cytoplasmic transcriptome via the binding sites of G4-interacting proteins, DDX3X (previously published), DHX36 and GRSF1. We demonstrate that a sub-population of these RNA G4s are reliably detected as folded structures in cross-linked cellular lysates using the G4 structure-specific antibody BG4. The 5' UTRs of protein coding mRNAs show significant enrichment in folded RNA G4s, particularly those for ribosomal proteins. Mutational disruption of G4s in ribosomal protein UTRs alleviates translation in vitro, whereas in cells, depletion of G4-resolving helicases or treatment with G4-stabilising small molecules inhibit the translation of ribosomal protein mRNAs. Our findings point to a common mode for translational co-regulation mediated by G4 structures. The results reveal a potential avenue for therapeutic intervention in diseases with dysregulated translation, such as cancer.
Collapse
Affiliation(s)
- Dhaval Varshney
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Sergio Martinez Cuesta
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Data Sciences and Quantitative Biology, Discovery Sciences, AstraZeneca, Cambridge, UK
| | - Barbara Herdy
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Ummi Binti Abdullah
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David Tannahill
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK.
| |
Collapse
|
42
|
Gillen SL, Waldron JA, Bushell M. Codon optimality in cancer. Oncogene 2021; 40:6309-6320. [PMID: 34584217 PMCID: PMC8585667 DOI: 10.1038/s41388-021-02022-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022]
Abstract
A key characteristic of cancer cells is their increased proliferative capacity, which requires elevated levels of protein synthesis. The process of protein synthesis involves the translation of codons within the mRNA coding sequence into a string of amino acids to form a polypeptide chain. As most amino acids are encoded by multiple codons, the nucleotide sequence of a coding region can vary dramatically without altering the polypeptide sequence of the encoded protein. Although mutations that do not alter the final amino acid sequence are often thought of as silent/synonymous, these can still have dramatic effects on protein output. Because each codon has a distinct translation elongation rate and can differentially impact mRNA stability, each codon has a different degree of 'optimality' for protein synthesis. Recent data demonstrates that the codon preference of a transcriptome matches the abundance of tRNAs within the cell and that this supply and demand between tRNAs and mRNAs varies between different cell types. The largest observed distinction is between mRNAs encoding proteins associated with proliferation or differentiation. Nevertheless, precisely how codon optimality and tRNA expression levels regulate cell fate decisions and their role in malignancy is not fully understood. This review describes the current mechanistic understanding on codon optimality, its role in malignancy and discusses the potential to target codon optimality therapeutically in the context of cancer.
Collapse
Affiliation(s)
- Sarah L Gillen
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
| | - Joseph A Waldron
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK, G61 1QH.
| |
Collapse
|
43
|
Lehman SL, Wilson ED, Camphausen K, Tofilon PJ. Translation Initiation Machinery as a Tumor Selective Target for Radiosensitization. Int J Mol Sci 2021; 22:ijms221910664. [PMID: 34639005 PMCID: PMC8508945 DOI: 10.3390/ijms221910664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/04/2023] Open
Abstract
Towards improving the efficacy of radiotherapy, one approach is to target the molecules and processes mediating cellular radioresponse. Along these lines, translational control of gene expression has been established as a fundamental component of cellular radioresponse, which suggests that the molecules participating in this process (i.e., the translational machinery) can serve as determinants of radiosensitivity. Moreover, the proteins comprising the translational machinery are often overexpressed in tumor cells suggesting the potential for tumor specific radiosensitization. Studies to date have shown that inhibiting proteins involved in translation initiation, the rate-limiting step in translation, specifically the three members of the eIF4F cap binding complex eIF4E, eIF4G, and eIF4A as well as the cap binding regulatory kinases mTOR and Mnk1/2, results in the radiosensitization of tumor cells. Because ribosomes are required for translation initiation, inhibiting ribosome biogenesis also appears to be a strategy for radiosensitization. In general, the radiosensitization induced by targeting the translation initiation machinery involves inhibition of DNA repair, which appears to be the consequence of a reduced expression of proteins critical to radioresponse. The availability of clinically relevant inhibitors of this component of the translational machinery suggests opportunities to extend this approach to radiosensitization to patient care.
Collapse
|
44
|
Essegian D, Cunningham TA, Zerio CJ, Chapman E, Schatz J, Schürer SC. Molecular Dynamics Simulations Identify Tractable Lead-like Phenyl-Piperazine Scaffolds as eIF4A1 ATP-competitive Inhibitors. ACS OMEGA 2021; 6:24432-24443. [PMID: 34604625 PMCID: PMC8482399 DOI: 10.1021/acsomega.1c02805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
eIF4A1 is an ATP-dependent RNA helicase whose overexpression and activity have been tightly linked to oncogenesis in a number of malignancies. An understanding of the complex kinetics and conformational changes of this translational enzyme is necessary to map out all targetable binding sites and develop novel, chemically tractable inhibitors. We herein present a comprehensive quantitative analysis of eIF4A1 conformational changes using protein-ligand docking, homology modeling, and extended molecular dynamics simulations. Through this, we report the discovery of a novel, biochemically active phenyl-piperazine pharmacophore, which is predicted to target the ATP-binding site and may serve as the starting point for medicinal chemistry optimization efforts. This is the first such report of an ATP-competitive inhibitor for eiF4A1, which is predicted to bind in the nucleotide cleft. Our novel interdisciplinary pipeline serves as a framework for future drug discovery efforts for targeting eiF4A1 and other proteins with complex kinetics.
Collapse
Affiliation(s)
- Derek
J. Essegian
- Department
of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
- Medical
Scientist Training Program, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Tyler A. Cunningham
- Department
of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
- Medical
Scientist Training Program, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Christopher J. Zerio
- Department
of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tuscon, Arizona 85721, United States
| | - Eli Chapman
- Department
of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tuscon, Arizona 85721, United States
| | - Jonathan Schatz
- Sylvester
Comprehensive Cancer Center, University
of Miami Health System, Miami, Florida 33136, United States
- Department
of Medicine, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Stephan C. Schürer
- Department
of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
- Sylvester
Comprehensive Cancer Center, University
of Miami Health System, Miami, Florida 33136, United States
- Institute
for Data Science & Computing, University
of Miami, Miami, Florida 33136, United
States
| |
Collapse
|
45
|
Chen B, Chen Y, Rai KR, Wang X, Liu S, Li Y, Xiao M, Ma Y, Wang G, Guo G, Huang S, Chen JL. Deficiency of eIF4B Increases Mouse Mortality and Impairs Antiviral Immunity. Front Immunol 2021; 12:723885. [PMID: 34566982 PMCID: PMC8461113 DOI: 10.3389/fimmu.2021.723885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic translation initiation factor 4B (eIF4B) plays an important role in mRNA translation initiation, cell survival and proliferation in vitro. However, its function in vivo is poorly understood. Here, we identified that eIF4B knockout (KO) in mice led to embryonic lethality, and the embryos displayed severe liver damage. Conditional KO (CKO) of eIF4B in adulthood profoundly increased the mortality of mice, characterized by severe pathological changes in several organs and reduced number of peripheral blood lymphocytes. Strikingly, eIF4B CKO mice were highly susceptible to viral infection with severe pulmonary inflammation. Selective deletion of eIF4B in lung epithelium also markedly promoted replication of influenza A virus (IAV) in the lung of infected animals. Furthermore, we observed that eIF4B deficiency significantly enhanced the expression of several important inflammation-associated factors and chemokines, including serum amyloid A1 (Saa1), Marco, Cxcr1, Ccl6, Ccl8, Ccl20, Cxcl2, Cxcl17 that are implicated in recruitment and activation of neutrophiles and macrophages. Moreover, the eIF4B-deficient mice exhibited impaired natural killer (NK) cell-mediated cytotoxicity during the IAV infection. Collectively, the results reveal that eIF4B is essential for mouse survival and host antiviral responses, and establish previously uncharacterized roles for eIF4B in regulating normal animal development and antiviral immunity in vivo.
Collapse
Affiliation(s)
- Biao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kul Raj Rai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuefei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shasha Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yingying Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Meng Xiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yun Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Guoqing Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guijie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Ji-Long Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
46
|
Caterino M, Paeschke K. Action and function of helicases on RNA G-quadruplexes. Methods 2021; 204:110-125. [PMID: 34509630 PMCID: PMC9236196 DOI: 10.1016/j.ymeth.2021.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/02/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Methodological progresses and piling evidence prove the rG4 biology in vivo. rG4s step in virtually every aspect of RNA biology. Helicases unwinding of rG4s is a fine regulatory layer to the downstream processes and general cell homeostasis. The current knowledge is however limited to a few cell lines. The regulation of helicases themselves is delineating as a important question. Non-helicase rG4-processing proteins likely play a role.
The nucleic acid structure called G-quadruplex (G4) is currently discussed to function in nucleic acid-based mechanisms that influence several cellular processes. They can modulate the cellular machinery either positively or negatively, both at the DNA and RNA level. The majority of what we know about G4 biology comes from DNA G4 (dG4) research. RNA G4s (rG4), on the other hand, are gaining interest as researchers become more aware of their role in several aspects of cellular homeostasis. In either case, the correct regulation of G4 structures within cells is essential and demands specialized proteins able to resolve them. Small changes in the formation and unfolding of G4 structures can have severe consequences for the cells that could even stimulate genome instability, apoptosis or proliferation. Helicases are the most relevant negative G4 regulators, which prevent and unfold G4 formation within cells during different pathways. Yet, and despite their importance only a handful of rG4 unwinding helicases have been identified and characterized thus far. This review addresses the current knowledge on rG4s-processing helicases with a focus on methodological approaches. An example of a non-helicase rG4s-unwinding protein is also briefly described.
Collapse
Affiliation(s)
- Marco Caterino
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
47
|
Grosso S, Marini A, Gyuraszova K, Voorde JV, Sfakianos A, Garland GD, Tenor AR, Mordue R, Chernova T, Morone N, Sereno M, Smith CP, Officer L, Farahmand P, Rooney C, Sumpton D, Das M, Teodósio A, Ficken C, Martin MG, Spriggs RV, Sun XM, Bushell M, Sansom OJ, Murphy D, MacFarlane M, Le Quesne JPC, Willis AE. The pathogenesis of mesothelioma is driven by a dysregulated translatome. Nat Commun 2021; 12:4920. [PMID: 34389715 PMCID: PMC8363647 DOI: 10.1038/s41467-021-25173-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/25/2021] [Indexed: 12/22/2022] Open
Abstract
Malignant mesothelioma (MpM) is an aggressive, invariably fatal tumour that is causally linked with asbestos exposure. The disease primarily results from loss of tumour suppressor gene function and there are no 'druggable' driver oncogenes associated with MpM. To identify opportunities for management of this disease we have carried out polysome profiling to define the MpM translatome. We show that in MpM there is a selective increase in the translation of mRNAs encoding proteins required for ribosome assembly and mitochondrial biogenesis. This results in an enhanced rate of mRNA translation, abnormal mitochondrial morphology and oxygen consumption, and a reprogramming of metabolic outputs. These alterations delimit the cellular capacity for protein biosynthesis, accelerate growth and drive disease progression. Importantly, we show that inhibition of mRNA translation, particularly through combined pharmacological targeting of mTORC1 and 2, reverses these changes and inhibits malignant cell growth in vitro and in ex-vivo tumour tissue from patients with end-stage disease. Critically, we show that these pharmacological interventions prolong survival in animal models of asbestos-induced mesothelioma, providing the basis for a targeted, viable therapeutic option for patients with this incurable disease.
Collapse
Affiliation(s)
- Stefano Grosso
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Alberto Marini
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Katarina Gyuraszova
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | | | | | - Gavin D Garland
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Angela Rubio Tenor
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Ryan Mordue
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Tanya Chernova
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Nobu Morone
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Marco Sereno
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Claire P Smith
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Leah Officer
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Pooyeh Farahmand
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - Claire Rooney
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - David Sumpton
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - Madhumita Das
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Ana Teodósio
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Catherine Ficken
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Maria Guerra Martin
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Ruth V Spriggs
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Xiao-Ming Sun
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Martin Bushell
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - Owen J Sansom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - Daniel Murphy
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Marion MacFarlane
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK.
| | - John P C Le Quesne
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK.
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK.
- Glenfield Hospital, Groby Road, University Hospitals Leicester NHS Trust Leicester, Leicester, UK.
| | - Anne E Willis
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK.
| |
Collapse
|
48
|
1-Aminomethyl SAR in a novel series of flavagline-inspired eIF4A inhibitors: Effects of amine substitution on cell potency and in vitro PK properties. Bioorg Med Chem Lett 2021; 47:128111. [PMID: 34353608 DOI: 10.1016/j.bmcl.2021.128111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/02/2021] [Accepted: 05/08/2021] [Indexed: 11/22/2022]
Abstract
Flavaglines such as silvestrol (1) and rocaglamide (2) constitute an interesting class of natural products with promising anticancer activities. Their mode of action is based on inhibition of eukaryotic initiation factor 4A (eIF4A) dependent translation through formation of a stable ternary complex with eIF4A and mRNA, thus blocking ribosome scanning. Herein we describe initial SAR studies in a novel series of 1-aminomethyl substituted flavagline-inspired eIF4A inhibitors. We discovered that a variety of N-substitutions at the 1-aminomethyl group are tolerated, making this position pertinent for property and ADME profile tuning. The findings presented herein are relevant to future drug design efforts towards novel eIF4A inhibitors with drug-like properties.
Collapse
|
49
|
Sanderson MR, Fahlman RP, Wevrick R. The N-terminal domain of the Schaaf-Yang syndrome protein MAGEL2 likely has a role in RNA metabolism. J Biol Chem 2021; 297:100959. [PMID: 34265304 PMCID: PMC8350409 DOI: 10.1016/j.jbc.2021.100959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/22/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023] Open
Abstract
MAGEL2 encodes the L2 member of the melanoma-associated antigen gene (MAGE) protein family, truncating mutations of which can cause Schaaf-Yang syndrome, an autism spectrum disorder. MAGEL2 is also inactivated in Prader-Willi syndrome, which overlaps clinically and mechanistically with Schaaf-Yang syndrome. Studies to date have only investigated the C-terminal portion of the MAGEL2 protein, containing the MAGE homology domain that interacts with RING-E3 ubiquitin ligases and deubiquitinases to form protein complexes that modify protein ubiquitination. In contrast, the N-terminal portion of the MAGEL2 protein has never been studied. Here, we find that MAGEL2 has a low-complexity intrinsically disordered N-terminus rich in Pro-Xn-Gly motifs that is predicted to mediate liquid-liquid phase separation to form biomolecular condensates. We used proximity-dependent biotin identification (BioID) and liquid chromatography-tandem mass spectrometry to identify MAGEL2-proximal proteins, then clustered these proteins into functional networks. We determined that coding mutations analogous to disruptive mutations in other MAGE proteins alter these networks in biologically relevant ways. Proteins identified as proximal to the N-terminal portion of MAGEL2 are primarily involved in mRNA metabolic processes and include three mRNA N 6-methyladenosine (m6A)-binding YTHDF proteins and two RNA interference-mediating TNRC6 proteins. We found that YTHDF2 coimmunoprecipitates with MAGEL2, and coexpression of MAGEL2 reduces the nuclear accumulation of YTHDF2 after heat shock. We suggest that the N-terminal region of MAGEL2 may have a role in RNA metabolism and in particular the regulation of mRNAs modified by m6A methylation. These results provide mechanistic insight into pathogenic MAGEL2 mutations associated with Schaaf-Yang syndrome and related disorders.
Collapse
Affiliation(s)
- Matthea R Sanderson
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Rachel Wevrick
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
50
|
Xie J, Kusnadi EP, Furic L, Selth LA. Regulation of mRNA Translation by Hormone Receptors in Breast and Prostate Cancer. Cancers (Basel) 2021; 13:3254. [PMID: 34209750 PMCID: PMC8268847 DOI: 10.3390/cancers13133254] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Breast and prostate cancer are the second and third leading causes of death amongst all cancer types, respectively. Pathogenesis of these malignancies is characterised by dysregulation of sex hormone signalling pathways, mediated by the estrogen receptor-α (ER) in breast cancer and androgen receptor (AR) in prostate cancer. ER and AR are transcription factors whose aberrant function drives oncogenic transcriptional programs to promote cancer growth and progression. While ER/AR are known to stimulate cell growth and survival by modulating gene transcription, emerging findings indicate that their effects in neoplasia are also mediated by dysregulation of protein synthesis (i.e., mRNA translation). This suggests that ER/AR can coordinately perturb both transcriptional and translational programs, resulting in the establishment of proteomes that promote malignancy. In this review, we will discuss relatively understudied aspects of ER and AR activity in regulating protein synthesis as well as the potential of targeting mRNA translation in breast and prostate cancer.
Collapse
Affiliation(s)
- Jianling Xie
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Eric P Kusnadi
- Translational Prostate Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Luc Furic
- Translational Prostate Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Luke A Selth
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|