1
|
Biedrzycki G, Wolszczak-Biedrzycka B, Dorf J, Maciejczyk M. The antioxidant barrier, oxidative/nitrosative stress, and protein glycation in allergy: from basic research to clinical practice. Front Immunol 2024; 15:1440313. [PMID: 39703514 PMCID: PMC11655330 DOI: 10.3389/fimmu.2024.1440313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Recent studies indicate that oxidative/nitrosative stress is involved in the pathogenesis of asthma, allergic rhinitis, atopic dermatitis, and urticaria. The article aimed to review the latest literature on disruptions in redox homeostasis and protein glycation in allergy patients. It has been shown that enzymatic and non-enzymatic antioxidant systems are impaired in allergic conditions, which increases cell susceptibility to oxidative damage. Reactive oxygen/nitrogen species exacerbate the severity of asthma symptoms by activating inflammatory mediators that cause airway smooth muscle contraction, promote mucus hypersecretion, increase the permeability of lung capillaries, and damage cell membranes. Redox biomarkers could have considerable diagnostic potential in allergy patients. There is no compelling evidence to indicate that antioxidants reduce allergy symptoms' severity or slow disease progression.
Collapse
Affiliation(s)
| | - Blanka Wolszczak-Biedrzycka
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury, Olsztyn, Poland
| | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
2
|
Bowen JL, Keck K, Baruah S, Nguyen KH, Thurman AL, Pezzulo AA, Klesney-Tait J. Eosinophil expression of triggering receptor expressed on myeloid cells 1 (TREM-1) restricts type 2 lung inflammation. J Leukoc Biol 2024; 116:409-423. [PMID: 38547428 DOI: 10.1093/jleuko/qiae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/20/2024] [Accepted: 02/16/2024] [Indexed: 07/27/2024] Open
Abstract
Asthma affects 25 million Americans, and recent advances in treatment are effective for only a portion of severe asthma patients. TREM-1, an innate receptor that canonically amplifies inflammatory signaling in neutrophils and monocytes, plays a central role in regulating lung inflammation. It is unknown how TREM-1 contributes to allergic asthma pathology. Utilizing a murine model of asthma, flow cytometry revealed TREM-1+ eosinophils in the lung tissue and airway during allergic airway inflammation. TREM-1 expression was restricted to recruited, inflammatory eosinophils. Expression was induced on bone marrow-derived eosinophils by incubation with interleukin 33, lipopolysaccharide, or granulocyte-macrophage colony-stimulating factor. Compared to TREM-1- airway eosinophils, TREM-1+ eosinophils were enriched for proinflammatory gene sets, including migration, respiratory burst, and cytokine production. Unexpectedly, eosinophil-specific ablation of TREM-1 exacerbated airway interleukin (IL) 5 production, airway MUC5AC production, and lung tissue eosinophil accumulation. Further investigation of transcriptional data revealed apoptosis and superoxide generation-related gene sets were enriched in TREM-1+ eosinophils. Consistent with these findings, annexin V and caspase-3/7 staining demonstrated higher rates of apoptosis among TREM-1+ eosinophils compared to TREM-1- eosinophils in the inflammatory airway. In vitro, Trem1/3-/- bone marrow-derived eosinophils consumed less oxygen than wild-type in response to phorbol myristate acetate, suggesting that TREM-1 promotes superoxide generation in eosinophils. These data reveal protein-level expression of TREM-1 by eosinophils, define a population of TREM-1+ inflammatory eosinophils, and demonstrate that eosinophil TREM-1 restricts key features of type 2 lung inflammation.
Collapse
Affiliation(s)
- Jayden L Bowen
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, 501 Newton Rd, Iowa City, IA 52242, USA
| | - Kathy Keck
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Sankar Baruah
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, 51 Newton Rd, Iowa City, IA 52242, USA
| | - Kathy H Nguyen
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, USA
| | - Andrew L Thurman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Alejandro A Pezzulo
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Julia Klesney-Tait
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| |
Collapse
|
3
|
Salina ACG, de Aquino Penteado L, Dejani NN, Silva-Pereira L, Raimundo BVB, Corrêa GF, Oliveira KC, Ramalho LNZ, Boko MMM, Bonato VLD, Henrique Serezani C, Medeiros AI. Different bacterial cargo in apoptotic cells drive distinct macrophage phenotypes. Apoptosis 2024; 29:321-330. [PMID: 37796354 DOI: 10.1007/s10495-023-01899-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Abstract
The removal of dead cells (efferocytosis) contributes to the resolution of the infection and preservation of the tissue. Depending on the environment milieu, macrophages may show inflammatory (M1) or anti-inflammatory (M2) phenotypes. Inflammatory leukocytes are recruited during infection, followed by the accumulation of infected and non-infected apoptotic cells (AC). Efferocytosis of non-infected AC promotes TGF-β, IL-10, and PGE2 production and the polarization of anti-inflammatory macrophages. These M2 macrophages acquire an efficient ability to remove apoptotic cells that are involved in tissue repair and resolution of inflammation. On the other hand, the impact of efferocytosis of infected apoptotic cells on macrophage activation profile remains unknown. Here, we are showing that the efferocytosis of gram-positive Streptococcus pneumoniae-AC (Sp-AC) or gram-negative Klebsiella pneumoniae-AC (Kp-AC) promotes distinct gene expression and cytokine signature in macrophages. Whereas the efferocytosis of Kp-AC triggered a predominant M1 phenotype in vitro and in vivo, the efferocytosis of Sp-AC promoted a mixed M1/M2 activation in vitro and in vivo in a model of allergic asthma. Together, these findings suggest that the nature of the pathogen and antigen load into AC may have different impacts on inducing macrophage polarization.
Collapse
Affiliation(s)
- Ana Carolina Guerta Salina
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Letícia de Aquino Penteado
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Naiara Naiana Dejani
- Department of Physiology and Pathology, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Ludmilla Silva-Pereira
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Breno Vilas Boas Raimundo
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Gabriel Ferranti Corrêa
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Karen Cristina Oliveira
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Leandra Naira Zambelli Ramalho
- Department of Pathology and Legal Medicine, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Mèdéton Mahoussi Michaël Boko
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Vânia L D Bonato
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - C Henrique Serezani
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Alexandra Ivo Medeiros
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.
| |
Collapse
|
4
|
Dimasuay KG, Berg B, Schaunaman N, Holguin F, Winnica D, Chu HW. High-fat diet and palmitic acid amplify airway type 2 inflammation. FRONTIERS IN ALLERGY 2023; 4:1193480. [PMID: 37287831 PMCID: PMC10243139 DOI: 10.3389/falgy.2023.1193480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/08/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Metabolic dysfunction such as elevated levels of saturated fatty acids (SFA) may play a role in obese asthma, but its contribution to airway inflammation remains unclear. We sought to determine the role of high-fat diet (HFD) and palmitic acid (PA), a major form of SFA, in regulating type 2 inflammation. Methods Airway samples from asthma patients with or without obesity, mouse models and human airway epithelial cell culture were utilized to test if SFA amplify type 2 inflammation. Results Asthma patients with obesity had higher levels of airway PA than asthma patients without obesity. HFD increased the levels of PA in mice, and subsequently enhanced IL-13-induced airway eosinophilic inflammation. PA treatment amplified airway eosinophilic inflammation in mice that were previously exposed to IL-13 or house dust mite. IL-13 alone or in combination with PA increased dipeptidyl peptidase 4 (DPP4) release (soluble DPP4) and/or activity in mouse airways and human airway epithelial cells. Inhibition of DPP4 activity by linagliptin in mice pre-exposed to IL-13 or both IL-13 and PA increased airway eosinophilic and neutrophilic inflammation. Discussion Our results demonstrated the exaggerating effect of obesity or PA on airway type 2 inflammation. Up-regulation of soluble DPP4 by IL-13 and/or PA may serve as a mechanism to prevent excessive type 2 inflammation. Soluble DPP4 may have the therapeutic potential in asthma patients with obesity who have an endotype with mixed airway eosinophilic and neutrophilic inflammation.
Collapse
Affiliation(s)
| | - Bruce Berg
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | | | - Fernando Holguin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Daniel Winnica
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
5
|
Gould EN, Szule JA, Wilson-Robles H, Steiner JM, Lennon EM, Tolbert MK. Esomeprazole induces structural changes and apoptosis and alters function of in vitro canine neoplastic mast cells. Vet Immunol Immunopathol 2023; 256:110539. [PMID: 36592548 DOI: 10.1016/j.vetimm.2022.110539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Histamine-2 receptor antagonists such as famotidine and proton pump inhibitors such as esomeprazole are commonly used in canine MCT disease, but direct effects on dog MCs have not been evaluated. Omeprazole is a proton pump inhibitor which has been demonstrated to cause structural and functional changes to in vitro murine mast cells (MCs). It has not yet been determined if esomeprazole, the commercially available and commonly prescribed S-isomer of omeprazole, has similar effects. Our primary study objective was to evaluate and compare the effects of acid suppressants (esomeprazole and famotidine) on MC ultrastructure, viability, and function in vitro using both healthy and neoplastic MCs. Murine bone marrow derived mast cells (BMMC), human LAD2, and canine C2 and BR cells, were used for these studies, representing a single healthy (i.e., BMMCs) MC model and multiple neoplastic MC models (i.e., LAD2, C2, BR), respectively. The rat basophilic leukemic (RBL-2H3) and canine B cell lymphoma 17-71 cell lines served as granulocytic and agranulocytic control lines for experiments, respectively. The treatment effect of acid suppressants on MC ultrastructure was assessed via both light and transmission electron microscopy. Differences in MC viability was assessed between groups via MTS-based, colorimetric assays and flow cytometry. Degranulation was assessed by quantification of β-hexosaminidase (i.e., LAD2 and RBL-2H3). Esomeprazole-treated MCs of all lines exhibited dramatic time and concentration-dependent alterations in ultrastructure (i.e., increased vacuolization, compromise of cell membrane), increased apoptosis, and altered degranulation responses in comparison to famotidine and vehicle-treated cells. The canine B cell lymphoma cells consistently exhibited either no significant (i.e., cytotoxicity assays) or greatly diminished treatment responses (i.e., apoptosis) compared to MCs. Esomeprazole, but not famotidine, induces significant cytotoxicity, as well as alterations to cell structure and function to multiple lines of in vitro neoplastic MCs. Continued in vitro work investigating the specific mechanisms by which proton pump inhibitors induce these effects, as well as prospective, in vivo work comparing the treatment effects of acid suppressants on canine MCTs, are warranted.
Collapse
Affiliation(s)
- Emily N Gould
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4474 TAMU, College Station, TX 77843, USA.
| | - Joseph A Szule
- Department of Veterinary Pathobiology, Image Analysis Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4461 TAMU, College Station, TX 77843, USA.
| | - Heather Wilson-Robles
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 408 Raymond Stotzer Parkway, College Station, TX 77845, USA.
| | - Jörg M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4474 TAMU, College Station, TX 77843, USA.
| | - Elizabeth M Lennon
- Department of Small Animal Clinical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA.
| | - M Katherine Tolbert
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4474 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
6
|
Oxidative Stress Promotes Corticosteroid Insensitivity in Asthma and COPD. Antioxidants (Basel) 2021; 10:antiox10091335. [PMID: 34572965 PMCID: PMC8471691 DOI: 10.3390/antiox10091335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Corticosteroid insensitivity is a key characteristic of patients with severe asthma and COPD. These individuals experience greater pulmonary oxidative stress and inflammation, which contribute to diminished lung function and frequent exacerbations despite the often and prolonged use of systemic, high dose corticosteroids. Reactive oxygen and nitrogen species (RONS) promote corticosteroid insensitivity by disrupting glucocorticoid receptor (GR) signaling, leading to the sustained activation of pro-inflammatory pathways in immune and airway structural cells. Studies in asthma and COPD models suggest that corticosteroids need a balanced redox environment to be effective and to reduce airway inflammation. In this review, we discuss how oxidative stress contributes to corticosteroid insensitivity and the importance of optimizing endogenous antioxidant responses to enhance corticosteroid sensitivity. Future studies should aim to identify how antioxidant-based therapies can complement corticosteroids to reduce the need for prolonged high dose regimens in patients with severe asthma and COPD.
Collapse
|
7
|
Magalhães GS, Gregório JF, Cançado Ribeiro ATP, Baroni IF, Vasconcellos AVDO, Nakashima GP, Oliveira IFA, de Matos NA, Castro TDF, Bezerra FS, Sinisterra RD, Pinho V, Teixeira MM, Santos RAS, Rodrigues-Machado MG, Campagnole-Santos MJ. Oral Formulation of Angiotensin-(1-7) Promotes Therapeutic Actions in a Model of Eosinophilic and Neutrophilic Asthma. Front Pharmacol 2021; 12:557962. [PMID: 33762930 PMCID: PMC7982577 DOI: 10.3389/fphar.2021.557962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
The presence of eosinophils and neutrophils in the lungs of asthmatic patients is associated with the severity of the disease and resistance to corticosteroids. Thus, defective resolution of eosinophilic and neutrophilic inflammation is importantly related to exacerbation of asthma. In this study, we investigated a therapeutic action of angiotensin-(1-7) (Ang-(1-7)) in a model of asthma induced by ovalbumin (OVA) and lipopolysaccharide (LPS). Balb-c mice were sensitized and challenged with OVA. Twenty-three hours after the last OVA challenge, experimental groups received LPS, and 1 h and 7 h later, mice were treated with oral formulation of Ang-(1-7). On the next day, 45 h after the last challenge with OVA, mice were subjected to a test of motor and exploratory behavior; 3 h later, lung function was evaluated, and bronchoalveolar lavage fluid (BALF) and lungs were collected. Motor and exploratory activities were lower in OVA + LPS-challenged mice. Treatment with Ang-(1-7) improved these behaviors, normalized lung function, and reduced eosinophil, neutrophil, myeloperoxidase (MPO), eosinophilic peroxidase (EPO), and ERK1/2 phosphorylation (p-ERK1/2) in the lungs. In addition, Ang-(1-7) decreased the deposition of mucus and extracellular matrix in the airways. These results extended those of previous studies by demonstrating that oral administration of Ang-(1-7) at the peak of pulmonary inflammation can be valuable for the treatment of neutrophil- and eosinophil-mediated asthma. Therefore, these findings potentially provide a new drug to reverse the natural history of the disease, unlike the current standards of care that manage the disease symptoms at best.
Collapse
Affiliation(s)
- Giselle Santos Magalhães
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Post-Graduation Program in Health Sciences, Medical Sciences Faculty of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Fabiana Gregório
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Isis Felippe Baroni
- Post-Graduation Program in Health Sciences, Medical Sciences Faculty of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Natália Alves de Matos
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Ruben D Sinisterra
- Chemistry Department, Institute of Exact Sciences, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Maria José Campagnole-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
8
|
Psaila AM, Vohralik EJ, Quinlan KGR. Shades of white: new insights into tissue-resident leukocyte heterogeneity. FEBS J 2021; 289:308-318. [PMID: 33513286 DOI: 10.1111/febs.15737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
Populations of white blood cells (leukocytes) have been found in tissues and organs across the body, in states of both health and disease. The role leukocytes play within these tissues is often highly contested. For many leukocytes, there are studies outlining pro-inflammatory destructive functions, while other studies provide clear evidence of anti-inflammatory homeostatic activities of leukocytes within the same tissue. We discuss how this functional dissonance can be explained by leukocyte heterogeneity. Although cell morphology and surface receptor profiles are excellent methods to segregate cell types, the true degree of leukocyte heterogeneity that exists can only be appreciated by studying the variable and dynamic gene expression profile. Unbiased single-cell RNA sequencing profiling of tissue-resident leukocytes is transforming the way we understand leukocytes across health and disease. Recent investigations into adipose tissue-resident leukocytes have revealed unprecedented levels of heterogeneity among populations of macrophages. We use this example to pose emerging questions regarding tissue-resident leukocytes and review what is currently known (and unknown) about the diversity of tissue-resident leukocytes within different organs.
Collapse
Affiliation(s)
- Annalise M Psaila
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, Australia
| | - Emily J Vohralik
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, Australia
| |
Collapse
|
9
|
Zustakova M, Kratochvilova L, Slama P. Apoptosis of Eosinophil Granulocytes. BIOLOGY 2020; 9:biology9120457. [PMID: 33321726 PMCID: PMC7763668 DOI: 10.3390/biology9120457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
Simple Summary Eosinophil granulocytes (eosinophils) belong to the family of white blood cells that play important roles in the development of asthma and various types of allergy. Eosinophils are cells with a diameter of 12–17 µm and they originate from myeloid precursors. They were discovered by Paul Ehrlich in 1879 in the process of staining fixed blood smears with aniline dyes. Apoptosis (programmed cell death) is the process by which cells lose their functionality. Therefore, it is very important to study the apoptosis of eosinophils and their survival factors to understand how to develop new drugs based on the modulation of eosinophil apoptosis for the treatment of asthma and allergic diseases. Abstract In the past 10 years, the number of people in the Czech Republic with allergies has doubled to over three million. Allergic pollen catarrh, constitutional dermatitis and asthma are the allergic disorders most often diagnosed. Genuine food allergies today affect 6–8% of nursing infants, 3–5% of small children, and 2–4% of adults. These disorders are connected with eosinophil granulocytes and their apoptosis. Eosinophil granulocytes are postmitotic leukocytes containing a number of histotoxic substances that contribute to the initiation and continuation of allergic inflammatory reactions. Eosinophilia results from the disruption of the standard half-life of eosinophils by the expression of mechanisms that block the apoptosis of eosinophils, leading to the development of chronic inflammation. Glucocorticoids are used as a strong acting anti-inflammatory medicine in the treatment of hypereosinophilia. The removal of eosinophils by the mechanism of apoptosis is the effect of this process. This work sums up the contemporary knowledge concerning the apoptosis of eosinophils, its role in the aforementioned disorders, and the indications for the use of glucocorticoids in their related therapies.
Collapse
|
10
|
Qie C, Jiang J, Liu W, Hu X, Chen W, Xie X, Liu J. Single-cell RNA-Seq reveals the transcriptional landscape and heterogeneity of skin macrophages in Vsir -/- murine psoriasis. Theranostics 2020; 10:10483-10497. [PMID: 32929361 PMCID: PMC7482809 DOI: 10.7150/thno.45614] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/09/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: V-domain immunoglobulin suppressor of T cell activation (VISTA) is a novel inhibitory immune checkpoint molecule. Vsir-/- mice have exacerbated psoriasis-like skin inflammation. The immune cell subsets involved in inflammation in Vsir-/- psoriatic mice are largely unknown. We have used scRNA-seq as an unbiased profiling strategy to study the heterogeneity of immune cells at a single cell level in the skin of Vsir-/- psoriatic mice. Methods: In the present study, the right ear and shaved back skin of wild type and Vsir-/- mice were treated with IMQ for 5 consecutive days to induce psoriasis-like dermatitis. Then, the single-cell RNA sequencing analysis of mouse back skin lesions was performed using 10 × Genomics technique. Results: We identified 12 major cell subtypes among 23,258 cells. The major populations of the skin cells included macrophages, dendritic cells and fibroblasts. Macrophages constituted the main immune cell population in the WT (61.29%) and Vsir-/- groups (77.7%). It should be noted that DCs and fibroblasts were expanded in the Vsir-/- psoriatic mice. Furthermore, the gene expression signatures were assessed. We observed that Hspb1 and Cebpb were significantly upregulated in the Vsir-/- psoriatic mice. Differential gene expression and gene ontology enrichment analyses revealed specific gene expression patterns distinguishing these subsets and uncovered putative functions of each cell type. Date analysis resulted in the discovery of a number of novel psoriasis-associated genes in Vsir-/- mice. Conclusion: We present a comprehensive single-cell landscape of the skin immune cells in Vsir-/- psoriatic mice. These unprecedented data uncovered the transcriptional landscape and phenotypic heterogeneity of skin macrophages in psoriasis and identified their gene expression signature suggesting specialized functions in Vsir-/- mice. Our findings will open novel opportunities to investigate the role of VISTA in driving psoriasis.
Collapse
Affiliation(s)
- Chenxin Qie
- Jiangsu key lab of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Jingwei Jiang
- Jiangsu key lab of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
- Nanjing Gemini Biotechnology Co. Ltd, Nanjing, 210009, China
| | - Wanmei Liu
- Jiangsu key lab of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinlei Hu
- Jiangsu key lab of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenting Chen
- Jiangsu key lab of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoxue Xie
- Jiangsu key lab of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Liu
- Jiangsu key lab of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
11
|
Lin YC, Wu CY, Hu CH, Pai TW, Chen YR, Wang WD. Integrated Hypoxia Signaling and Oxidative Stress in Developmental Neurotoxicity of Benzo[a]Pyrene in Zebrafish Embryos. Antioxidants (Basel) 2020; 9:antiox9080731. [PMID: 32796530 PMCID: PMC7464806 DOI: 10.3390/antiox9080731] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/14/2022] Open
Abstract
Benzo[a]pyrene (B[a]P) is a polycyclic aromatic hydrocarbon formed by the incomplete combustion of organic matter. Environmental B[a]P contamination poses a serious health risk to many organisms because the pollutant may negatively affect many physiological systems. As such, chronic exposure to B[a]P is known to lead to locomotor dysfunction and neurodegeneration in several organisms. In this study, we used the zebrafish model to delineate the acute toxic effects of B[a]P on the developing nervous system. We found that embryonic exposure of B[a]P downregulates shh and isl1, causing morphological hypoplasia in the telencephalon, ventral thalamus, hypothalamus, epiphysis and posterior commissure. Moreover, hypoxia-inducible factors (hif1a and hif2a) are repressed upon embryonic exposure of B[a]P, leading to reduced expression of the Hif-target genes, epo and survivin, which are associated with neural differentiation and maintenance. During normal embryogenesis, low-level oxidative stress regulates neuronal development and function. However, our experiments revealed that embryonic oxidative stress is greatly increased in B[a]P-treated embryos. The expression of catalase was decreased and sod1 expression increased in B[a]P-treated embryos. These transcriptional changes were coincident with increased embryonic levels of H2O2 and malondialdehyde, with the levels in B[a]P-treated fish similar to those in embryos treated with 120-μM H2O2. Together, our data suggest that reduced Hif signaling and increased oxidative stress are involved in B[a]P-induced acute neurotoxicity during embryogenesis.
Collapse
Affiliation(s)
- Yi-Chen Lin
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi City 60004, Taiwan;
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Chin-Hwa Hu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Tun-Wen Pai
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan;
| | - Wen-Der Wang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi City 60004, Taiwan;
- Correspondence:
| |
Collapse
|
12
|
Wu Y, Chen H, Xuan N, Zhou L, Wu Y, Zhu C, Li M, Weng Q, Shen J, Zhang H, Zhang B, Lan F, Xia L, Xiong X, Li Z, Zhao Y, Wu M, Ying S, Li W, Shen H, Chen Z. Induction of ferroptosis-like cell death of eosinophils exerts synergistic effects with glucocorticoids in allergic airway inflammation. Thorax 2020; 75:918-927. [PMID: 32759385 DOI: 10.1136/thoraxjnl-2020-214764] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Eosinophils are critical in allergic disorders, and promoting eosinophil death effectively attenuates allergic airway inflammation. Ferroptosis is a recently described novel form of cell death; however, little is known about ferroptosis in eosinophils and related diseases. This study aimed to investigate the effects of ferroptosis-inducing agents (FINs) on eosinophil death and allergic airway inflammation, and to explore their potential synergistic effect with glucocorticoids (GCs). METHODS Eosinophils isolated from the peripheral blood of humans or mice were incubated with FINs, and eosinophil ferroptosis was assessed. The in vivo effects of FINs alone or in combination with dexamethasone (DXMS) were examined in a mouse model of allergic airway inflammation. Bronchoalveolar lavage fluid and lung tissue were collected to examine airway inflammation. RESULTS Treatment with FINs time and dose dependency induced cell death in human and mouse eosinophils. Interestingly, FINs induced non-canonical ferroptosis in eosinophils, which generated morphological characteristics unique to ferroptosis and was iron dependent but was independent of lipid peroxidation. The antioxidants glutathione and N-acetylcysteine significantly attenuated FIN-induced cell death. Treatment with FINs triggered eosinophil death in vivo and eventually relieved eosinophilic airway inflammation in mice. Furthermore, FINs exerted a synergistic effect with DXMS to induce eosinophil death in vitro and to alleviate allergic airway inflammation in vivo. CONCLUSIONS FINs induced ferroptosis-like cell death of eosinophils, suggesting their use as a promising therapeutic strategy for eosinophilic airway inflammation, especially due to the advantage of their synergy with GCs in the treatment of allergic disorders.
Collapse
Affiliation(s)
- Yanping Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Haixia Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Nanxia Xuan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Lingren Zhou
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Yinfang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Chen Zhu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Miao Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Qingyu Weng
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Jiaxin Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Hao Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Bin Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Fen Lan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Lixia Xia
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Xuefang Xiong
- Department of Respiratory Medicine, Central Hospital of Lishui City, Lishui, Zhejiang, China
| | - Zhouyang Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Yun Zhao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Mindan Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Songmin Ying
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China .,State Key Lab for Respiratory Diseases, National Clinical Research Centre for Respiratory Disease, Guangzhou, Guangdong, China
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Sousa LP, Pinho V, Teixeira MM. Harnessing inflammation resolving-based therapeutic agents to treat pulmonary viral infections: What can the future offer to COVID-19? Br J Pharmacol 2020; 177:3898-3904. [PMID: 32557557 PMCID: PMC7323156 DOI: 10.1111/bph.15164] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation is generally accepted as a component of the host defence system and a protective response in the context of infectious diseases. However, altered inflammatory responses can contribute to disease in infected individuals. Many endogenous mediators that drive the resolution of inflammation are now known. Overall, mediators of resolution tend to decrease inflammatory responses and provide normal or greater ability of the host to deal with infection. In the lung, it seems that pro‐resolution molecules, or strategies that promote their increase, tend to suppress inflammation and lung injury and facilitate control of bacterial or viral burden. Here, we argue that the demonstrated anti‐inflammatory, pro‐resolving, anti‐thrombogenic and anti‐microbial effects of such endogenous mediators of resolution may be useful in the treatment of the late stages of the disease in patients with COVID‐19.
Collapse
Affiliation(s)
- Lirlândia P Sousa
- Laboratorio de Imunofamacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Laboratorio de Imunofamacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Laboratorio de Imunofamacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
14
|
Zhang Y, Wang S, Song S, Yang X, Jin G. Ginsenoside Rg3 Alleviates Complete Freund's Adjuvant-Induced Rheumatoid Arthritis in Mice by Regulating CD4 +CD25 +Foxp3 +Treg Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4893-4902. [PMID: 32275817 DOI: 10.1021/acs.jafc.0c01473] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ginsenoside Rg3 (GRg3) is one of the major bioactive ingredients of ginseng, which is not only used as a herbal medicine but also used as a functional food to support body functions. In this study, the beneficial effects of GRg3 on rheumatoid arthritis (RA) mice was evaluated from anti-inflammatory and immunosuppressive aspects. The footpad swelling rate, pathological changes of the ankle joint, and levels of tumor necrosis factor α, interleukin 6, interleukin 10, and tumor necrosis factor β were used to assess the anti-inflammatory effect of GRg3 on RA mice. Flow cytometric analysis of CD4+CD25+Foxp3+Treg cell percentage and metabolomic analysis based on gas chromatography-tandem mass spectrometry were used to assess the immunosuppressive effect and underlying mechanisms. GRg3 exhibited anti-inflammatory and immunosuppressive effects on RA mice. The potential mechanisms were related to regulate the pathways of oxidative phosphorylation and enhance the function of CD4+CD25+Foxp3+Treg cells to maintain peripheral immune tolerance of RA mice. These findings can provide a preliminary experimental basis to exploit GRg3 as a functional food or an effective complementary for the adjuvant therapy of RA.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, People's Republic of China
| | - Shuang Wang
- Graduate School, Jilin Institute of Chemical Technology, Jilin 132022, People's Republic of China
| | - Shuang Song
- Graduate School, Jilin Institute of Chemical Technology, Jilin 132022, People's Republic of China
| | - Xiaomei Yang
- Nutritional Department, Jilin Medical University Affiliated Hospital, Jilin 132013, People's Republic of China
| | - Gang Jin
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, People's Republic of China
| |
Collapse
|
15
|
Boldrini-Leite LM, Michelotto PV, de Moura SAB, Capriglione LGA, Barussi FCM, Fragoso FYI, Senegaglia AC, Brofman PRS. Lung Tissue Damage Associated with Allergic Asthma in BALB/c Mice Could Be Controlled with a Single Injection of Mesenchymal Stem Cells from Human Bone Marrow up to 14 d After Transplantation. Cell Transplant 2020; 29:963689720913254. [PMID: 32216447 PMCID: PMC7444219 DOI: 10.1177/0963689720913254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cell (MSC) research has demonstrated the potential of these cells to modulate lung inflammatory processes and tissue repair; however, the underlying mechanisms and treatment durability remain unknown. Here, we investigated the therapeutic potential of human bone marrow-derived MSCs in the inflammatory process and pulmonary remodeling of asthmatic BALB/c mice up to 14 d after transplantation. Our study used ovalbumin to induce allergic asthma in male BALB/c mice. MSCs were injected intratracheally in the asthma groups. Bronchoalveolar lavage fluid (BALF) was collected, and cytology was performed to measure the total protein, hydrogen peroxide (H2O2), and proinflammatory (IL-5, IL-13, and IL-17A) and anti-inflammatory (IL-10) interleukin (IL) levels. The lungs were removed for the histopathological evaluation. On day zero, the eosinophil and lymphochte percentages, total protein concentrations, and IL-13 and IL-17A levels in the BALF were significantly increased in the asthma group, proving the efficacy of the experimental model of allergic asthma. On day 7, the MSC-treated group exhibited significant reductions in the eosinophil, lymphocyte, total protein, H2O2, IL-5, IL-13, and IL-17A levels in the BALF, while the IL-10 levels were significantly increased. On day 14, the total cell numbers and lymphocyte, total protein, IL-13, and IL-17A levels in the BALF in the MSC-treated group were significantly decreased. A significant decrease in airway remodeling was observed on days 7 and 14 in almost all bronchioles, which showed reduced inflammatory infiltration, collagen deposition, muscle and epithelial thickening, and mucus production. These results demonstrate that treatment with a single injection of MSCs reduces the pathophysiological events occurring in an experimental model of allergic asthma by controlling the inflammatory process up to 14 d after transplantation.
Collapse
Affiliation(s)
| | - Pedro Vicente Michelotto
- Department of Animal Science, Pontifícia Universidade Católica do
Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - Sérgio Adriane Bezerra de Moura
- Department of Morphology, Campus Universitário Lagoa Nova,
Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte,
Brazil
| | | | | | | | | | | |
Collapse
|
16
|
Son JH, Kim JH, Chang HS, Park JS, Park CS. Relationship of Microbial Profile With Airway Immune Response in Eosinophilic or Neutrophilic Inflammation of Asthmatics. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:412-429. [PMID: 32141256 PMCID: PMC7061157 DOI: 10.4168/aair.2020.12.3.412] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/12/2019] [Accepted: 12/07/2019] [Indexed: 01/24/2023]
Abstract
PURPOSE Different characteristics of airway microbiome in asthmatics may lead to differential immune responses, which in turn cause eosinophilic or neutrophilic airway inflammation. However, the relationships among these factors have yet to be fully elucidated. METHODS Microbes in induced sputum samples were subjected to sequence analysis of 16S rRNA. Airway inflammatory phenotypes were defined as neutrophils (>60%) and eosinophils (>3%), and inflammation endotypes were defined by levels of T helper (Th) 1 (interferon-γ), Th2 (interleukin [IL]-5 and IL-13), Th-17 (IL-17), and innate Th2 (IL-25, IL-33, and thymic stromal lymphopoietin) cytokines, inflammasomes (IL-1β), epithelial activation markers (granulocyte-macrophage colony-stimulating factor and IL-8), and Inflammation (IL-6 and tumor necrosis factor-α) cytokines in sputum supernatants was assessed by enzyme-linked immunosorbent assay. RESULTS The numbers of operational taxonomic units were significantly higher in the mixed (n = 21) and neutrophilic (n = 23) inflammation groups than in the paucigranulocytic inflammation group (n = 19; p < 0.05). At the species level, Granulicatella adiacens, Streptococcus parasanguinis, Streptococcus pneumoniae, Veillonella rogosae, Haemophilus parainfluenzae, and Neisseria perflava levels were significantly higher in the eosinophilic inflammation group (n = 20), whereas JYGU_s levels were significantly higher in the neutrophilic inflammation group compared to the other subtypes (p < 0.05). Additionally, IL-5 and IL-13 concentrations were correlated with the percentage of eosinophils (p < 0.05) and IL-13 levels were positively correlated with the read counts of Porphyromonas pasteri and V. rogosae (p < 0.05). IL-1β concentrations were correlated with the percentage of neutrophils (p < 0.05). had a tendency to be positively correlated with the read count of JYGU_s (p = 0.095), and was negatively correlated with that of S. pneumoniae (p < 0.05). CONCLUSIONS Difference of microbial patterns in airways may induce distinctive endotypes of asthma, which is responsible for the neutrophilic or eosinophilic inflammation in asthma.
Collapse
Affiliation(s)
- Ji Hye Son
- Department of Interdisciplinary Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan, Korea
| | - Jung Hyun Kim
- Department of Internal Medicine, Korean Armed Forces Capital Hospital, Seongnam, Korea
| | - Hun Soo Chang
- Department of Interdisciplinary Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan, Korea.
| | - Jong Sook Park
- Genome Research Center and Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| | - Choon Sik Park
- Genome Research Center and Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| |
Collapse
|
17
|
Allawzi A, McDermott I, Delaney C, Nguyen K, Banimostafa L, Trumpie A, Hernandez-Lagunas L, Riemondy K, Gillen A, Hesselberth J, El Kasmi K, Sucharov CC, Janssen WJ, Stenmark K, Bowler R, Nozik-Grayck E. Redistribution of EC-SOD resolves bleomycin-induced inflammation via increased apoptosis of recruited alveolar macrophages. FASEB J 2019; 33:13465-13475. [PMID: 31560857 PMCID: PMC6894081 DOI: 10.1096/fj.201901038rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/26/2019] [Indexed: 01/16/2023]
Abstract
A human single nucleotide polymorphism (SNP) in the matrix-binding domain of extracellular superoxide dismutase (EC-SOD), with arginine to glycine substitution at position 213 (R213G), redistributes EC-SOD from the matrix into extracellular fluids. We reported that, following bleomycin (bleo), knockin mice harboring the human R213G SNP (R213G mice) exhibit enhanced resolution of inflammation and protection against fibrosis, compared with wild-type (WT) littermates. In this study, we tested the hypothesis that the EC-SOD R213G SNP promotes resolution via accelerated apoptosis of recruited alveolar macrophage (AM). RNA sequencing and Ingenuity Pathway Analysis 7 d postbleo in recruited AM implicated increased apoptosis and blunted inflammatory responses in the R213G strain exhibiting accelerated resolution. We validated that the percentage of apoptosis was significantly elevated in R213G recruited AM vs. WT at 3 and 7 d postbleo in vivo. Recruited AM numbers were also significantly decreased in R213G mice vs. WT at 3 and 7 d postbleo. ChaC glutathione-specific γ-glutamylcyclotransferase 1 (Chac1), a proapoptotic γ-glutamyl cyclotransferase that depletes glutathione, was increased in the R213G recruited AM. Overexpression of Chac1 in vitro induced apoptosis of macrophages and was blocked by administration of cell-permeable glutathione. In summary, we provide new evidence that redistributed EC-SOD accelerates the resolution of inflammation through redox-regulated mechanisms that increase recruited AM apoptosis.-Allawzi, A., McDermott, I., Delaney, C., Nguyen, K., Banimostafa, L., Trumpie, A., Hernandez-Lagunas, L., Riemondy, K., Gillen, A., Hesselberth, J., El Kasmi, K., Sucharov, C. C., Janssen, W. J., Stenmark, K., Bowler, R., Nozik-Grayck, E. Redistribution of EC-SOD resolves bleomycin-induced inflammation via increased apoptosis of recruited alveolar macrophages.
Collapse
Affiliation(s)
- Ayed Allawzi
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ivy McDermott
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cassidy Delaney
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kianna Nguyen
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laith Banimostafa
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ashley Trumpie
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laura Hernandez-Lagunas
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kent Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Austin Gillen
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jay Hesselberth
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Karim El Kasmi
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Boehringer Ingelheim Pharma, Biberach, Germany
| | - Carmen C. Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; and
| | | | - Kurt Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Russell Bowler
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Eva Nozik-Grayck
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
18
|
Cancela M, Paes JA, Moura H, Barr JR, Zaha A, Ferreira HB. Unraveling oxidative stress response in the cestode parasite Echinococcus granulosus. Sci Rep 2019; 9:15876. [PMID: 31685918 PMCID: PMC6828748 DOI: 10.1038/s41598-019-52456-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/18/2019] [Indexed: 01/19/2023] Open
Abstract
Cystic hydatid disease (CHD) is a worldwide neglected zoonotic disease caused by Echinococcus granulosus. The parasite is well adapted to its host by producing protective molecules that modulate host immune response. An unexplored issue associated with the parasite's persistence in its host is how the organism can survive the oxidative stress resulting from parasite endogenous metabolism and host defenses. Here, we used hydrogen peroxide (H2O2) to induce oxidative stress in E. granulosus protoescoleces (PSCs) to identify molecular pathways and antioxidant responses during H2O2 exposure. Using proteomics, we identified 550 unique proteins; including 474 in H2O2-exposed PSCs (H-PSCs) samples and 515 in non-exposed PSCs (C-PSCs) samples. Larger amounts of antioxidant proteins, including GSTs and novel carbonyl detoxifying enzymes, such as aldo-keto reductase and carbonyl reductase, were detected after H2O2 exposure. Increased concentrations of caspase-3 and cathepsin-D proteases and components of the 26S proteasome were also detected in H-PSCs. Reduction of lamin-B and other caspase-substrate, such as filamin, in H-PSCs suggested that molecular events related to early apoptosis were also induced. We present data that describe proteins expressed in response to oxidative stress in a metazoan parasite, including novel antioxidant enzymes and targets with potential application to treatment and prevention of CHD.
Collapse
Affiliation(s)
- Martín Cancela
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil.
| | - Jéssica A Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Hercules Moura
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John R Barr
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | - Henrique B Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil. .,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
19
|
DeVallance E, Li Y, Jurczak MJ, Cifuentes-Pagano E, Pagano PJ. The Role of NADPH Oxidases in the Etiology of Obesity and Metabolic Syndrome: Contribution of Individual Isoforms and Cell Biology. Antioxid Redox Signal 2019; 31:687-709. [PMID: 31250671 PMCID: PMC6909742 DOI: 10.1089/ars.2018.7674] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Highly prevalent in Western cultures, obesity, metabolic syndrome, and diabetes increase the risk of cardiovascular morbidity and mortality and cost health care systems billions of dollars annually. At the cellular level, obesity, metabolic syndrome, and diabetes are associated with increased production of reactive oxygen species (ROS). Increased levels of ROS production in key organ systems such as adipose tissue, skeletal muscle, and the vasculature cause disruption of tissue homeostasis, leading to increased morbidity and risk of mortality. More specifically, growing evidence implicates the nicotinamide adenine dinucleotide phosphate oxidase (NOX) enzymes in these pathologies through impairment of insulin signaling, inflammation, and vascular dysfunction. The NOX family of enzymes is a major driver of redox signaling through its production of superoxide anion, hydrogen peroxide, and attendant downstream metabolites acting on redox-sensitive signaling molecules. Recent Advances: The primary goal of this review is to highlight recent advances and survey our present understanding of cell-specific NOX enzyme contributions to metabolic diseases. Critical Issues: However, due to the short half-lives of individual ROS and/or cellular defense systems, radii of ROS diffusion are commonly short, often restricting redox signaling and oxidant stress to localized events. Thus, special emphasis should be placed on cell type and subcellular location of NOX enzymes to better understand their role in the pathophysiology of metabolic diseases. Future Directions: We discuss the targeting of NOX enzymes as potential therapy and bring to light potential emerging areas of NOX research, microparticles and epigenetics, in the context of metabolic disease.
Collapse
Affiliation(s)
- Evan DeVallance
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yao Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick J Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Galvão I, Athayde RM, Perez DA, Reis AC, Rezende L, de Oliveira VLS, Rezende BM, Gonçalves WA, Sousa LP, Teixeira MM, Pinho V. ROCK Inhibition Drives Resolution of Acute Inflammation by Enhancing Neutrophil Apoptosis. Cells 2019; 8:E964. [PMID: 31450835 PMCID: PMC6769994 DOI: 10.3390/cells8090964] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Uncontrolled inflammation leads to tissue damage and it is central for the development of chronic inflammatory diseases and autoimmunity. An acute inflammatory response is finely regulated by the action of anti-inflammatory and pro-resolutive mediators, culminating in the resolution of inflammation and restoration of homeostasis. There are few studies investigating intracellular signaling pathways associated with the resolution of inflammation. Here, we investigate the role of Rho-associated kinase (ROCK), a serine/threonine kinase, in a model of self-resolving neutrophilic inflammatory. We show that ROCK activity, evaluated by P-MYPT-1 kinetics, was higher during the peak of lipopolysaccharide-induced neutrophil influx in the pleural cavity of mice. ROCK inhibition by treatment with Y-27632 decreased the accumulation of neutrophils in the pleural cavity and was associated with an increase in apoptotic events and efferocytosis, as evaluated by an in vivo assay. In a model of gout, treatment with Y-27632 reduced neutrophil accumulation, IL-1β levels and hypernociception in the joint. These were associated with reduced MYPT and IκBα phosphorylation levels and increased apoptosis. Finally, inhibition of ROCK activity also induced apoptosis in human neutrophils and destabilized cytoskeleton, extending the observed effects to human cells. Taken together, these data show that inhibition of the ROCK pathway might represent a potential therapeutic target for neutrophilic inflammatory diseases.
Collapse
Affiliation(s)
- Izabela Galvão
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Rayssa M Athayde
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Denise A Perez
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Alesandra C Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Luisa Rezende
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vivian Louise S de Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Barbara M Rezende
- Departamento de Enfermagem Básica, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil
| | - William A Gonçalves
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Lirlândia P Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia; Universidade Federal de Minas Gerais, Belo Horizonte 312701-901, Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| |
Collapse
|
21
|
|
22
|
Perez DA, Galvão I, Athayde RM, Rezende BM, Vago JP, Silva JD, Reis AC, Ribeiro LS, Gomes JHS, Pádua RM, Braga FC, Sousa LP, Teixeira MM, Pinho V. Inhibition of the sphingosine-1-phosphate pathway promotes the resolution of neutrophilic inflammation. Eur J Immunol 2019; 49:1038-1051. [PMID: 30939218 DOI: 10.1002/eji.201848049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/27/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022]
Abstract
Sphingosine-1-phosphate (S1P) is an important sphingolipid derived from plasma membrane and has a known role in productive phase of inflammation, but its role in neutrophil survival and resolution phase of inflammation is unknown. Here, we investigated the effects of inhibition of S1P receptors and the blockade of S1P synthesis in BALB/c mice and human neutrophils. S1P and S1PR1-3 receptors expression were increased in cells from the pleural cavity stimulated with LPS. Using different antagonists of S1PRs and inhibitors of different steps of the metabolic pathway of S1P production, we show that S1P and its receptors are involved in regulating neutrophil survival and resolution of inflammation in the pleural cavity. Given the role of the S1P-S1PR axis in resolution of inflammation, we sought to identify whether blockade at different levels of the sphingosine-1-phosphate synthesis pathway could affect neutrophil survival in vitro. Inhibitors of the S1P pathway were also able to induce human neutrophil apoptosis. In addition, blockade of S1P synthesis or its receptor facilitated the efferocytosis of apoptotic neutrophil. Taken together, our data demonstrate a fundamental role for S1P in regulating the outcome of inflammatory responses, and position S1P-S1PR axis as a potential target for treatment of neutrophilic inflammation.
Collapse
Affiliation(s)
- Denise A Perez
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Galvão
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rayssa M Athayde
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Barbara M Rezende
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana P Vago
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Julia D Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alesandra C Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas S Ribeiro
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José H S Gomes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo M Pádua
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernão C Braga
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
23
|
Smith CJ, Perfetti TA, King JA. Indirect oxidative stress from pulmonary inflammation exceeds direct oxidative stress from chemical damage to mitochondria. TOXICOLOGY RESEARCH AND APPLICATION 2019. [DOI: 10.1177/2397847319842845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Carr J Smith
- Albemarle Corporation, Charlotte, NC, USA
- Department of Nurse Anesthesia, Florida State University, Tallahassee, FL, USA
| | | | - Judy A King
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, LA, USA
| |
Collapse
|
24
|
Robida PA, Puzzovio PG, Pahima H, Levi-Schaffer F, Bochner BS. Human eosinophils and mast cells: Birds of a feather flock together. Immunol Rev 2019; 282:151-167. [PMID: 29431215 DOI: 10.1111/imr.12638] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While the origin of the phrase "birds of a feather flock together" is unclear, it has been in use for centuries and is typically employed to describe the phenomenon that people with similar tastes or interests tend to seek each other out and congregate together. In this review, we have co-opted this phrase to compare innate immune cells of related origin, the eosinophil and mast cell, because they very often accumulate together in tissue sites under both homeostatic and inflammatory conditions. To highlight overlapping yet distinct features, their hematopoietic development, cell surface phenotype, mediator release profiles and roles in diseases have been compared and contrasted. What emerges is a sense that these two cell types often interact with each other and their tissue environment to provide synergistic contributions to a variety of normal and pathologic immune responses.
Collapse
Affiliation(s)
- Piper A Robida
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadas Pahima
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
25
|
Bronchioloalveolar lung tumors induced in “mice only” by non-genotoxic chemicals are not useful for quantitative assessment of pulmonary adenocarcinoma risk in humans. TOXICOLOGY RESEARCH AND APPLICATION 2018. [DOI: 10.1177/2397847318816617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chemicals classified as known human carcinogens by International Agency for Research on Cancer (IARC) show a low level of concordance between rodents and humans for induction of pulmonary carcinoma. Rats and mice exposed via inhalation for 2 years show a low level of concordance in both tumor development and organ site location. In 2-year inhalation studies using rats and mice, when pulmonary tumors are seen in only male or female mice or both, but not in either sex of rat, there is a high probability that the murine pulmonary tumor has been produced via Clara cell or club cell (CC) metabolism of the inhaled chemical to a cytotoxic metabolite. Cytotoxicity-induced mitogenesis increases mutagenesis via amplification of the background mutation rate. If the chemical being tested is also negative in the Ames Salmonella mutagenicity assay, and only mouse pulmonary tumors are induced, the probability that this pulmonary tumor is not relevant to human lung cancer risk goes even higher. Mice have a larger percentage of CCs in their distal airways than rats, and a much larger percentage than in humans. The CCs of mice have a much higher concentration of metabolic enzymes capable of metabolizing xenobiotics than CCs in either rats or humans. A principal threat to validity of extrapolating from the murine model lies in the unique capacity of murine CCs to metabolize a significant spectrum of xenobiotics which in turn produces toxicants not seen in rat or human pulmonary pathophysiology.
Collapse
|
26
|
Correia-da-Silva M, Rocha V, Marques C, Deus CM, Marques-Carvalho A, Oliveira PJ, Palmeira A, Pinto M, Sousa E, Sousa Lobo JM, Almeida IF. SULFATION PATHWAYS: Potential benefits of a sulfated resveratrol derivative for topical application. J Mol Endocrinol 2018; 61:M27-M39. [PMID: 29588426 DOI: 10.1530/jme-18-0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/27/2018] [Indexed: 12/15/2022]
Abstract
Resveratrol (RSV) is a polyphenolic compound with antioxidant, anti-inflammatory and anti-aging properties partly associated with sirtuin 1 (SIRT1)-activation in the skin. However, poor water solubility may limit RSV efficacy. This work aimed to clarify the interest of a new synthetic water-soluble RSV derivative (resveratrol glucoside sulfate, RSV-GS) for topical application. Resveratrol glucoside sulfate was synthesized using microwave-assisted sulfation. Cytotoxicity assays were performed with the keratinocyte HaCaT cell line, using MTT reduction, neutral red uptake, Alamar Blue/resazurin reduction, trypan blue exclusion and measurement of ATP concentration. Western blotting was used to evaluate SIRT1 protein content. Regarding SIRT1 binding, an in silico docking study was performed, using AutoDock Vina. Our results showed that the synthetic derivative RSV-GS was 1000 times more soluble in water than RSV and its non-sulfated glucoside. No relevant decrease in HaCaT cell viability was observed for concentrations up to 5 mM for RSV-GS, and up to 500 μM for resveratrol glucoside, while a significant decrease in HaCaT viability occurred from 100 μM for RSV. RSV-GS and RSV showed a similar behavior regarding protective effect against oxidative stress-induced cytotoxicity. SIRT1 protein content increased after treatment with 500 μM of RSV-GS and 100 μM of RSV. Moreover, in silico studies predicted that RSV-GS binds more stably to SIRT1 with a lower binding free energy than RSV. Although these results support the possible use of RSV-GS in topical formulations, in vivo safety and efficacy studies are needed before considering the use of RSV-GS in commercial products.
Collapse
Affiliation(s)
- Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Matosinhos, Portugal
| | - Verónica Rocha
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy University of Porto, Porto, Portugal
| | - Cláudia Marques
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy University of Porto, Porto, Portugal
| | - Cláudia M Deus
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, Cantanhede, Portugal
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Adriana Marques-Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, Cantanhede, Portugal
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, Cantanhede, Portugal
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Andreia Palmeira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Matosinhos, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Matosinhos, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Matosinhos, Portugal
| | - José Manuel Sousa Lobo
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy University of Porto, Porto, Portugal
| | - Isabel Filipa Almeida
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy University of Porto, Porto, Portugal
| |
Collapse
|
27
|
Magalhaes GS, Barroso LC, Reis AC, Rodrigues-Machado MG, Gregório JF, Motta-Santos D, Oliveira AC, Perez DA, Barcelos LS, Teixeira MM, Santos RAS, Pinho V, Campagnole-Santos MJ. Angiotensin-(1-7) Promotes Resolution of Eosinophilic Inflammation in an Experimental Model of Asthma. Front Immunol 2018; 9:58. [PMID: 29434591 PMCID: PMC5797293 DOI: 10.3389/fimmu.2018.00058] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/09/2018] [Indexed: 01/31/2023] Open
Abstract
Defective apoptosis of eosinophils, the main leukocyte in the pathogenesis of asthma, and delay in its removal lead to lung damage and loss of pulmonary function due to failure in the resolution of inflammation. Here, we investigated the ability of angiotensin-(1-7) [Ang-(1-7)], a pivotal peptide of the renin-angiotensin system, to promote resolution of an allergic lung inflammatory response. Balb/c mice were sensitized and challenged with ovalbumin and treated with Ang-(1-7) at the peak of the inflammatory process. Bronchoalveolar lavage (BAL) fluid and lungs were collected 24 h after treatment. Different lung lobes were processed for histology to evaluate inflammatory cell infiltration, airway and pulmonary remodeling, total collagen staining, and measurements of (i) collagen I and III mRNA expression by qRT-PCR; (ii) ERK1/2, IκB-α, and GATA3 protein levels by Western blotting; and (iii) eosinophilic peroxidase activity. Total number of inflammatory cells, proportion of apoptotic eosinophils and immunofluorescence for caspase 3 and NF-κB in leukocytes were evaluated in the BAL. Mas receptor immunostaining was evaluated in mouse and human eosinophils. Engulfment of human polimorphonuclear cells by macrophages, efferocytosis, was evaluated in vivo. Ang-(1-7) reduced eosinophils in the lung and in the BAL, increased the number of apoptotic eosinophils, shown by histology criteria and by increase in caspase 3 immunostaining. Furthermore, Ang-(1-7) decreased NF-kB immunostaining in eosinophils, reduced GATA3, ERK1/2, and IκB-α expression in the lung and decreased pulmonary remodeling and collagen deposition. Importantly, Ang-(1-7) increased efferocytosis. Our results demonstrate, for the first time, Ang-(1-7) activates events that are crucial for resolution of the inflammatory process of asthma and promotion of the return of lung homeostasis, indicating Ang-(1-7) as novel endogenous inflammation-resolving mediator.
Collapse
Affiliation(s)
- Giselle S Magalhaes
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lívia C Barroso
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alesandra C Reis
- Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Maria G Rodrigues-Machado
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana F Gregório
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Daisy Motta-Santos
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Aline C Oliveira
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Denise A Perez
- Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucíola S Barcelos
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Robson A S Santos
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Maria Jose Campagnole-Santos
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
28
|
Nesi RT, Barroso MV, Souza Muniz VD, de Arantes AC, Martins MA, Brito Gitirana LD, Neves JS, Benjamim CF, Lanzetti M, Valenca SS. Pharmacological modulation of reactive oxygen species (ROS) improves the airway hyperresponsiveness by shifting the Th1 response in allergic inflammation induced by ovalbumin. Free Radic Res 2017; 51:708-722. [PMID: 28776450 DOI: 10.1080/10715762.2017.1364377] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Asthma is an allergic inflammation driven by the Th2 immune response with release of cytokines such as IL-4 and IL-13, which contribute to the airflow limitations and airway hyperresponsiveness (AHR). The involvement of oxidative stress in this process is well-established, but the specific role of the superoxide anion and nitric oxide in asthma are poorly understood. Thus, the aim of this study was to investigate the mechanisms underlying the superoxide anion/nitric oxide production and detoxification in a murine asthma model. BALB/c male mice were sensitised and challenged with ovalbumin (OVA). Pretreatments with either apocynin (14 mg/kg) or allopurinol (25 mg/kg) (superoxide anion synthesis inhibitors), aminoguanidine (50 mg/kg) (nitric oxide synthesis inhibitor) or diethyldithiocarbamate (100 mg/kg) (superoxide dismutase inhibitor) were performed 1 h before the challenge. Our data showed that apocynin and allopurinol ameliorated AHR and reduced eosinophil peroxidase, as well as IL-4 and IL-13 levels. Apocynin also abrogated leukocyte peribronchiolar infiltrate and increased IL-1β secretion. Aminoguanidine preserved lung function and shifted the Th2 to the Th1 response with a reduction of IL-4 and IL-13 and increase in IL-1β production. Diethyldithiocarbamate prevented neither allergen-induced AHR nor eosinophil peroxidase (EPO) generation. All treatments protected against oxidative damage observed by a reduction in TBARS levels. Taken together, these results suggest that AHR in an asthma model can be avoided by the down-regulation of superoxide anion and nitric oxide synthesis in a mechanism that is independent of a redox response. This down-regulation is also associated with a transition in the typical immunological Th2 response toward the Th1 profile.
Collapse
Affiliation(s)
- Renata Tiscoski Nesi
- a Federal University of Rio de Janeiro, Institute of Biomedical Sciences , Rio de Janeiro , Brazil
| | - Marina Valente Barroso
- b Federal University of Rio de Janeiro, Institute of Microbiology Paulo Góes , Rio de Janeiro , Brazil
| | - Valdirene de Souza Muniz
- a Federal University of Rio de Janeiro, Institute of Biomedical Sciences , Rio de Janeiro , Brazil
| | - Ana Carolina de Arantes
- c Laboratory of Inflammation , Fundacao Oswaldo Cruz, Oswaldo Cruz Institute , Rio de Janeiro , Brazil
| | - Marco Aurélio Martins
- c Laboratory of Inflammation , Fundacao Oswaldo Cruz, Oswaldo Cruz Institute , Rio de Janeiro , Brazil
| | - Lycia de Brito Gitirana
- a Federal University of Rio de Janeiro, Institute of Biomedical Sciences , Rio de Janeiro , Brazil
| | - Josiane Sabbadini Neves
- a Federal University of Rio de Janeiro, Institute of Biomedical Sciences , Rio de Janeiro , Brazil
| | - Cláudia Farias Benjamim
- a Federal University of Rio de Janeiro, Institute of Biomedical Sciences , Rio de Janeiro , Brazil
| | - Manuella Lanzetti
- a Federal University of Rio de Janeiro, Institute of Biomedical Sciences , Rio de Janeiro , Brazil
| | - Samuel Santos Valenca
- a Federal University of Rio de Janeiro, Institute of Biomedical Sciences , Rio de Janeiro , Brazil
| |
Collapse
|
29
|
Caffarelli C, Santamaria F, Di Mauro D, Mastrorilli C, Mirra V, Bernasconi S. Progress in pediatrics in 2015: choices in allergy, endocrinology, gastroenterology, genetics, haematology, infectious diseases, neonatology, nephrology, neurology, nutrition, oncology and pulmonology. Ital J Pediatr 2016; 42:75. [PMID: 27566421 PMCID: PMC5002164 DOI: 10.1186/s13052-016-0288-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/10/2016] [Indexed: 12/29/2022] Open
Abstract
This review focuses key advances in different pediatric fields that were published in Italian Journal of Pediatrics and in international journals in 2015. Weaning studies continue to show promise for preventing food allergy. New diagnostic tools are available for identifying the allergic origin of allergic-like symptoms. Advances have been reported in obesity, short stature and autoimmune endocrine disorders. New molecules are offered to reduce weight gain and insulin-resistance in obese children. Regional investigations may provide suggestions for preventing short stature. Epidemiological studies have evidenced the high incidence of Graves' disease and Hashimoto's thyroiditis in patients with Down syndrome. Documentation of novel risk factors for celiac disease are of use to develop strategies for prevention in the population at-risk. Diagnostic criteria for non-celiac gluten sensitivity have been reported. Negative effect on nervous system development of the supernumerary X chromosome in Klinefelter syndrome has emerged. Improvements have been made in understanding rare diseases such as Rubinstein-Taybi syndrome. Eltrombopag is an effective therapy for immune trombocytopenia. Children with sickle-cell anemia are at risk for nocturnal enuresis. Invasive diseases caused by Streptococcus pyogenes are still common despite of vaccination. No difference in frequency of antibiotic prescriptions for acute otitis media between before the publication of the national guideline and after has been found. The importance of timing of iron administration in low birth weight infants, the effect of probiotics for preventing necrotising enterocolitis and perspectives for managing jaundice and cholestasis in neonates have been highlighted. New strategies have been developed to reduce the risk for relapse in nephrotic syndrome including prednisolone during upper respiratory infection. Insights into the pathophysiology of cerebral palsy, arterial ischemic stroke and acute encephalitis may drive advances in treatment. Recommendations on breastfeeding and complementary feeding have been updated. Novel treatments for rhabdomyosarcoma should be considered for paediatric patients. Control of risk factors for bronchiolitis and administration of pavilizumab for preventing respiratory syncytial virus infection may reduce hospitalization. Identification of risk factors for hospitalization in children with wheezing can improve the management of this disease. Deletions or mutations in genes encoding proteins for surfactant function may cause diffuse lung disease.
Collapse
Affiliation(s)
- Carlo Caffarelli
- Clinica Pediatrica, Department of Clinical and Experimental Medicine, Azienda Ospedaliera-Universitaria, University of Parma, Parma, Italy
| | - Francesca Santamaria
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Dora Di Mauro
- Clinica Pediatrica, Department of Clinical and Experimental Medicine, Azienda Ospedaliera-Universitaria, University of Parma, Parma, Italy
| | - Carla Mastrorilli
- Clinica Pediatrica, Department of Clinical and Experimental Medicine, Azienda Ospedaliera-Universitaria, University of Parma, Parma, Italy
| | - Virginia Mirra
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Sergio Bernasconi
- Pediatrics Honorary Member University Faculty, G D’Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
30
|
Waiskopf N, Ben-Shahar Y, Galchenko M, Carmel I, Moshitzky G, Soreq H, Banin U. Photocatalytic Reactive Oxygen Species Formation by Semiconductor-Metal Hybrid Nanoparticles. Toward Light-Induced Modulation of Biological Processes. NANO LETTERS 2016; 16:4266-73. [PMID: 27224678 DOI: 10.1021/acs.nanolett.6b01298] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Semiconductor-metal hybrid nanoparticles manifest efficient light-induced spatial charge separation at the semiconductor-metal interface, as demonstrated by their use for hydrogen generation via water splitting. Here, we pioneer a study of their functionality as efficient photocatalysts for the formation of reactive oxygen species. We observed enhanced photocatalytic activity forming hydrogen peroxide, superoxide, and hydroxyl radicals upon light excitation, which was significantly larger than that of the semiconductor nanocrystals, attributed to the charge separation and the catalytic function of the metal tip. We used this photocatalytic functionality for modulating the enzymatic activity of horseradish peroxidase as a model system, demonstrating the potential use of hybrid nanoparticles as active agents for controlling biological processes through illumination. The capability to produce reactive oxygen species by illumination on-demand enhances the available peroxidase-based tools for research and opens the path for studying biological processes at high spatiotemporal resolution, laying the foundation for developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Nir Waiskopf
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology ‡Department of Biological Chemistry and the Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem , Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Yuval Ben-Shahar
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology ‡Department of Biological Chemistry and the Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem , Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Michael Galchenko
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology ‡Department of Biological Chemistry and the Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem , Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Inbal Carmel
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology ‡Department of Biological Chemistry and the Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem , Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Gilli Moshitzky
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology ‡Department of Biological Chemistry and the Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem , Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Hermona Soreq
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology ‡Department of Biological Chemistry and the Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem , Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology ‡Department of Biological Chemistry and the Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem , Safra Campus, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
31
|
Nascimento da Silva LC, Bezerra Filho CM, Paula RAD, Silva e Silva CS, Oliveira de Souza LI, Silva MVD, Correia MTDS, Figueiredo RCBQD. In vitrocell-based assays for evaluation of antioxidant potential of plant-derived products. Free Radic Res 2016; 50:801-12. [DOI: 10.1080/10715762.2016.1193668] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Robb CT, Regan KH, Dorward DA, Rossi AG. Key mechanisms governing resolution of lung inflammation. Semin Immunopathol 2016; 38:425-48. [PMID: 27116944 PMCID: PMC4896979 DOI: 10.1007/s00281-016-0560-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/14/2016] [Indexed: 12/11/2022]
Abstract
Innate immunity normally provides excellent defence against invading microorganisms. Acute inflammation is a form of innate immune defence and represents one of the primary responses to injury, infection and irritation, largely mediated by granulocyte effector cells such as neutrophils and eosinophils. Failure to remove an inflammatory stimulus (often resulting in failed resolution of inflammation) can lead to chronic inflammation resulting in tissue injury caused by high numbers of infiltrating activated granulocytes. Successful resolution of inflammation is dependent upon the removal of these cells. Under normal physiological conditions, apoptosis (programmed cell death) precedes phagocytic recognition and clearance of these cells by, for example, macrophages, dendritic and epithelial cells (a process known as efferocytosis). Inflammation contributes to immune defence within the respiratory mucosa (responsible for gas exchange) because lung epithelia are continuously exposed to a multiplicity of airborne pathogens, allergens and foreign particles. Failure to resolve inflammation within the respiratory mucosa is a major contributor of numerous lung diseases. This review will summarise the major mechanisms regulating lung inflammation, including key cellular interplays such as apoptotic cell clearance by alveolar macrophages and macrophage/neutrophil/epithelial cell interactions. The different acute and chronic inflammatory disease states caused by dysregulated/impaired resolution of lung inflammation will be discussed. Furthermore, the resolution of lung inflammation during neutrophil/eosinophil-dominant lung injury or enhanced resolution driven via pharmacological manipulation will also be considered.
Collapse
Affiliation(s)
- C T Robb
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - K H Regan
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - D A Dorward
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - A G Rossi
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
33
|
The interplay between inflammation and metabolism in rheumatoid arthritis. Cell Death Dis 2015; 6:e1887. [PMID: 26379192 PMCID: PMC4650442 DOI: 10.1038/cddis.2015.246] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 07/29/2015] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by extensive synovitis resulting in erosions of articular cartilage and marginal bone that lead to joint destruction. The autoimmune process in RA depends on the activation of immune cells, which use intracellular kinases to respond to external stimuli such as cytokines, immune complexes, and antigens. An intricate cytokine network participates in inflammation and in perpetuation of disease by positive feedback loops promoting systemic disorder. The widespread systemic effects mediated by pro-inflammatory cytokines in RA impact on metabolism and in particular in lymphocyte metabolism. Moreover, RA pathobiology seems to share some common pathways with atherosclerosis, including endothelial dysfunction that is related to underlying chronic inflammation. The extent of the metabolic changes and the types of metabolites seen may be good markers of cytokine-mediated inflammatory processes in RA. Altered metabolic fingerprints may be useful in predicting the development of RA in patients with early arthritis as well as in the evaluation of the treatment response. Evidence supports the role of metabolomic analysis as a novel and nontargeted approach for identifying potential biomarkers and for improving the clinical and therapeutical management of patients with chronic inflammatory diseases. Here, we review the metabolic changes occurring in the pathogenesis of RA as well as the implication of the metabolic features in the treatment response.
Collapse
|