1
|
Yalta K, Madias JE, Kounis NG, Y-Hassan S, Polovina M, Altay S, Mebazaa A, Yilmaz MB, Lopatin Y, Mamas MA, Gil RJ, Thamman R, Almaghraby A, Bozkurt B, Bajraktari G, Fink T, Traykov V, Manzo-Silberman S, Mirzoyev U, Sokolovic S, Kipiani ZV, Linde C, Seferovic PM. Takotsubo Syndrome: An International Expert Consensus Report on Practical Challenges and Specific Conditions (Part-2: Specific Entities, Risk Stratification and Challenges After Recovery). Balkan Med J 2024; 41:442-457. [PMID: 39417538 PMCID: PMC11589209 DOI: 10.4274/balkanmedj.galenos.2024.2024-9-99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Takotsubo syndrome (TTS) still remains as an enigmatic phenomenon. In particular, long-term challenges (including clinical recurrence and persistent symptoms) and specific entities in the setting of TTS have been the evolving areas of interest. On the other hand, a significant gap still exists regarding the proper risk-stratification of this phenomenon in the short and long terms. The present paper, the second part (part-2) of the consensus report, aims to discuss less well-known aspects of TTS including specific entities, challenges after recovery and risk-stratification.
Collapse
Affiliation(s)
- Kenan Yalta
- Department of Cardiology, Trakya University Faculty of Medicine, Edirne, Türkiye
| | - John E Madias
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, Elmhurst Hospital Center, Elmhurst, NY, United States of America
| | - Nicholas G Kounis
- Department of Cardiology, University of Patras Medical School, Patras, Greece
| | - Shams Y-Hassan
- Coronary Artery Disease Area, Heart and Vascular Theme, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Marija Polovina
- Department of Cardiology, University of Belgrade, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Servet Altay
- Department of Cardiology, Trakya University Faculty of Medicine, Edirne, Türkiye
| | - Alexandre Mebazaa
- University Paris Cite, Department of Anesthesia-Burn-Critical Care, Université de Paris, UMR Inserm MASCOT; APHP Saint Louis Lariboisière University Hospitals, Paris, France
| | - Mehmet Birhan Yilmaz
- Department of Cardiology, Dokuz Eylül University Faculty of Medicine, İzmir, Türkiye
| | - Yuri Lopatin
- Department of Cardiology, Volgograd State Medical University, Regional Cardiology Centre, Volgograd, Russia
| | - Mamas A Mamas
- Department of Cardiology, Centre for Prognosis Research, Keele University, Stoke-on-Trent, United Kingdom
| | - Robert J Gil
- Department of Cardiology, National Medical Institute of the Ministry of Internal Affairs and Administration, Warsaw, Poland
| | - Ritu Thamman
- Department of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Abdallah Almaghraby
- Department of Cardiology, Ibrahim Bin Hamad Obaidallah Hospital, EHS, Ras Al Khaimah, United Arab Emirates
| | - Biykem Bozkurt
- Department of Cardiology, Baylor College of Medicine, Houston TX, United States of America
| | - Gani Bajraktari
- Department of Cardiology, University Clinical Centre of Kosova, Prishtina, Kosovo
- University of Prishtina Faculty of Medicine, Prishtina, Kosovo
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Thomas Fink
- Department of Cardiology, Division of Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Vassil Traykov
- Department of Cardiology, Division of Invasive Electrophysiology, Acıbadem City Clinic Tokuda University Hospital, Sofia, Bulgaria
| | - Stephane Manzo-Silberman
- Department of Cardiology, Pitié-Salpêtrière Hospital, Institute of Cardiology, ACTION Study Group, Sorbonne University, Paris, France
| | - Ulvi Mirzoyev
- Medical Center of The Ministry of Emergency Situations of Azerbaijan; President of Azerbaijan Society of Cardiology, Baku, Azerbaijan
| | - Sekib Sokolovic
- Department of Cardiology, Cardiology and Rheumatology Hospital, Sarajevo University Clinical Center, Sarajevo, Bosnia Herzegovina
| | | | - Cecilia Linde
- Department of Cardiology, Karolinska Institutet, Stockholm, Sweden
- Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Petar M Seferovic
- Department of Cardiology, Serbian Academy of Sciences and Arts and Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Gaddam RR, Amalkar VS, Sali VK, Nakuluri K, Jacobs JS, Kim YR, Li Q, Bahal R, Irani K, Vikram A. Role of miR-204 in segmental cardiac effects of phenylephrine and pressure overload. Biochem Biophys Res Commun 2023; 675:85-91. [PMID: 37454401 DOI: 10.1016/j.bbrc.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Cardiotoxicity caused by adrenergic receptor agonists overdosing or stress-induced catecholamine release promotes cardiomyopathy, resembling Takotsubo cardiomyopathy (TC). TC is characterized by transient regional systolic dysfunction of the left ventricle. The animal models of TC and modalities for assessing regional wall motion abnormalities in animal models are lacking. We previously reported the protective role of a small noncoding microRNA-204-5p (miR-204) in cardiomyopathies, but its role in TC remains unknown. Here we compared the impact of miR-204 absence on phenylephrine (PE)-induced and transaortic constriction (TAC)-induced changes in cardiac muscle motion in the posterior and anterior apical, mid, and basal segments of the left ventricle using 2-dimensional speckle-tracking echocardiography (2-STE). Wildtype and miR-204-/- mice were subjected to cardiac stress in the form of PE for four weeks or TAC-induced pressure overload for five weeks. PE treatment increased longitudinal and radial motion in the apex of the left ventricle and shortened the peak motion time of all left ventricle segments. The TAC led to decreased longitudinal and radial motion in the left ventricle segments, and there was no difference in the peak motion time. Compared to wildtype mice, PE-induced peak cardiac muscle motion time in the anterior base of the left ventricle was significantly earlier in the miR-204-/- mice. There was no difference in TAC-induced peak cardiac muscle motion time between wildtype and miR-204-/- mice. Our findings demonstrate that PE and TAC induce regional wall motion abnormalities that 2-STE can detect. It also highlights the role of miR-204 in regulating cardiac muscle motion during catecholamine-induced cardiotoxicity.
Collapse
Affiliation(s)
- Ravinder Reddy Gaddam
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, IA, USA; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Veda Sudhir Amalkar
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Veeresh Kumar Sali
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Krishnamurthy Nakuluri
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Julie S Jacobs
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Young-Rae Kim
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Quixia Li
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT-06269, USA
| | - Kaikobad Irani
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, IA, USA; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA, USA; Veterans Affairs Medical Center, Iowa City, IA, USA, Department of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| | - Ajit Vikram
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, IA, USA; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
3
|
Brenner CM, Choudhary M, McCormick MG, Cheung D, Landesberg GP, Wang JF, Song J, Martin TG, Cheung JY, Qu HQ, Hakonarson H, Feldman AM. BAG3: Nature's Quintessential Multi-Functional Protein Functions as a Ubiquitous Intra-Cellular Glue. Cells 2023; 12:937. [PMID: 36980278 PMCID: PMC10047307 DOI: 10.3390/cells12060937] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
BAG3 is a 575 amino acid protein that is found throughout the animal kingdom and homologs have been identified in plants. The protein is expressed ubiquitously but is most prominent in cardiac muscle, skeletal muscle, the brain and in many cancers. We describe BAG3 as a quintessential multi-functional protein. It supports autophagy of both misfolded proteins and damaged organelles, inhibits apoptosis, maintains the homeostasis of the mitochondria, and facilitates excitation contraction coupling through the L-type calcium channel and the beta-adrenergic receptor. High levels of BAG3 are associated with insensitivity to chemotherapy in malignant cells whereas both loss of function and gain of function variants are associated with cardiomyopathy.
Collapse
Affiliation(s)
- Caitlyn M. Brenner
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
| | - Muaaz Choudhary
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
| | - Michael G. McCormick
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - David Cheung
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Gavin P. Landesberg
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ju-Fang Wang
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jianliang Song
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Thomas G. Martin
- Department of Molecular, Cellular and Developmental Biology, Colorado University School of Medicine, Aurora, CO 80045, USA
| | - Joseph Y. Cheung
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hui-Qi Qu
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 191104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 191104, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 191104, USA
- Division of Human Genetics and Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 191104, USA
- Department of Pediatrics, Division of Human Genetics and Division of Pulmonary Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 191104, USA
| | - Arthur M. Feldman
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
4
|
Schino S, Bezzeccheri A, Russo A, Bonanni M, Cosma J, Sangiorgi G, Chiricolo G, Martuscelli E, Santoro F, Mariano EG. Takotsubo Syndrome: The Secret Crosstalk between Heart and Brain. Rev Cardiovasc Med 2023; 24:19. [PMID: 39076872 PMCID: PMC11270389 DOI: 10.31083/j.rcm2401019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 07/31/2024] Open
Abstract
An acute, transient episode of left ventricular dysfunction characterizes Takotsubo syndrome. It represents about 2% of all cases of acute coronary syndrome (ACS), and occurs predominantly in postmenopausal women, generally following a significant physical or emotional stressor. It can be diagnosed based on clinical symptoms and the absence of coronary artery disease on angiography. Ventriculography remains the gold standard for the diagnosis. Despite its transitory characteristic Takotsubo syndrome should not be considered a benign condition since complications occur in almost half of the patients, and the mortality rate reaches 4-5%. Lately, it has been revealed that Takotsubo syndrome can also lead to permanent myocardial damage due to the massive release of catecholamines that leads to myocardial dysfunction. Different mechanisms have been advanced to explain this fascinating syndrome, such as plaque rupture and thrombosis, coronary spasm, microcirculatory dysfunction, catecholamine toxicity, and activation of myocardial survival pathways. Here are still several issues with Takotsubo syndrome that need to be investigated: the complex relationship between the heart and the brain, the risk of permanent myocardial damage, and the impairment of cardiomyocyte. Our review aims to elucidate the pathophysiology and the mechanisms underlying this complex disease to manage the diagnostic and therapeutic algorithms to create a functional synergy between physicians and patients.
Collapse
Affiliation(s)
- Sofia Schino
- Department of Cardiovascular Medicine, University of Rome “Tor Vergata'', 00133 Rome, Italy
| | - Andrea Bezzeccheri
- Department of Cardiovascular Medicine, University of Rome “Tor Vergata'', 00133 Rome, Italy
| | - Alessandro Russo
- Department of Cardiovascular Medicine, University of Rome “Tor Vergata'', 00133 Rome, Italy
| | - Michela Bonanni
- Department of Cardiovascular Medicine, University of Rome “Tor Vergata'', 00133 Rome, Italy
| | - Joseph Cosma
- Department of Cardiovascular Medicine, University of Rome “Tor Vergata'', 00133 Rome, Italy
| | - Giuseppe Sangiorgi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata'', 00133 Rome, Italy
| | - Gaetano Chiricolo
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata'', 00133 Rome, Italy
| | - Eugenio Martuscelli
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata'', 00133 Rome, Italy
| | - Francesco Santoro
- Department of Medical and Surgery Sciences, University of Foggia, 71122 Foggia, Italy
| | | |
Collapse
|
5
|
Sethi Y, Murli H, Kaiwan O, Vora V, Agarwal P, Chopra H, Padda I, Kanithi M, Popoviciu MS, Cavalu S. Broken Heart Syndrome: Evolving Molecular Mechanisms and Principles of Management. J Clin Med 2022; 12:jcm12010125. [PMID: 36614928 PMCID: PMC9821117 DOI: 10.3390/jcm12010125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Broken Heart Syndrome, also known as Takotsubo Syndrome (TS), is sudden and transient dysfunction of the left and/or right ventricle which often mimics Acute Coronary Syndrome (ACS). Japan was the first country to describe this syndrome in the 1990s, and since then it has received a lot of attention from researchers all around the world. Although TS was once thought to be a harmless condition, recent evidence suggests that it may be linked to serious complications and mortality on par with Acute Coronary Syndrome (ACS). The understanding of TS has evolved over the past few years. However, its exact etiology is still poorly understood. It can be classified into two main types: Primary and Secondary TS. Primary TS occurs when the symptoms of myocardial damage, which is typically preceded by emotional stress, are the reason for hospitalization. Secondary TS is seen in patients hospitalized for some other medical, surgical, obstetric, anesthetic, or psychiatric conditions, and the dysfunction develops as a secondary complication due to the activation of the sympathetic nervous system and the release of catecholamines. The etiopathogenesis is now proposed to include adrenergic hormones/stress, decreased estrogen levels, altered microcirculation, endothelial dysfunction, altered inflammatory response via cardiac macrophages, and disturbances in the brain-heart axis. The role of genetics in disease progression is becoming the focus of several upcoming studies. This review focuses on potential pathophysiological mechanisms for reversible myocardial dysfunction observed in TS, and comprehensively describes its epidemiology, clinical presentation, novel diagnostic biomarkers, and evolving principles of management. We advocate for more research into molecular mechanisms and promote the application of current evidence for precise individualized treatment.
Collapse
Affiliation(s)
- Yashendra Sethi
- PearResearch, Dehradun 248001, India
- Department of Medicine, Government Doon Medical College, Dehradun 248001, India
- Correspondence: (Y.S.); (M.S.P.)
| | - Hamsa Murli
- PearResearch, Dehradun 248001, India
- Department of Medicine, Lokmanya Tilak Municipal Medical College, Mumbai 400022, India
| | - Oroshay Kaiwan
- PearResearch, Dehradun 248001, India
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Vidhi Vora
- PearResearch, Dehradun 248001, India
- Department of Medicine, Lokmanya Tilak Municipal Medical College, Mumbai 400022, India
| | - Pratik Agarwal
- PearResearch, Dehradun 248001, India
- Department of Medicine, Lokmanya Tilak Municipal Medical College, Mumbai 400022, India
| | - Hitesh Chopra
- College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Inderbir Padda
- Richmond University Medical Center, Staten Island, NY 10310, USA
| | - Manasa Kanithi
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Mihaela Simona Popoviciu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
- Correspondence: (Y.S.); (M.S.P.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
6
|
Couch LS, Channon K, Thum T. Molecular Mechanisms of Takotsubo Syndrome. Int J Mol Sci 2022; 23:12262. [PMID: 36293121 PMCID: PMC9603071 DOI: 10.3390/ijms232012262] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Takotsubo syndrome (TTS) is a severe but reversible acute heart failure syndrome that occurs following high catecholaminergic stress. TTS patients are similar to those with acute coronary syndrome, with chest pain, dyspnoea and ST segment changes on electrocardiogram, but are characterised by apical akinesia of the left ventricle, with basal hyperkinesia in the absence of culprit coronary artery stenosis. The pathophysiology of TTS is not completely understood and there is a paucity of evidence to guide treatment. The mechanisms of TTS are thought to involve catecholaminergic myocardial stunning, microvascular dysfunction, increased inflammation and changes in cardiomyocyte metabolism. Here, we summarise the available literature to focus on the molecular basis for the pathophysiology of TTS to advance the understanding of the condition.
Collapse
Affiliation(s)
- Liam S. Couch
- Department of Cardiovascular Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Keith Channon
- Department of Cardiovascular Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, 30625 Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine, 30625 Hannover, Germany
| |
Collapse
|
7
|
Singh MV, Dhanabalan K, Verry J, Dokun AO. MicroRNA regulation of BAG3. Exp Biol Med (Maywood) 2022; 247:617-623. [PMID: 35037515 PMCID: PMC9039493 DOI: 10.1177/15353702211066908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
B-cell lymphoma 2 (Bcl-2)-associated athanogene 3 (BAG3) protein is a member of BAG family of co-chaperones that modulates major biological processes, including apoptosis, autophagy, and development to promote cellular adaptive responses to stress stimuli. Although BAG3 is constitutively expressed in several cell types, its expression is also inducible and is regulated by microRNAs (miRNAs). miRNAs are small non-coding RNAs that mostly bind to the 3'-UTR (untranslated region) of mRNAs to inhibit their translation or to promote their degradation. miRNAs can potentially regulate over 50% of the protein-coding genes in a cell and therefore are involved in the regulation of all major functions, including cell differentiation, growth, proliferation, apoptosis, and autophagy. Dysregulation of miRNA expression is associated with pathogenesis of numerous diseases, including peripheral artery disease (PAD). BAG3 plays a critical role in regulating the response of skeletal muscle cells to ischemia by its ability to regulate autophagy. However, the biological role of miRNAs in the regulation of BAG3 in biological processes has only been elucidated recently. In this review, we discuss how miRNA may play a key role in regulating BAG3 expression under normal and pathological conditions.
Collapse
Affiliation(s)
- Madhu V Singh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Karthik Dhanabalan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Joseph Verry
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ayotunde O Dokun
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Lin H, Koren SA, Cvetojevic G, Girardi P, Johnson GV. The role of BAG3 in health and disease: A "Magic BAG of Tricks". J Cell Biochem 2022; 123:4-21. [PMID: 33987872 PMCID: PMC8590707 DOI: 10.1002/jcb.29952] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/25/2021] [Indexed: 01/03/2023]
Abstract
The multi-domain structure of Bcl-2-associated athanogene 3 (BAG3) facilitates its interaction with many different proteins that participate in regulating a variety of biological pathways. After revisiting the BAG3 literature published over the past ten years with Citespace software, we classified the BAG3 research into several clusters, including cancer, cardiomyopathy, neurodegeneration, and viral propagation. We then highlighted recent key findings in each cluster. To gain greater insight into the roles of BAG3, we analyzed five different published mass spectrometry data sets of proteins that co-immunoprecipitate with BAG3. These data gave us insight into universal, as well as cell-type-specific BAG3 interactors in cancer cells, cardiomyocytes, and neurons. Finally, we mapped variable BAG3 SNPs and also mutation data from previous publications to further explore the link between the domains and function of BAG3. We believe this review will provide a better understanding of BAG3 and direct future studies towards understanding BAG3 function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Shon A. Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Gregor Cvetojevic
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Peter Girardi
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Gail V.W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| |
Collapse
|
9
|
Ferradini V, Vacca D, Belmonte B, Mango R, Scola L, Novelli G, Balistreri CR, Sangiuolo F. Genetic and Epigenetic Factors of Takotsubo Syndrome: A Systematic Review. Int J Mol Sci 2021; 22:9875. [PMID: 34576040 PMCID: PMC8471495 DOI: 10.3390/ijms22189875] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/02/2021] [Accepted: 09/11/2021] [Indexed: 01/05/2023] Open
Abstract
Takotsubo syndrome (TTS), recognized as stress's cardiomyopathy, or as left ventricular apical balloon syndrome in recent years, is a rare pathology, described for the first time by Japanese researchers in 1990. TTS is characterized by an interindividual heterogeneity in onset and progression, and by strong predominance in postmenopausal women. The clear causes of these TTS features are uncertain, given the limited understanding of this intriguing syndrome until now. However, the increasing frequency of TTS cases in recent years, and particularly correlated to the SARS-CoV-2 pandemic, leads us to the imperative necessity both of a complete knowledge of TTS pathophysiology for identifying biomarkers facilitating its management, and of targets for specific and effective treatments. The suspect of a genetic basis in TTS pathogenesis has been evidenced. Accordingly, familial forms of TTS have been described. However, a systematic and comprehensive characterization of the genetic or epigenetic factors significantly associated with TTS is lacking. Thus, we here conducted a systematic review of the literature before June 2021, to contribute to the identification of potential genetic and epigenetic factors associated with TTS. Interesting data were evidenced, but few in number and with diverse limitations. Consequently, we concluded that further work is needed to address the gaps discussed, and clear evidence may arrive by using multi-omics investigations.
Collapse
Affiliation(s)
- Valentina Ferradini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Davide Vacca
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, 90134 Palermo, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, 90134 Palermo, Italy
| | - Ruggiero Mango
- Cardiology Unit, Department of Emergency and Critical Care, Policlinico Tor Vergata, 00133 Rome, Italy
| | - Letizia Scola
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
10
|
Arcari L, Limite LR, Adduci C, Sclafani M, Tini G, Palano F, Cosentino P, Cristiano E, Cacciotti L, Russo D, Rubattu S, Volpe M, Autore C, Musumeci MB, Francia P. Novel Imaging and Genetic Risk Markers in Takotsubo Syndrome. Front Cardiovasc Med 2021; 8:703418. [PMID: 34485402 PMCID: PMC8415918 DOI: 10.3389/fcvm.2021.703418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
Takotsubo syndrome (TTS) is an increasingly recognized condition burdened by significant acute and long-term adverse events. The availability of novel techniques expanded the knowledge on TTS and allowed a more accurate risk-stratification, potentially guiding clinical management. The present review aims to summarize the recent advances in TTS prognostic evaluation with a specific focus on novel imaging and genetic markers. Parametric deformation analysis by speckle-tracking echocardiography, as well as tissue characterization by cardiac magnetic resonance imaging T1 and T2 mapping techniques, currently appear the most clinically valuable applications. Notwithstanding, computed tomography and nuclear imaging studies provided limited but promising data. A genetic predisposition to TTS has been hypothesized, though available evidence is still not sufficient. Although a genetic predisposition appears likely, further studies are needed to fully characterize the genetic background of TTS, in order to identify genetic markers that could assist in predicting disease recurrences and help in familial screening.
Collapse
Affiliation(s)
- Luca Arcari
- Cardiology Unit, Mother Giuseppina Vannini Hospital, Rome, Italy
| | - Luca Rosario Limite
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carmen Adduci
- Cardiology, Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Matteo Sclafani
- Cardiology, Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Giacomo Tini
- Cardiology, Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Francesca Palano
- Cardiology, Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Pietro Cosentino
- Cardiology, Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Ernesto Cristiano
- Cardiology, Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Luca Cacciotti
- Cardiology Unit, Mother Giuseppina Vannini Hospital, Rome, Italy
| | - Domitilla Russo
- Cardiology, Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Speranza Rubattu
- Cardiology, Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Massimo Volpe
- Cardiology, Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Camillo Autore
- Cardiology, Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Maria Beatrice Musumeci
- Cardiology, Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Pietro Francia
- Cardiology, Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Cui S, Zhang J, Li J, Wu H, Zhang H, Yu Q, Zhou Y, Lv X, Zhong Y, Luo S, Gao J. Circulating microRNAs from serum exosomes as potential biomarkers in patients with spontaneous abortion. Am J Transl Res 2021; 13:4197-4210. [PMID: 34150008 PMCID: PMC8205814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Spontaneous abortion (SA) is a common complication in early pregnancy. Nevertheless, SA's etiology is complex, and the underlying molecular mechanisms of the pathogenesis behind SA remains unclear. The present study aims to find the feasibility of using serum exosomal miRNAs as novel biomarkers for SA. METHODS In our study, we isolated the serum exosomes from the peripheral blood of the subjects. Then transmission electron microscopy (TEM), WB, and in vitro exosome tracing experiments were used. Comprehensive exosomal miRNA sequencing was performed to profile the differentially expressed miRNAs between the SA and normal pregnancy groups. Furthermore, genes targeted by miRNAs were further predicted and verified by TargetScan, miRDB, miRTarBase, miRWalk and HMDD V3.2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and pathway category were performed by the DIANA-miRPath v3.0 online tool. We then validated the expression levels of selected miRNAs by qRT-PCR. ROC analysis was performed to explore the clinical utility of the two miRNA as biomarkers for SA. RESULTS TEM, NTA measurements and WB analysis showed the successful isolation of exosomes. Exosome labeling by PKH26 proved that exosomes could be efficiently taken up by primary decidual cells. Sequencing data found that with a total of 2,588, there were 189 significantly expressed exosomal miRNAs between the two groups. The most significantly expressed miRNA (miR-371a-5p, miR-206, miR-147b, miR-6859-5p, miR-410-3p, miR-1270 and miR-524-5p) were selected for further analysis. Through KEGG pathway analysis and pathway category, nine risk pathways were revealed. Among them, the Wnt signaling pathway, the Hippo signaling pathway, and the FoxO signaling pathway were pinpointed as major high-risk pathways. As a single marker, miR-371a-5p and miR-206 had a specificity of 83.3% and 70.8% at the sensitivity of 62.5% and 66.7%, respectively. The combined two markers achieved a specificity of 75% at the sensitivity of 79.2%. CONCLUSIONS Our results suggest that the circulating miRNAs from exosomes are altered in patients with SA. Findings of this exploratory study may provide potential biomarkers for SA.
Collapse
Affiliation(s)
- Shichao Cui
- The First School of Clinical Medicine, Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Jiayu Zhang
- The First School of Clinical Medicine, Yunnan University of Chinese MedicineYunnan 650500, China
| | - Jingwei Li
- The First School of Clinical Medicine, Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Haiwang Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Huimin Zhang
- The First School of Clinical Medicine, Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Qingying Yu
- The First School of Clinical Medicine, Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Yuexi Zhou
- The First School of Clinical Medicine, Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Xiaoli Lv
- The First School of Clinical Medicine, Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Yanlan Zhong
- The First School of Clinical Medicine, Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Songping Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Jie Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou 510405, China
| |
Collapse
|
12
|
Prokudina ES, Kurbatov BK, Zavadovsky KV, Vrublevsky AV, Naryzhnaya NV, Lishmanov YB, Maslov LN, Oeltgen PR. Takotsubo Syndrome: Clinical Manifestations, Etiology and Pathogenesis. Curr Cardiol Rev 2021; 17:188-203. [PMID: 31995013 PMCID: PMC8226199 DOI: 10.2174/1573403x16666200129114330] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
The purpose of the review is the analysis of clinical and experimental data on the etiology and pathogenesis of takotsubo syndrome (TS). TS is characterized by contractile dysfunction, which usually affects the apical region of the heart without obstruction of coronary artery, moderate increase in myocardial necrosis markers, prolonged QTc interval (in 50% of patients), sometimes elevation of ST segment (in 19% of patients), increase N-Terminal Pro-B-Type Natriuretic Peptide level, microvascular dysfunction, sometimes spasm of the epicardial coronary arteries (in 10% of patients), myocardial edema, and life-threatening ventricular arrhythmias (in 11% of patients). Stress cardiomyopathy is a rare disease, it is observed in 0.6 - 2.5% of patients with acute coronary syndrome. The occurrence of takotsubo syndrome is 9 times higher in women, who are aged 60-70 years old, than in men. The hospital mortality among patients with TS corresponds to 3.5% - 12%. Physical or emotional stress do not precede disease in all patients with TS. Most of patients with TS have neurological or mental illnesses. The level of catecholamines is increased in patients with TS, therefore, the occurrence of TS is associated with excessive activation of the adrenergic system. The negative inotropic effect of catecholamines is associated with the activation of β2 adrenergic receptors. An important role of the adrenergic system in the pathogenesis of TS is confirmed by studies which were performed using 125I-metaiodobenzylguanidine (125I -MIBG). TS causes edema and inflammation of the myocardium. The inflammatory response in TS is systemic. TS causes impaired coronary microcirculation and reduces coronary reserve. There is a reason to believe that an increase in blood viscosity may play an important role in the pathogenesis of microcirculatory dysfunction in patients with TS. Epicardial coronary artery spasm is not obligatory for the occurrence of TS. Cortisol, endothelin-1 and microRNAs are challengers for the role of TS triggers. A decrease in estrogen levels is a factor contributing to the onset of TS. The central nervous system appears to play an important role in the pathogenesis of TS.
Collapse
Affiliation(s)
- Ekaterina S Prokudina
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Boris K Kurbatov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Konstantin V Zavadovsky
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Alexander V Vrublevsky
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Natalia V Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Yuri B Lishmanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Leonid N Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Peter R Oeltgen
- Department of Pathology, University of Kentucky College of Medicine, Lexington, KY 40506, United States
| |
Collapse
|
13
|
Gao J, Chen X, Shan C, Wang Y, Li P, Shao K. Autophagy in cardiovascular diseases: role of noncoding RNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:101-118. [PMID: 33335796 PMCID: PMC7732971 DOI: 10.1016/j.omtn.2020.10.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases (CVDs) remain the world's leading cause of death. Cardiomyocyte autophagy helps maintain normal metabolism and functioning of the heart. Importantly, mounting evidence has revealed that autophagy plays a dual role in CVD pathology. Under physiological conditions, moderate autophagy maintains cell metabolic balance by degrading and recycling damaged organelles and proteins, and it promotes myocardial survival, but excessive or insufficient autophagy is equally deleterious and contributes to disease progression. Noncoding RNAs (ncRNAs) are a class of RNAs transcribed from the genome, but most ncRNAs do not code for functional proteins. In recent years, increasingly, various ncRNAs have been identified, and they play important regulatory roles in the physiological and pathological processes of organisms, as well as in autophagy. Thus, determining whether ncRNA-regulated autophagy plays a protective role in CVDs or promotes their progression can help us to develop ncRNAs as therapeutic targets in autophagy-related CVDs. In this review, we briefly summarize the regulatory roles of several important ncRNAs, including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), in the autophagy of various CVDs to provide a theoretical basis for the etiology and pathogenesis of CVDs and develop novel therapies to treat CVDs.
Collapse
Affiliation(s)
- Jinning Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xiatian Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Chan Shan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kai Shao
- Department of Central Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China
| |
Collapse
|
14
|
Marzullo L, Turco MC, De Marco M. The multiple activities of BAG3 protein: Mechanisms. Biochim Biophys Acta Gen Subj 2020; 1864:129628. [DOI: 10.1016/j.bbagen.2020.129628] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
|
15
|
Ciutac AM, Dawson D. The role of inflammation in stress cardiomyopathy. Trends Cardiovasc Med 2020; 31:225-230. [PMID: 32276825 DOI: 10.1016/j.tcm.2020.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/25/2020] [Accepted: 03/12/2020] [Indexed: 02/08/2023]
Abstract
Stress cardiomyopathy (SC) is an increasingly recognized form of acute heart failure, which has been linked to a wide variety of emotional and physical triggers. The pathophysiological mechanisms of the disease remain incompletely understood, however, inflammation has been recently shown to play a pivotal role. This review summarizes the most notable findings of myocardial inflammation, demonstrated from biopsies and cardiac magnetic resonance imaging in humans. In the acute stage macrophage infiltration appears to represent the substrate for myocardial edema, together defining the local myocardial inflammation. This appears to evolve into a low grade systemic chronic inflammation which could explain the protracted clinical course of these patients and raises hope for finding a specific SC cardiac biomarker as well as a therapeutic breakthrough. As a parallel to the human findings the review covers some of the emerging mechanistic insights from experimental models, which, albeit not proven in the human condition, highlight the possible importance in pursuing distinct paths of investigation such as the beta-receptor signaling, aberrations of nitric oxide generation and signaling and the contribution of the vascular endothelium/permeability to edema and inflammation during the acute stage.
Collapse
Affiliation(s)
- Andra Maria Ciutac
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Dana Dawson
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom.
| |
Collapse
|
16
|
Wang Z, Ji N, Chen Z, Sun Z, Wu C, Yu W, Hu F, Huang M, Zhang M. MiR-1165-3p Suppresses Th2 Differentiation via Targeting IL-13 and PPM1A in a Mouse Model of Allergic Airway Inflammation. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:859-876. [PMID: 32638565 PMCID: PMC7346992 DOI: 10.4168/aair.2020.12.5.859] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE CD4⁺T cells are essential in the pathogenesis of allergic asthma. We have previously demonstrated that microRNA-1165-3p (miR-1165-3p) was significantly reduced in T-helper type (Th) 2 cells and that miR-1165-3p was a surrogate marker for atopic asthma. Little is known about the mechanisms of miR-1165-3p in the regulation of Th2-dominated allergic inflammation. We aimed to investigate the associations between Th2 differentiation and miR-1165b-3p in asthma as well as the possible mechanisms. METHODS CD4⁺ naïve T cells were differentiated into Th1 or Th2 cells in vitro. MiR-1165-3p was up-regulated or down-regulated using lentiviral systems during Th1/Th2 differentiation. In vivo, the lentiviral particles with the miR-1165-3p enhancer were administered by tail vein injection on the first day of a house dust mite -induced allergic airway inflammation model. Allergic inflammation and Th1/Th2 differentiation were routinely monitored. To investigate the potential targets of miR-1165-3p, biotin-microRNA pull-down products were sequenced, and the candidates were further verified with a dual-luciferase reporter assay. The roles of a target protein phosphatase, Mg2+/Mn2+-dependent 1A (PPM1A), in Th2 cell differentiation and allergic asthma were further explored. Plasma PPM1A was determined by ELISA in 18 subjects with asthma and 20 controls. RESULTS The lentivirus encoding miR-1165-3p suppressed Th2-cell differentiation in vitro. In contrast, miR-1165-3p silencing promoted Th2-cell development. In the HDM-induced model of allergic airway inflammation, miR-1165-3p up-regulation was accompanied by reduced airway hyper-responsiveness, serum immunoglobulin E, airway inflammation and Th2-cell polarization. IL-13 and PPM1A were the direct targets of miR-1165-3p. The expression of IL-13 or PPM1A was inversely correlated with that of miR-1165-3p. PPM1A regulated the signal transducer and activator of transcription and AKT signaling pathways during Th2 differentiation. Moreover, plasma PPM1A was significantly increased in asthmatic patients. CONCLUSIONS MiR-1165-3p negatively may regulate Th2-cell differentiation by targeting IL-13 and PPM1A in allergic airway inflammation.
Collapse
Affiliation(s)
- Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongqi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhixiao Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chaojie Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenqing Yu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Infectious Disease, Taizhou People's Hospital, Taizhou, China
| | - Fan Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Immunology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
17
|
Deng Y, Wang J, Xie G, Zeng X, Li H. Circ-HIPK3 Strengthens the Effects of Adrenaline in Heart Failure by MiR-17-3p - ADCY6 Axis. Int J Biol Sci 2019; 15:2484-2496. [PMID: 31595165 PMCID: PMC6775314 DOI: 10.7150/ijbs.36149] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/25/2019] [Indexed: 01/06/2023] Open
Abstract
Overactivation of β-adrenergic receptor (β-AR) can improve cardiac function temporarily but promotes the development and mortality of heart failure (HF) in the long run. CircRNA, a member of noncoding RNAs, can tolerate digestion of exonuclease and be a chronic stimulator to cell. But the relationship of circRNA with HF remains a puzzle and needs to be explored. Here, we found that circ-HIPK3 affected the concentration of Ca2+ in cytoplasm by miR-17-3p through ADCY6 (Adenylate cyclase type 6). The increase of ADCY6 caused by circ-HIPK3 was ameliorated by miR-17-3p overexpression and vice versa, implicating the existence of circ-HIPK3 - miR-17-3p - ADCY6 axis. And further assays showed that the level of circ-HIPK3 in heart was upregulated by adrenaline via transcription factor CREB1 (cAMP responsive element-binding protein 1). Experiments in vivo showed downregulation of circ-HIPK3 can alleviate fibrosis and maintain cardiac function post MI in mice. In conclusion, the increased circ-HIPK3 can be a helper for adrenaline but was harmful for heart in the long run and might be an ideal therapeutic target of HF.
Collapse
Affiliation(s)
- Yunfei Deng
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Wang
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Guojin Xie
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaochen Zeng
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hongli Li
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Yue L, Guo J. LncRNA TUSC7 suppresses pancreatic carcinoma progression by modulating miR-371a-5p expression. J Cell Physiol 2019; 234:15911-15921. [PMID: 30714151 DOI: 10.1002/jcp.28248] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
Pancreatic carcinoma is one of the most common and lethal human malignancies worldwide. Long noncoding RNAs (lncRNAs) are a well-known type of nonprotein-coding transcripts implicated in cancer development and progression. Increasing evidence has indicated that lncRNA tumor suppressor candidate 7 (TUSC7) is a novel cancer suppressor gene in various cancers. Nevertheless, the function of TUSC7 in pancreatic carcinoma is urgent to be clarified. We found that TUSC7 was notably decreased in tissues and cell lines of pancreatic carcinoma. Moreover, the low expression of TUSC7 was correlated with advanced clinical grades and poorer overall survival. Our findings revealed that TUSC7 repressed cell proliferation, migration, invasion, epithelial-mesenchymal transition, and stemness whereas facilitated cell apoptosis of pancreatic carcinoma cells. Further investigations demonstrated that miR-371a-5p directly bound with TUSC7 and negatively regulated by TUSC7. MiR-371a-5p rescued the inhibitory effects of TUSC7 on the development of pancreatic carcinoma. We conclude that lncRNA TUSC7 suppresses pancreatic carcinoma progression by modulating miR-371a-5p expression, indicating an innovative therapeutic strategy for pancreatic carcinoma.
Collapse
Affiliation(s)
- Lei Yue
- Department of Emergency, The Central Hospital of Luoyang, Luoyang, Henan, China
| | - Jing Guo
- Department of Laboratory, Xi'an Central Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
19
|
Du E, Cao Y, Feng C, Lu J, Yang H, Zhang Y. The Possible Involvement of miR-371a-5p Regulating XIAP in the Pathogenesis of Recurrent Pregnancy Loss. Reprod Sci 2019; 26:1468-1475. [PMID: 30819044 DOI: 10.1177/1933719119828051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Apoptosis is an interactive and dynamic biological process involved in all phases of embryogenesis. If apoptosis dominates the trophoblast cell growth process, it will result in adverse pregnancy outcomes. X-linked inhibitor of apoptosis protein (XIAP) is a potent caspase inhibitor and an important barrier to apoptotic cell death. MicroRNAs involve in posttranscriptional gene expression regulation and apoptosis. Online sequence alignment analysis showed that there was a putative binding site of miR-371a-5p on the 3'-untranslated region (UTR) of XIAP. Thirty chorionic villi samples were collected to examine the expression of miR-371a-5p and XIAP. The dual-luciferase reporter assay was applied to determine the relationship between miR-371a-5p and XIAP by human placental choriocarcinoma cells (JEG-3) cells in vitro. After 48-hour transfection of mimics and inhibitor by JEG-3 cells in vitro, Western blotting was used to, respectively, detect the protein expression levels of XIAP and caspase-3. Flow cytometry was used to validate the apoptosis ratio of transfection. The expression of miR-371a-5p and XIAP in recurrent pregnancy loss was greatly decreased. The results from the luciferase reporter assay strongly suggested binding of the XIAP 3'-UTR by miR-371a-5p. Apoptosis percentage of miR-371a-5p mimic was significantly greater than that of normal control. However, apoptosis percentage of miR-371a-5p inhibitor was significantly lower than that of normal control. A significant decrease in luciferase activity was observed in miR-371a-5p mimics-transfected JEG-3 cells compared with controls. These findings provide the evidence that miR-371a-5p is one of the regulating factors according to apoptosis pathway of XIAP-caspase-3 and may be involved in the pathogenesis of recurrent pregnancy loss.
Collapse
Affiliation(s)
- Erqiu Du
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China.,Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Yuming Cao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| | - Chun Feng
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| | - Jing Lu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| | - Hanxiao Yang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Sattler K, El-Battrawy I, Borggrefe M, Akin I. Reponse to Qi et al. regarding the letter to the Editor "Development of Takotsubo syndrome and cancer may share a common signaling pathway". Int J Cardiol 2018; 270:79. [PMID: 30060973 DOI: 10.1016/j.ijcard.2018.07.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Affiliation(s)
- K Sattler
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.
| | - I El-Battrawy
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - M Borggrefe
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - I Akin
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| |
Collapse
|
21
|
Capone V, Clemente E, Restelli E, Di Campli A, Sperduti S, Ornaghi F, Pietrangelo L, Protasi F, Chiesa R, Sallese M. PERK inhibition attenuates the abnormalities of the secretory pathway and the increased apoptotic rate induced by SIL1 knockdown in HeLa cells. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3164-3180. [DOI: 10.1016/j.bbadis.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/05/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023]
|
22
|
Sun T, Li MY, Li PF, Cao JM. MicroRNAs in Cardiac Autophagy: Small Molecules and Big Role. Cells 2018; 7:cells7080104. [PMID: 30103495 PMCID: PMC6116024 DOI: 10.3390/cells7080104] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy, which is an evolutionarily conserved process according to the lysosomal degradation of cellular components, plays a critical role in maintaining cell homeostasis. Autophagy and mitochondria autophagy (mitophagy) contribute to the preservation of cardiac homeostasis in physiological settings. However, impaired or excessive autophagy is related to a variety of diseases. Recently, a close link between autophagy and cardiac disorders, including myocardial infarction, cardiac hypertrophy, cardiomyopathy, cardiac fibrosis, and heart failure, has been demonstrated. MicroRNAs (miRNAs) are a class of small non-coding RNAs with a length of approximately 21–22 nucleotides (nt), which are distributed widely in viruses, plants, protists, and animals. They function in mediating the post-transcriptional gene silencing. A growing number of studies have demonstrated that miRNAs regulate cardiac autophagy by suppressing the expression of autophagy-related genes in a targeted manner, which are involved in the pathogenesis of heart diseases. This review summarizes the role of microRNAs in cardiac autophagy and related cardiac disorders. Furthermore, we mainly focused on the autophagy regulation pathways, which consisted of miRNAs and their targeted genes.
Collapse
Affiliation(s)
- Teng Sun
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan 030001, China.
| | - Meng-Yang Li
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Pei-Feng Li
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
23
|
Yun HH, Baek JY, Seo G, Kim YS, Ko JH, Lee JH. Effect of BIS depletion on HSF1-dependent transcriptional activation in A549 non-small cell lung cancer cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:457-465. [PMID: 29962860 PMCID: PMC6019875 DOI: 10.4196/kjpp.2018.22.4.457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 12/31/2022]
Abstract
The expression of BCL-2 interacting cell death suppressor (BIS), an anti-stress or anti-apoptotic protein, has been shown to be regulated at the transcriptional level by heat shock factor 1 (HSF1) upon various stresses. Recently, HSF1 was also shown to bind to BIS, but the significance of these protein-protein interactions on HSF1 activity has not been fully defined. In the present study, we observed that complete depletion of BIS using a CRISPR/Cas9 system in A549 non-small cell lung cancer did not affect the induction of heat shock protein (HSP) 70 and HSP27 mRNAs under various stress conditions such as heat shock, proteotoxic stress, and oxidative stress. The lack of a functional association of BIS with HSF1 activity was also demonstrated by transient downregulation of BIS by siRNA in A549 and U87 glioblastoma cells. Endogenous BIS mRNA levels were significantly suppressed in BIS knockout (KO) A549 cells compared to BIS wild type (WT) A549 cells at the constitutive and inducible levels. The promoter activities of BIS and HSP70 as well as the degradation rate of BIS mRNA were not influenced by depletion of BIS. In addition, the expression levels of the mutant BIS construct, in which 14 bp were deleted as in BIS-KO A549 cells, were not different from those of the WT BIS construct, indicating that mRNA stability was not the mechanism for autoregulation of BIS. Our results suggested that BIS was not required for HSF1 activity, but was required for its own expression, which involved an HSF1-independent pathway.
Collapse
Affiliation(s)
- Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Ji-Ye Baek
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Gwanwoo Seo
- The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of medicine, Gwangju 61452, Korea
| | - Yong Sam Kim
- Genome Editing Research Center, KRIBB, Daejeon 34141, Korea.,Department of Biomolecular Science, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Jeong-Heon Ko
- Genome Editing Research Center, KRIBB, Daejeon 34141, Korea.,Department of Biomolecular Science, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
24
|
Lacey CJ, Doudney K, Bridgman PG, George PM, Mulder RT, Zarifeh JJ, Kimber B, Cadzow MJ, Black MA, Merriman TR, Lehnert K, Bickley VM, Pearson JF, Cameron VA, Kennedy MA. Copy number variants implicate cardiac function and development pathways in earthquake-induced stress cardiomyopathy. Sci Rep 2018; 8:7548. [PMID: 29765130 PMCID: PMC5954162 DOI: 10.1038/s41598-018-25827-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 04/25/2018] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of stress cardiomyopathy (SCM), also known as takotsubo syndrome, is poorly understood. SCM usually occurs sporadically, often in association with a stressful event, but clusters of cases are reported after major natural disasters. There is some evidence that this is a familial condition. We have examined three possible models for an underlying genetic predisposition to SCM. Our primary study cohort consists of 28 women who suffered SCM as a result of two devastating earthquakes that struck the city of Christchurch, New Zealand, in 2010 and 2011. To seek possible underlying genetic factors we carried out exome analysis, genotyping array analysis, and array comparative genomic hybridization on these subjects. The most striking finding was the observation of a markedly elevated rate of rare, heterogeneous copy number variants (CNV) of uncertain clinical significance (in 12/28 subjects). Several of these CNVs impacted on genes of cardiac relevance including RBFOX1, GPC5, KCNRG, CHODL, and GPBP1L1. There is no physical overlap between the CNVs, and the genes they impact do not appear to be functionally related. The recognition that SCM predisposition may be associated with a high rate of rare CNVs offers a novel perspective on this enigmatic condition.
Collapse
Affiliation(s)
- Cameron J Lacey
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand.
| | - Kit Doudney
- Molecular Pathology Laboratory, Canterbury Health Laboratories, Canterbury District Health Board, Christchurch, New Zealand
| | - Paul G Bridgman
- Department of Cardiology, Christchurch Hospital, Christchurch, New Zealand
| | - Peter M George
- Molecular Pathology Laboratory, Canterbury Health Laboratories, Canterbury District Health Board, Christchurch, New Zealand
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Roger T Mulder
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Julie J Zarifeh
- Psychiatric Consultation Service, Christchurch Hospital, Canterbury District Health Board, Christchurch, New Zealand
| | - Bridget Kimber
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Murray J Cadzow
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Vivienne M Bickley
- Molecular Pathology Laboratory, Canterbury Health Laboratories, Canterbury District Health Board, Christchurch, New Zealand
| | - John F Pearson
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand
| | - Vicky A Cameron
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
25
|
Mattsson E, Saliba-Gustafsson P, Ehrenborg E, Tornvall P. Lack of genetic susceptibility in takotsubo cardiomyopathy: a case-control study. BMC MEDICAL GENETICS 2018. [PMID: 29514624 PMCID: PMC5842616 DOI: 10.1186/s12881-018-0544-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Takotsubo cardiomyopathy (TCM), also known as "broken heart syndrome", is a type of heart failure characterized by transient ventricular dysfunction in the absence of obstructive coronary lesions. Although associated with increased levels of catecholamines, pathophysiological mechanisms are unknown. Relapses and family heritability indicate a genetic predisposition. Several small studies have investigated associations between three different loci; the β1-adrenic receptor (ADRB1), G-protein-coupled receptor kinase 5 (GRK5), Bcl-associated athanogene 3 (BAG3) and TCM but no consensus has been reached. METHODS Participants were recruited using the Swedish Coronary Angiography and Angioplasty Register (SCAAR). TCM patients without coronary artery disease (CAD)(n = 258) were identified and age- and sex-matched subjects with (n = 164) and without (n = 243) CAD were selected as controls. DNA was isolated from saliva and genotyped for candidate single nucleotide polymorphisms in the ADRB1, GRK5 and BAG3 genes. Allele frequencies and Odds Ratios (OR) with 95% Confidence Intervals (CI) for the investigated polymorphisms were compared, respectively calculated for TCM patients and controls. RESULTS There were no differences in allele frequencies between TCM patients and controls. OR (CI) for TCM patients having at least one minor allele using controls as reference were 1.07 (0.75-1.55) for ADRB1, 0.45 (0.11-1.85) for GRK5 and 1.27 (0.74-2.19) for BAG3. CONCLUSION By genotyping a large takotsubo cohort, we demonstrate a lack of association between candidate SNPs in the ADRB1, GRK5 and BAG3 genes, earlier suggested to contribute to TCM. Our result indicates a need to expand the search for new genetic candidates contributing to TCM.
Collapse
Affiliation(s)
- Emma Mattsson
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Sjukhusbacken 10, 11883, Stockholm, Sweden
| | - Peter Saliba-Gustafsson
- Department of Medicine, Solna Center for Molecular Medicine (CMM), Karolinska University Hospital L8:03, Karolinska Institutet, Stockholm, Sweden
| | - Ewa Ehrenborg
- Department of Medicine, Solna Center for Molecular Medicine (CMM), Karolinska University Hospital L8:03, Karolinska Institutet, Stockholm, Sweden
| | - Per Tornvall
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Sjukhusbacken 10, 11883, Stockholm, Sweden.
| |
Collapse
|
26
|
Yu S, Chen Y, Chen S, Ye N, Li Y, Sun Y. Regulation of angiotensin II-induced B-cell lymphoma-2-associated athanogene 3 expression in vascular smooth muscle cells. Mol Med Rep 2018; 17:6156-6162. [PMID: 29484407 DOI: 10.3892/mmr.2018.8630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/27/2017] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that angiotensin II (Ang II) is involved in the process of atherosclerosis and vascular restenosis through its proinflammatory effect. Bcl‑2‑associated athanogene 3 (BAG3) had been suggested to be associated with proliferation, migration and invasion in many types of tumor. However, the role of BAG3 among the proliferative process of vascular smooth muscle cells (VSMCs) induced by Ang II, to the best of our knowledge, remains to be investigated. The present study demonstrated that in growth‑arrested VSMCs, Ang II‑induced VSMC proliferation, accompanied by increased BAG3 mRNA and protein expression levels in a dose‑ and time‑dependent manner. BAG3 expression levels were measured in VSMCs treated in the presence or absence of Ang II. The proliferation of VSMCs was assessed using manual cell counting and Cell Counting kit‑8 assays. mRNA and protein expression levels of BAG3, Toll‑like receptor 4 (TLR4), proliferating cell nuclear antigen, nuclear factor (NF)‑κB p65, smooth muscle protein 22α and phosphorylated NF‑κB p65 were assessed by reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. In non‑transfected or scramble short hairpin RNA (shRNA)‑transfected VSMCs cells, Ang II significantly induced VSMC proliferation. However, this Ang II‑induce proliferation was attenuated when BAG3 was silenced, suggesting that inhibition of BAG3 may somehow reduce proliferation in Ang II‑induced VSMCs. Furthermore, the TLR4/NF‑κB p65 signaling pathway was involved in BAG3 gene upregulation. In conclusion, to the best of our knowledge, the present study demonstrated for the first time that inhibition of BAG3 attenuates cell proliferation. Furthermore, Ang II induced VSMCs proliferation through regulation of BAG3 expression via the TLR4/NF‑κB p65 signaling pathway.
Collapse
Affiliation(s)
- Shasha Yu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yintao Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shuang Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ning Ye
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yan Li
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
27
|
Myers VD, McClung JM, Wang J, Tahrir FG, Gupta MK, Gordon J, Kontos CH, Khalili K, Cheung JY, Feldman AM. The Multifunctional Protein BAG3: A Novel Therapeutic Target in Cardiovascular Disease. JACC Basic Transl Sci 2018; 3:122-131. [PMID: 29938246 PMCID: PMC6013050 DOI: 10.1016/j.jacbts.2017.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The B-cell lymphoma 2–associated anthanogene (BAG3) protein is expressed most prominently in the heart, the skeletal muscle, and in many forms of cancer. In the heart, it serves as a co-chaperone with heat shock proteins in facilitating autophagy; binds to B-cell lymphoma 2, resulting in inhibition of apoptosis; attaches actin to the Z disk, providing structural support for the sarcomere; and links the α-adrenergic receptor with the L-type Ca2+ channel. When BAG3 is overexpressed in cancer cells, it facilitates prosurvival pathways that lead to insensitivity to chemotherapy, metastasis, cell migration, and invasiveness. In contrast, in the heart, mutations in BAG3 have been associated with a variety of phenotypes, including both hypertrophic/restrictive and dilated cardiomyopathy. In murine skeletal muscle and vasculature, a mutation in BAG3 leads to critical limb ischemia after femoral artery ligation. An understanding of the biology of BAG3 is relevant because it may provide a therapeutic target in patients with both cardiac and skeletal muscle disease.
Collapse
Affiliation(s)
- Valerie D Myers
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Joseph M McClung
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - JuFang Wang
- Center for Translational Medicine, Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Farzaneh G Tahrir
- Department of Neuroscience, Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Manish K Gupta
- Department of Neuroscience, Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Jennifer Gordon
- Department of Neuroscience, Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Christopher H Kontos
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina
| | - Kamel Khalili
- Department of Neuroscience, Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Joseph Y Cheung
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine, Philadelphia, Pennsylvania.,Center for Translational Medicine, Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Arthur M Feldman
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Identification of microRNA signature in the progression of gestational trophoblastic disease. Cell Death Dis 2018; 9:94. [PMID: 29367697 PMCID: PMC5833456 DOI: 10.1038/s41419-017-0108-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/20/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022]
Abstract
Gestational trophoblastic disease (GTD) encompasses a range of trophoblast-derived disorders. The most common type of GTD is hydatidiform mole (HM). Some of HMs can further develop into malignant gestational trophoblastic neoplasia (GTN). Aberrant expression of microRNA (miRNA) is widely reported to be involved in the initiation and progression of cancers. MiRNA expression profile also has been proved to be the useful signature for diagnosis, staging, prognosis, and response to chemotherapy. Till now, the profile of miRNA in the progression of GTD has not been determined. In this study, a total of 34 GTN and 60 complete HMs (CHM) trophoblastic tissues were collected. By miRNA array screening and qRT-PCR validating, six miRNAs, including miR-370-3p, -371a-5p, -518a-3p, -519d-3p, -520a-3p, and -934, were identified to be differentially expressed in GTN vs. CHM. Functional analyses further proved that miR-371a-5p and miR-518a-3p promoted proliferation, migration, and invasion of choriocarcinoma cells. Moreover, we demonstrated that miR-371a-5p was negatively related to protein levels of its predictive target genes BCCIP, SOX2, and BNIP3L, while miR-518a-3p was negatively related to MST1 and EFNA4. For the first time, we proved that miR-371a-5p and miR-518a-3p directly targeted to 3′-UTR regions of BCCIP and MST1, respectively. Additionally, we found that miR-371a-5p and miR-518a-3p regulated diverse pathways related to tumorigenesis and metastasis in choriocarcinoma cells. The results presented here may offer new clues to the progression of GTD and may provide diagnostic biomarkers for GTN.
Collapse
|
29
|
Role of BAG3 in cancer progression: A therapeutic opportunity. Semin Cell Dev Biol 2017; 78:85-92. [PMID: 28864347 DOI: 10.1016/j.semcdb.2017.08.049] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 02/06/2023]
Abstract
BAG3 is a multifunctional protein that can bind to heat shock proteins (Hsp) 70 through its BAG domain and to other partners through its WW domain, proline-rich (PXXP) repeat and IPV (Ile-Pro-Val) motifs. Its intracellular expression can be induced by stressful stimuli, while is constitutive in skeletal muscle, cardiac myocytes and several tumour types. BAG3 can modulate the levels, localisation or activity of its partner proteins, thereby regulating major cell pathways and functions, including apoptosis, autophagy, mechanotransduction, cytoskeleton organisation, motility. A secreted form of BAG3 has been identified in studies on pancreatic ductal adenocarcinoma (PDAC). Secreted BAG3 can bind to a specific receptor, IFITM2, expressed on macrophages, and induce the release of factors that sustain tumour growth and the metastatic process. BAG3 neutralisation therefore appears to constitute a novel potential strategy in the therapy of PDAC and, possibly, other tumours.
Collapse
|
30
|
Abstract
Proteinopathies are characterized by the accumulation of misfolded proteins, which ultimately interfere with normal cell function. While neurological diseases, such as Huntington disease and Alzheimer disease, are well-characterized proteinopathies, cardiac diseases have recently been associated with alterations in proteostasis. In this issue of the JCI, Fang and colleagues demonstrate that mice with cardiac-specific deficiency of the co-chaperone protein BCL2-associated athanogene 3 (BAG3) develop dilated cardiomyopathy that is associated with a destabilization of small HSPs as the result of a disrupted interaction between BAG3 and HSP70. Together, the results of this study suggest that strategies to upregulate BAG3 during cardiac dysfunction may be beneficial.
Collapse
|
31
|
Judge LM, Perez-Bermejo JA, Truong A, Ribeiro AJ, Yoo JC, Jensen CL, Mandegar MA, Huebsch N, Kaake RM, So PL, Srivastava D, Pruitt BL, Krogan NJ, Conklin BR. A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress. JCI Insight 2017; 2:94623. [PMID: 28724793 DOI: 10.1172/jci.insight.94623] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022] Open
Abstract
Molecular chaperones regulate quality control in the human proteome, pathways that have been implicated in many diseases, including heart failure. Mutations in the BAG3 gene, which encodes a co-chaperone protein, have been associated with heart failure due to both inherited and sporadic dilated cardiomyopathy. Familial BAG3 mutations are autosomal dominant and frequently cause truncation of the coding sequence, suggesting a heterozygous loss-of-function mechanism. However, heterozygous knockout of the murine BAG3 gene did not cause a detectable phenotype. To model BAG3 cardiomyopathy in a human system, we generated an isogenic series of human induced pluripotent stem cells (iPSCs) with loss-of-function mutations in BAG3. Heterozygous BAG3 mutations reduced protein expression, disrupted myofibril structure, and compromised contractile function in iPSC-derived cardiomyocytes (iPS-CMs). BAG3-deficient iPS-CMs were particularly sensitive to further myofibril disruption and contractile dysfunction upon exposure to proteasome inhibitors known to cause cardiotoxicity. We performed affinity tagging of the endogenous BAG3 protein and mass spectrometry proteomics to further define the cardioprotective chaperone complex that BAG3 coordinates in the human heart. Our results establish a model for evaluating protein quality control pathways in human cardiomyocytes and their potential as therapeutic targets and susceptibility factors for cardiac drug toxicity.
Collapse
Affiliation(s)
- Luke M Judge
- Department of Pediatrics, UCSF, San Francisco, California, USA.,Gladstone Institutes, San Francisco, California, USA
| | - Juan A Perez-Bermejo
- Gladstone Institutes, San Francisco, California, USA.,Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California, USA
| | - Annie Truong
- Gladstone Institutes, San Francisco, California, USA
| | - Alexandre Js Ribeiro
- Gladstone Institutes, San Francisco, California, USA.,Stanford Cardiovascular Institute and Mechanical Engineering Department, and
| | - Jennie C Yoo
- Gladstone Institutes, San Francisco, California, USA
| | | | | | | | - Robyn M Kaake
- Gladstone Institutes, San Francisco, California, USA
| | - Po-Lin So
- Gladstone Institutes, San Francisco, California, USA
| | - Deepak Srivastava
- Department of Pediatrics, UCSF, San Francisco, California, USA.,Gladstone Institutes, San Francisco, California, USA
| | - Beth L Pruitt
- Stanford Cardiovascular Institute and Mechanical Engineering Department, and.,Bioengineering and Molecular and Cellular Physiology Departments, Stanford University, Stanford, California, USA
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, California, USA.,Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California, USA
| | - Bruce R Conklin
- Gladstone Institutes, San Francisco, California, USA.,Department of Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
32
|
The prosurvival protein BAG3: a new participant in vascular homeostasis. Cell Death Dis 2016; 7:e2431. [PMID: 27763645 PMCID: PMC5133988 DOI: 10.1038/cddis.2016.321] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 02/03/2023]
Abstract
Bcl2-associated athanogene 3 (BAG3), is constitutively expressed in a few normal cell types, including myocytes, peripheral nerves and in the brain, and is also expressed in certain tumors. To date, the main studies about the role of BAG3 are focused on its pro-survival effect in tumors through various mechanisms that vary according to cellular type. Recently, elevated concentrations of a soluble form of BAG3 were described in patients affected by advanced stage of heart failure (HF), identifying BAG3 as a potentially useful biomarker in monitoring HF progression. Despite the finding of high levels of BAG3 in the sera of HF patients, there are no data on its possible role on the modulation of vascular tone and blood pressure levels. The aim of this study was to investigate the possible hemodynamic effects of BAG3 performing both in vitro and in vivo experiments. Through vascular reactivity studies, we demonstrate that BAG3 is capable of evoking dose-dependent vasorelaxation. Of note, BAG3 exerts its vasorelaxant effect on resistance vessels, typically involved in the blood pressure regulation. Our data further show that the molecular mechanism through which BAG3 exerts this effect is the activation of the PI3K/Akt signalling pathway leading to nitric oxide release by endothelial cells. Finally, we show that in vivo BAG3 administration is capable of regulating blood pressure and that this is dependent on eNOS regulation since this ability is lost in eNOS KO animals.
Collapse
|
33
|
Brunetti ND, Santoro F, De Gennaro L, Correale M, Kentaro H, Gaglione A, Di Biase M. Therapy of stress (takotsubo) cardiomyopathy: present shortcomings and future perspectives. Future Cardiol 2016; 12:563-72. [PMID: 27538839 DOI: 10.2217/fca-2016-0014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several therapeutic options are available for the treatment of the acute phase of stress cardiomyopathy, pharmacological (β-blockers, diuretics, anticoagulants, antiarrhythmics, noncatecholamine inotropics [levosimendan]), and nonpharmacological (intra-aortic balloon pumping, extracorporeal membrane oxygenation), according to the wide possible clinical presentation and course of the disease. However, there is a gap in evidence, and very few data come from randomized and adequately powered studies. Some evidence supports the use of β-blockers, in particular with a short half-life, in the case of left ventricular outflow tract obstruction, and angiotensin-converting enzyme inhibitors in secondary prevention. Future perspectives include the study of genetic basis of stress cardiomyopathy, role of miRNA and neurovegetative modulation. Randomized studies, however, are surely warranted.
Collapse
Affiliation(s)
| | - Francesco Santoro
- Cardiology Department, University of Foggia, Italy.,Asklepios Klinik St Georg, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Mejía-Rentería HD, Núñez-Gil IJ. Takotsubo syndrome: Advances in the understanding and management of an enigmatic stress cardiomyopathy. World J Cardiol 2016; 8:413-424. [PMID: 27468334 PMCID: PMC4958692 DOI: 10.4330/wjc.v8.i7.413] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 04/30/2016] [Accepted: 05/27/2016] [Indexed: 02/06/2023] Open
Abstract
Takotsubo cardiomyopathy is a syndrome mimicking an acute myocardial infarction in absence of obstructive epicardial coronary artery disease to explain the degree of the wall motion abnormalities. Typically more common in the elderly women, this condition is usually triggered by unexpected emotional or physical stress situations, and is associated with electrocardiogram abnormalities and slight elevation of cardiac biomarkers. The pathophysiological mechanism is not clear yet, but it is believed that a high circulating concentration of catecholamines causes an acute dysfunction of the coronary microcirculation and metabolism of cardiomyocytes, leading to a transient myocardial stunning. Typically, it presents with acute left ventricular systolic dysfunction that in most cases is completely resolved at short term. Recurrences are rare and it is thought that the long-term prognosis is good. We present here a review of the clinical features, pathophysiology and management of this enigmatic condition.
Collapse
|