1
|
Liu W, Jia B, Wang Z, Li C, Li N, Tang J, Wang J. Unveiling the role of PSMA5 in glioma progression and prognosis. Discov Oncol 2024; 15:414. [PMID: 39240463 PMCID: PMC11379840 DOI: 10.1007/s12672-024-01296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
Glioma is the most aggressive intracranial malignancy and is associated with poor survival rates and limited quality of life, impairing neuropsychological function and cognitive competence in survivors. The Proteasome Subunit Alpha Type-5 (PSMA5) is a multicatalytic proteinase complex that has been linked with tumor progression but is rarely reported in glioma. This study investigates the expression pattern, prognostic characteristics, and potential biological functions of PSMA5 in glioma. PSMA5 was significantly overexpressed in 28 types of cancer when compared to normal tissue. Furthermore, elevated levels of PSMA5 were observed in patients with wild-type isocitrate dehydrogenase 1 and exhibited a positive correlation with tumor grade. It was also found to be a standalone predictor of outcomes in glioma patients. Additionally, inhibiting PSMA5-induced cell cycle arrest may provide a therapeutic option for glioma.
Collapse
Affiliation(s)
- Wei Liu
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China
| | - Bo Jia
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China
| | - Zan Wang
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China
| | - Chengcai Li
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China
| | - Nanding Li
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China
| | - Jie Tang
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jiwei Wang
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China.
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China.
| |
Collapse
|
2
|
Zeng H, Ning W, Liu X, Luo W, Xia N. Unlocking the potential of bispecific ADCs for targeted cancer therapy. Front Med 2024; 18:597-621. [PMID: 39039315 DOI: 10.1007/s11684-024-1072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/08/2024] [Indexed: 07/24/2024]
Abstract
Antibody-drug conjugates (ADCs) are biologically targeted drugs composed of antibodies and cytotoxic drugs connected by linkers. These innovative compounds enable precise drug delivery to tumor cells, minimizing harm to normal tissues and offering excellent prospects for cancer treatment. However, monoclonal antibody-based ADCs still present challenges, especially in terms of balancing efficacy and safety. Bispecific antibodies are alternatives to monoclonal antibodies and exhibit superior internalization and selectivity, producing ADCs with increased safety and therapeutic efficacy. In this review, we present available evidence and future prospects regarding the use of bispecific ADCs for cancer treatment, including a comprehensive overview of bispecific ADCs that are currently in clinical trials. We offer insights into the future development of bispecific ADCs to provide novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Hongye Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Wenjing Ning
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xue Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
3
|
Srivastava P, Yadav VK, Chang TH, Su ECY, Lawal B, Wu ATH, Huang HS. In-silico analysis of TMEM2 as a pancreatic adenocarcinoma and cancer-associated fibroblast biomarker, and functional characterization of NSC777201, for targeted drug development. Am J Cancer Res 2024; 14:3010-3035. [PMID: 39005682 PMCID: PMC11236765 DOI: 10.62347/chxd6134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/13/2024] [Indexed: 07/16/2024] Open
Abstract
Pancreatic adenocarcinoma (PAAD), known as one of the deadliest cancers, is characterized by a complex tumor microenvironment, primarily comprised of cancer-associated fibroblasts (CAFs) in the extracellular matrix. These CAFs significantly alter the matrix by interacting with hyaluronic acid (HA) and the enzyme hyaluronidase, which degrades HA - an essential process for cancer progression and spread. Despite the critical role of this interaction, the specific functions of CAFs and hyaluronidase in PAAD development are not fully understood. Our study investigates this interaction and assesses NSC777201, a new anti-cancer compound targeting hyaluronidase. This research utilized computational methods to analyze gene expression data from the Gene Expression Omnibus (GEO) database, specifically GSE172096, comparing gene expression profiles of cancer-associated and normal fibroblasts. We conducted in-house sequencing of pancreatic cancer cells treated with NSC777201 to identify differentially expressed genes (DEGs) and performed functional enrichment and pathway analysis. The identified DEGs were further validated using the TCGA-PAAD and Human Protein Atlas (HPA) databases for their diagnostic, prognostic, and survival implications, accompanied by Ingenuity Pathway Analysis (IPA) and molecular docking of NSC777201, in-vitro, and preclinical in-vivo validations. The result revealed 416 DEGs associated with CAFs and 570 DEGs related to NSC777201 treatment, with nine overlapping DEGs. A key finding was the transmembrane protein TMEM2, which strongly correlated with FAP, a CAF marker, and was associated with higher-risk groups in PAAD. NSC777201 treatment showed inhibition of TMEM2, validated by rescue assay, indicating the importance of targeting TMEM2. Further analyses, including IPA, demonstrated that NSC777201 regulates CAF cell senescence, enhancing its therapeutic potential. Both in-vitro and in-vivo studies confirmed the inhibitory effect of NSC777201 on TMEM2 expression, reinforcing its role in targeting PAAD. Therefore, TMEM2 has been identified as a theragnostic biomarker in PAAD, influenced by CAF activity and HA accumulation. NSC777201 exhibits significant potential in targeting and potentially reversing critical processes in PAAD progression, demonstrating its efficacy as a promising therapeutic agent.
Collapse
Affiliation(s)
- Prateeti Srivastava
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical UniversityTaipei 110, Taiwan
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical UniversityTaipei 110, Taiwan
| | - Vijesh Kumar Yadav
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho HospitalNew Taipei 23561, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei 110, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical UniversityTaipei 110, Taiwan
- Clinical Big Data Research Center, Taipei Medical University HospitalTaipei 110, Taiwan
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical UniversityTaipei 110, Taiwan
| | - Bashir Lawal
- UPMC Hillman Cancer Center, University of PittsburghPittsburgh, PA 15232, USA
- Department of Pathology, University of PittsburghPittsburgh, PA 15213, USA
| | - Alexander TH Wu
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical UniversityTaipei 110, Taiwan
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical UniversityTaipei 110, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical CenterTaipei 114, Taiwan
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical UniversityTaipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical UniversityTaipei 110, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical UniversityTaipei 11031, Taiwan
| | - Hsu-Shan Huang
- Graduate Institute of Medical Sciences, National Defense Medical CenterTaipei 114, Taiwan
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical UniversityTaipei 110, Taiwan
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia SinicaTaipei 11031, Taiwan
- School of Pharmacy, National Defense Medical CenterTaipei 11490, Taiwan
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical UniversityTaipei 11031, Taiwan
| |
Collapse
|
4
|
Zhang H, Gan W, Fan D, Zheng P, Lv Q, Pan Q, Zhu W. Novel quinazoline-based dual EGFR/c-Met inhibitors overcoming drug resistance for the treatment of NSCLC: Design, synthesis and anti-tumor activity. Bioorg Chem 2024; 142:106938. [PMID: 37913585 DOI: 10.1016/j.bioorg.2023.106938] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) have demonstrated the ability to impede tumor cell proliferation by suppressing EGFR expression. Nonetheless, patients undergoing treatment may acquire resistance, which may occur through an EGFR-dependent (such as T790M mutation) or an EGFR-independent (such as c-Met amplification) manner. Therefore, developing dual-target inhibitors might present a potential avenue for addressing treatment-acquired resistance in patients. Herein, we designed, synthesized, and screened several novel 4-phenoxyquinazoline derivatives, aiming to identify a potent dual EGFR/c-Met inhibitor for the treatment of NSCLC, among which H-22 emerged as the most promising candidate exhibiting significant antitumor properties. Moreover, we assessed the in vitro inhibitory effect of H-22 on EGFR kinase and c-Met kinase in five cancer cell lines. In addition, a series of functional experiments (cell cycle, apoptosis assays, in vitro/in vivo animal model, etc.) were conducted to further investigate the anti-tumor mechanisms of H-22. The present study revealed that H-22 exhibited strong antitumor activity both in vitro and in vivo. Interestingly, H-22 exhibited anti-proliferative activity (2.27-3.35 μM) similar to Afatinib against all five cancer cells, with inhibitory functions against EGFRWT, EGFRL858R/T790M, and c-Met kinases at a concentration of 64.8, 305.4 and 137.4 nM, respectively. Cell cycle analysis indicated that the antiproliferative activity of H-22 was associated with its ability to cause G2/M arrest. Furthermore, in vivo data showed that H-22 could inhibit tumor growth in our xenograft models and induce apoptosis. Collectively, our findings uncovered that H-22 is a novel dual EGFR and c-Met inhibitor and a prospective anti-tumor therapeutic drug.
Collapse
Affiliation(s)
- Han Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China
| | - Wenhui Gan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China
| | - Dang Fan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China
| | - Qiaoli Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi, 330029, PR China.
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China.
| |
Collapse
|
5
|
Xu X, Yin K, Xu S, Wang Z, Wu R. Mass spectrometry-based methods for investigating the dynamics and organization of the surfaceome: exploring potential clinical implications. Expert Rev Proteomics 2024; 21:99-113. [PMID: 38300624 PMCID: PMC10928381 DOI: 10.1080/14789450.2024.2314148] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Cell-surface proteins are extremely important for many cellular events, such as regulating cell-cell communication and cell-matrix interactions. Aberrant alterations in surface protein expression, modification (especially glycosylation), and interactions are directly related to human diseases. Systematic investigation of surface proteins advances our understanding of protein functions, cellular activities, and disease mechanisms, which will lead to identifying surface proteins as disease biomarkers and drug targets. AREAS COVERED In this review, we summarize mass spectrometry (MS)-based proteomics methods for global analysis of cell-surface proteins. Then, investigations of the dynamics of surface proteins are discussed. Furthermore, we summarize the studies for the surfaceome interaction networks. Additionally, biological applications of MS-based surfaceome analysis are included, particularly highlighting the significance in biomarker identification, drug development, and immunotherapies. EXPERT OPINION Modern MS-based proteomics provides an opportunity to systematically characterize proteins. However, due to the complexity of cell-surface proteins, the labor-intensive workflow, and the limit of clinical samples, comprehensive characterization of the surfaceome remains extraordinarily challenging, especially in clinical studies. Developing and optimizing surfaceome enrichment methods and utilizing automated sample preparation workflow can expand the applications of surfaceome analysis and deepen our understanding of the functions of cell-surface proteins.
Collapse
Affiliation(s)
- Xing Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Kejun Yin
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Senhan Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Zeyu Wang
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
6
|
Kim S, Park JM, Park S, Jung E, Ko D, Park M, Seo J, Nam KD, Kang YK, Lee K, Farrand L, Kim YJ, Kim JY, Seo JH. Suppression of TNBC metastasis by doxazosin, a novel dual inhibitor of c-MET/EGFR. J Exp Clin Cancer Res 2023; 42:292. [PMID: 37924112 PMCID: PMC10625208 DOI: 10.1186/s13046-023-02866-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is characterized by aggressive growth and a high propensity for recurrence and metastasis. Simultaneous overexpression of c-MET and EGFR in TNBC is associated with worse clinicopathological features and unfavorable outcomes. Although the development of new c-MET inhibitors and the emergence of 3rd-generation EGFR inhibitors represent promising treatment options, the high costs involved limit the accessibility of these drugs. In the present study, we sought to investigate the therapeutic potential of doxazosin (DOXA), a generic drug for benign prostate hyperplasia, in targeting TNBC. METHODS The effect of DOXA on TNBC cell lines in vitro was evaluated in terms of cell viability, apoptosis, c-MET/EGFR signaling pathway, molecular docking studies and impact on cancer stem cell (CSC)-like properties. An in vivo metastatic model with CSCs was used to evaluate the efficacy of DOXA. RESULTS DOXA exhibits notable anti-proliferative effects on TNBC cells by inducing apoptosis via caspase activation. Molecular docking studies revealed the direct interaction of DOXA with the tyrosine kinase domains of c-MET and EGFR. Consequently, DOXA disrupts important survival pathways including AKT, MEK/ERK, and JAK/STAT3, while suppressing CSC-like characteristics including CD44high/CD24low subpopulations, aldehyde dehydrogenase 1 (ALDH1) activity and formation of mammospheres. DOXA administration was found to suppress tumor growth, intra- and peri-tumoral angiogenesis and distant metastasis in an orthotopic allograft model with CSC-enriched populations. Furthermore, no toxic effects of DOXA were observed in hepatic or renal function. CONCLUSIONS Our findings highlight the potential of DOXA as a therapeutic option for metastatic TNBC, warranting further investigation.
Collapse
Affiliation(s)
- Seongjae Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jung Min Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Soeun Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Eunsun Jung
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Dongmi Ko
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Minsu Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Juyeon Seo
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Kee Dal Nam
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea
| | - Yong Koo Kang
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea
| | - Kyoungmin Lee
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea
| | - Lee Farrand
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Yoon-Jae Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea.
| | - Ji Young Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea.
| | - Jae Hong Seo
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea.
| |
Collapse
|
7
|
Yang CZ, Guo W, Wang YF, Hu LH, Wang J, Luo JM, Yao XH, Liu S, Tao LT, Sun LL, Lin LZ. Reduction in gefitinib resistance mediated by Yi-Fei San-Jie pill in non-small cell lung cancer through regulation of tyrosine metabolism, cell cycle, and the MET/EGFR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116566. [PMID: 37169317 DOI: 10.1016/j.jep.2023.116566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/16/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Chinese herbal prescription Yi-Fei San-Jie pill (YFSJ) has been used for adjuvant treatment in patients with lung cancer for a long time. AIM OF THE STUDY Reports have indicated that the combination of gefitinib (Gef) with YFSJ inhibits the proliferation of EGFR-TKI-resistant cell lines by enhancing cellular apoptosis and autophagy in non-small cell lung cancer (NSCLC). However, the molecular mechanisms underlying the effect of YFSJ on EGFR-TKI resistance and related metabolic pathways remain to be explored. MATERIALS AND METHODS In our report, ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), metabolomics, network pharmacology, bioinformatics, and biological analysis methods were used to investigate the mechanism. RESULTS The UPLC-MS/MS data identified 42 active compounds of YFSJ extracts. YFSJ extracts can enhance the antitumor efficacy of Gef without hepatic and renal toxicity in vivo. The analysis of the metabolomics pathway enrichment revealed that YFSJ mainly affected the tyrosine metabolism pathway in rat models. Moreover, YFSJ has been shown to reverse Gef resistance and improve the effects of Gef on the cellular viability, migration capacity, and cell cycle arrest of NSCLC cell lines with EGFR mutations. The results of network pharmacology and molecular docking analyses revealed that tyrosine metabolism-related active compounds of YFSJ affect EGFR-TKIs resistance in NSCLC by targeting cell cycle and the MET/EGFR signaling pathway; these findings were validated by western blotting and immunohistochemistry. CONCLUSIONS YFSJ inhibits NSCLC by inducing cell cycle arrest in the G1/S phase to suppress tumor growth, cell viability, and cell migration through synergistic effects with Gef via the tyrosine metabolic pathway and the EGFR/MET signaling pathway. To summarize, the findings of the current study indicate that YFSJ is a prospective complementary treatment for Gef-resistant NSCLC.
Collapse
Affiliation(s)
- Cai-Zhi Yang
- The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Wei Guo
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Yi-Fan Wang
- The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Lei-Hao Hu
- The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Jing Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Jia-Min Luo
- The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Xiao-Hui Yao
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Shan Liu
- The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Lan-Ting Tao
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| | - Ling-Ling Sun
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Li-Zhu Lin
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
8
|
Lawal B, Wu ATH, Huang HS. Leveraging Bulk and Single-Cell RNA Sequencing Data of NSCLC Tumor Microenvironment and Therapeutic Potential of NLOC-15A, A Novel Multi-Target Small Molecule. Front Immunol 2022; 13:872470. [PMID: 35655775 PMCID: PMC9152008 DOI: 10.3389/fimmu.2022.872470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/15/2022] [Indexed: 01/10/2023] Open
Abstract
Lung cancer poses a serious threat to human health and has recently been tagged the most common malignant disease with the highest incidence and mortality rate. Although epidermal growth factor (EGFR)-tyrosine kinase inhibitors (TKIs) have significantly improved the prognosis of advanced non-small cell lung cancer (NSCLC) patients with EGFR mutations, patients often develop resistance to these drugs. There is therefore a need to identify new drug candidates with multitarget potential for treating NSCLC. We hereby provide preclinical evidence of the therapeutic efficacy of NLOC-015A a multitarget small-molecule inhibitor of EGFR/mitogen-activated protein (MAP) kinase kinase 1 (MAP2K1)/mammalian target of rapamycin (mTOR)/yes-associated protein 1 (YAP1) for the treatment NSCLC. Our multi-omics analysis of clinical data from cohorts of NSCLC revealed that dysregulation of EGFR/MAP2K1/mTOR/YAP1 signaling pathways was associated with the progression, therapeutic resistance, immune-invasive phenotypes, and worse prognoses of NSCLC patients. Analysis of single-cell RNA sequencing datasets revealed that MAP2K1, mTOR, YAP1 and EGFR were predominantly located on monocytes/macrophages, Treg and exhaustive CD8 T cell, and are involved in M2 polarization within the TME of patients with primary and metastatic NSCLC which further implied gene’s role in remodeling the tumor immune microenvironment. A molecular-docking analysis revealed that NLOC-015A bound to YAP1, EGFR, MAP kinase/extracellular signal-related kinase kinase 1 (MEK1), and mTOR with strong binding efficacies ranging –8.4 to –9.50 kcal/mol. Interestingly, compared to osimertinib, NLOC-015 bound with higher efficacy to the tyrosine kinase (TK) domains of both T790M and T790M/C797S mutant-bearing EGFR. Our in vitro studies and sequencing analysis revealed that NLOC-015A inhibited the proliferation and oncogenic phenotypes of NSCLC cell lines with concomitant downregulation of expression levels of mTOR, EGFR, YAP1, and MEK1 signaling network. We, therefore, suggest that NLOC-015A might represent a new candidate for treating NSCLC via acting as a multitarget inhibitor of EGFR, mTOR/NF-κB, YAP1, MEK1 in NSCLC.
Collapse
Affiliation(s)
- Bashir Lawal
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Alexander T H Wu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hsu-Shan Huang
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.,PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
EGFR-based dual inhibitors: current status and perspectives. Future Med Chem 2022; 14:601-603. [PMID: 35315726 DOI: 10.4155/fmc-2022-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Hu L, Fan M, Shi S, Song X, Wang F, He H, Qi B. Dual target inhibitors based on EGFR: Promising anticancer agents for the treatment of cancers (2017-). Eur J Med Chem 2022; 227:113963. [PMID: 34749202 DOI: 10.1016/j.ejmech.2021.113963] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023]
Abstract
The EGFR family play a significant role in cell signal transduction and their overexpression is implicated in the pathogenesis of numerous human solid cancers. Inhibition of the EGFR-mediated signaling pathways by EGFR inhibitors is a widely used strategy for the treatment of cancers. In most cases, the EGFR inhibitors used in clinic were only effective when the cancer cells harbored specific activating EGFR mutations which appeared to preserve the ligand-dependency of receptor activation but altered the pattern of downstream signaling pathways. Moreover, cancer is a kind of multifactorial disease, and therefore manipulating a single target may result in treatment failure. Although drug combinations for the treatment of cancers proved to be successful, the use of two or more drugs concurrently still was a challenge in clinical therapy owing to various dose-limiting toxicities and drug-drug interactions caused by pharmacokinetic profiles changed. Therefore, a single drug targeting two or multiple targets could serve as an effective strategy for the treatment of cancers. In recent, drugs with diverse pharmacological effects have been shown to be more advantageous than combination therapies due to their lower incidences of side effects and more resilient therapies. Accordingly, dual target-single-agent strategy has become a popular field for cancer treatment, and researchers became more and more interest in the development of novel dual-target drugs in recent years. In this review, we briefly introduce the EGFR family proteins and synergisms between EGFR and other anticancer targets, and summarizes the development of potential dual target inhibitors based on wild-type and/or mutant EGFR for the treatment of solid cancers in the past five years. Additionally, the rational design and SARs of these dual target agents are also presented in detailed, which will lay a significant foundation for the further development of novel EGFR-based dual inhibitors with excellent druggability.
Collapse
Affiliation(s)
- Liping Hu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, Guangdong Province, China
| | - Mengmeng Fan
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, Guangdong Province, China
| | - Shengmin Shi
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, Guangdong Province, China
| | - Xiaomeng Song
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, Guangdong Province, China
| | - Fei Wang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, Guangdong Province, China
| | - Huan He
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, Guangdong Province, China.
| | - Baohui Qi
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, Guangdong Province, China.
| |
Collapse
|
11
|
Challenge and countermeasures for EGFR targeted therapy in non-small cell lung cancer. Biochim Biophys Acta Rev Cancer 2021; 1877:188645. [PMID: 34793897 DOI: 10.1016/j.bbcan.2021.188645] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer causes the highest mortality compared to other cancers in the world according to the latest WHO reports. Non-small cell lung cancer (NSCLC) contributes about 85% of total lung cancer cases. An extensive number of risk factors are attributed to the progression of lung cancer. Epidermal growth factor receptor (EGFR), one of the most frequently mutant driver genes, is closely involved in the development of lung cancer through regulation of the PI3K/AKT and MAPK pathways. As a representative of precision medicine, EGFR-tyrosine kinase inhibitors (TKIs) targeted therapy significantly relieves the development of activating mutant EGFR-driven NSCLC. However, treatment with TKIs facilitates the emergence of acquired resistance that continues to pose a significant hurdle with respect to EGFR targeted therapy. In this review, the development of current approved EGFR-TKIs as well as the related supporting clinical trials are summarized and discussed. Mechanisms of action and resistance were addressed respectively, which serve as important guides to understanding acquired resistance. We also explored the corresponding combination treatment options according to different resistance mechanisms. Future challenges include more comprehensive characterization of unclear resistance mechanisms in different populations and the development of more efficient and precision synthetic therapeutic strategies.
Collapse
|
12
|
Lawal B, Kuo YC, Tang SL, Liu FC, Wu ATH, Lin HY, Huang HS. Transcriptomic-Based Identification of the Immuno-Oncogenic Signature of Cholangiocarcinoma for HLC-018 Multi-Target Therapy Exploration. Cells 2021; 10:2873. [PMID: 34831096 PMCID: PMC8616156 DOI: 10.3390/cells10112873] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
Cholangiocarcinomas (CHOLs), hepatobiliary malignancies, are characterized by high genetic heterogeneity, a rich tumor microenvironment, therapeutic resistance, difficulty diagnosing, and poor prognoses. Current knowledge of genetic alterations and known molecular markers for CHOL is insufficient, necessitating the need for further evaluation of the genome and RNA expression data in order to identify potential therapeutic targets, clarify the roles of these targets in the tumor microenvironment, and explore novel therapeutic drugs against the identified targets. Consequently, in our attempt to explore novel genetic markers associated with the carcinogenesis of CHOL, five genes (SNX15, ATP2A1, PDCD10, BET1, and HMGA2), collectively termed CHOL-hub genes, were identified via integration of differentially expressed genes (DEGs) from relatively large numbers of samples from CHOL GEO datasets. We further explored the biological functions of the CHOL-hub genes and found significant enrichment in several biological process and pathways associated with stem cell angiogenesis, cell proliferation, and cancer development, while the interaction network revealed high genetic interactions with a number of onco-functional genes. In addition, we established associations between the CHOL-hub genes and tumor progression, metastasis, tumor immune and immunosuppressive cell infiltration, dysfunctional T-cell phenotypes, poor prognoses, and therapeutic resistance in CHOL. Thus, we proposed that targeting CHOL-hub genes could be an ideal therapeutic approach for treating CHOLs, and we explored the potential of HLC-018, a novel benzamide-linked small molecule, using molecular docking of ligand-receptor interactions. To our delight, HLC-018 was well accommodated with high binding affinities to binding pockets of CHOL-hub genes; more importantly, we found specific interactions of HLC-018 with the conserved sequence of the AT-hook DNA-binding motif of HMGA2. Altogether, our study provides insights into the immune-oncogenic phenotypes of CHOL and provides valuable information for our ongoing experimental validation.
Collapse
Affiliation(s)
- Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Cheng Kuo
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- School of Post-baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Sung-Ling Tang
- Department of Pharmacy Practice, Tri-Service General Hospital, School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Feng-Cheng Liu
- Department of Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Alexander T. H. Wu
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Hung-Yun Lin
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
13
|
A Preclinical Investigation of GBM-N019 as a Potential Inhibitor of Glioblastoma via Exosomal mTOR/CDK6/STAT3 Signaling. Cells 2021; 10:cells10092391. [PMID: 34572040 PMCID: PMC8471927 DOI: 10.3390/cells10092391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive brain malignancies with high incidences of developing treatment resistance, resulting in poor prognoses. Glioma stem cell (GSC)-derived exosomes are important players that contribute to GBM tumorigenesis and aggressive properties. Herein, we investigated the inhibitory roles of GBM-N019, a novel small molecule on the transfer of aggressive and invasive properties through the delivery of oncogene-loaded exosomes from GSCs to naïve and non-GSCs. Our results indicated that GBM-N019 significantly downregulated the expressions of the mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3), and cyclin-dependent kinase 6 (CDK6) signaling networks with concomitant inhibitory activities against viability, clonogenicity, and migratory abilities of U251 and U87MG cells. Treatments with GBM-N019 halted the exosomal transfer of protein kinase B (Akt), mTOR, p-mTOR, and Ras-related protein RAB27A to the naïve U251 and U87MG cells, and rescued the cells from invasive and stemness properties that were associated with activation of these oncogenes. GBM-N019 also synergized with and enhanced the anti-GBM activities of palbociclib in vitro and in vivo. In conclusion, our results suggested that GBM-N019 possesses good translational relevance as a potential anti-glioblastoma drug candidate worthy of consideration for clinical trials against recurrent glioblastomas.
Collapse
|
14
|
Khedkar HN, Wang YC, Yadav VK, Srivastava P, Lawal B, Mokgautsi N, Sumitra MR, Wu ATH, Huang HS. In-Silico Evaluation of Genetic Alterations in Ovarian Carcinoma and Therapeutic Efficacy of NSC777201, as a Novel Multi-Target Agent for TTK, NEK2, and CDK1. Int J Mol Sci 2021; 22:ijms22115895. [PMID: 34072728 PMCID: PMC8198179 DOI: 10.3390/ijms22115895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is often detected at the advanced stages at the time of initial diagnosis. Early-stage diagnosis is difficult due to its asymptomatic nature, where less than 30% of 5-year survival has been noticed. The underlying molecular events associated with the disease’s pathogenesis have yet to be fully elucidated. Thus, the identification of prognostic biomarkers as well as developing novel therapeutic agents for targeting these markers become relevant. Herein, we identified 264 differentially expressed genes (DEGs) common in four ovarian cancer datasets (GSE14407, GSE18520, GSE26712, GSE54388), respectively. We constructed a protein-protein interaction (PPI) interaction network with the overexpressed genes (72 genes) and performed gene enrichment analysis. In the PPI networks, three proteins; TTK Protein Kinase (TTK), NIMA Related Kinase 2 (NEK2), and cyclin-dependent kinase (CDK1) with higher node degrees were further evaluated as therapeutic targets for our novel multi-target small molecule NSC777201. We found that the upregulated DEGs were enriched in KEGG and gene ontologies associated with ovarian cancer progression, female gamete association, otic vesicle development, regulation of chromosome segregation, and therapeutic failure. In addition to the PPI network, ingenuity pathway analysis also implicate TTK, NEK2, and CDK1 in the elevated salvage pyrimidine and pyridoxal pathways in ovarian cancer. The TTK, NEK2, and CDK1 are over-expressed, demonstrating a high frequency of genetic alterations, and are associated with poor prognosis of ovarian cancer cohorts. Interestingly, NSC777201 demonstrated anti-proliferative and cytotoxic activities (GI50 = 1.6 µM~1.82 µM and TGI50 = 3.5 µM~3.63 µM) against the NCI panels of ovarian cancer cell lines and exhibited a robust interaction with stronger affinities for TTK, NEK2, and CDK1, than do the standard drug, paclitaxel. NSC777201 displayed desirable properties of a drug-like candidate and thus could be considered as a novel small molecule for treating ovarian carcinoma.
Collapse
Affiliation(s)
- Harshita Nivrutti Khedkar
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.N.K.); (B.L.); (N.M.); (M.R.S.)
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chi Wang
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Vijesh Kumar Yadav
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (V.K.Y.); (P.S.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Prateeti Srivastava
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (V.K.Y.); (P.S.)
| | - Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.N.K.); (B.L.); (N.M.); (M.R.S.)
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ntlotlang Mokgautsi
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.N.K.); (B.L.); (N.M.); (M.R.S.)
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Maryam Rachmawati Sumitra
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.N.K.); (B.L.); (N.M.); (M.R.S.)
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Alexander T. H. Wu
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (V.K.Y.); (P.S.)
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (A.T.H.W.); (H.-S.H.)
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.N.K.); (B.L.); (N.M.); (M.R.S.)
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- National Defense Medical Center, School of Pharmacy, Taipei 11490, Taiwan
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (A.T.H.W.); (H.-S.H.)
| |
Collapse
|
15
|
Wang S, Liu C, Lei Q, Wu Z, Miao X, Zhu D, Yang X, Li N, Tang M, Chen Y, Wang W. Relationship between long non-coding RNA PCAT-1 expression and gefitinib resistance in non-small-cell lung cancer cells. Respir Res 2021; 22:146. [PMID: 33980216 PMCID: PMC8114512 DOI: 10.1186/s12931-021-01719-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, has been used as first-line treatment for advanced non-small-cell lung cancer (NSCLC). However, during treatment, cancer cells often develop resistance to gefitinib, the mechanisms of which are not fully understood. This study was designed to elucidate the expression and role of long non-coding RNA (lncRNA)-PCAT-1, a potential biomarker for drug resistance and a therapeutic target for NSCLC, in gefitinib resistance in NSCLC cells. METHODS In this study, we verified differential PCAT-1 expression in NSCLC gefitinib-resistant tissues or cells. PCAT-1 knockdown, clone formation, Transwell, flow cytometry, and immunofluorescence assays were used to verify the correlation between PCAT-1 and gefitinib sensitivity. A nude mouse tumor-bearing model verified that PCAT-1 can reverse gefitinib resistance in vivo. Then, a PI3K/Akt agonist was used to verify the possible mechanism of PCAT-1 action. RESULTS PCAT-1 is highly expressed in gefitinib-resistant NSCLC tissues and cells. PCAT-1 knockdown enhanced gefitinib sensitivity and gefitinib-induced apoptosis in H1299/GR cells. PCAT-1 knockdown reduced tumor volume and weight, and reversed acquired gefitinib resistance in vivo. PCAT-1 knockdown inhibited AKT and GSK3 phosphorylation in H1299/GR cells. A PI3K/AKT agonist reversed PCAT-1 knockdown-mediated enhancement of gefitinib sensitivity in H1299/GR cells CONCLUSION: PCAT-1 knockdown improves sensitivity to gefitinib by inhibition of AKT and GSK3 phosphorylation in NSCLC. PCAT-1 is as potential target for improving the clinical efficacy of gefitinib.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Gefitinib/pharmacology
- Gene Expression Regulation, Neoplastic
- Glycogen Synthase Kinase 3/metabolism
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mice, Nude
- Phosphatidylinositol 3-Kinase/metabolism
- Phosphorylation
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Shaojia Wang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, 650118, China
| | - Chao Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, 650118, China
| | - Qing Lei
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, No. 519 Kunzhou Road, Kunming, 650118, Yunnan, China
| | - Zhengwei Wu
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, No. 519 Kunzhou Road, Kunming, 650118, Yunnan, China
| | - Xiangshuai Miao
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, No. 519 Kunzhou Road, Kunming, 650118, Yunnan, China
| | - Debing Zhu
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, No. 519 Kunzhou Road, Kunming, 650118, Yunnan, China
| | - Xu Yang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, No. 519 Kunzhou Road, Kunming, 650118, Yunnan, China
| | - Na Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, No. 519 Kunzhou Road, Kunming, 650118, Yunnan, China
| | - Mingwei Tang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, No. 519 Kunzhou Road, Kunming, 650118, Yunnan, China
| | - Yan Chen
- Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, 650118, China
| | - Weiwei Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, No. 519 Kunzhou Road, Kunming, 650118, Yunnan, China.
| |
Collapse
|
16
|
HNC0014, a Multi-Targeted Small-Molecule, Inhibits Head and Neck Squamous Cell Carcinoma by Suppressing c-Met/STAT3/CD44/PD-L1 Oncoimmune Signature and Eliciting Antitumor Immune Responses. Cancers (Basel) 2020; 12:cancers12123759. [PMID: 33327484 PMCID: PMC7764918 DOI: 10.3390/cancers12123759] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer stem cells (CSCs) in head and neck squamous cell carcinoma (HNSCC) possess unlimited self-renewal capacity, resist treatments and induce tumor repopulation after interventions. Here, we observed HNSCC CSCs secreted exosomes containing c-Met, STAT3 (also the phosphorylated form of c-Met and STAT3), CD44, and PD-L1 oncogenic signaling molecules. CSC-derived exosomes, in part, transform fibroblasts (NFs) into cancer-associated fibroblasts (CAFs), establish drug resistance, and an immune-evasive tumor microenvironment (TME). We demonstrated HNC0014, a novel small-molecule drug, suppresses HNSCC tumorigenesis, CSC generation and prevents CAF transformation by decreasing the aforementioned oncogenic signaling molecules’ expression in both HNSCC cells and CSC-derived exosomes. Abstract Despite advancements in diagnostic and standard treatment modalities, including surgery, radiotherapy, and chemotherapy, overall survival rates of advanced-stage head and neck squamous cell carcinoma (HNSCC) patients have remained stagnant for over three decades. Failure of these treatment modalities, coupled with post-therapy complications, underscores the need for alternative interventions and an in-depth understanding of the complex signaling networks involved in developing treatment resistance. Using bioinformatics tools, we identified an increased expression of c-Met, STAT3, and CD44 corresponding to a poor prognosis and malignant phenotype of HNSCC. Subsequently, we showed that tumorsphere-derived exosomes promoted cisplatin (CDDP) resistance and colony and tumorsphere formation in parental HNSCC cells, accompanied by an increased level of oncogenic/immune evasive markers, namely, c-Met, STAT3, CD44, and PD-L1. We then evaluated the therapeutic potential of a new small molecule, HNC0014. The molecular docking analysis suggested strong interactions between HNC0014 and oncogenic molecules; c-Met, STAT3, CD44, and PD-L1. Subsequently, we demonstrated that HNC0014 treatment suppressed HNSCC tumorigenic and expression of stemness markers; HNC0014 also reduced cancer-associated fibroblast (CAF) transformation by Exosp- and CAF-induced tumorigenic properties. HNC0014 treatment alone suppressed tumor growth in a cisplatin-resistant (SAS tumorspheres) mouse xenograft model and with higher inhibitory efficacy when combined with CDDP. More importantly, HNC0014 treatment significantly delayed tumor growth in a syngeneic mouse HNSCC model, elicited an antitumor immune profile, and reduced the total c-Met, STAT3, and their phosphorylated forms, PD-L1 and CD44, contents in serum exosomes. Collectively, our findings provide supports for HNC0014 as a multi-targeted immunotherapeutic lead compound for further development.
Collapse
|
17
|
Song H, Liu D, Dong S, Zeng L, Wu Z, Zhao P, Zhang L, Chen ZS, Zou C. Epitranscriptomics and epiproteomics in cancer drug resistance: therapeutic implications. Signal Transduct Target Ther 2020; 5:193. [PMID: 32900991 PMCID: PMC7479143 DOI: 10.1038/s41392-020-00300-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
Drug resistance is a major hurdle in cancer treatment and a key cause of poor prognosis. Epitranscriptomics and epiproteomics are crucial in cell proliferation, migration, invasion, and epithelial–mesenchymal transition. In recent years, epitranscriptomic and epiproteomic modification has been investigated on their roles in overcoming drug resistance. In this review article, we summarized the recent progress in overcoming cancer drug resistance in three novel aspects: (i) mRNA modification, which includes alternative splicing, A-to-I modification and mRNA methylation; (ii) noncoding RNAs modification, which involves miRNAs, lncRNAs, and circRNAs; and (iii) posttranslational modification on molecules encompasses drug inactivation/efflux, drug target modifications, DNA damage repair, cell death resistance, EMT, and metastasis. In addition, we discussed the therapeutic implications of targeting some classical chemotherapeutic drugs such as cisplatin, 5-fluorouridine, and gefitinib via these modifications. Taken together, this review highlights the importance of epitranscriptomic and epiproteomic modification in cancer drug resistance and provides new insights on potential therapeutic targets to reverse cancer drug resistance.
Collapse
Affiliation(s)
- Huibin Song
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Dongcheng Liu
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Shaowei Dong
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Leli Zeng
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA.,Tomas Lindahl Nobel Laureate Laboratory, Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Zhuoxun Wu
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA
| | - Pan Zhao
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Litu Zhang
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA.
| | - Chang Zou
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China. .,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, 518001, Guangdong, China.
| |
Collapse
|
18
|
Kong Y, Qiao Z, Ren Y, Genchev GZ, Ge M, Xiao H, Zhao H, Lu H. Integrative Analysis of Membrane Proteome and MicroRNA Reveals Novel Lung Cancer Metastasis Biomarkers. Front Genet 2020; 11:1023. [PMID: 33005184 PMCID: PMC7483668 DOI: 10.3389/fgene.2020.01023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most common human cancers both in incidence and mortality, with prognosis particularly poor in metastatic cases. Metastasis in lung cancer is a multifarious process driven by a complex regulatory landscape involving many mechanisms, genes, and proteins. Membrane proteins play a crucial role in the metastatic journey both inside tumor cells and the extra-cellular matrix and are a viable area of research focus with the potential to uncover biomarkers and drug targets. In this work we performed membrane proteome analysis of highly and poorly metastatic lung cells which integrated genomic, proteomic, and transcriptional data. A total of 1,762 membrane proteins were identified, and within this set, there were 163 proteins with significant changes between the two cell lines. We applied the Tied Diffusion through Interacting Events method to integrate the differentially expressed disease-related microRNAs and functionally dys-regulated membrane protein information to further explore the role of key membrane proteins and microRNAs in multi-omics context. Has-miR-137 was revealed as a key gene involved in the activity of membrane proteins by targeting MET and PXN, affecting membrane proteins through protein-protein interaction mechanism. Furthermore, we found that the membrane proteins CDH2, EGFR, ITGA3, ITGA5, ITGB1, and CALR may have significant effect on cancer prognosis and outcomes, which were further validated in vitro. Our study provides multi-omics-based network method of integrating microRNAs and membrane proteome information, and uncovers a differential molecular signatures of highly and poorly metastatic lung cancer cells; these molecules may serve as potential targets for giant-cell lung metastasis treatment and prognosis.
Collapse
Affiliation(s)
- Yan Kong
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Qiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yongyong Ren
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Georgi Z Genchev
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Center for Biomedical Informatics, Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai Children's Hospital, Shanghai, China.,Bulgarian Institute for Genomics and Precision Medicine, Sofia, Bulgaria
| | - Maolin Ge
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, New Haven, CT, United States
| | - Hui Lu
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Center for Biomedical Informatics, Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai Children's Hospital, Shanghai, China
| |
Collapse
|
19
|
Wang J, Yang X, Han S, Zhang L. CEP131 knockdown inhibits cell proliferation by inhibiting the ERK and AKT signaling pathways in non-small cell lung cancer. Oncol Lett 2020; 19:3145-3152. [PMID: 32218865 PMCID: PMC7068694 DOI: 10.3892/ol.2020.11411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
Disrupted centrosome-associated family protein expression can result in the detrimental duplication of centrosomes, causing genomic instability and subsequent carcinogenesis. Limited research has demonstrated that centrosomal protein 131 (CEP131) exhibits oncogenic activity in osteosarcoma, hepatocellular carcinoma and breast cancer. The present study demonstrated that there is an association between CEP131 expression and advanced Tumor-Node-Metastasis stage (P=0.016), and positive regional lymph node metastasis (P=0.023) in 91 cases of non-small cell lung cancer. A549 and SPC-A-1 cells, with moderate expression levels of CEP131, were selected as representative cell lines. The results indicated that downregulation of CEP131 induced G1/S cell cycle arrest, inhibition of cyclins D1/E and cyclin-dependent kinases 2/4/6, and induction of inhibitory p21/p27, all of which are regulated by ERK and AKT signaling, suggesting that CEP131 exhibits potential as a novel target in the treatment of lung cancer.
Collapse
Affiliation(s)
- Junying Wang
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiaoping Yang
- Department of Anesthesiology, Dalian Obstetrics and Gynecology Hospital, Dalian, Liaoning 116033, P.R. China
| | - Shixin Han
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lizhi Zhang
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
20
|
Li Y, Ding K, Hu X, Wu L, Zhou D, Rao M, Lin N, Zhang C. DYRK1A inhibition suppresses STAT3/EGFR/Met signalling and sensitizes EGFR wild-type NSCLC cells to AZD9291. J Cell Mol Med 2019; 23:7427-7437. [PMID: 31454149 PMCID: PMC6815810 DOI: 10.1111/jcmm.14609] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/14/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
DYRK1A is considered a potential cancer therapeutic target, but the role of DYRK1A in NSCLC oncogenesis and treatment requires further investigation. In our study, high DYRK1A expression was observed in tumour samples from patients with lung cancer compared with normal lung tissues, and the high levels of DYRK1A were related to a reduced survival time in patients with lung cancer. Meanwhile, the DYRK1A inhibitor harmine could suppress the proliferation of NSCLC cells compared to that of the control. As DYRK1A suppression might be effective in treating NSCLC, we next explored the possible specific molecular mechanisms that were involved. We showed that DYRK1A suppression by siRNA could suppress the levels of EGFR and Met in NSCLC cells. Furthermore, DYRK1A siRNA could inhibit the expression and nuclear translocation of STAT3. Meanwhile, harmine could also regulate the STAT3/EGFR/Met signalling pathway in human NSCLC cells. AZD9291 is effective to treat NSCLC patients with EGFR-sensitivity mutation and T790 M resistance mutation, but the clinical efficacy in patients with wild-type EGFR remains modest. We showed that DYRK1A repression could enhance the anti-cancer effect of AZD9291 by inducing apoptosis and suppressing cell proliferation in EGFR wild-type NSCLC cells. In addition, harmine could enhance the anti-NSCLC activity of AZD9291 by modulating STAT3 pathway. Finally, harmine could enhance the anti-cancer activity of AZD9291 in primary NSCLC cells. Collectively, targeting DYRK1A might be an attractive target for AZD9291 sensitization in EGFR wild-type NSCLC patients.
Collapse
Affiliation(s)
- Yang‐ling Li
- Department of Clinical Pharmacology, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou, ZhejiangChina
| | - Ke Ding
- Department of Clinical Pharmacology, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou, ZhejiangChina
| | - Xiu Hu
- School of MedicineZhejiang University City CollegeHangzhouZhejiangChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou, ZhejiangChina
| | - Lin‐wen Wu
- School of MedicineZhejiang University City CollegeHangzhouZhejiangChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou, ZhejiangChina
| | - Dong‐mei Zhou
- Department of Clinical Pharmacology, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou, ZhejiangChina
| | - Ming‐jun Rao
- Department of Clinical Pharmacology, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou, ZhejiangChina
| | - Neng‐ming Lin
- Department of Clinical Pharmacology, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou, ZhejiangChina
- Hangzhou Translational Medicine Research Center, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou, ZhejiangChina
| | - Chong Zhang
- School of MedicineZhejiang University City CollegeHangzhouZhejiangChina
| |
Collapse
|
21
|
Madamsetty VS, Pal K, Dutta SK, Wang E, Thompson JR, Banerjee RK, Caulfield TR, Mody K, Yen Y, Mukhopadhyay D, Huang HS. Design and Evaluation of PEGylated Liposomal Formulation of a Novel Multikinase Inhibitor for Enhanced Chemosensitivity and Inhibition of Metastatic Pancreatic Ductal Adenocarcinoma. Bioconjug Chem 2019; 30:2703-2713. [PMID: 31584260 DOI: 10.1021/acs.bioconjchem.9b00632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the highest mortality rates among cancers. Chemotherapy is the standard first-line treatment, but only modest survival benefits are observed. With the advent of targeted therapies, epidermal growth factor receptor (EGFR) has been acknowledged as a prospective target in PDAC since it is overexpressed in up to 60% of cases. Similarly, the tyrosine-protein kinase Met (cMET) is also overexpressed in PDAC (27-60%) and is a prognostic marker for poor survival. Interestingly, EGFR and cMET share some common signaling pathways including PI3K/Akt and MAPK pathways. Small molecule inhibitors or bispecific antibodies that can target both EGFR and cMET are therefore emerging as novel options for cancer therapy. We previously developed a dual EGFR and cMET inhibitor (N19) that was able to inhibit tumor growth in nonsmall cell lung cancer models resistant to EGFR tyrosine kinase inhibitors (TKI). Here, we report the development of a novel liposomal formulation of N19 (LN19) and showed significant growth inhibition and increased sensitivity toward gemcitabine in the pancreatic adenocarcinoma orthotopic xenograft model. Taken together, our results suggest that LN19 can be valued as an effective combination therapy with conventional chemotherapy such as gemcitabine for PDAC patients.
Collapse
Affiliation(s)
| | | | | | | | - James R Thompson
- SunMoon Research Partners Limited Liability Company , Jacksonville , Florida 32224 , United States
| | - Raj Kumar Banerjee
- Department of Applied Biology , CSIR-Indian Institute of Chemical Technology , Hyderabad , Telangana 500 007 , India
- CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus , Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad , Uttar Pradesh 201 002 , India
| | | | | | | | | | | |
Collapse
|
22
|
Huang TX, Guan XY, Fu L. Therapeutic targeting of the crosstalk between cancer-associated fibroblasts and cancer stem cells. Am J Cancer Res 2019; 9:1889-1904. [PMID: 31598393 PMCID: PMC6780671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) play critical roles in cancer progression and treatment failure. CAFs display extreme phenotypic heterogeneity and functional diversity. Some subpopulations of CAFs have the ability to reconstitute cancer stemness by promoting the expansion of cancer stem cells (CSCs) or by inducing the generation of CSCs from differentiated cancer cells. CAFs regulate cancer stemness in different types of solid tumors by activating a wide array of CSC-related signaling by secreting proteins and exosomes. As feedback, the CSCs can also induce the proliferation and further activation of CAFs to promote their CSC-supporting activities, thus completing the loop of CAF-CSC crosstalk. Current research on targeting CAF-CSC crosstalk could be classified into (i) specific depletion of CAF subpopulations that have CSC-supporting activities and (ii) targeting molecular signaling in CAF-CSC crosstalk, such as the IL6/STAT3, TGF-β/SDF-1/PI3K, WNT/β-catenin, HGF/cMET and SHH/Hh pathways. Strategies targeting CAF-CSC crosstalk may open new avenues for overcoming cancer progression and therapeutic resistance.
Collapse
Affiliation(s)
- Tu-Xiong Huang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pharmacology and Shenzhen International Cancer Center, Shenzhen University School of MedicineShenzhen, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong KongHong Kong
| | - Li Fu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pharmacology and Shenzhen International Cancer Center, Shenzhen University School of MedicineShenzhen, China
| |
Collapse
|
23
|
Dokla EME, Fang CS, Abouzid KAM, Chen CS. 1,2,4-Oxadiazole derivatives targeting EGFR and c-Met degradation in TKI resistant NSCLC. Eur J Med Chem 2019; 182:111607. [PMID: 31446247 DOI: 10.1016/j.ejmech.2019.111607] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 11/15/2022]
Abstract
Development of small-molecule agents with the ability to facilitate oncoprotein degradation has emerged as a promising strategy for cancer therapy. Since EGFR and c-Met are both implicated in oncogenesis and tumor progression, we initiated a screening program by using an in-house library to identify agents capable of inducing the concomitant suppression of EGFR and c-Met expression, which led to the identification of compound 1, a 1,2,4-oxadiazole derivative. Based on the scaffold of 1, we developed a series of derivatives to assess their efficacies in facilitating the downregulation of EGFR and c-Met, among which compound 48 represented the optimal agent. 48 showed equipotent antiproliferative activity against a panel of five NSCLC cell lines with different EGFR mutational status (IC50 = 0.2-0.6 μM), while the same panel exhibited differential sensitivity to different EGFR kinase inhibitors tested. Cell cycle analysis indicated that the antiproliferative activity of 48 was associated with its ability to cause G2/M arrest and, to a lesser extent, apoptosis. Western blot and RT-PCR analyses revealed that 48 facilitated the downregulation of EGFR and c-Met at the protein level. In vivo data showed that oral administration of 48 was effective in suppressing gefitinib-resistant H1975 xenograft tumor growth in nude mice, and at a suboptimal dose, could sensitize H1975 tumors to gefitinib. Based on these findings, 48 represents a promising candidate for further development to target EGFR TKI-resistant NSCLC via dual inhibition of EGFR and c-Met oncoproteins.
Collapse
Affiliation(s)
- Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Chun-Sheng Fang
- Institute of New Drug Development, China Medical University, Taichung, 40402, Taiwan
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt; Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt.
| | - Ching S Chen
- Institute of New Drug Development, China Medical University, Taichung, 40402, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40447, Taiwan.
| |
Collapse
|
24
|
Singh R, Peng S, Viswanath P, Sambandam V, Shen L, Rao X, Fang B, Wang J, Johnson FM. Non-canonical cMet regulation by vimentin mediates Plk1 inhibitor-induced apoptosis. EMBO Mol Med 2019; 11:e9960. [PMID: 31040125 PMCID: PMC6505578 DOI: 10.15252/emmm.201809960] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 12/26/2022] Open
Abstract
To address the need for improved systemic therapy for non-small-cell lung cancer (NSCLC), we previously demonstrated that mesenchymal NSCLC was sensitive to polo-like kinase (Plk1) inhibitors, but the mechanisms of resistance in epithelial NSCLC remain unknown. Here, we show that cMet was differentially regulated in isogenic pairs of epithelial and mesenchymal cell lines. Plk1 inhibition inhibits cMet phosphorylation only in mesenchymal cells. Constitutively active cMet abrogates Plk1 inhibitor-induced apoptosis. Likewise, cMet silencing or inhibition enhances Plk1 inhibitor-induced apoptosis. Cells with acquired resistance to Plk1 inhibitors are more epithelial than their parental cells and maintain cMet activation after Plk1 inhibition. In four animal NSCLC models, mesenchymal tumors were more sensitive to Plk1 inhibition alone than were epithelial tumors. The combination of cMet and Plk1 inhibition led to regression of tumors that did not regrow when drug treatment was stopped. Plk1 inhibition did not affect HGF levels but did decrease vimentin phosphorylation, which regulates cMet phosphorylation via β1-integrin. This research defines a heretofore unknown mechanism of ligand-independent activation of cMet downstream of Plk1 and an effective combination therapy.
Collapse
Affiliation(s)
- Ratnakar Singh
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaohua Peng
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pavitra Viswanath
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Vaishnavi Sambandam
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- The University of Texas MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Faye M Johnson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
25
|
Genome-wide haplotype association study identifies risk genes for non-small cell lung cancer. J Theor Biol 2018; 456:84-90. [PMID: 30096405 DOI: 10.1016/j.jtbi.2018.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Most lung cancer is non-small cell lung cancer (NSCLC), in which malignant cells form in the lung epithelium. Mutations in multiple genes and environmental factors both contribute to NSCLC, and although some NSCLC susceptibility genes have been characterized, the pathogenesis of this disease remains unclear. To identify genes conferring NSCLC risk and determine their associated pathological mechanism, we combined genome-wide haplotype associated analysis with gene prioritization using 224,677 SNPs in 37 NSCLC cell lines and 116 unrelated European individuals. Five candidate genes were identified: ESR1, TGFBR1, INSR, CDH3, and MAP3K5. All of these have previously been implicated in NSCLC, with the exception of CDH3, which can therefore be considered a novel indicator of NSCLC risk. Functional annotation confirmed the relationship between these five genes and NSCLC. Our findings are indicative of the underlying pathological mechanisms of NSCLC and provide information to support future directions in diagnosing and treating NSCLC.
Collapse
|
26
|
Li YL, Hu X, Li QY, Wang F, Zhang B, Ding K, Tan BQ, Lin NM, Zhang C. Shikonin sensitizes wild‑type EGFR NSCLC cells to erlotinib and gefitinib therapy. Mol Med Rep 2018; 18:3882-3890. [PMID: 30106133 PMCID: PMC6131653 DOI: 10.3892/mmr.2018.9347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022] Open
Abstract
As patients with non-small cell lung cancer (NSCLC) and wild-type epidermal growth factor receptor (EGFR) are resistant to treatment with erlotinib or gefitinib, potential chemosensitizers are required to potentiate wild-type EGFR NSCLC cells to erlotinib/gefitinib treatment. The present study reported that shikonin could sensitize the anticancer activity of erlotinib/gefitinib in wild-type EGFR NSCLC cells. Furthermore, shikonin could potentiate mitochondrial-mediated apoptosis induced by erlotinib/gefitinib in wild-type EGFR NSCLC cells. In addition, the present study demonstrated that shikonin could induce apoptosis by activating reactive oxygen species (ROS)-mediated endoplasmic reticulum (ER) stress, and that erlotinib/gefitinib may also induce ER stress in wild-type EGFR NSCLC cells; however, shikonin plus erlotinib/gefitinib was more effective in activating ER stress than either agent alone. This indicated that ROS-mediated ER stress may be associated with enhanced mitochondrial apoptosis induced by shikonin plus erlotinib/gefitinib. In addition, shikonin may promote the transition of cytoprotective ER stress-inducing EGFR-tyrosine kinase inhibitor tolerance to apoptosis-promoting ER stress. Furthermore, shikonin may enhance the anti-NSCLC activity of erlotinib/gefitinib in vivo. The data of the present study indicated that shikonin may be a potential sensitizer to enhance the anti-cancer efficacy of erlotinib/gefitinib in wild-type EGFR NSCLC cells resistant to erlotinib/gefitinib treatment.
Collapse
Affiliation(s)
- Yang-Ling Li
- Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiu Hu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P.R. China
| | - Qing-Yu Li
- Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Fei Wang
- Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Bo Zhang
- Hangzhou Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Ke Ding
- Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Bi-Qin Tan
- Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Neng-Ming Lin
- Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Chong Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P.R. China
| |
Collapse
|
27
|
Lai Y, Zhao Z, Zeng T, Liang X, Chen D, Duan X, Zeng G, Wu W. Crosstalk between VEGFR and other receptor tyrosine kinases for TKI therapy of metastatic renal cell carcinoma. Cancer Cell Int 2018. [PMID: 29527128 PMCID: PMC5838927 DOI: 10.1186/s12935-018-0530-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC), and is frequently accompanied by the genetic features of von Hippel–Lindau (VHL) loss. VHL loss increases the expression of hypoxia-inducible factors (HIFs) and their targets, including epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF). The primary treatment for metastatic RCC (mRCC) is molecular-targeted therapy, especially anti-angiogenic therapy. VEGF monoclonal antibodies and VEGF receptor (VEGFR) tyrosine kinase inhibitors (TKIs) are the main drugs used in anti-angiogenic therapy. However, crosstalk between VEGFR and other tyrosine kinase or downstream pathways produce resistance to TKI treatment, and the multi-target inhibitors, HIF inhibitors or combination strategies are promising strategies for mRCC. HIFs are upstream of the crosstalk between the growth factors, and these factors may regulate the expression of VEGR, EGF, PDGF and other growth factors. The frequent VHL loss in ccRCC increases HIF expression, and HIFs may be an ideal candidate to overcome the TKI resistance. The combination of HIF inhibitors and immune checkpoint inhibitors is also anticipated. Various clinical trials of programmed cell death protein 1 inhibitors are planned. The present study reviews the effects of current and potential TKIs on mRCC, with a focus on VEGF/VEGFR and other targets for mRCC therapy.
Collapse
Affiliation(s)
- Yongchang Lai
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Zhijian Zhao
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Tao Zeng
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Xiongfa Liang
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Dong Chen
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Xiaolu Duan
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Guohua Zeng
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Wenqi Wu
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| |
Collapse
|
28
|
Chen MJ, Wu DW, Wang GC, Wang YC, Chen CY, Lee H. MicroRNA-630 may confer favorable cisplatin-based chemotherapy and clinical outcomes in non-small cell lung cancer by targeting Bcl-2. Oncotarget 2018; 9:13758-13767. [PMID: 29568392 PMCID: PMC5862613 DOI: 10.18632/oncotarget.24474] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 02/03/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNA-630 (miR-630) plays dual roles in tumor progression in various human cancers. However, the role of miR-630 in chemoresistance and prognosis in non-small cell lung cancer (NSCLC) remains to be elucidated. This retrospective study enrolled 114 surgically resected patients with NSCLC who experienced tumor relapse and underwent cisplatin-based chemotherapy. The aim was to examine the possible association between miR-630 (and its targeting of Bcl-2 expression) and the response to cisplatin-based chemotherapy. Patients with tumors expressing low miR-630, high Bcl-2, and a combination of both were more likely than their counterparts to show unfavorable responses to cisplatin-based chemotherapy. Kaplan–Meier and Cox regression analysis indicated that low miR-630, high Bcl-2, and a combination of both may independently predict poor overall survival and short relapse-free survival in patients with NSCLC. Six types of NSCLC cells were collected to determine the inhibitory concentration of cisplatin yielding 50% viability (IC50) by the MTT assay. The IC50 value for cisplatin was negatively correlated with miR-630 expression levels among these cell types, except for A549 cells. Mechanistically, low miR-630 expression conferred cisplatin resistance and colony formation by de-targeting Bcl-2 in NSCLC cells. We therefore suggest that low miR-630, high Bcl-2, and a combination of both may potentially predict an unfavorable chemotherapeutic response and poor outcome in patients with NSCLC.
Collapse
Affiliation(s)
- Ming-Jenn Chen
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan, ROC.,Department of Sports Management, College of Leisure and Recreation Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, ROC
| | - De-Wei Wu
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan, ROC
| | - Gao-Chang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan, ROC
| | - Yao-Chen Wang
- Department of Internal Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Chi-Yi Chen
- Department of Surgery, Chung Shan Medical University, Taichung, Taiwan, ROC.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan, ROC
| |
Collapse
|
29
|
Wang YC, Wu DW, Wu TC, Wang L, Chen CY, Lee H. Dioscin overcome TKI resistance in EGFR-mutated lung adenocarcinoma cells via down-regulation of tyrosine phosphatase SHP2 expression. Int J Biol Sci 2018; 14:47-56. [PMID: 29483824 PMCID: PMC5821048 DOI: 10.7150/ijbs.22209] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/14/2017] [Indexed: 11/23/2022] Open
Abstract
Resistance to tyrosine kinase inhibitors (TKIs) results in tumor relapse and poor prognosis in patients with lung adenocarcinoma. TKI resistance caused by epidermal growth factor receptor (EGFR) mutations at T790M and c-Met amplification occurs through persistent activation of the MEK/ERK and PI3K/AKT signaling pathways. We therefore expected that dual inhibitors of both signaling pathways could overcome TKI resistance in lung adenocarcinoma. Here, dioscin was selected from a product library of Chinese naturally occurring compounds and overcame TKI resistance in EGFR-mutated lung adenocarcinoma cells. Mechanistically, dioscin may down-regulate the expression of SH2 domain-containing phosphatase-2 (SHP2) at the transcription level by increasing p53 binding to the SHP2 promoter due to reactive oxygen species (ROS). Simultaneous inhibition of MEK/ERK and PI3K/AKT activation via decreased SHP2 expression and its interaction with GAB1 may be responsible for dioscin-mediated TKI sensitivity. A higher unfavorable response to TKI therapy occurred more commonly in patients with high SHP2 mRNA expression than in patients with low SHP2 mRNA expression. Therefore, we suggest that dioscin may act as a dual inhibitor of the MEK/ERK and PI3K/AKT signaling pathways to overcome TKI resistance via dysregulation of SHP2 expression in lung adenocarcinoma.
Collapse
Affiliation(s)
- Yao-Chen Wang
- Department of Internal Medicine, Chung Shan Medical University and Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University and Hospital, Taichung, Taiwan
| | - De-Wei Wu
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Chin Wu
- Department of Internal Medicine, Chung Shan Medical University and Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University and Hospital, Taichung, Taiwan
| | - Lee Wang
- Department of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Yi Chen
- School of Medicine, Chung Shan Medical University and Hospital, Taichung, Taiwan.,Department of Surgery, Chung Shan Medical University and Hospital, Taichung, Taiwan
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
30
|
Wang H, Yu Z, Huo S, Chen Z, Ou Z, Mai J, Ding S, Zhang J. Overexpression of ELF3 facilitates cell growth and metastasis through PI3K/Akt and ERK signaling pathways in non-small cell lung cancer. Int J Biochem Cell Biol 2018; 94:98-106. [PMID: 29208568 DOI: 10.1016/j.biocel.2017.12.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/13/2017] [Accepted: 12/01/2017] [Indexed: 11/25/2022]
Abstract
ELF3 is one of the member of transcription factors from E-twenty-six family, its role varies in different types of cancer. However, the role and specific mechanisms of ELF3 in the development of non-small cell lung cancer (NSCLC) still remains largely unknown. In our study, ELF3 was observed to be upregulated in NSCLC tissues compared to the corresponding normal lung tissue at mRNA and protein levels, and its expression level was correlated with the overall survival of patients with NSCLC. Silencing of the ELF3 gene in NSCLC cells inhibited the proliferation and metastasis significantly in vitro and in vivo. Conversely, overexpression of ELF3 in NSCLC cells promoted cancer growth and metastasis in vitro. Mechanistically, ELF3 activated PI3K/AKT and ERK signaling pathways and its downstream effectors, thus regulating the cell cycle and epithelial-mesenchymal transition (EMT). Furthermore, the promotive effects of ELF3 on cellular proliferation and metastasis could be rescued by Ly294002 (inhibitor of PI3K) and U0126 (inhibitor of MEK1/2). The results show that ELF3 promotes cell growth and metastasis by regulating PI3K/Akt and ERK pathways in NSCLC and that it may be a promising new target for the treatment of NSCLC patients.
Collapse
Affiliation(s)
- Hao Wang
- Department of Radiation Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Zhiqi Yu
- Department of Respiratory medicine, The Second Affiliated Hospital of Guangzhou Medical University,Guangzhou,510260, China
| | - Shaofen Huo
- Department of Otorhinolaryngology of Nanfang Hospital,Southern Medical University, Guangzhou, 510515, China
| | - Zheng Chen
- Department of General Surgery, Sun Yet-sen Memorial Hospital of Sun Yet-sen University, Guangzhou, 510120, China
| | - Zhiling Ou
- Department of Radiation Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jiajie Mai
- Department of Radiation Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Shangwei Ding
- Department of Ultrasound, Dongguan People's Hospital Affiliated to Southern Medical University, Dongguan, 523059, Guangdong, China.
| | - Jinshan Zhang
- Department of Radiation Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
31
|
Kushwaha R, Mishra J, Tripathi S, Raza W, Mandrah K, Roy SK, Bandyopadhyay S. Arsenic Attenuates Heparin-Binding EGF-Like Growth Factor/EGFR Signaling That Promotes Matrix Metalloprotease 9-Dependent Astrocyte Damage in the Developing Rat Brain. Toxicol Sci 2017; 162:406-428. [DOI: 10.1093/toxsci/kfx264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Rajesh Kushwaha
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, India
| | - Juhi Mishra
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, India
- Babu Banarasi Das University, Lucknow 226028, India
| | - Sachin Tripathi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, India
- Amity Institute of Biotechnology, Amity University (Lucknow Campus), Lucknow, India
| | - Waseem Raza
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, India
| | - Kapil Mandrah
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India
- Analytical Chemistry Laboratory and Regulatory Toxicology Group, CSIR-IITR, Lucknow, India
| | - Somendu Kumar Roy
- Analytical Chemistry Laboratory and Regulatory Toxicology Group, CSIR-IITR, Lucknow, India
| | - Sanghamitra Bandyopadhyay
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, India
| |
Collapse
|
32
|
PLOD2 regulated by transcription factor FOXA1 promotes metastasis in NSCLC. Cell Death Dis 2017; 8:e3143. [PMID: 29072684 PMCID: PMC5680920 DOI: 10.1038/cddis.2017.553] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/06/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022]
Abstract
In multiple types of tumors, fibrotic collagen is regarded as the 'highway' for cancer cell migration, which is mainly modified by lysyl hydroxylase 2 (PLOD2). The previous findings have demonstrated that the expression of PLOD2 was regulated by multiple factors, including HIF-1α, TGF-β and microRNA-26a/b. Although PLOD2 was confirmed to be related to poor prognosis in lung adenocarcinoma, the regulatory mechanism and function of PLOD2 in human lung adenocarcinoma is poorly understood. On the other hand, upregulation or hyperactivation of epidermal growth factor receptor is considered as a prognostic marker in many cancers, especially in non-small-cell lung cancer (NSCLC). In this study, we found that PLOD2 was elevated in NSCLC specimens and positively links to NSCLC poor prognosis. Gain- and loss-of-function studies and orthotopic implantation metastasis model pinpointed that PLOD2 promotes NSCLC metastasis directly by enhancing migration and indirectly by inducing collagen reorganization. In addition, we revealed that PLOD2 was regulated by PI3K/AKT-FOXA1 axis. The transcription factor FOXA1 directly bound to the PLOD2 promoter, and turned on PLOD2 transcription. In summary, our findings revealed a regulatory mechanism of NSCLC metastasis through EGFR-PI3K/AKT-FOXA1-PLOD2 pathway, and provided PLOD2 as a therapeutic target for NSCLC treatment.
Collapse
|