1
|
Zhu X, Chen X, Zhao L, Zhang X, Li Y, Shen X. WTAP-Mediated m 6A Modification of circSMOC1 Accelerates the Tumorigenesis of Non-Small Cell Lung Cancer by Regulating miR-612/CCL28 Axis. J Cell Mol Med 2024; 28:e70207. [PMID: 39632285 PMCID: PMC11617116 DOI: 10.1111/jcmm.70207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/26/2024] [Accepted: 11/02/2024] [Indexed: 12/07/2024] Open
Abstract
Accumulating evidence reveals that deregulated N6-methyladenosine (m6A) RNA methylation and circular RNAs (circRNAs) are required for the tumorigenesis of non-small cell lung cancer (NSCLC). We aimed to uncover the underlying mechanisms by which WTAP-mediated m6A modification of circRNA contributes to NSCLC. The differentially-expressed circRNAs were identified by a circRNA profiling microarray. The association of circSMOC1 with clinicopathological features and prognosis in patients with NSCLC was estimated by fluorescence in situ hybridization. WTAP-mediated m6A modification of circRNA was validated by RNA immunoprecipitation (RIP) and methylated RIP (MeRIP) assays. The role of circSMOC1 in NSCLC cells was validated by in vitro functional experiments and in vivo tumorigenesis models. CircSMOC1-specific binding with miR-612 was verified by RIP, luciferase gene report and RT-qPCR assays. The effect of circSMOC1 and/or miR-612 on CCL28 expression was detected by RT-qPCR and Western blotting analysis. We found that the expression levels of circSMOC1 were elevated in NSCLC tissues and associated with TNM stage and poor survival in patients with NSCLC. Knockdown of circSMOC1 impaired the tumorigenesis of NSCLC in vitro and in vivo, whereas restored expression of circSMOC1 displayed the opposite effect. Furthermore, WTAP was upregulated in NSCLC and mediated m6A modification of circSMOC1 and circSMOC1 abolished WTAP knockdown-caused tumour-suppressive effects. Then, circSMOC1 acted as a sponge of miR-612 to upregulate CCL28 and miR-612 inhibitors abrogated circSMOC1 knockdown-caused anti-proliferation effects and CCL28 downregulation in NSCLC cells. Knockdown of CCL28 inhibited cell proliferation and invasion and counteracted miR-612 inhibitor-caused tumour-promoting effects. Our findings unveil that WTAP-mediated m6A modification of circSMOC1 facilitates the tumorigenesis of NSCLC by regulating the miR-612/CCL28 axis.
Collapse
Affiliation(s)
- Xun‐Xia Zhu
- Department of Thoracic SurgeryHuadong Hospital, Fudan UniversityShanghaiChina
| | - Xiao‐Yu Chen
- Department of Thoracic SurgeryHuadong Hospital, Fudan UniversityShanghaiChina
| | - Li‐Ting Zhao
- Department of NursingHuadong Hospital, Fudan UniversityShanghaiChina
| | - Xue‐Lin Zhang
- Department of Thoracic SurgeryHuadong Hospital, Fudan UniversityShanghaiChina
| | - Yi‐Ou Li
- Department of Critical Care MedicineTongren Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Xiao‐Yong Shen
- Department of Thoracic SurgeryHuadong Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
2
|
Eun JR. Overview of hepatocarcinogenesis focusing on cellular origins of liver cancer stem cells: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2024; 42:3. [PMID: 39523770 PMCID: PMC11812091 DOI: 10.12701/jyms.2024.01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
Hepatocellular carcinoma (HCC) accounts for 85% to 90% of primary liver cancers and generally has a poor prognosis. The hierarchical model, which posits that HCC originates from liver cancer stem cells (CSCs), is now widely accepted, as it is for other cancer types. As CSCs typically reside in the G0 phase of the cell cycle, they are resistant to conventional chemotherapy. Therefore, to effectively treat HCC, developing therapeutic strategies that target liver CSCs is essential. Clinically, HCCs exhibit a broad spectrum of pathological and clinical characteristics, ranging from well-differentiated to poorly differentiated forms, and from slow-growing tumors to aggressive ones with significant metastatic potential. Some patients with HCC also show features of cholangiocarcinoma. This HCC heterogeneity may arise from the diverse cellular origins of liver CSCs. This review explores the normal physiology of liver regeneration and provides a comprehensive overview of hepatocarcinogenesis, including cancer initiation, isolation of liver CSCs, molecular signaling pathways, and microRNAs. Additionally, the cellular origins of liver CSCs are reviewed, emphasizing hematopoietic and mesenchymal stem cells, along with the well-known hepatocytes and hepatic progenitor cells.
Collapse
Affiliation(s)
- Jong Ryeol Eun
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Ilsan, Korea
| |
Collapse
|
3
|
Gholamzad A, Khakpour N, Khosroshahi EM, Asadi S, Koohpar ZK, Matinahmadi A, Jebali A, Rashidi M, Hashemi M, Sadi FH, Gholamzad M. Cancer stem cells: The important role of CD markers, Signaling pathways, and MicroRNAs. Pathol Res Pract 2024; 256:155227. [PMID: 38490099 DOI: 10.1016/j.prp.2024.155227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Abstract
For the first time, a subset of small cancer cells identified in acute myeloid leukemia has been termed Cancer Stem Cells (CSCs). These cells are notorious for their robust proliferation, self-renewal abilities, significant tumor-forming potential, spread, and resistance to treatments. CSCs are a global concern, as it found in numerous types of cancer, posing a real-world challenge today. Our review encompasses research on key CSC markers, signaling pathways, and MicroRNA in three types of cancer: breast, colon, and liver. These factors play a critical role in either promoting or inhibiting cancer cell growth. The reviewed studies have shown that as cells undergo malignant transformation, there can be an increase or decrease in the expression of different Cluster of Differentiation (CD) markers on their surface. Furthermore, alterations in essential signaling pathways, such as Wnt and Notch1, may impact CSC proliferation, survival, and movement, while also providing potential targets for cancer therapies. Additionally, some research has focused on MicroRNAs due to their dual role as potential therapeutic biomarkers and their ability to enhance CSCs' response to anti-cancer drugs. MicroRNAs also regulate a wide array of cellular processes, including the self-renewal and pluripotency of CSCs, and influence gene transcription. Thus, these studies indicate that MicroRNAs play a significant role in the malignancy of various tumors. Although the gathered information suggests that specific CSC markers, signaling pathways, and MicroRNAs are influential in determining the destiny of cancer cells and could be advantageous for therapeutic strategies, their precise roles and impacts remain incompletely defined, necessitating further investigation.
Collapse
Affiliation(s)
- Amir Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences,Tonekabon Branch,Islamic Azad University, Tonekabon, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus,Torun,Poland
| | - Ali Jebali
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Deprtment of Medical Nanotechnology,Faculty of Advanced Sciences and Technology,Tehran Medical Sciences,Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | | | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Chiu YT, Husain A, Sze KMF, Ho DWH, Suarez EMS, Wang X, Lee E, Ma HT, Lee JMF, Chan LK, Ng IOL. Midline 1 interacting protein 1 promotes cancer metastasis through FOS-like 1-mediated matrix metalloproteinase 9 signaling in HCC. Hepatology 2023; 78:1368-1383. [PMID: 36632999 PMCID: PMC10581419 DOI: 10.1097/hep.0000000000000266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS Understanding the mechanisms of HCC progression and metastasis is crucial to improve early diagnosis and treatment. This study aimed to identify key molecular targets involved in HCC metastasis. APPROACH AND RESULTS Using whole-transcriptome sequencing of patients' HCCs, we identified and validated midline 1 interacting protein 1 (MID1IP1) as one of the most significantly upregulated genes in metastatic HCCs, suggesting its potential role in HCC metastasis. Clinicopathological correlation demonstrated that MID1IP1 upregulation significantly correlated with more aggressive tumor phenotypes and poorer patient overall survival rates. Functionally, overexpression of MID1IP1 significantly promoted the migratory and invasive abilities and enhanced the sphere-forming ability and expression of cancer stemness-related genes of HCC cells, whereas its stable knockdown abrogated these effects. Perturbation of MID1IP1 led to significant tumor shrinkage and reduced pulmonary metastases in an orthotopic liver injection mouse model and reduced pulmonary metastases in a tail-vein injection model in vivo . Mechanistically, SP1 transcriptional factor was found to be an upstream driver of MID1IP1 transcription. Furthermore, transcriptomic sequencing on MID1IP1-overexpressing HCC cells identified FOS-like 1 (FRA1) as a critical downstream mediator of MID1IP1. MID1IP1 upregulated FRA1 to subsequently promote its transcriptional activity and extracellular matrix degradation activity of matrix metalloproteinase MMP9, while knockdown of FRA1 effectively abolished the MID1IP1-induced migratory and invasive abilities. CONCLUSIONS Our study identified MID1IP1 as a regulator in promoting FRA1-mediated-MMP9 signaling and demonstrated its role in HCC metastasis. Targeting MID1IP1-mediated FRA1 pathway may serve as a potential therapeutic strategy against HCC progression.
Collapse
Affiliation(s)
- Yung-Tuen Chiu
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Abdullah Husain
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Karen Man-Fong Sze
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Eliana Mary Senires Suarez
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Xia Wang
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Eva Lee
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Hoi-Tang Ma
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Joyce Man-Fong Lee
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Lo-Kong Chan
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| |
Collapse
|
5
|
Jiang S, Deng T, Cheng H, Liu W, Shi D, Yuan J, He Z, Wang W, Chen B, Ma L, Zhang X, Gong P. Macrophage-organoid co-culture model for identifying treatment strategies against macrophage-related gemcitabine resistance. J Exp Clin Cancer Res 2023; 42:199. [PMID: 37553567 PMCID: PMC10411021 DOI: 10.1186/s13046-023-02756-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Gemcitabine resistance (GR) is a significant clinical challenge in pancreatic adenocarcinoma (PAAD) treatment. Macrophages in the tumor immune-microenvironment are closely related to GR. Uncovering the macrophage-induced GR mechanism could help devise a novel strategy to improve gemcitabine treatment outcomes in PAAD. Therefore, preclinical models accurately replicating patient tumor properties are essential for cancer research and drug development. Patient-derived organoids (PDOs) represent a promising in vitro model for investigating tumor targets, accelerating drug development, and enabling personalized treatment strategies to improve patient outcomes. METHODS To investigate the effects of macrophage stimulation on GR, co-cultures were set up using PDOs from three PAAD patients with macrophages. To identify signaling factors between macrophages and pancreatic cancer cells (PCCs), a 97-target cytokine array and the TCGA-GTEx database were utilized. The analysis revealed CCL5 and AREG as potential candidates. The role of CCL5 in inducing GR was further investigated using clinical data and tumor sections obtained from 48 PAAD patients over three years, inhibitors, and short hairpin RNA (shRNA). Furthermore, single-cell sequencing data from the GEO database were analyzed to explore the crosstalk between PCCs and macrophages. To overcome GR, inhibitors targeting the macrophage-CCL5-Sp1-AREG feedback loop were evaluated in cell lines, PDOs, and orthotopic mouse models of pancreatic carcinoma. RESULTS The macrophage-CCL5-Sp1-AREG feedback loop between macrophages and PCCs is responsible for GR. Macrophage-derived CCL5 activates the CCR5/AKT/Sp1/CD44 axis to confer stemness and chemoresistance to PCCs. PCC-derived AREG promotes CCL5 secretion in macrophages through the Hippo-YAP pathway. By targeting the feedback loop, mithramycin improves the outcome of gemcitabine treatment in PAAD. The results from the PDO model were corroborated with cell lines, mouse models, and clinical data. CONCLUSIONS Our study highlights that the PDO model is a superior choice for preclinical research and precision medicine. The macrophage-CCL5-Sp1-AREG feedback loop confers stemness to PCCs to facilitate gemcitabine resistance by activating the CCR5/AKT/SP1/CD44 pathway. The combination of gemcitabine and mithramycin shows potential as a therapeutic strategy for treating PAAD in cell lines, PDOs, and mouse models.
Collapse
Affiliation(s)
- Shengwei Jiang
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Xueyuan Road 1066, Shenzhen, 518060, China
| | - Tingwei Deng
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Huan Cheng
- Department of Epidemiology, Dalian Medical University, Lvshun Road 9, Dalian, 116044, China
| | - Weihan Liu
- Department of Epidemiology, Dalian Medical University, Lvshun Road 9, Dalian, 116044, China
| | - Dan Shi
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Xueyuan Road 1066, Shenzhen, 518060, China
| | - Jiahui Yuan
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Xueyuan Road 1066, Shenzhen, 518060, China
| | - Zhiwei He
- Guangdong Provincial Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Xueyuan Road 1066, Shenzhen, 518060, China
| | - Weiwei Wang
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, China
| | - Boning Chen
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, China
| | - Li Ma
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
- Department of Epidemiology, Dalian Medical University, Lvshun Road 9, Dalian, 116044, China.
| | - Xianbin Zhang
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| | - Peng Gong
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Xueyuan Road 1066, Shenzhen, 518060, China.
| |
Collapse
|
6
|
Vishnubalaji R, Shaath H, Al-Alwan M, Abdelalim EM, Alajez NM. Reciprocal interplays between MicroRNAs and pluripotency transcription factors in dictating stemness features in human cancers. Semin Cancer Biol 2022; 87:1-16. [PMID: 36354097 DOI: 10.1016/j.semcancer.2022.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
The interplay between microRNAs (miRNAs) and pluripotency transcription factors (TFs) orchestrates the acquisition of cancer stem cell (CSC) features during the course of malignant transformation, rendering them essential cancer cell dependencies and therapeutic vulnerabilities. In this review, we discuss emerging themes in tumor heterogeneity, including the clonal evolution and the CSC models and their implications in resistance to cancer therapies, and then provide thorough coverage on the roles played by key TFs in maintaining normal and malignant stem cell pluripotency and plasticity. In addition, we discuss the reciprocal interactions between miRNAs and MYC, OCT4, NANOG, SOX2, and KLF4 pluripotency TFs and their contributions to tumorigenesis. We provide our view on the potential to interfere with key miRNA-TF networks through the use of RNA-based therapeutics as single agents or in combination with other therapeutic strategies, to abrogate the CSC state and render tumor cells more responsive to standard and targeted therapies.
Collapse
Affiliation(s)
- Radhakrishnan Vishnubalaji
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Hibah Shaath
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Monther Al-Alwan
- Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| | - Essam M Abdelalim
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar; College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Nehad M Alajez
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
7
|
Han Q, Wang M, Dong X, Wei F, Luo Y, Sun X. Non-coding RNAs in hepatocellular carcinoma: Insights into regulatory mechanisms, clinical significance, and therapeutic potential. Front Immunol 2022; 13:985815. [PMID: 36300115 PMCID: PMC9590653 DOI: 10.3389/fimmu.2022.985815] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/23/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a complex and heterogeneous malignancy with high incidence and poor prognosis. In addition, owing to the lack of diagnostic and prognostic markers, current multimodal treatment options fail to achieve satisfactory outcomes. Tumor immune microenvironment (TIME), angiogenesis, epithelial-mesenchymal transition (EMT), invasion, metastasis, metabolism, and drug resistance are important factors influencing tumor development and therapy. The intercellular communication of these important processes is mediated by a variety of bioactive molecules to regulate pathophysiological processes in recipient cells. Among these bioactive molecules, non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), account for a large part of the human transcriptome, and their dysregulation affects the progression of HCC. The purpose of this review is to evaluate the potential regulatory mechanisms of ncRNAs in HCC, summarize novel biomarkers from somatic fluids (plasma/serum/urine), and explore the potential of some small-molecule modulators as drugs. Thus, through this review, we aim to contribute to a deeper understanding of the regulatory mechanisms, early diagnosis, prognosis, and precise treatment of HCC.
Collapse
Affiliation(s)
- Qin Han
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mengchen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Wei
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| |
Collapse
|
8
|
Guo Z, Zou K, Li X, Duan X, Fan Y, Liu X, Wang W. Relationship between miRNAs polymorphisms and peripheral blood leukocyte DNA telomere length in coke oven workers: A cross-sectional study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103941. [PMID: 35931358 DOI: 10.1016/j.etap.2022.103941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate the factors affecting telomere length (TL) in coke oven workers by analyzing the interaction between miRNAs polymorphisms and coke oven emissions (COEs) exposure. METHODS A total of 544 coke oven workers and 238 healthy controls were recruited. Peripheral blood was collected from the subjects, genomic DNA was extracted, leukocyte TL was detected by real-time quantitative polymerase chain reaction, and fifteen polymorphisms of eight miRNAs were genotyped by flight mass spectrometry. RESULTS Statistical analysis showed that the peripheral blood DNA TL in the exposure group was shorter than that in the control group (P < 0.001). Generalized linear model found that COEs-exposure [β (95%CI) = -0.427 (-0.556, -0.299), P < 0.001], genotype CC+CT for miR-612 rs1144925 [β (95%CI) = -0.367 (-0.630, -0.104), P = 0.006], and the interaction of miR-181B1 rs12039395 TT genotype and COEs-exposure [β (95% CI) = 0.564 (0.108, 1.020), P = 0.015] were associated with the shortened TL. CONCLUSION COEs-exposure and miR-612 rs1144925 TT could promote telomere shortening in coke oven workers. The interaction of miR-181B1 rs12039395 TT genotype and COEs-exposure could protect telomere. This provides clues for further mechanistic studies between miRNA and telomere damage.
Collapse
Affiliation(s)
- Zhifeng Guo
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou 450001, Henan, China
| | - Kaili Zou
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou 450001, Henan, China
| | - Xinling Li
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou 450001, Henan, China
| | - Xiaoran Duan
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yahui Fan
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou 450001, Henan, China
| | - Xiaohua Liu
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou 450001, Henan, China
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou 450001, Henan, China.
| |
Collapse
|
9
|
Panoramic view of microRNAs in regulating cancer stem cells. Essays Biochem 2022; 66:345-358. [PMID: 35996948 DOI: 10.1042/ebc20220007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/17/2022]
Abstract
Cancer stem cells (CSCs) are a subgroup of tumor cells, possessing the abilities of self-renewal and generation of heterogeneous tumor cell lineages. They are believed to be responsible for tumor initiation, metastasis, as well as chemoresistance in human malignancies. MicroRNAs (miRNAs) are small noncoding RNAs that play essential roles in various cellular activities including CSC initiation and CSC-related properties. Mature miRNAs with ∼22 nucleotides in length are generated from primary miRNAs via its precursors by miRNA-processing machinery. Extensive studies have demonstrated that mature miRNAs modulate CSC initiation and stemness features by regulating multiple pathways and targeting stemness-related factors. Meanwhile, both miRNA precursors and miRNA-processing machinery can also affect CSC properties, unveiling a new insight into miRNA function. The present review summarizes the roles of mature miRNAs, miRNA precursors, and miRNA-processing machinery in regulating CSC properties with a specific focus on the related molecular mechanisms, and also outlines the potential application of miRNAs in cancer diagnosis, predicting prognosis, as well as clinical therapy.
Collapse
|
10
|
Sahoo OS, Pethusamy K, Srivastava TP, Talukdar J, Alqahtani MS, Abbas M, Dhar R, Karmakar S. The metabolic addiction of cancer stem cells. Front Oncol 2022; 12:955892. [PMID: 35957877 PMCID: PMC9357939 DOI: 10.3389/fonc.2022.955892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSC) are the minor population of cancer originating cells that have the capacity of self-renewal, differentiation, and tumorigenicity (when transplanted into an immunocompromised animal). These low-copy number cell populations are believed to be resistant to conventional chemo and radiotherapy. It was reported that metabolic adaptation of these elusive cell populations is to a large extent responsible for their survival and distant metastasis. Warburg effect is a hallmark of most cancer in which the cancer cells prefer to metabolize glucose anaerobically, even under normoxic conditions. Warburg's aerobic glycolysis produces ATP efficiently promoting cell proliferation by reprogramming metabolism to increase glucose uptake and stimulating lactate production. This metabolic adaptation also seems to contribute to chemoresistance and immune evasion, a prerequisite for cancer cell survival and proliferation. Though we know a lot about metabolic fine-tuning in cancer, what is still in shadow is the identity of upstream regulators that orchestrates this process. Epigenetic modification of key metabolic enzymes seems to play a decisive role in this. By altering the metabolic flux, cancer cells polarize the biochemical reactions to selectively generate "onco-metabolites" that provide an added advantage for cell proliferation and survival. In this review, we explored the metabolic-epigenetic circuity in relation to cancer growth and proliferation and establish the fact how cancer cells may be addicted to specific metabolic pathways to meet their needs. Interestingly, even the immune system is re-calibrated to adapt to this altered scenario. Knowing the details is crucial for selective targeting of cancer stem cells by choking the rate-limiting stems and crucial branch points, preventing the formation of onco-metabolites.
Collapse
Affiliation(s)
- Om Saswat Sahoo
- Department of Biotechnology, National Institute of technology, Durgapur, India
| | - Karthikeyan Pethusamy
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Joyeeta Talukdar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
- Computers and communications Department, College of Engineering, Delta University for Science and Technology, Gamasa, Egypt
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
11
|
Vasefifar P, Motafakkerazad R, Maleki LA, Najafi S, Ghrobaninezhad F, Najafzadeh B, Alemohammad H, Amini M, Baghbanzadeh A, Baradaran B. Nanog, as a key cancer stem cell marker in tumor progression. Gene X 2022; 827:146448. [PMID: 35337852 DOI: 10.1016/j.gene.2022.146448] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs) are a small population of malignant cells that induce tumor onset and development. CSCs share similar features with normal stem cells in the case of self-renewal and differentiation. They also contribute to chemoresistance and metastasis of cancer cells, leading to therapeutic failure. To identify CSCs, multiple cell surface markers have been characterized, including Nanog, which is found at high levels in different cancers. Recent studies have revealed that Nanog upregulation has a substantial association with the advanced stages and poor prognosis of malignancies, playing a pivotal role through tumorigenesis of multiple human cancers, including leukemia, liver, colorectal, prostate, ovarian, lung, head and neck, brain, pancreatic, gastric and breast cancers. Nanog through different signaling pathways, like JAK/STAT and Wnt/β-catenin pathways, induces stemness, self-renewal, metastasis, invasiveness, and chemoresistance of cancer cells. Some of these signaling pathways are common in various types of cancers, but some have been found in one or two cancers. Therefore, this review aimed to focus on the function of Nanog in multiple cancers based on recent studies surveying the suitable approaches to target Nanog and inhibit CSCs residing in tumors to gain favorable results from cancer treatments.
Collapse
Affiliation(s)
- Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
El-Mahdy HA, Sallam AAM, Ismail A, Elkhawaga SY, Elrebehy MA, Doghish AS. miRNAs inspirations in hepatocellular carcinoma: Detrimental and favorable aspects of key performers. Pathol Res Pract 2022; 233:153886. [PMID: 35405621 DOI: 10.1016/j.prp.2022.153886] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths worldwide. HCC initiation, progression, and therapy failure are all influenced by various variables, including microRNAs (miRNAs). miRNAs are short non-coding RNA sequences that modulate target mRNA expression by deteriorating or repressing translation. miRNAs play an imperative role in HCC pathogenesis by triggering the induction of cancer stem cells (CSCs) and their proliferation, while also delaying apoptosis, sustaining the cell cycle, and inspiring angiogenesis, invasion, and metastasis. Additionally, miRNAs modulate crucial HCC-related molecular pathways such as the p53 pathway, the Wnt/β-catenin pathway, VEGFR2, and PTEN/PI3K/AKT pathway. Consequently, the goal of this review was to give an up-to-date overview of oncogenic and tumor suppressor (TS) miRNAs, as well as their potential significance in HCC pathogenesis and treatment responses, highlighting their underpinning molecular pathways in HCC initiation and progression. Similarly, the biological importance and clinical application of miRNAs in HCC are summarized.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
13
|
Liu Y, Song Y, Cao M, Fan W, Cui Y, Cui Y, Zhan Y, Gu R, Tian F, Zhang S, Cai L, Xing Y. A novel EHD1/CD44/Hippo/SP1 positive feedback loop potentiates stemness and metastasis in lung adenocarcinoma. Clin Transl Med 2022; 12:e836. [PMID: 35485206 PMCID: PMC9786223 DOI: 10.1002/ctm2.836] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/19/2022] [Accepted: 04/06/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND There is growing evidence that endocytosis plays a pivotal role in cancer metastasis. In this study, we first identified endocytic and metastasis-associated genes (EMGs) and then investigated the biological functions and mechanisms of EMGs. METHODS Cancer stem cells (CSCs)-like characteristics were evaluated by tumour limiting dilution assays, three-dimensional (3D) spheroid cancer models. Microarray analysis was used to identify the pathways significantly regulated by mammalian Eps15 homology domain protein 1 (EHD1) knockdown. Mass spectrometry (MS) was performed to identify EHD1-interacting proteins. The function of EHD1 as a regulator of cluster of differentiation 44 (CD44) endocytic recycling and lysosomal degradation was determined by CD44 biotinylation and recycling assays. RESULTS EHD1 was identified as a significant EMG. Knockdown of EHD1 suppressed CSCs-like characteristics, epithelial-mesenchymal transition (EMT), migration and invasion of lung adenocarcinoma (LUAD) cells by increasing Hippo kinase cascade activation. Conversely, EHD1 overexpression inhibited the Hippo pathway to promote cancer stemness and metastasis. Notably, utilising MS analysis, the CD44 protein was identified as a potential binding partner of EHD1. Furthermore, EHD1 enhanced CD44 recycling and stability. Indeed, silencing of CD44 or disruption of the EHD1/CD44 interaction enhanced Hippo pathway activity and reduced CSCs-like traits, EMT and metastasis. Interestingly, specificity protein 1 (SP1), a known downstream target gene of the Hippo-TEA-domain family members 1 (TEAD1) pathway, was found to directly bind to the EHD1 promoter region and induce its expression. Among clinical specimens, the EHD1 expression level in LUAD tissues of metastatic patients was higher than that of non-metastatic patients. CONCLUSIONS Our findings emphasise that EHD1 might be a potent anti-metastatic target and present a novel regulatory mechanism by which the EHD1/CD44/Hippo/SP1 positive feedback circuit plays pivotal roles in coupling modules of CSCs-like properties and EMT in LUAD. Targeting this loop may serve as a remedy for patients with advanced metastatic LUAD.
Collapse
Affiliation(s)
- Yuechao Liu
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Yang Song
- The First Department of Orthopedic SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Mengru Cao
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Weina Fan
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Yaowen Cui
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Yimeng Cui
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Yuning Zhan
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Ruixue Gu
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Fanglin Tian
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Shuai Zhang
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Li Cai
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Ying Xing
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
14
|
Citron F, Segatto I, Musco L, Pellarin I, Rampioni Vinciguerra GL, Franchin G, Fanetti G, Miccichè F, Giacomarra V, Lupato V, Favero A, Concina I, Srinivasan S, Avanzo M, Castiglioni I, Barzan L, Sulfaro S, Petrone G, Viale A, Draetta GF, Vecchione A, Belletti B, Baldassarre G. miR-9 modulates and predicts the response to radiotherapy and EGFR inhibition in HNSCC. EMBO Mol Med 2021; 13:e12872. [PMID: 34062049 PMCID: PMC8261495 DOI: 10.15252/emmm.202012872] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy (RT) plus the anti-EGFR monoclonal antibody Cetuximab (CTX) is an effective combination therapy for a subset of head and neck squamous cell carcinoma (HNSCC) patients. However, predictive markers of efficacy are missing, resulting in many patients treated with disappointing results and unnecessary toxicities. Here, we report that activation of EGFR upregulates miR-9 expression, which sustains the aggressiveness of HNSCC cells and protects from RT-induced cell death. Mechanistically, by targeting KLF5, miR-9 regulates the expression of the transcription factor Sp1 that, in turn, stimulates tumor growth and confers resistance to RT+CTX in vitro and in vivo. Intriguingly, high miR-9 levels have no effect on the sensitivity of HNSCC cells to cisplatin. In primary HNSCC, miR-9 expression correlated with Sp1 mRNA levels and high miR-9 expression predicted poor prognosis in patients treated with RT+CTX. Overall, we have discovered a new signaling axis linking EGFR activation to Sp1 expression that dictates the response to combination treatments in HNSCC. We propose that miR-9 may represent a valuable biomarker to select which HNSCC patients might benefit from RT+CTX therapy.
Collapse
Affiliation(s)
- Francesca Citron
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Ilenia Segatto
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Lorena Musco
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Ilenia Pellarin
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Gian Luca Rampioni Vinciguerra
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
- Faculty of Medicine and PsychologyDepartment of Clinical and Molecular MedicineUniversity of Rome “Sapienza”Santo Andrea HospitalRomeItaly
| | - Giovanni Franchin
- Oncologic Radiotherapy UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Giuseppe Fanetti
- Oncologic Radiotherapy UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Francesco Miccichè
- Università Cattolica del Sacro CuoreFondazione Policlinico Universitario Agostino GemelliPolo Scienze Oncologiche ed EmatologicheRomeItaly
| | - Vittorio Giacomarra
- Division of OtorhinolaryngologyAzienda Ospedaliera Santa Maria degli AngeliPordenoneItaly
| | - Valentina Lupato
- Division of OtorhinolaryngologyAzienda Ospedaliera Santa Maria degli AngeliPordenoneItaly
| | - Andrea Favero
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Isabella Concina
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Sanjana Srinivasan
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Michele Avanzo
- Medical Physics UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and PhysiologyNational Research Council (IBFM‐CNR)MilanItaly
- Department of PhysicsUniversità degli Studi di Milano‐BicoccaMilanItaly
| | - Luigi Barzan
- Division of OtorhinolaryngologyAzienda Ospedaliera Santa Maria degli AngeliPordenoneItaly
| | - Sandro Sulfaro
- Division of PathologyAzienda Ospedaliera Santa Maria degli AngeliPordenoneItaly
| | - Gianluigi Petrone
- Università Cattolica del Sacro CuoreFondazione Policlinico Universitario Agostino GemelliPolo Scienze Oncologiche ed EmatologicheRomeItaly
- Present address:
Centro Diagnostica MINERVARomeItaly
| | - Andrea Viale
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Giulio F Draetta
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Andrea Vecchione
- Faculty of Medicine and PsychologyDepartment of Clinical and Molecular MedicineUniversity of Rome “Sapienza”Santo Andrea HospitalRomeItaly
| | - Barbara Belletti
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Gustavo Baldassarre
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| |
Collapse
|
15
|
KDM1A Promotes Immunosuppression in Hepatocellular Carcinoma by Regulating PD-L1 through Demethylating MEF2D. J Immunol Res 2021; 2021:9965099. [PMID: 34307695 PMCID: PMC8270703 DOI: 10.1155/2021/9965099] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/29/2021] [Accepted: 06/17/2021] [Indexed: 01/10/2023] Open
Abstract
Background Immune checkpoint inhibitor therapy targeting antiprogrammed cell death-1 (anti-PD-1) or its ligand (anti-PD-L1) is effective in the treatment of some hepatocellular carcinomas (HCC). Hence, further identification of biological targets related to PD-L1 regulation in HCC is beneficial to improve the clinical efficacy of immunotherapy. Some HCC cells express lysine-specific demethylase 1A (KDM1A), which is implicated in the reduced survival time of patients. Here, we studied whether the level of PD-L1 and the immunosuppression are regulated by KDM1A and its miRNA in HCC cells. Methods In the present study, we studied clinical data from The Cancer Genome Atlas (TCGA) database. We performed qPCR and western blotting assays to measure the expression level of genes of interest. PD-L1 expression was also analyzed by FACS. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 was used to generate gene knockout cells to investigate the relationships of genes of interest. We also developed a reporter gene assay (RGA) to explore the changes in T cell-induced antitumor immunity relative to PD-L1 expression in HCC cells. The binding between proteins and promoters or miRNAs and their target genes was explored by luciferase reporter assays. Results The results showed that PD-L1 and KDM1A were increased in HCC patients and cells, and KDM1A promoted the expression of PD-L1 in HCC cells. Our findings showed that the enhancement of PD-L1 expression was not attributed to mitochondrial dysfunction caused by increases in KDM1A in HCC cells. Furthermore, we observed a lower level of MEF2D methylation in HCC cells than in normal human liver cells. Demethylated MEF2D could bind to the promoter of PD-L1 and activate its expression, while KDM1A interacted with MEF2D and acted as a demethylase to reduce its methylation. Moreover, a new miRNA, miR-329-3p, targeting KDM1A was found to regulate the PD-L1 expression profile in HCC cells. In the xenograft model, the tumors treated with miR-329-3p showed growth inhibition. Conclusions Mechanistically, miR-329-3p inhibits tumor cellular immunosuppression and reinforces the response of tumor cells to T cell-induced cytotoxic effect by targeting KDM1A mRNA and downregulating its expression, which contributed to MEF2D demethylation and activation of PD-L1 expression.
Collapse
|
16
|
LncRNA VPS9D1-AS1 promotes cell proliferation in acute lymphoblastic leukemia through modulating GPX1 expression by miR-491-5p and miR-214-3p evasion. Biosci Rep 2021; 40:226132. [PMID: 32808668 PMCID: PMC7536331 DOI: 10.1042/bsr20193461] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
Alterations in messenger RNAs (mRNAs) of protein-coding genes can influence the malignant behaviors of acute lymphoblastic leukemia (ALL) cells. According to the prediction from The Cancer Genome Atlas (TCGA) database, we discovered that glutathione peroxidase 1 (GPX1) was up-regulated in acute myeloid leukemia (LAML) tissues, which pushed us to explore the feasible role and its related modulatory mechanism of GPX1 in ALL. In this research, we first proved the high expression of GPX1 in ALL cells compared with normal cells. Functional assays further revealed that the proliferation was obstructed and the apoptosis was facilitated in ALL cells with silenced GPX1. Then, both miR-491-5p and miR-214-3p that were down-regulated in ALL cells were affirmed to target GPX1. Subsequently, VPS9D1 antisense RNA 1 (VPS9D1-AS1) was recognized as the upstream regulator of miR-491-5p-miR-214-3p/GPX1 axis in a competing endogenous RNA (ceRNA) model. Importantly, we proved that VPS9D1-AS1 served as a tumor promoter in ALL through elevating GPX1. In conclusion, VPS9D1-AS1 contributed to ALL cell proliferation through miR-491-5p-miR-214-3p/GPX1 axis, hinting an optional choice for the treatment of ALL.
Collapse
|
17
|
Bian X, Shi D, Xing K, Zhou H, Lu L, Yu D, Wu W. AMD1 upregulates hepatocellular carcinoma cells stemness by FTO mediated mRNA demethylation. Clin Transl Med 2021; 11:e352. [PMID: 33783988 PMCID: PMC7989706 DOI: 10.1002/ctm2.352] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND S-adenosylmethionine decarboxylase proenzyme (AMD1) is a key enzyme involved in the synthesis of spermine (SPM) and spermidine (SPD), which are associated with multifarious cellular processes. It is also found to be an oncogene in multiple cancers and a potential target for tumor therapy. Nevertheless, the role AMD1 plays in hepatocellular carcinoma (HCC) is still unknown. METHODS HCC samples were applied to detect AMD1 expression and evaluate its associations with clinicopathological features and prognosis. Subcutaneous and orthotopic tumor mouse models were constructed to analyze the proliferation and metastasis of HCC cells after AMD1 knockdown or overexpression. Drug sensitive and tumor sphere assay were performed to investigate the effect of AMD1 on HCC cells stemness. Real-time quantitative PCR (qRT-PCR), western blot, immunohistochemical (IHC) and m6A-RNA immunoprecipitation (Me-RIP) sequencing/qPCR were applied to explore the potential mechanisms of AMD1 in HCC. Furthermore, immunofluorescence, co-IP (Co-IP) assays, and mass spectrometric (MS) analyses were performed to verify the proteins interacting with AMD1. RESULTS AMD1 was enriched in human HCC tissues and suggested a poor prognosis. High AMD1 level could promote SRY-box transcription factor 2 (SOX2), Kruppel like factor 4 (KLF4), and NANOG expression of HCC cells through obesity-associated protein (FTO)-mediated mRNA demethylation. Mechanistically, high AMD1 expression increased the levels of SPD in HCC cells, which could modify the scaffold protein, Ras GTPase-activating-like protein 1 (IQGAP1) and enhance the interaction between IQGAP1 and FTO. This interaction could enhance the phosphorylation and decrease the ubiquitination of FTO. CONCLUSIONS AMD1 could stabilize the interaction of IQGAP1 with FTO, which then promotes FTO expression and increases HCC stemness. AMD1 shows prospects as a prognostic predictor and a therapeutic target for HCC.
Collapse
Affiliation(s)
- Xinyu Bian
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Department of Radiation Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dongmin Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Kailin Xing
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Hongxin Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Lili Lu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Dahai Yu
- Department of Radiation Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weizhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| |
Collapse
|
18
|
Javadrashid D, Mohammadzadeh R, Baghbanzadeh A, Safaee S, Amini M, Lotfi Z, Baghbani E, Khaze Shahgoli V, Baradaran B. Simultaneous microRNA-612 restoration and 5-FU treatment inhibit the growth and migration of human PANC-1 pancreatic cancer cells. EXCLI JOURNAL 2021; 20:160-173. [PMID: 33564285 PMCID: PMC7868639 DOI: 10.17179/excli2020-2900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/18/2021] [Indexed: 12/23/2022]
Abstract
Despite the recent advances in the treatment of other cancers, the 5-year survival rate of pancreatic cancer remains under 9 %. Chemotherapy and surgical resection are the most common therapy methods. The regulatory role of microRNAs in different types of cancer has given them therapeutic importance. miR-612 has been downregulated in colorectal, bladder, liver, and some other types of cancer and could be considered a tumor-suppressor miRNA. 5-FU is one of the most common chemotherapeutic agents used in pancreatic cancer treatment, which is used in multiple drug regimens and combinatorial therapy methods. The aim of this study is the evaluation of miR-612 restoration in the PANC-1 cell line and using the tumor-suppressive effect of it in combination with 5-FU on cell growth and migration. MiR-612 mimic was transfected to PANC-1 cells through electroporation. Following the transfection, expression levels of miR-612 and BAX, BCL-2, Caspase-3, MMP9, and PD-L1 genes were measured by qRT-PCR. MTT assay was used to determine the cytotoxicity of miR-612 and 5-FU on PANC-1 cell viability. To confirm MTT results and to evaluate the quantitative effect of apoptosis induction flow cytometry test was used and in order to confirm apoptosis test results and cell cycle arrest evaluation DAPI staining and cell, cycle tests were conducted, respectively. Finally, to assess the inhibitory effect of miR-612 in combination with 5-FU on migration and growth wound healing and colony formation assays were used, respectively. Results demonstrated that miR-612 alongside 5-FU has an important role in the inhibition of migration and growth and also apoptosis induction in PANC-1 cells and could be considered as a supporting agent of chemotherapy and a novel therapeutic modality in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Darya Javadrashid
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
- Faculty of Basic Sciences, Department of Biology, University of Maragheh, Iran
| | - Reza Mohammadzadeh
- Faculty of Basic Sciences, Department of Biology, University of Maragheh, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | - Sahar Safaee
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | - Ziba Lotfi
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| |
Collapse
|
19
|
Wang L, Yuan W, Huang J. Identification of Myocardial Infarction-Associated Genes Using Integrative microRNA-Gene Expression Network Analysis. DNA Cell Biol 2020; 40:348-358. [PMID: 33395357 DOI: 10.1089/dna.2020.6222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It is crucial to identify potential molecular targets and their interaction involved in myocardial infarction (MI). In our study, we obtained microarray data of MI from GEO database and identify differentially expressed mRNAs and microRNAs (miRNAs). Compared with normal tissues, 686 mRNAs and 16 miRNAs were differentially expressed in MI. Subsequently, function enrichment analysis was performed to further investigate their biological functions. Also, gene set enrichment analysis indicated they were enriched into Pathway in cancer. Besides, protein-protein interaction analysis was performed to assess the interactions of the differentially expressed mRNAs. Finally, we constructed an mRNA-miRNA interaction network based on the overlapping genes between the differentially expressed mRNAs and predicted target genes of dysregulated miRNAs. The network demonstrated three MI-associated miRNAs, miR-498, miR-181a, and miR-612, and 45 novel target genes, as well as their interaction involved in MI. What is more, in vitro and in vivo quantitative real-time PCR confirmed our results were consistent. In conclusion, miR-498, miR-181a, and miR-612 may participate in the pathogenesis of MI and may serve as the potential therapeutic targets or biomarkers.
Collapse
Affiliation(s)
- Long Wang
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Yuan
- Department of Cardiology, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Jinyu Huang
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Zhu H, Tang JH, Zhang SM, Qian JP, Ling X, Wu XY, Yang LX. Long Noncoding RNA LINC00963 Promotes CDC5L-Mediated Malignant Progression in Gastric Cancer. Onco Targets Ther 2020; 13:12999-13013. [PMID: 33376349 PMCID: PMC7764734 DOI: 10.2147/ott.s274708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/09/2020] [Indexed: 11/23/2022] Open
Abstract
Background Gastric cancer (GC) is a common cancer with high incidence and mortality worldwide. In recent years, accumulating evidence has shown that long noncoding RNAs (lncRNAs) exert critical roles in the development and progression of cancer by acting as a tumor initiator or suppressor. LINC00963 is a newly reported lncRNA related to cancer, and its role in GC remains unclear. Materials and Methods The expression levels of LINC00963, miR-612, and cell division cycle 5-like protein (CDC5L) were measured using quantitative real-time PCR or Western blot. The biological functions of LINC00963, miR-612, and CDC5L in GC cells were analyzed by transwell and proliferation experiments. The expression of CDC5L in patients with GC was evaluated using the Oncomine database. Bone marrow-derived dendritic cells (DCs) were derived from C57BL/6 mice. Results LINC00963 expression was higher in GC tissues than in adjacent normal tissues. Similar results were found in GC cell lines and normal human gastric epithelial cells. Upregulation of LINC00963 was related to the poor prognosis of patients with GC. Knockdown of LINC00963 inhibited the proliferation, invasion, and metastasis but promoted the apoptosis of GC cells. Furthermore, silencing of LINC00963 in GC cells significantly suppressed the tumor growth of GC. Bioinformatics analysis indicated that LINC00963 could target miR-612 by functioning as a competing endogenous RNA. The expression of miR-612 decreased in GC tissues and cell lines. Meanwhile, LINC00963 expression was negatively associated with miR-612. CDC5L was a direct target of miR-612. miR-612 suppressed the expression of CDC5L in GC tissues and cells. Moreover, LINC00963 inhibited the differentiation and maturation of DCs by regulating miR-612 expression in DCs. Conclusion LINC00963 promoted the progression of GC by competitively binding to miR-612 to regulate the expression of CDC5L and mediated DC-related anti-tumor immune response. Thus, targeting LINC00963 may be a promising therapeutic strategy for GC.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Jin-Hai Tang
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Shi-Meng Zhang
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Jia-Ping Qian
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Xin Ling
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Xiao-Ying Wu
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Ling-Xia Yang
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
21
|
Razavi ZS, Tajiknia V, Majidi S, Ghandali M, Mirzaei HR, Rahimian N, Hamblin MR, Mirzaei H. Gynecologic cancers and non-coding RNAs: Epigenetic regulators with emerging roles. Crit Rev Oncol Hematol 2020; 157:103192. [PMID: 33290823 DOI: 10.1016/j.critrevonc.2020.103192] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
Gynecologic cancers involve the female genital organs, such as the vulva, vagina, cervix, endometrium, ovaries, and fallopian tubes. The occurrence and frequency of gynecologic cancer depends on personal lifestyle, history of exposure to viruses or carcinogens, genetics, body shape, and geographical habitat. For a long time, research into the molecular biology of cancer was broadly restricted to protein-coding genes. Recently it has been realized that non-coding RNAs (ncRNA), including long noncoding RNAs (LncRNAs), microRNAs, circular RNAs and piRNAs (PIWI-interacting RNAs), can all play a role in the regulation of cellular function within gynecological cancer. It is now known that ncRNAs are able to play dual roles, i.e. can exert both oncogenic or tumor suppressive functions in gynecological cancer. Moreover, several clinical trials are underway looking at the biomarker and therapeutic roles of ncRNAs. These efforts may provide a new horizon for the diagnosis and treatment of gynecological cancer. Herein, we summarize some of the ncRNAs that have been shown to be important in gynecological cancers.
Collapse
Affiliation(s)
| | - Vida Tajiknia
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahab Majidi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Ghandali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
22
|
Wang M, Zhao HY, Zhang JL, Wan DM, Li YM, Jiang ZX. Dysregulation of LncRNA ANRIL mediated by miR-411-3p inhibits the malignant proliferation and tumor stem cell like property of multiple myeloma via hypoxia-inducible factor 1α. Exp Cell Res 2020; 396:112280. [PMID: 32961145 DOI: 10.1016/j.yexcr.2020.112280] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 11/25/2022]
Abstract
Long non-coding RNA (lncRNA) ANRIL has been reported to be closely related to the relapse of multiple myeloma patients. However, the functional role and underlying mechanism of lncRNA ANRIL in multiple myeloma are not known. This study aims to investigate the biological function of lncRNA ANRIL in multiple myeloma. In this study, compared with normal tissues from healthy donors, lncRNA ANRIL and HIF-1α expressions were up-regulated in tumor tissues from multiple myeloma patients. miR-411-3p expression was down-regulated in tumor tissues from multiple myeloma patients. Besides, lncRNA ANRIL can interact with miR-411-3p. HIF-1α was confirmed to be a target of miR-411-3p. Correlation analysis showed that lncRNA ANRIL expression was negatively correlated with miR-411-3p expression. HIF-1α expression was negatively correlated with miR-411-3p expression. Further transfection experiments showed that knockdown of ANRIL or overexpression of miR-411-3p significantly inhibited cell proliferation, tumor formation ability and tumor stem cell like property, promoted cell apoptosis in vitro. Finally, miR-411-3p mimic reduced tumor volume, improved survival rate, suppressed malignant proliferation and tumor stem cell like property in U266 xenograft model. Our results demonstrate that lncRNA ANRIL mediated by miR-411-3p promotes the malignant proliferation and tumor stem cell like property of multiple myeloma through regulating HIF-1α.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Line, Tumor
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Mice
- Mice, Nude
- MicroRNAs/agonists
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Multiple Myeloma/genetics
- Multiple Myeloma/metabolism
- Multiple Myeloma/mortality
- Multiple Myeloma/pathology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/pathology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Oligoribonucleotides/genetics
- Oligoribonucleotides/metabolism
- Plasma Cells/metabolism
- Plasma Cells/pathology
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- Survival Analysis
- Tumor Burden
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Meng Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 452000, China
| | - Hua-Yan Zhao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 452000, China
| | - Jing-Lan Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 452000, China
| | - Ding-Ming Wan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 452000, China
| | - Ying-Mei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 452000, China
| | - Zhong-Xing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 452000, China.
| |
Collapse
|
23
|
He C, Qin H, Tang H, Yang D, Li Y, Huang Z, Zhang D, Lv C. Comprehensive bioinformatics analysis of the TP53 signaling pathway in Wilms' tumor. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1228. [PMID: 33178760 PMCID: PMC7607069 DOI: 10.21037/atm-20-6047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Differential expression of tumor protein 53 (TP53, or p53) has been observed in multiple cancers. However, the expression levels and prognostic role of TP53 signaling pathway genes in Wilms' tumor (WT) have yet to be fully explored. Methods The expression levels of TP53 signaling pathway genes including TP53, mouse double minute 2 (MDM2), mouse double minute 4 (MDM4), cyclin-dependent kinase 2A (CDKN2A), cyclin-dependent kinase 2B (CDKN2B), and tumor suppressor p53-binding protein 1 (TP53BP1) in WT were analyzed using the Oncomine database. Aberration types, co-mutations, mutation locations, signaling pathways, and the prognostic role of TP53 in WT were investigated using cBioPortal. MicroRNA (miRNA) and transcription factor (TF) targets were identified with miRTarBase, miWalk, and ChIP-X Enrichment Analysis 3 (CheA3), respectively. A protein-protein network was constructed using GeneMANIA. The expression of TP53 signaling genes were confirmed in WT samples and normal kidney tissues using the Human Protein Atlas (HPA). Cancer Therapeutics Response Portal (CTRP) was used to analyze the small molecules potentially targeting TP53. Results TP53 was significantly expressed in the Cutcliffe Renal (P=0.010), but not in the Yusenko Renal (P=0.094). Meanwhile, MDM2 was significantly overexpressed in the Yusenko Renal (P=0.058), but not in the Cutcliffe Renal (P=0.058). The expression levels of MDM4 no significant difference between the tumor and normal tissue samples. The most common TP53 alteration was missense and the proportion of TP53 pathway-related mutations was 2.3%. Co-expressed genes included ZNF609 (zinc finger protein 609), WRAP53 (WD40-encoding RNA antisense to p53), CNOT2 (CC chemokine receptor 4-negative regulator of transcription 2), and CDH13 (cadherin 13). TP53 alterations indicated poor prognosis of WT (P=1.051e-4). The regulators of the TP53 pathway included miR-485-5p and TFs NR2F2 and KDM5B. The functions of TP53 signaling pathway were signal transduction in response to DNA damage and regulate the cell cycle. The small molecules targeting TP53 included PRIMA-1, RITA, SJ-172550, and SCH-529074. Conclusions TP53 was found to be differentially expressed in WT tissues. TP53 mutations indicated poor outcomes of WT. Therefore, pifithrin-mu, PRIMA-1, RITA, SJ-172550, and SCH-529074 could be used in combination with traditional chemotherapy to treat WT.
Collapse
Affiliation(s)
- Changjing He
- Department of Pediatric Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Huatao Qin
- Department of Nursing, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Haizhou Tang
- Department of Pediatric Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Di Yang
- Department of Pediatric Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yufeng Li
- Department of Pediatric Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhenwen Huang
- Department of Pediatric Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Donghu Zhang
- Department of Pediatric Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Changheng Lv
- Department of Pediatric Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
24
|
Alemohammad H, Asadzadeh Z, Motafakker Azad R, Hemmat N, Najafzadeh B, Vasefifar P, Najafi S, Baradaran B. Signaling pathways and microRNAs, the orchestrators of NANOG activity during cancer induction. Life Sci 2020; 260:118337. [PMID: 32841661 DOI: 10.1016/j.lfs.2020.118337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are a small part of cancer cells inside the tumor that have similar characteristics to normal stem cells. CSCs stimulate tumor initiation and progression in a variety of cancers. Several transcription factors such as NANOG, SOX2, and OCT4 maintain the characteristics of CSCs and their upregulation is seen in many malignancies resulting in increased metastasis, invasion, and recurrence. Among these factors, NANOG plays an important role in regulating the self-renewal and pluripotency of CSCs and the clinical significance of NANOG has been suggested as a marker of CSCs in many cancers. The up and down-regulation of NANOG is associated with several important signaling pathways, including JAK/STAT, Wnt/β-catenin, Notch, TGF-β, Hedgehog, and several microRNAs (miRNAs). In this review, we will investigate the function of NANOG in CSCs and the molecular mechanism of its regulation by signaling pathways and miRNAs. We will also investigate targeting NANOG with different techniques, which is a promising treatment strategy for cancer treatment.
Collapse
Affiliation(s)
- Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Li N, Cheng C, Wang T. MiR-181c-5p Mitigates Tumorigenesis in Cervical Squamous Cell Carcinoma via Targeting Glycogen Synthase Kinase 3β Interaction Protein (GSKIP). Onco Targets Ther 2020; 13:4495-4505. [PMID: 32547080 PMCID: PMC7247609 DOI: 10.2147/ott.s245254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cervical cancer (CC) is a highly prevalent cancer and one of the main causes of death among women worldwide. The miR-181 family has turned out to be associated with tumorigenesis in a variety of tumors by regulating the expression of tumor-related genes. However, the mechanisms and biological function of miR-181c-5p in cervical squamous cell carcinoma (SCC) have not been well elucidated. MATERIALS AND METHODS SiHa cell lines with specific gene overexpression vectors were constructed. Targetscan was used to predict the binding site of miR-181c-5p and GSKIP. MTT assay was used to detect the clone formation rate. Flow cytometry was used to detect the apoptosis rate and to separate the cell markers. The Transwell test was used to detect cell invasion. Immunohistochemistry was used to detect protein expression in tumor tissues. Western Blotting was used to detect the expression levels of related proteins. RESULTS GSKIP was predicted to be the target gene of miR-181c-5p in cervical SCC. MiR-181c-5p overexpression suppressed SiHa cells proliferation and promoted apoptosis; the protein expressions of Ki67 and PCNA were decreased, but the expressions of Caspase-3 and Bax/Bcl-2 were increased. The overexpression of miR-181c-5p inhibited the stem-like properties of SiHa cells; the expressions of SOX2, OCT4 and CD44 were decreased. Furthermore, miR-181c-5p upregulation limited the invasion of SiHa cells; the expression of E-cadherin was higher, but the expressions of N-cadherin and Vimentin were lower. MiR-181c-5p overexpression inhibited tumorigenesis in cervical SCC tissues; the expressions of Ki67, Caspase-3, CD44 and Vimentin in vivo were consistent with those in vitro. CONCLUSION Taken together, miR-181c-5p was able to mitigate the cancer cell characteristic and invasive properties of cervical SCC through targeting GSKIP gene.
Collapse
Affiliation(s)
- Niuniu Li
- Department of Gynecology and Obstetrics of Shiyan, Taihe Hospital of Hubei Province, Shiyan, Hubei442000, People’s Republic of China
| | - Chun Cheng
- Department of Pediatrics, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei435000, People’s Republic of China
| | - Tieyan Wang
- Clinical Pathology Department of Shiyan, Taihe Hospital of Hubei Province, Shiyan, Hubei442000, People’s Republic of China
| |
Collapse
|
26
|
Hassn Mesrati M, Behrooz AB, Y. Abuhamad A, Syahir A. Understanding Glioblastoma Biomarkers: Knocking a Mountain with a Hammer. Cells 2020; 9:E1236. [PMID: 32429463 PMCID: PMC7291262 DOI: 10.3390/cells9051236] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Gliomas are the most frequent and deadly form of human primary brain tumors. Among them, the most common and aggressive type is the high-grade glioblastoma multiforme (GBM), which rapidly grows and renders patients a very poor prognosis. Meanwhile, cancer stem cells (CSCs) have been determined in gliomas and play vital roles in driving tumor growth due to their competency in self-renewal and proliferation. Studies of gliomas have recognized CSCs via specific markers. This review comprehensively examines the current knowledge of the most significant CSCs markers in gliomas in general and in glioblastoma in particular and specifically focuses on their outlook and importance in gliomas CSCs research. We suggest that CSCs should be the superior therapeutic approach by directly targeting the markers. In addition, we highlight the association of these markers with each other in relation to their cascading pathways, and interactions with functional miRNAs, providing the role of the networks axes in glioblastoma signaling pathways.
Collapse
Affiliation(s)
| | | | | | - Amir Syahir
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (M.H.M.); (A.B.B.); (A.Y.A.)
| |
Collapse
|
27
|
Shi DM, Shi XL, Xing KL, Zhou HX, Lu LL, Wu WZ. miR-296-5p suppresses stem cell potency of hepatocellular carcinoma cells via regulating Brg1/Sall4 axis. Cell Signal 2020; 72:109650. [PMID: 32320856 DOI: 10.1016/j.cellsig.2020.109650] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
Epithelial-mesenchymal transition (EMT), a pivotal event during cancer progression such as relapse and metastasis, is positively correlated with the stemness potency of tumor cells. Our previous study showed that miR-296-5p attenuated EMT program of hepatocellular carcinoma cells (HCC) through NRG1/ERBB2/ERBB3 signaling. In the present study, we uncovered that miR-296-5p was able to inhibit the stemness potency of HCC by decreasing the number and size of tumorspheres, downregulating the expression of CSC biomarkers and hampering the ability of tumorigenesis in NOD/SCID mice. Brahma-related gene-1 (Brg1), as the target protein of miR-296-5p detected by bioinformatics methods, activates a series of downstream cascades through directly binding to Sall4 promoter and enhancing Sall4 transcription. Importantly, the higher expressions of Brg1 and Sall4 in tumor tissues of HCC patients suggest poorer prognoses after surgical extraction. In conclusion, miR-296-5p exerts an inhibitory effect on stemness potency of HCC cells via Brg1/Sall4 axis.
Collapse
Affiliation(s)
- Dong-Min Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Xiao-Li Shi
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Kai-Lin Xing
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Hong-Xin Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Li-Li Lu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Wei-Zhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China.
| |
Collapse
|
28
|
Long noncoding RNA TRPM2-AS acts as a microRNA sponge of miR-612 to promote gastric cancer progression and radioresistance. Oncogenesis 2020; 9:29. [PMID: 32123162 PMCID: PMC7052141 DOI: 10.1038/s41389-020-0215-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/27/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as important regulators of tumorigenesis and are frequently dysregulated in cancers. Here, we identify a critical lncRNA TRPM2-AS which is aberrantly expressed in gastric cancer (GC) tissues by screening The Cancer Genome Atlas Program(TCGA) database of GC cohort, and its upregulation is clinically associated with advanced pathologic stages and poor prognosis in GC patients. Silencing TRPM2-AS inhibits the proliferation, metastasis and radioresistance of GC cell whereas ectopic expression of TRPM2-AS significantly improves the progression of GC cell in multiple experiments. Mechanistically, TRPM2-AS serves as a microRNA sponge or a competitive endogenous RNA (ceRNA) for tumor suppressive microRNA miR-612 and consequently modulates the derepression of IGF2BP1 and FOXM1. Moreover, induced upregulation of IGF2BP1 subsequently increases the expression of c-Myc and promotes GC cell progression. Meanwhile, TRPM2-AS promotes the radioreistance of GC cell through enhancing the expression of FOXM1 as well. Thus, our findings support a new regulatory axis between TRPM2-AS, miR-612, IGF2BP1, or FOXM1 which serve as crucial effectors in GC tumorigenesis and malignant development, suggesting a promising therapeutic and diagnostic direction for GC.
Collapse
|
29
|
Jin Y, Zhou X, Yao X, Zhang Z, Cui M, Lin Y. MicroRNA-612 inhibits cervical cancer progression by targeting NOB1. J Cell Mol Med 2020; 24:3149-3156. [PMID: 31970934 PMCID: PMC7077537 DOI: 10.1111/jcmm.14985] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Recently, many studies have shown that microRNA (miR)-612 is involved in cancer progression. However, the role of miR-612 in cervical cancer remains unclear. The present study aims to investigate the biological effects of miR-612 on cervical cancer. The expression of miR-612 in cervical cancer tissues and cell lines was analysed by quantitative reverse transcription-polymerase chain reaction. The effect of miR-612 cell proliferation, migration, invasion and apoptosis was studied by appropriate methods. Protein expression was determined by Western blot analyses. Bioinformatics analysis and luciferase reporter assays were performed to clarify the relationship between miR-612 and nin one binding protein (NOB1). A xenograft model was established to examine the role of miR-612 in vivo tumorigenesis. Cervical cancer tissues and cell lines showed down-regulation of miR-612 expression, which was associated with the Fédération Internationale de Gynécologie et d'Obstétrique (FIGO) stage and lymph node metastasis. Functional assays revealed that miR-612 overexpression significantly suppressed cervical cancer cell proliferation, migration and invasion in vitro and delayed tumour growth in vivo. Mechanically, miR-612 targeted NOB1 in cervical cancer cells, revealing a negative correlation between miR-612 and NOB1in cervical cancer samples. NOB1 overexpression partially reversed the inhibitory effects of miR-612 overexpression in cervical cancer cells. Taken together, these findings indicate that miR-612 functions as a tumour suppressor in cervical cancer and suggest that miR-612 may be a potential target in the therapeutic intervention of this malignancy.
Collapse
Affiliation(s)
- Yang Jin
- Jilin Provincial Key Laboratory on Molecular and Chemical GeneticThe Second Hospital of Jilin UniversityChangchunChina
| | - Xu Zhou
- Department of Obstetrics and GynecologyThe Second Hospital of Jilin UniversityChangchunChina
| | - Xiaoxiao Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical GeneticThe Second Hospital of Jilin UniversityChangchunChina
| | - Zhuo Zhang
- Department of OrthopedicsChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Manhua Cui
- Department of Obstetrics and GynecologyThe Second Hospital of Jilin UniversityChangchunChina
| | - Yang Lin
- Department of Obstetrics and GynecologyThe Second Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
30
|
Liu DL, Lu LL, Dong LL, Liu Y, Bian XY, Lian BF, Xie L, Wen D, Gao DM, Ke AW, Fan J, Wu WZ. miR-17-5p and miR-20a-5p suppress postoperative metastasis of hepatocellular carcinoma via blocking HGF/ERBB3-NF-κB positive feedback loop. Theranostics 2020; 10:3668-3683. [PMID: 32206115 PMCID: PMC7069088 DOI: 10.7150/thno.41365] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Dysregulation of microRNA (miRNA) is a frequent event in hepatocellular carcinoma (HCC), but little is known whether it is a bystander or an actual player on residual HCC metastasis during liver microenvironment remodeling initiated by hepatectomy. Methods: The differently expressed miRNAs and mRNAs were identified from RNA-seq data. Western blot, qRT-PCR, fluorescence in situ hybridization, immunofluorescence and immunohistochemical were used to detect the expression of miRNA and mRNA in cell lines and patient tissues. The biological functions were investigated in vitro and in vivo. Chromatin immunoprecipitation, proximity ligation and luciferase reporter assay were used to explore the specific binding of target genes. The expression of HGF/ERBB3 signaling was detected by Western blot. Results: In this study, HGF induced by hepatectomy was shown to promote metastasis of residual HCC cells. miR-17-5p and miR-20a-5p were confirmed to play inhibitory roles on HCC metastasis. And ERBB3 was found to be the common target of miR-17-5p and miR-20a-5p. HCC cells with lower levels of miR-17-5p and miR-20a-5p or higher level of ERBB3 were often more sensitive to response HGF stimuli and to facilitate metastatic colonization both in vitro and in vivo experimental systems. Furthermore, HGF reinforced ERBB3 expression by NF-κB transcriptional activity in a positive feedback loop. Of particular importance, HCC patients with lower levels of miR-17-5p and miR-20a-5p or higher level of ERBB3 had significantly shorter OS and PFS survivals after surgical resection. Conclusion: miR-17-5p and miR-20a-5p could suppress postoperative metastasis of hepatocellular carcinoma via blocking HGF/ERBB3-NF-κB positive feedback loop and offer a new probable strategy for metastasis prevention after HCC resection.
Collapse
Affiliation(s)
- Dong-Li Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Li-Li Lu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Li-Li Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Yang Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Xin-Yu Bian
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Bao-Feng Lian
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
| | - Duo Wen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Dong-Mei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Ai-Wu Ke
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wei-Zhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
31
|
Liu Y, Lu LL, Wen D, Liu DL, Dong LL, Gao DM, Bian XY, Zhou J, Fan J, Wu WZ. MiR-612 regulates invadopodia of hepatocellular carcinoma by HADHA-mediated lipid reprogramming. J Hematol Oncol 2020; 13:12. [PMID: 32033570 PMCID: PMC7006096 DOI: 10.1186/s13045-019-0841-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Background MicroRNA-612 (miR-612) has been proven to suppress EMT, stemness, and tumor metastasis of hepatocellular carcinoma (HCC) via PI3K/AKT2 and Sp1/Nanog signaling. However, its biological roles on HCC progression are far from elucidated. Methods We found direct downstream target of miR-612, hadha by RNA immunoprecipitation and sequencing. To explore its biological characteristic, potential molecular mechanism, and clinical relevance in HCC patients, we performed several in-vitro and in-vivo models, as well as human tissue chip. Results Ectopic expression of miR-612 could partially reverse the level of HADHA, then suppress function of pseudopods, and diminish metastatic and invasive potential of HCC by lipid reprogramming. In detail, miR-612 might reduce invadopodia formation via HADHA-mediated cell membrane cholesterol alteration and accompanied with the inhibition of Wnt/β-catenin regulated EMT occurrence. Our results showed that the maximum oxygen consumption rates (OCR) of HCCLM3miR-612-OE and HCCLM3hadha-KD cells were decreased nearly by 40% and 60% of their counterparts (p < 0.05). The levels of acetyl CoA were significantly decreased, about 1/3 (p > 0.05) or 1/2 (p < 0.05) of their controls, in exogenous miR-612 or hadha-shRNA transfected HCCLM3 cell lines. Besides, overexpression of hadha cell lines had a high expression level of total cholesterol, especially 27-hydroxycholesterol (p < 0.005). SREBP2 protein expression level as well as its downstream targets, HMGCS1, HMGCR, MVD, SQLE were all deregulated by HADHA. Meanwhile, the ATP levels were reduced to 1/2 and 1/4 in HCCLM3miR-612-OE (p < 0.05) and HCCLM3hadha-KD (p < 0.01) respectively. Moreover, patients with low miR-612 levels and high HADHA levels had a poor prognosis with shorter overall survival. Conclusion miR-612 can suppress the formation of invadopodia, EMT, and HCC metastasis and by HADHA-mediated lipid programming, which may provide a new insight of miR-612 on tumor metastasis and progression.
Collapse
Affiliation(s)
- Yang Liu
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Li Lu
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Duo Wen
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Dong-Li Liu
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Li-Li Dong
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Dong-Mei Gao
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xin-Yu Bian
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. .,Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Wei-Zhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
32
|
de Oliveira ARCP, Castanhole-Nunes MMU, Biselli-Chicote PM, Pavarino ÉC, da Silva RDCMA, da Silva RF, Goloni-Bertollo EM. Differential expression of angiogenesis-related miRNAs and VEGFA in cirrhosis and hepatocellular carcinoma. Arch Med Sci 2020; 16:1150-1157. [PMID: 32864004 PMCID: PMC7444729 DOI: 10.5114/aoms.2020.97967] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Liver cirrhosis (LC) is a heterogeneous liver disease, the last stage of liver fibrosis, and the major risk factor for hepatocellular carcinoma (HCC). Our study aimed to evaluate the expression of microRNAs and the endothelial vascular growth factor (VEGFA) gene in LC and HCC. MATERIAL AND METHODS The sample group consisted of 46 tissue samples: 21 of LC, 15 of HCC, and 10 of non-tumoural and non-cirrhotic liver tissue (control group). MiRNAs were chosen based on a mirDIP prediction database as regulators of the VEGFA gene. Gene expression of VEGF and miRNAs was quantified by real-time quantitative polymerase chain reaction. VEGFA protein expression was evaluated by ELISA. RESULTS VEGFA gene expression was significantly overexpressed in LC compared to the control group (p < 0.0001). Hsa-miR-206 (p = 0.0313) and hsa-miR-637 (p = 0.0156) were down-expressed in LC. In HCC, hsa-miR-15b (p = 0.0010), hsa-miR-125b (p = 0.0010), hsa-miR-423-3p (p = 0.0010), hsa-miR-424 (p = 0.0313), hsa-miR-494 (p < 0.0001), hsa-miR-497 (p < 0.0001), hsa-miR-612 (p = 0.0078), hsa-miR-637 (p < 0.0001), and hsa-miR-1255b (p = 0.0156) presented down-expression. CONCLUSIONS Overexpression of VEGFA in LC suggests impairment of angiogenesis in this tissue. The differential expression of microRNAs in LC and HCC observed in our study can lead to the evaluation of possible biomarkers for these diseases.
Collapse
Affiliation(s)
- André R C P de Oliveira
- Departament of Molecular Biology, UPGEM - Genetics and Molecular Biology Research Unit, São José do Rio Preto Medical School - FAMERP, São José do Rio Preto, Brazil
- Study Group of Liver Tumors - GETF, Hospital de Base - São José do Rio Preto (SP) and Medical School Foundation - FUNFARME - São José do Rio Preto, Brazil
| | - Márcia M U Castanhole-Nunes
- Departament of Molecular Biology, UPGEM - Genetics and Molecular Biology Research Unit, São José do Rio Preto Medical School - FAMERP, São José do Rio Preto, Brazil
- Study Group of Liver Tumors - GETF, Hospital de Base - São José do Rio Preto (SP) and Medical School Foundation - FUNFARME - São José do Rio Preto, Brazil
| | - Patrícia M Biselli-Chicote
- Departament of Molecular Biology, UPGEM - Genetics and Molecular Biology Research Unit, São José do Rio Preto Medical School - FAMERP, São José do Rio Preto, Brazil
| | - Érika C Pavarino
- Departament of Molecular Biology, UPGEM - Genetics and Molecular Biology Research Unit, São José do Rio Preto Medical School - FAMERP, São José do Rio Preto, Brazil
| | - Rita de C M A da Silva
- Study Group of Liver Tumors - GETF, Hospital de Base - São José do Rio Preto (SP) and Medical School Foundation - FUNFARME - São José do Rio Preto, Brazil
| | - Renato F da Silva
- Study Group of Liver Tumors - GETF, Hospital de Base - São José do Rio Preto (SP) and Medical School Foundation - FUNFARME - São José do Rio Preto, Brazil
| | - Eny M Goloni-Bertollo
- Departament of Molecular Biology, UPGEM - Genetics and Molecular Biology Research Unit, São José do Rio Preto Medical School - FAMERP, São José do Rio Preto, Brazil
- Study Group of Liver Tumors - GETF, Hospital de Base - São José do Rio Preto (SP) and Medical School Foundation - FUNFARME - São José do Rio Preto, Brazil
| |
Collapse
|
33
|
microRNA: The Impact on Cancer Stemness and Therapeutic Resistance. Cells 2019; 9:cells9010008. [PMID: 31861404 PMCID: PMC7016867 DOI: 10.3390/cells9010008] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer ranks as the second leading cause of death worldwide, causing a large social and economic burden. However, most anti-cancer treatments face the problems of tumor recurrence and metastasis. Therefore, finding an effective cure for cancer needs to be solved urgently. Recently, the discovery of cancer stem cells (CSCs) provides a new orientation for cancer research and therapy. CSCs share main characteristics with stem cells and are able to generate an entire tumor. Besides, CSCs usually escape from current anti-cancer therapies, which is partly responsible for tumor recurrence and poor prognosis. microRNAs (miRNAs) belong to small noncoding RNA and regulate gene post-transcriptional expression. The dysregulation of miRNAs leads to plenty of diseases, including cancer. The aberrant miRNA expression in CSCs enhances stemness maintenance. In this review, we summarize the role of miRNAs on CSCs in the eight most common cancers, hoping to bridge the research of miRNAs and CSCs with clinical applications. We found that miRNAs can act as tumor promoter or suppressor. The dysregulation of miRNAs enhances cell stemness and contributes to tumor metastasis and therapeutic resistance via the formation of feedback loops and constitutive activation of carcinogenic signaling pathways. More importantly, some miRNAs may be potential targets for diagnosis, prognosis, and cancer treatments.
Collapse
|
34
|
AL-Eitan LN, Alghamdi MA, Tarkhan AH, Al-Qarqaz FA. Gene Expression Profiling of MicroRNAs in HPV-Induced Warts and Normal Skin. Biomolecules 2019; 9:E757. [PMID: 31766385 PMCID: PMC6995532 DOI: 10.3390/biom9120757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 01/03/2023] Open
Abstract
: Infection with the human papillomavirus (HPV) is a common occurrence among the global population, with millions of new cases emerging on an annual basis. Dysregulated microRNA (miRNA) expression is increasingly being identified to play a role in a number of different diseases, especially in the context of high-risk HPV infection. The present study investigated the miRNA expression profiles of warts induced by low-risk HPV. In warts, miR-27b, miR-24-1, miR-3654, miR-647, and miR-1914 were downregulated while miR-612 was upregulated compared to normal skin. Using miRTargetLink Human, experimentally supported evidence was obtained showing that miR-27b targeted the vascular endothelial growth factor C (VEGFC) and CAMP-responsive element binding protein 1 (CREB1) genes. The VEGFC and CREB1 genes have been reported to be involved in tumorigenesis and wart formation, respectively. Similarly, the oxidized low-density lipoprotein receptor 1 (OLR1) gene, which plays an important role in the humoral immunity of the skin, and the plexin D1 (PLXND1) gene, which is highly expressed in tumor vasculature, were both found to be common targets of miR-27b, miR-1914, and miR-612.
Collapse
Affiliation(s)
- Laith N. AL-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan;
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
| | - Amneh H. Tarkhan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Firas A. Al-Qarqaz
- Department of Internal Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
- Division of Dermatology, Department of Internal Medicine, King Abdullah University Hospital Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
35
|
Khan AQ, Ahmed EI, Elareer NR, Junejo K, Steinhoff M, Uddin S. Role of miRNA-Regulated Cancer Stem Cells in the Pathogenesis of Human Malignancies. Cells 2019; 8:840. [PMID: 31530793 PMCID: PMC6721829 DOI: 10.3390/cells8080840] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Recent biomedical discoveries have revolutionized the concept and understanding of carcinogenesis, a complex and multistep phenomenon which involves accretion of genetic, epigenetic, biochemical, and histological changes, with special reference to MicroRNAs (miRNAs) and cancer stem cells (CSCs). miRNAs are small noncoding molecules known to regulate expression of more than 60% of the human genes, and their aberrant expression has been associated with the pathogenesis of human cancers and the regulation of stemness features of CSCs. CSCs are the small population of cells present in human malignancies well-known for cancer resistance, relapse, tumorigenesis, and poor clinical outcome which compels the development of novel and effective therapeutic protocols for better clinical outcome. Interestingly, the role of miRNAs in maintaining and regulating the functioning of CSCs through targeting various oncogenic signaling pathways, such as Notch, wingless (WNT)/β-Catenin, janus kinases/ signal transducer and activator of transcription (JAK/STAT), phosphatidylinositol 3-kinase/ protein kinase B (PI3/AKT), and nuclear factor kappa-light-chain-enhancer of activated B (NF-kB), is critical and poses a huge challenge to cancer treatment. Based on recent findings, here, we have documented the regulatory action or the underlying mechanisms of how miRNAs affect the signaling pathways attributed to stemness features of CSCs, such as self-renewal, differentiation, epithelial to mesenchymal transition (EMT), metastasis, resistance and recurrence etc., associated with the pathogenesis of various types of human malignancies including colorectal cancer, lung cancer, breast cancer, head and neck cancer, prostate cancer, liver cancer, etc. We also shed light on the fact that the targeted attenuation of deregulated functioning of miRNA related to stemness in human carcinogenesis could be a viable approach for cancer treatment.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Eiman I Ahmed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Noor R Elareer
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Kulsoom Junejo
- General Surgery Department, Hamad General Hospital, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
- Weill Cornell Medicine, Doha, P.O. Box 24811, Qatar
- Weill Cornell University, New York, NY 10065, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar.
| |
Collapse
|
36
|
Wang M, Wang Z, Zhu X, Guan S, Liu Z. NFKB1-miR-612-FAIM2 pathway regulates tumorigenesis in neurofibromatosis type 1. In Vitro Cell Dev Biol Anim 2019; 55:491-500. [PMID: 31197610 DOI: 10.1007/s11626-019-00370-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Neurofibromatosis type I (NF1) is a carcinoma mainly featured by malignant peripheral nerve sheath tumor (MPNST). Dysregulated microRNAs (miRNAs) play decisive roles in tumor initiation and development. Our study sought for the possible roles of miR-612 in NF1. RT-qPCR estimated the expression of nuclear factor kappa B subunit 1 (NFKB1), miR-612, and Fas apoptotic inhibitory molecule 2 (FAIM2) in NF1, separately. Cell proliferation and migration were detected by CCK-8 and transwell experiments. Cell apoptosis was measured via flow cytometry and detection of the expression and activity of caspase 3/8/9. Luciferase reporter, ChIP, and RIP assays testified the interplay between studied genes. Rescue and in vivo assays affirmed the whole mechanism of miR-612 in NF1. We indicated that miR-612 was significantly low in tumor tissues and cells. Mechanism experiments confirmed that miR-612 promotion repressed cell proliferation and migration, and induced cell apoptosis. Besides, NFKB1-regulated miR-612 targeted FAIM2. Spearman's correlation analysis validated the correlation between each two genes. Finally, rescue and in vivo assays affirmed that miR-612 targeted FAIM2 to regulate cellular activities of NF1. The current investigation uncovered the molecular mechanism underlying miR-612 in NF1, establishing miR-612 as a novel therapeutic target for the treatment of NF1 patients.
Collapse
Affiliation(s)
- Meng Wang
- Hand and Foot Surgical Center, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China.
| | - Zengtao Wang
- Hand and Foot Surgical Center, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Xiaolei Zhu
- Hand and Foot Surgical Center, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Shibing Guan
- Hand and Foot Surgical Center, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Zhibo Liu
- Hand and Foot Surgical Center, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| |
Collapse
|
37
|
Kang X, Kong F, Wu S, Liu Q, Yang C, Wu X, Zhang W. microRNA-612 suppresses the malignant development of non-small-cell lung cancer by directly targeting bromodomain-containing protein 4. Onco Targets Ther 2019; 12:4167-4179. [PMID: 31213835 PMCID: PMC6549771 DOI: 10.2147/ott.s204004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/06/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Aberrant expression of microRNAs (miRNAs) in non-small-cell lung cancer (NSCLC) has been reported. Dysregulation of miRNAs exerts tumor-suppressing or tumor-promoting actions on the pathology and biological behaviors of NSCLC. miR-612 is associated with many types of human cancer; however, the expression, potential roles, and regulatory mechanisms of miR-612 in NSCLC remain unclear. Material and methods: Here, the expression level of miR-612 in NSCLC tissue specimens and a panel of cell lines were evaluated by RT-qPCR. Cell-Counting Kit 8, flow cytometry, Transwell migration and invasion, and in vivo tumor growth assays were performed to determine the functional role of miR-612 in malignant phenotypes of NSCLC cells. The molecular mechanism underlying the tumor-suppressive roles of miR-612 in NSCLC was investigated. Results: miR-612 was expressed at low levels in NSCLC, and low miR-612 expression was significantly correlated with TNM stage and lymph node metastasis. NSCLC patients with low miR-612 expression had shorter overall survival rate than those with high levels. Exogenous miR-612 expression decreased proliferation, migration, and invasion, and promoted apoptosis of NSCLC cells in vitro. miR-612 upregulation hindered NSCLC tumor growth in vivo. Bromodomain-containing protein 4 (BRD4) was confirmed as a direct target gene of miR-612 in NSCLC cells. BRD4 was obviously overexpressed in human NSCLC tissues and inverse correlated with miR-612 expression. Inhibition of BRD4 expression simulated the tumor-suppressive functions of miR-612 overexpression in NSCLC cells. Reintroduction of miR-612 expression abrogated the miR-612-mediated suppressive effects on NSCLC cells. BRD4 upregulation inhibited activation of the PI3K/Akt pathway in NSCLC cells in vitro and in vivo. Conclusion: This study supports the first evidence that miR-612 exerts tumor-suppressive roles in the aggressive behaviors of NSCLC cells in vitro and in vivo through direct targeting BRD4 and deactivating the PI3K/Akt pathway. Thus, miR-612 might be a promising target for anticancer therapies in patients with NSCLC.
Collapse
Affiliation(s)
- Xiaowen Kang
- Department of Respiration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, People's Republic of China
| | - Fanwu Kong
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, People's Republic of China
| | - Shijie Wu
- Department of Respiration, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163000, People's Republic of China
| | - Qiushuang Liu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, People's Republic of China
| | - Chengcheng Yang
- Department of Respiration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, People's Republic of China
| | - Xiaomei Wu
- Department of Respiration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, People's Republic of China
| | - Wei Zhang
- Department of Respiration, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, People's Republic of China
| |
Collapse
|
38
|
Zhang X, Zhuang H, Han F, Shao X, Liu Y, Ma X, Wang Z, Qiang Z, Li Y. Sp1-regulated transcription of RasGRP1 promotes hepatocellular carcinoma (HCC) proliferation. Liver Int 2018; 38:2006-2017. [PMID: 29655291 DOI: 10.1111/liv.13757] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/30/2018] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND AIMS The role of Ras guanine nucleotide-releasing protein 1 (RasGRP1) in tumourigenesis has been a subject of debate, and its functions and clinical significance in hepatocellular carcinoma (HCC) remain unknown. Here, we evaluated the expression of RasGRP1 in HCC and determined how it contributes to HCC cell proliferation. METHODS RasGRP1 expression was measured by quantitative polymerase chain reaction (qPCR) and Western blotting of 24 paired HCC tissues and para-tumour tissues. RasGRP1 expression was confirmed by immunohistochemical analysis of a tissue microarray from 1 independent cohort. Overall survival (OS) and disease-free survival (DFS) were estimated using the Kaplan-Meier method, and risk factors that contributed to OS or DFS were identified using Cox regression analysis. The biologic relevance of RasGRP1 was examined by small interfering RNAs and an exogenous plasmid construct. Chromatin immunoprecipitation assays were performed to examine the binding of Sp1 to the RasGRP1 promoter. RESULTS Increased RasGRP1 expression was associated with tumour size (P = .004), tumour-node-metastasis stage (P = .032), and Barcelona Clinic Liver Cancer stage (P = .002). RasGRP1 overexpression was an independent prognostic factor in HCC patients. RasGRP1 downregulation inhibited cell proliferation, whereas RasGRP1 overexpression promoted cell proliferation. Moreover, specificity protein 1 bound to the RasGRP1 promoter and promoted RasGRP1 transcription. In addition, RasGRP1 overexpression enhanced activation of the c-Raf pathway. CONCLUSIONS RasGRP1 is upregulated in HCC and promotes HCC cell proliferation. Thus, RasGRP1 may be a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Xinran Zhang
- Department of Pathogen Biology & Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hao Zhuang
- Department of Pathogen Biology & Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Feng Han
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaowen Shao
- Department of Pathogen Biology & Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yun Liu
- Department of Pathogen Biology & Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xuda Ma
- Department of Pathogen Biology & Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zun Wang
- Department of Pathogen Biology & Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhaoyan Qiang
- Department of Pathogen Biology & Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yongmei Li
- Department of Pathogen Biology & Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
39
|
Long noncoding RNA LUCAT1 promotes malignancy of ovarian cancer through regulation of miR-612/HOXA13 pathway. Biochem Biophys Res Commun 2018; 503:2095-2100. [DOI: 10.1016/j.bbrc.2018.07.165] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 01/04/2023]
|
40
|
Lou W, Liu J, Gao Y, Zhong G, Ding B, Xu L, Fan W. MicroRNA regulation of liver cancer stem cells. Am J Cancer Res 2018; 8:1126-1141. [PMID: 30094089 PMCID: PMC6079154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023] Open
Abstract
MicroRNAs (miRNAs), a class of emerging small non-coding RNAs, serve as vital players in modulating multiple biological processes via the post-transcriptional regulation of gene expression. Dysregulated expression of miRNAs in liver cancer is well documented, and the involvement of miRNAs in liver cancer initiation and progression has also been described. Cancer stem cells (CSCs) are a subset of cells known to be at the root of cancer recurrence and resistance to therapy. In this review, we highlight recent reports indicating that miRNAs participate in the regulation of liver cancer stem cells (LCSCs). The Wnt signaling pathway, TGF-beta signaling pathway, JAK/STAT signaling pathway and epithelial-mesenchymal transition (EMT) are all closely correlated with the miRNA modulation of LCSCs. In addition, several miRNAs have been demonstrated to be involved in the regulation of LCSCs in response to therapy sensitivity. Targeting LCSCs by regulating the expression of these miRNAs represents a potential therapeutic strategy for treating cancer drug resistance, metastasis and recurrence in the near future.
Collapse
Affiliation(s)
- Weiyang Lou
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public HealthHangzhou 310000, China
| | - Jingxing Liu
- Department of Intensive Care Unit, Changxing People’s Hospital of ZhejiangHuzhou 313100, Zhejiang Province, China
| | - Yanjia Gao
- Department of Anesthesiology, International Hospital of Zhejiang University, Shulan (Hangzhou) HospitalHangzhou 310003, Zhejiang Province, China
| | - Guansheng Zhong
- Department of Thyroid and Breast Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical CollegeHangzhou 310000, Zhejiang Province, China
| | - Bisha Ding
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public HealthHangzhou 310000, China
| | - Liang Xu
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public HealthHangzhou 310000, China
| | - Weimin Fan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public HealthHangzhou 310000, China
- Department of Pathology and Laboratory Medicine, Medical University of South CarolinaCharleston, SC 29425, USA
| |
Collapse
|
41
|
Zhao J, Fu Y, Wu J, Li J, Huang G, Qin L. The Diverse Mechanisms of miRNAs and lncRNAs in the Maintenance of Liver Cancer Stem Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8686027. [PMID: 29888282 PMCID: PMC5977062 DOI: 10.1155/2018/8686027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/03/2018] [Indexed: 12/26/2022]
Abstract
Liver cancer is the second leading cause of cancer-related death worldwide. The high frequency of recurrence and metastasis is the main reason for poor prognosis. Liver cancer stem cells (CSCs) have unlimited self-renewal, differentiation, and tumor-regenerating capacities. The maintenance of CSCs may account for the refractory features of liver cancer. Despite extensive investigations, the underlying regulatory mechanisms of liver CSCs remain elusive. miRNA and lncRNA, two major classes of the ncRNA family, can exert important roles in various biological processes, and their diverse regulatory mechanisms in CSC maintenance have acquired increasing attention. However, to the best of our knowledge, there is a lack of reviews summarizing these findings. Therefore, we systematically recapitulated the latest studies on miRNAs and lncRNAs in sustaining liver CSCs. Moreover, we highlighted the potential clinical application of these dysregulated ncRNAs as novel diagnostic and prognostic biomarkers and therapeutic targets. This review not only sheds new light to fully understand liver CSCs but also provides valuable clues on targeting ncRNAs to block or eradicate CSCs in cancer treatment.
Collapse
Affiliation(s)
- Jing Zhao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Yan Fu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Wu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Juan Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Guangjian Huang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| |
Collapse
|
42
|
Liu M, Chen Y, Huang B, Mao S, Cai K, Wang L, Yao X. Tumor-suppressing effects of microRNA-612 in bladder cancer cells by targeting malic enzyme 1 expression. Int J Oncol 2018; 52:1923-1933. [PMID: 29620192 PMCID: PMC5919718 DOI: 10.3892/ijo.2018.4342] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/28/2018] [Indexed: 12/21/2022] Open
Abstract
The present study investigated the possible tumor-suppressing function of microRNA (miR)-612 and the underlying molecular mechanism of its action in bladder cancer in vitro and in vivo. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was carried out to quantify the expression levels of miR-612 in bladder cancer tissues and cell lines. The data demonstrated that the level of miR-612 expression was significantly reduced in bladder cancer tissues and cell lines, as compared with that in non-cancerous tissues and cells. Reduced miR-612 expression was associated with advanced tumor, lymph node and metastasis stages, and with distant metastasis of bladder cancer. A functional study revealed that transfection of cells with an miR-612 mimic suppressed bladder cancer cell growth, colony formation, migration, invasion and epithelial-mesenchymal transition. Bioinformatics analysis identified that miR-612 targeted the expression of malic enzyme 1 (ME1), and this was confirmed by western blot and luciferase reporter assay results. Furthermore, the ME1 expression levels were inversely associated with miR-612 expression in bladder cancer tissue specimens. In addition, knockdown of ME1 expression using ME1 siRNA mimicked the effect of ectopic miR-612 overexpression in bladder cancer cells in terms of tumor cell growth, migration and invasion. By contrast, ME1 overexpression weakened the inhibitory effect of the miR-612 mimic in bladder cancer cells. In conclusion, the present study demonstrated that miR-612 may function as a tumor suppressor in bladder cancer by targeting ME1 expression.
Collapse
Affiliation(s)
- Mengnan Liu
- Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yifan Chen
- Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Bisheng Huang
- Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Shiyu Mao
- Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Keke Cai
- Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Longsheng Wang
- Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Xudong Yao
- Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
43
|
Zhu Y, Zhang HL, Wang QY, Chen MJ, Liu LB. Overexpression of microRNA-612 Restrains the Growth, Invasion, and Tumorigenesis of Melanoma Cells by Targeting Espin. Mol Cells 2018; 41:119-126. [PMID: 29385671 PMCID: PMC5824021 DOI: 10.14348/molcells.2018.2235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/18/2017] [Accepted: 11/24/2017] [Indexed: 01/04/2023] Open
Abstract
microRNA (miR)-612 shows anticancer activity in several types of cancers, yet its function in melanoma is still unclear. This study was undertaken to investigate the expression of miR-612 and its biological relevance in melanoma cell growth, invasion, and tumorigenesis. The expression and prognostic significance of miR-612 in melanoma were examined. The effects of miR-612 overexpression on cell proliferation, colony formation, tumorigenesis, and invasion were determined. Rescue experiments were conducted to identify the functional target gene(s) of miR-612. miR-612 was significantly downregulated in melanoma tissues compared to adjacent normal tissues. Low miR-612 expression was significantly associated with melanoma thickness, lymph node metastasis, and shorter overall, and disease-free survival of patients. Overexpression of miR-612 significantly decreased cell proliferation, colony formation, and invasion of SK-MEL-28 and A375 melanoma cells. In vivo tumorigenic studies confirmed that miR-612 overexpression retarded the growth of A375 xenograft tumors, which was coupled with a decline in the percentage of Ki-67-positive proliferating cells. Mechanistically, miR-612 targeted Espin in melanoma cells. Overexpression of Espin counteracted the suppressive effects of miR-612 on melanoma cell proliferation, invasion, and tumorigenesis. A significant inverse correlation (r = -0.376, P = 0.018) was observed between miR-612 and Espin protein expression in melanoma tissues. In addition, overexpression of miR-612 and knockdown of Espin significantly increased the sensitivity of melanoma cells to doxorubicin. Collectively, miR-612 suppresses the aggressive phenotype of melanoma cells through downregulation of Espin. Delivery of miR-612 may represent a novel therapeutic strategy against melanoma.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou,
China
| | - Hao-liang Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou,
China
| | - Qi-ying Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou,
China
| | - Min-jing Chen
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou,
China
| | - Lin-bo Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou,
China
| |
Collapse
|
44
|
Schultz DJ, Muluhngwi P, Alizadeh-Rad N, Green MA, Rouchka EC, Waigel SJ, Klinge CM. Genome-wide miRNA response to anacardic acid in breast cancer cells. PLoS One 2017; 12:e0184471. [PMID: 28886127 PMCID: PMC5590942 DOI: 10.1371/journal.pone.0184471] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are biomarkers and potential therapeutic targets for breast cancer. Anacardic acid (AnAc) is a dietary phenolic lipid that inhibits both MCF-7 estrogen receptor α (ERα) positive and MDA-MB-231 triple negative breast cancer (TNBC) cell proliferation with IC50s of 13.5 and 35 μM, respectively. To identify potential mediators of AnAc action in breast cancer, we profiled the genome-wide microRNA transcriptome (microRNAome) in these two cell lines altered by the AnAc 24:1n5 congener. Whole genome expression profiling (RNA-seq) and subsequent network analysis in MetaCore Gene Ontology (GO) algorithm was used to characterize the biological pathways altered by AnAc. In MCF-7 cells, 69 AnAc-responsive miRNAs were identified, e.g., increased let-7a and reduced miR-584. Fewer, i.e., 37 AnAc-responsive miRNAs were identified in MDA-MB-231 cells, e.g., decreased miR-23b and increased miR-1257. Only two miRNAs were increased by AnAc in both cell lines: miR-612 and miR-20b; however, opposite miRNA arm preference was noted: miR-20b-3p and miR-20b-5p were upregulated in MCF-7 and MDA-MB-231, respectively. miR-20b-5p target EFNB2 transcript levels were reduced by AnAc in MDA-MB-231 cells. AnAc reduced miR-378g that targets VIM (vimentin) and VIM mRNA transcript expression was increased in AnAc-treated MCF-7 cells, suggesting a reciprocal relationship. The top three enriched GO terms for AnAc-treated MCF-7 cells were B cell receptor signaling pathway and ribosomal large subunit biogenesis and S-adenosylmethionine metabolic process for AnAc-treated MDA-MB-231 cells. The pathways modulated by these AnAc-regulated miRNAs suggest that key nodal molecules, e.g., Cyclin D1, MYC, c-FOS, PPARγ, and SIN3, are targets of AnAc activity.
Collapse
Affiliation(s)
- David J. Schultz
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Penn Muluhngwi
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Negin Alizadeh-Rad
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Madelyn A. Green
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Eric C. Rouchka
- Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, Louisville, Kentucky, United States of America
| | - Sabine J. Waigel
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| |
Collapse
|
45
|
Tuning of major signaling networks (TGF-β, Wnt, Notch and Hedgehog) by miRNAs in human stem cells commitment to different lineages: Possible clinical application. Biomed Pharmacother 2017; 91:849-860. [PMID: 28501774 DOI: 10.1016/j.biopha.2017.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/29/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023] Open
Abstract
Two distinguishing characteristics of stem cells, their continuous division in the undifferentiated state and growth into any cell types, are orchestrated by a number of cell signaling pathways. These pathways act as a niche factor in controlling variety of stem cells. The core stem cell signaling pathways include Wingless-type (Wnt), Hedgehog (HH), and Notch. Additionally, they critically regulate the self-renewal and survival of cancer stem cells. Conversely, stem cells' main properties, lineage commitment and stemness, are tightly controlled by epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA-mediated regulatory events. MicroRNAs (miRNAs) are cellular switches that modulate stem cells outcomes in response to diverse extracellular signals. Numerous scientific evidences implicating miRNAs in major signal transduction pathways highlight new crosstalks of cellular processes. Aberrant signaling pathways and miRNAs levels result in developmental defects and diverse human pathologies. This review discusses the crosstalk between the components of main signaling networks and the miRNA machinery, which plays a role in the context of stem cells development and provides a set of examples to illustrate the extensive relevance of potential novel therapeutic targets.
Collapse
|
46
|
Jafari SM, Joshaghani HR, Panjehpour M, Aghaei M, Zargar Balajam N. Apoptosis and cell cycle regulatory effects of adenosine by modulation of GLI-1 and ERK1/2 pathways in CD44 + and CD24 - breast cancer stem cells. Cell Prolif 2017; 50. [PMID: 28370734 DOI: 10.1111/cpr.12345] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Breast cancer stem cells (CSCs) are a small population of tumour cells with the ability of self-renewal and resistance to chemotherapy. Targeting CSCs is a promising strategy for treatment of cancer. A recent study demonstrated that adenosine receptor agonists inhibit glioblastoma CSCs proliferation. At present, the effect of adenosine on breast CSCs has not been reported. Therefore, this study was designed to evaluate the effect of adenosine and its signalling pathways in breast CSCs. MATERIALS AND METHODS Anti-proliferative effect of adenosine on breast CSCs was evaluated by mammosphere formation and MTS assay. The effect of adenosine on cell cycle progression was examined using flow cytometry. Detection of apoptosis was conducted by Annexin V-FITC. The expression levels of cell cycle and apoptosis regulatory proteins as well as ERK1/2, and GLI-1 were measured by Western blot. RESULTS Adenosine reduced CSCs population and mammosphere formation in breast CSCs. Adenosine induced G1 cell cycle arrest in breast CSCs in conjunction with a marked down-regulation of cyclin D1 and CDK4. Adenosine also induced apoptosis by regulation of Bax/Bcl-2 ratio, mitochondrial membrane potential depletion and activation of caspase-6. Moreover, adenosine inhibited ERK1/2 phosphorylation and GLI-1 protein expression. CONCLUSIONS These findings indicated that adenosine induces cell cycle arrest and apoptosis through inhibition of GLI-1 and ERK1/2 pathways in breast CSCs.
Collapse
Affiliation(s)
- S M Jafari
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - H R Joshaghani
- Medical Laboratory Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - M Panjehpour
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.,Bioinformatics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - M Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - N Zargar Balajam
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|