1
|
DafaAlla TEIM, Abdalla M, El-Arabey AA, Eltayb WA, Mohapatra RK. Botrytis cinerea alcohol dehydrogenase mediates fungal development, environmental adaptation and pathogenicity. J Biomol Struct Dyn 2021; 40:12426-12438. [PMID: 34472419 DOI: 10.1080/07391102.2021.1971112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022]
Abstract
Botrytis cinerea is an economically critical necrotrophic fungus that infecting many types of plants species. Although the lifestyle adaptations and genetic foundations of several enzymes and metabolites involved in B. cinerea virulence during host plant infection are well studied, the role of B. cinerea alcohol dehydrogenase (ADH) enzymes in these processes is poorly understood. Herein, we identified a significant up-regulation of the transcriptional levels of the BcADH1 gene during the tomato - B. cinerea strain B0510 interaction and at the early stage of infection. Substantially, we used a recent approach for replacement of gene by utilizing homologous recombination to generate knock-out mutants (Δbcadh1) and their effective complementary strains (Δbcadh1/C). A strong difference in the morphology of Δbcadh1 mutants from the wild type (WT) was detected, with respect to the conidiospore, conidial germination, and formation of branches, sporulation and sclerotia. In addition, the Δbcadh1 mutants showed significant differences in their virulence on tomato leaves relative to the WT. Moreover, the Δbcadh1 mutants appeared to have higher sensitivity to oxygen limitation (hypoxia) and reactive oxygen species, and had lost their ability of alcoholic fermentation compared with the WT and complementary strains. These results provide strong evidence for the requirement of the ADH1 gene for fungal development, environmental adaptation and its ability for full pathogenicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tayb Elassma I M DafaAlla
- College of Plant Sciences, Jilin University, Changchun, China
- College of Natural Resources and Environmental Studies, Sinnar University, Sinnar, Sudan
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Amr Ahmed El-Arabey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Wafa Ali Eltayb
- Department biotechnology, Faculty of Science and Technology, Shendi University, Shendi, Sudan
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Keonjhar, India
| |
Collapse
|
2
|
Fang P, Liang J, Jiang X, Fang X, Wu M, Wei X, Yang W, Hou W, Zhang Q. Quercetin Attenuates d-GaLN-Induced L02 Cell Damage by Suppressing Oxidative Stress and Mitochondrial Apoptosis via Inhibition of HMGB1. Front Pharmacol 2020; 11:608. [PMID: 32431618 PMCID: PMC7214928 DOI: 10.3389/fphar.2020.00608] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/17/2020] [Indexed: 01/18/2023] Open
Abstract
High mobility group box-1 (HMGB1) plays an important role in various liver injuries. In the case of acute liver injury, it leads to aseptic inflammation and other reactions, and also regulates specific cell death responses in chronic liver injury. HMGB1 has been demonstrated to be a good therapeutic target for treating liver failure. Quercetin (Que), as an antioxidant, is a potential phytochemical with hepatocyte protection and is also considered to be an inhibitor of HMGB1. However, the mechanism of its hepatoprotective effects remains to be characterized. The present study explored whether the hepatoprotective effect of Que antagonizes HMGB1, and subsequent molecular signaling events. Our results indicated that Que protects L02 cells from d-galactosamine (d-GaLN)-induced cellular damage by reducing intracellular reactive oxygen species (ROS) production and apoptotic responses in the mitochondrial pathway. Immunofluorescence and Western blot assays showed that HMGB1 was involved in d-GaLN-induced L02 cell damage. Further research showed that after transfection with HMGB1 short hairpin RNA (shRNA), cell viability was improved, and intracellular ROS production and apoptosis were suppressed. When co-treated with Que, the expression of HMGB1 was decreased significantly, the expression of proteins in the corresponding signal pathway were further reduced, and the production of ROS and apoptosis were further suppressed. Molecular docking also indicated the binding of Que and HMGB1. Taken together, these results indicate that Que significantly improves d-GaLN-induced cellular damage by inhibiting oxidative stress and mitochondrial apoptosis via inhibiting HMGB1.
Collapse
Affiliation(s)
- Peng Fang
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jiajun Liang
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xuejiao Jiang
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xian Fang
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Mengli Wu
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaoyi Wei
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenlong Yang
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Weixin Hou
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Qiuyun Zhang
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Kim B, Sailor MJ. Synthesis, Functionalization, and Characterization of Fusogenic Porous Silicon Nanoparticles for Oligonucleotide Delivery. J Vis Exp 2019. [PMID: 31058889 DOI: 10.3791/59440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
With the advent of gene therapy, the development of an effective in vivo nucleotide-payload delivery system has become of parallel import. Fusogenic porous silicon nanoparticles (F-pSiNPs) have recently demonstrated high in vivo gene silencing efficacy due to its high oligonucleotide loading capacity and unique cellular uptake pathway that avoids endocytosis. The synthesis of F-pSiNPs is a multi-step process that includes: (1) loading and sealing of oligonucleotide payloads in the silicon pores; (2) simultaneous coating and sizing of fusogenic lipids around the porous silicon cores; and (3) conjugation of targeting peptides and washing to remove excess oligonucleotide, silicon debris, and peptide. The particle's size uniformity is characterized by dynamic light scattering, and its core-shell structure may be verified by transmission electron microscopy. The fusogenic uptake is validated by loading a lipophilic dye, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), into the fusogenic lipid bilayer and treating it to cells in vitro to observe for plasma membrane staining versus endocytic localizations. The targeting and in vivo gene silencing efficacies were previously quantified in a mouse model of Staphylococcus aureus pneumonia, in which the targeting peptide is expected to help the F-pSiNPs to home to the site of infection. Beyond its application in S. aureus infection, the F-pSiNP system may be used to deliver any oligonucleotide for gene therapy of a wide range of diseases, including viral infections, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Byungji Kim
- Materials Science and Engineering Program, University of California, San Diego;
| | - Michael J Sailor
- Materials Science and Engineering Program, University of California, San Diego; Department of Chemistry and Biochemistry, University of California, San Diego
| |
Collapse
|
4
|
LoPresti P. Silent Free Fall at Disease Onset: A Perspective on Therapeutics for Progressive Multiple Sclerosis. Front Neurol 2018; 9:973. [PMID: 30542317 PMCID: PMC6277889 DOI: 10.3389/fneur.2018.00973] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
Central nervous system (CNS) degeneration occurs during multiple sclerosis (MS) following several years of reversible autoimmune demyelination. Progressive CNS degeneration appears later during the course of relapsing-remitting MS (RRMS), although it starts insidiously at disease onset. We propose that there is an early subclinical phase also for primary-progressive (PP) MS. Consensus exists that many different cell types are involved during disease onset. Furthermore, the response to the initial damage, which is specific for each individual, would result in distinct pathological pathways that add complexity to the disease and the mechanisms underlying progressive CNS degeneration. Progressive MS is classified as either active or not active, as well as with or without progression. Different forms of progressive MS might reflect distinct or overlapping pathogenetic pathways. Disease mechanisms should be determined for each patient at diagnosis and the time of treatment. Until individualized and time-sensitive treatments that specifically target the molecular mechanisms of the progressive aspect of the disease are identified, combined therapies directed at anti-inflammation, regeneration, and neuroprotection are the most effective for preventing MS progression. This review presents selected therapeutics in support of the overall idea of a multidimensional therapy applied early in the disease. This approach could limit damage and increase CNS repair. By targeting several cellular populations (i.e., microglia, astrocytes, neurons, oligodendrocytes, and lymphocytes) and multiple pathological processes (e.g., inflammation, demyelination, synaptopathy, and excitatory/inhibitory imbalance) progressive MS could be attenuated. Early timing for such multidimensional therapy is proposed as the prerequisite for effectively halting progressive MS.
Collapse
Affiliation(s)
- Patrizia LoPresti
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Liu W, Jing ZT, Wu SX, He Y, Lin YT, Chen WN, Lin XJ, Lin X. A Novel AKT Activator, SC79, Prevents Acute Hepatic Failure Induced by Fas-Mediated Apoptosis of Hepatocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1171-1182. [PMID: 29673487 DOI: 10.1016/j.ajpath.2018.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/16/2017] [Accepted: 01/08/2018] [Indexed: 01/18/2023]
Abstract
Acute liver failure is a serious clinical problem of which the underlying pathogenesis remains unclear and for which effective therapies are lacking. The Fas receptor/ligand system, which is negatively regulated by AKT, is known to play a prominent role in hepatocytic cell death. We hypothesized that AKT activation may represent a strategy to alleviate Fas-induced fulminant liver failure. We report here that a novel AKT activator, SC79, protects hepatocytes from apoptosis induced by agonistic anti-Fas antibody CH11 (for humans) or Jo2 (for mice) and significantly prolongs the survival of mice given a lethal dose of Jo2. Under Fas-signaling stimulation, SC79 inhibited Fas aggregation, prevented the recruitment of the adaptor molecule Fas-associated death domain (FADD) and procaspase-8 [or FADD-like IL-1β-converting enzyme (FLICE)] into the death-inducing signaling complex (DISC), but SC79 enhanced the recruitment of the long and short isoforms of cellular FLICE-inhibitory protein at the DISC. All of the SC79-induced hepatoprotective and DISC-interruptive effects were confirmed to have been reversed by the Akt inhibitor LY294002. These results strongly indicate that SC79 protects hepatocytes from Fas-induced fatal hepatic apoptosis. The potent alleviation of Fas-mediated hepatotoxicity by the relatively safe drug SC79 highlights the potential of our findings for immediate hepatoprotective translation.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhen-Tang Jing
- Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Shu-Xiang Wu
- Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yun He
- Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yan-Ting Lin
- Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wan-Nan Chen
- Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xin-Jian Lin
- Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xu Lin
- Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
6
|
Ursodeoxycholyl Lysophosphatidylethanolamide Protects Against CD95/FAS-Induced Fulminant Hepatitis. Shock 2018; 48:251-259. [PMID: 28060213 DOI: 10.1097/shk.0000000000000831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Increased activation of CD95/Fas by Fas ligand in viral hepatitis and autoimmunity is involved in pathogenesis of fulminant hepatitis and liver failure. We designed a bile-acid phospholipid conjugate ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE with LPE containing oleate at the sn-1) as a hepatoprotectant that was shown to protect against fulminant hepatitis induced by endotoxin. We herein further assessed the ability of UDCA-LPE to prevent death receptor CD95/Fas-induced fulminant hepatitis. C57BL/6 mice were intravenously administered with CD95/Fas agonistic monoclonal antibody (Jo-2) with or without 1 h pretreatment with 50 mg/kg UDCA-LPE. Jo-2 administration caused massive hepatocyte damage as seen by histology, and this was associated with a significant decrease in hepatic phosphatidylcholine (PC), lysoPC, and lysophosphatidylethanolamine levels. By histology, UDCA-LPE pretreatment improved hepatocyte damage and restored the loss of these phospholipids in part by a mechanism involving an inhibition of cytosolic phospholipaseA2 expression. Accordingly, Jo-2 treatment increased hepatic expression of cleaved caspase 8, caspase 3, and poly (ADP-Ribose) polymerase-1, and on the other hand decreased that of anti-apoptotic cellular FLICE-inhibitory protein. UDCA-LPE pretreatment was able to reverse all these changes. Moreover, UDCA-LPE attenuated inflammatory response by lowering the levels of Jo-2-induced proinflammatory cytokines TNF-α, IL-6, and IL-1β in liver and serum. UDCA-LPE was also able to decrease the levels of stimulated Th1/Th17 cytokines in Jo-2-primed isolated splenocytes. Taken together, UDCA-LPE exhibited potent anti-inflammatory effects against CD95/Fas-induced fulminant hepatitis.
Collapse
|
7
|
Zhao RB, Zhu LH, Shu JP, Qiao LX, Xia ZK. GAS5 silencing protects against hypoxia/ischemia-induced neonatal brain injury. Biochem Biophys Res Commun 2018; 497:285-291. [DOI: 10.1016/j.bbrc.2018.02.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/20/2022]
|
8
|
Wu Y, Ding J, Sun Q, Zhou K, Zhang W, Du Q, Xu T, Xu W. Long noncoding RNA hypoxia-inducible factor 1 alpha-antisense RNA 1 promotes tumor necrosis factor-α-induced apoptosis through caspase 3 in Kupffer cells. Medicine (Baltimore) 2018; 97:e9483. [PMID: 29369172 PMCID: PMC5794356 DOI: 10.1097/md.0000000000009483] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Kupffer cells (KCs) play a crucial role in the pathogenesis of acute-on-chronic liver failure (ACLF) which is characterized by acute and severe disease in patients with preexisting liver disease and shows high mortality. Long noncoding RNAs (lncRNAs) are recently found to be involved in gene regulation. However, the mechanisms of how KCs are regulated by inflammatory factors, tumor necrosis factor-α (TNF-α), and whether lncRNAs are involved in the process remain largely unknown. Hence, we investigated the role of lncRNAs in the cytotoxicity of TNF-α on KCs.lncRNA array (The lncRNAs in the array are apoptosis-related lncRNAs reported in some research papers.) was used to identify lncRNAs related with liver fibrosis. Annexin V/protease inhibitor (PI) staining was used for detection of cell apoptosis. Real time-polymerase chain reaction was utilized for analysis of mRNA levels of lncRNA hypoxia-inducible factor 1 alpha-antisense RNA 1 (HIF1A-AS1) and apoptosis-related genes. Western blot was implied to the determination of lymphoid enhancer factor-1 (LEF-1).In this study, we found that HIF1A-AS1 could be upregulated by TNF-α by lncRNA array analysis and knockdown of HIF1A-AS1 significantly rescued cell apoptosis induced by TNF-α. Moreover, inhibition of HIF1A-AS1 markedly reduced mRNA level of caspase 3 which can be significantly enhanced by TNF-α. Furthermore, HIF1A-AS1 showed binding sites for LEF-1 and siRNA-mediated downregulation of LEF-1 decreased HIF1A-AS1 level in KCs treated with TNF-α.This study elucidates a new role of HIF1A-AS1 in TNF-α-induced cell apoptosis and provides potential therapeutic targets for ACLF.
Collapse
|
9
|
Wang Y, Terrell AM, Riggio BA, Anand D, Lachke SA, Duncan MK. β1-Integrin Deletion From the Lens Activates Cellular Stress Responses Leading to Apoptosis and Fibrosis. Invest Ophthalmol Vis Sci 2017; 58:3896-3922. [PMID: 28763805 PMCID: PMC5539801 DOI: 10.1167/iovs.17-21721] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/30/2017] [Indexed: 12/18/2022] Open
Abstract
Purpose Previous research showed that the absence of β1-integrin from the mouse lens after embryonic day (E) 13.5 (β1MLR10) leads to the perinatal apoptosis of lens epithelial cells (LECs) resulting in severe microphthalmia. This study focuses on elucidating the molecular connections between β1-integrin deletion and this phenotype. Methods RNA sequencing was performed to identify differentially regulated genes (DRGs) in β1MLR10 lenses at E15.5. By using bioinformatics analysis and literature searching, Egr1 (early growth response 1) was selected for further study. The activation status of certain signaling pathways (focal adhesion kinase [FAK]/Erk, TGF-β, and Akt signaling) was studied via Western blot and immunohistochemistry. Mice lacking both β1-integrin and Egr1 genes from the lenses were created (β1MLR10/Egr1-/-) to study their relationship. Results RNA sequencing identified 120 DRGs that include candidates involved in the cellular stress response, fibrosis, and/or apoptosis. Egr1 was investigated in detail, as it mediates cellular stress responses in various cell types, and is recognized as an upstream regulator of numerous other β1MLR10 lens DRGs. In β1MLR10 mice, Egr1 levels are elevated shortly after β1-integrin loss from the lens. Further, pErk1/2 and pAkt are elevated in β1MLR10 LECs, thus providing the potential signaling mechanism that causes Egr1 upregulation in the mutant. Indeed, deletion of Egr1 from β1MLR10 lenses partially rescues the microphthalmia phenotype. Conclusions β1-integrin regulates the appropriate levels of Erk1/2 and Akt phosphorylation in LECs, whereas its deficiency results in the overexpression of Egr1, culminating in reduced cell survival. These findings provide insight into the molecular mechanism underlying the microphthalmia observed in β1MLR10 mice.
Collapse
Affiliation(s)
- Yichen Wang
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Anne M. Terrell
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Brittany A. Riggio
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Melinda K. Duncan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
10
|
Grammer AC, Lipsky PE. Drug Repositioning Strategies for the Identification of Novel Therapies for Rheumatic Autoimmune Inflammatory Diseases. Rheum Dis Clin North Am 2017; 43:467-480. [DOI: 10.1016/j.rdc.2017.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Shen Y, Wang X, Zhang S, Qin G, Liu Y, Lu Y, Liang F, Zhuang X. A comprehensive validation of HBV-related acute-on-chronic liver failure models to assist decision-making in targeted therapeutics. Sci Rep 2016; 6:33389. [PMID: 27633520 PMCID: PMC5025883 DOI: 10.1038/srep33389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/25/2016] [Indexed: 12/13/2022] Open
Abstract
This research utilized an external longitudinal dataset of hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) to compare and validate various predictive models that support the current recommendations to select the most effective predictive risk models to estimate short- and long-term mortality and facilitate decision-making about preferable therapeutics for HBV-ACLF patients. Twelve ACLF prognostic models were developed after a systematic literature search using the longitudinal data of 232 HBV-ACLF patients on the waiting list for liver transplantation (LT). Four statistical measures, the constant (A) and slope (B) of the fitted line, the area under the curve (C) and the net benefit (D), were calculated to assess and compare the calibration, discrimination and clinical usefulness of the 12 predictive models. According to the model calibration and discrimination, the logistic regression models (LRM2) and the United Kingdom model of end-stage liver disease(UKELD) were selected as the best predictive models for both 3-month and 5-year outcomes. The decision curve summarizes the benefits of intervention relative to the costs of unnecessary treatment. After the comprehensive validation and comparison of the currently used models, LRM2 was confirmed as a markedly effective prognostic model for LT-free HBV-ACLF patients for assisting targeted and standardized therapeutic decisions.
Collapse
Affiliation(s)
- Yi Shen
- Department of Epidemiology and Medical Statistics, Nantong University, Nantong, China
| | - Xulin Wang
- Department of Epidemiology and Medical Statistics, Nantong University, Nantong, China
| | - Sheng Zhang
- Department of Epidemiology and Medical Statistics, Nantong University, Nantong, China
| | - Gang Qin
- Center for Liver Diseases, Nantong Third People's Hospital, Nantong University, Nantong, China
| | - Yanmei Liu
- Department of Epidemiology and Medical Statistics, Nantong University, Nantong, China
| | - Yihua Lu
- Department of Epidemiology and Medical Statistics, Nantong University, Nantong, China
| | - Feng Liang
- Qidong Third People's Hospital, Nantong, China
| | - Xun Zhuang
- Department of Epidemiology and Medical Statistics, Nantong University, Nantong, China
| |
Collapse
|