1
|
Fan S, Varadarajan S, Garcia-Hernandez V, Margolis B, Parkos C, Nusrat A. Crb3 and NF2: A dynamic duo that controls assembly of the apical junctions and barrier function via Rho/ROCK signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633166. [PMID: 39868176 PMCID: PMC11760739 DOI: 10.1101/2025.01.15.633166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The gastrointestinal epithelium serves as a critical barrier separating intestinal lumen contents from the underlying tissue environment. Structure and function of the apical junctional complex (AJC), comprising tight and adherens junctions, are essential for establishing and maintaining a polarized and functional epithelial barrier. In this study, we investigated mechanisms by which an apical polarity protein Crumbs homolog 3 (CRB3) regulates AJC assembly and barrier function in primary murine intestinal epithelial cells. Using primary colonic epithelial cells (colonoids) derived from inducible and conditional Crb3 knockdown (Crb3ERΔIEC) and control mice (Crb3fl/fl), we demonstrate that Crb3 loss leads to compromised epithelial barrier function that was associated with hypercontractile perijunctional actomyosin and defective assembly of the AJC. We identified CRB3 associates with the Band 4.1 family of cytoskeletal linker proteins, Merlin (NF2) via FERM (band4.1/ezrin/radixin/moesin) binding domain (FBD) of CRB3. Interestingly, NF2 knockdown in cultured intestinal epithelial cells phenocopied the effect of CRB3 deletion, supporting a coordinated role in AJC formation and barrier assembly. Moreover, increased active Rho was detected in assembling junctions of Crb3-null cells and inhibition of ROCKII and myosin II alleviated the hypercontractile phenotype, highlighting involvement of Rho/ROCK signaling. Additionally, increased vinculin localization at the AJC seen in Crb3-null epithelial cells indicates elevated tension at junctions. Our findings underscore the important role of Crb3 and NF2 in regulating contractility of the perijunctional actomyosin ring, mechanical tension at the AJC and barrier function via Rho/ROCK signaling during junctional assembly in intestinal epithelial cells.
Collapse
Affiliation(s)
- S. Fan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - S. Varadarajan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - V. Garcia-Hernandez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - B. Margolis
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - C.A. Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - A. Nusrat
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Dehghanian F, Ghahnavieh LE, Nilchi AN, Khalilian S, Joonbakhsh R. Breast cancer drug resistance: Decoding the roles of Hippo pathway crosstalk. Gene 2024; 916:148424. [PMID: 38588933 DOI: 10.1016/j.gene.2024.148424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
The most significant factors that lead to cancer-related death in breast cancer (BC) patients include drug resistance, migration, invasion, and metastasis. Several signaling pathways are involved in the development of BC. The different types of BC are initially sensitive to chemotherapy, and drug resistance can occur through multiple molecular mechanisms. Regardless of developing targeted Therapy, due to the heterogenic nature and complexity of drug resistance, it is a major clinical challenge with the low survival rate in BC patients. The deregulation of several signaling pathways, particularly the Hippo pathway (HP), is one of the most recent findings about the molecular mechanisms of drug resistance in BC, which are summarized in this review. Given that HP is one of the recent cancer research hotspots, this review focuses on its implication in BC drug resistance. Unraveling the different molecular basis of HP through its crosstalk with other signaling pathways, and determining the effectiveness of HP inhibitors can provide new insights into possible therapeutic strategies for overcoming chemoresistance in BC.
Collapse
Affiliation(s)
- Fariba Dehghanian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran.
| | - Laleh Ebrahimi Ghahnavieh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Amirhossein Naghsh Nilchi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Sheyda Khalilian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Rezvan Joonbakhsh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| |
Collapse
|
3
|
Zhao Y, Sun B, Fu X, Zuo Z, Qin H, Yao K. YAP in development and disease: Navigating the regulatory landscape from retina to brain. Biomed Pharmacother 2024; 175:116703. [PMID: 38713948 DOI: 10.1016/j.biopha.2024.116703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
The distinctive role of Yes-associated protein (YAP) in the nervous system has attracted widespread attention. This comprehensive review strategically uses the retina as a vantage point, embarking on an extensive exploration of YAP's multifaceted impact from the retina to the brain in development and pathology. Initially, we explore the crucial roles of YAP in embryonic and cerebral development. Our focus then shifts to retinal development, examining in detail YAP's regulatory influence on the development of retinal pigment epithelium (RPE) and retinal progenitor cells (RPCs), and its significant effects on the hierarchical structure and functionality of the retina. We also investigate the essential contributions of YAP in maintaining retinal homeostasis, highlighting its precise regulation of retinal cell proliferation and survival. In terms of retinal-related diseases, we explore the epigenetic connections and pathophysiological regulation of YAP in diabetic retinopathy (DR), glaucoma, and proliferative vitreoretinopathy (PVR). Lastly, we broaden our exploration from the retina to the brain, emphasizing the research paradigm of "retina: a window to the brain." Special focus is given to the emerging studies on YAP in brain disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), underlining its potential therapeutic value in neurodegenerative disorders and neuroinflammation.
Collapse
Affiliation(s)
- Yaqin Zhao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Sun
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhuan Zuo
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
4
|
Middonti E, Astanina E, Vallariello E, Hoza RM, Metovic J, Spadi R, Cristiano C, Papotti M, Allavena P, Novelli F, Parab S, Cappello P, Scarpa A, Lawlor R, Di Maio M, Arese M, Bussolino F. A neuroligin-2-YAP axis regulates progression of pancreatic intraepithelial neoplasia. EMBO Rep 2024; 25:1886-1908. [PMID: 38413734 PMCID: PMC11014856 DOI: 10.1038/s44319-024-00104-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a tumor with a dismal prognosis that arises from precursor lesions called pancreatic intraepithelial neoplasias (PanINs). Progression from low- to high-grade PanINs is considered as tumor initiation, and a deeper understanding of this switch is needed. Here, we show that synaptic molecule neuroligin-2 (NLGN2) is expressed by pancreatic exocrine cells and plays a crucial role in the regulation of contact inhibition and epithelial polarity, which characterize the switch from low- to high-grade PanIN. NLGN2 localizes to tight junctions in acinar cells, is diffusely distributed in the cytosol in low-grade PanINs and is lost in high-grade PanINs and in a high percentage of advanced PDACs. Mechanistically, NLGN2 is necessary for the formation of the PALS1/PATJ complex, which in turn induces contact inhibition by reducing YAP function. Our results provide novel insights into NLGN2 functions outside the nervous system and can be used to model PanIN progression.
Collapse
Affiliation(s)
- Emanuele Middonti
- Department of Oncology, University of Torino, 10043, Orbassano, Italy.
- Candiolo Cancer Institute-IRCCS-FPO, 10060, Candiolo, Italy.
| | - Elena Astanina
- Department of Oncology, University of Torino, 10043, Orbassano, Italy
- Candiolo Cancer Institute-IRCCS-FPO, 10060, Candiolo, Italy
| | - Edoardo Vallariello
- Department of Oncology, University of Torino, 10043, Orbassano, Italy
- Candiolo Cancer Institute-IRCCS-FPO, 10060, Candiolo, Italy
| | - Roxana Maria Hoza
- Department of Oncology, University of Torino, 10043, Orbassano, Italy
- Candiolo Cancer Institute-IRCCS-FPO, 10060, Candiolo, Italy
| | - Jasna Metovic
- Department of Oncology, University of Torino, 10043, Orbassano, Italy
| | - Rosella Spadi
- SC Oncologia Medica, Città della Salute e della Scienza di Torino, 10126, Torino, Italy
| | - Carmen Cristiano
- SC Oncologia Medica, Città della Salute e della Scienza di Torino, 10126, Torino, Italy
| | - Mauro Papotti
- Department of Oncology, University of Torino, 10043, Orbassano, Italy
- Division of Pathology at Città della Salute e della Scienza di Torino, 10126, Torino, Italy
| | - Paola Allavena
- IRCCS, Humanitas Clinical and Research Center, 20089, Rozzano, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Torino, Italy
- Laboratory of Tumor Immunology, Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, 10126, Torino, Italy
- Molecular Biotechnology Center, University of Torino, 10125, Torino, Italy
| | - Sushant Parab
- Department of Oncology, University of Torino, 10043, Orbassano, Italy
- Candiolo Cancer Institute-IRCCS-FPO, 10060, Candiolo, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Torino, Italy
- Laboratory of Tumor Immunology, Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, 10126, Torino, Italy
- Molecular Biotechnology Center, University of Torino, 10125, Torino, Italy
| | - Aldo Scarpa
- Applied Research Center (ARC-NET), University of Verona, 37134, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, 37134, Verona, Italy
| | - Rita Lawlor
- Applied Research Center (ARC-NET), University of Verona, 37134, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, 37134, Verona, Italy
| | - Massimo Di Maio
- Department of Oncology, University of Torino, 10043, Orbassano, Italy
- Medical Oncology, Ordine Mauriziano Hospital, 10128, Torino, Italy
| | - Marco Arese
- Department of Oncology, University of Torino, 10043, Orbassano, Italy
- Candiolo Cancer Institute-IRCCS-FPO, 10060, Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, 10043, Orbassano, Italy.
- Candiolo Cancer Institute-IRCCS-FPO, 10060, Candiolo, Italy.
| |
Collapse
|
5
|
Wang Z, Wang X, Liu L, Guo X, Zhang H, Yin J, Lin R, Shao Y, Cai D. Fructose-bisphosphatase1 (FBP1) alleviates experimental osteoarthritis by regulating Protein crumbs homolog 3 (CRB3). Arthritis Res Ther 2023; 25:235. [PMID: 38049890 PMCID: PMC10694907 DOI: 10.1186/s13075-023-03221-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023] Open
Abstract
PURPOSE To identify the role of gluconeogenesis in chondrocytes in osteoarthritis (OA). MATERIALS AND METHODS Cartilage samples were collected from OA patients and C57 mice and were stained with Safranin O-Fast Green to determine the severity of OA. Periodic acid Schiff staining was used to characterize the contents of polysaccharides and SA-βGal staining was used to characterize the aging of chondrocytes. Immunohistochemistry and western blotting were used to detect fructose-bisphosphatase1 (FBP1), SOX9, MMP13, P21, and P16 in cartilage or chondrocyte. The mRNA levels of fbp1, mmp13, sox9, colX, and acan were analyzed by qPCR to evaluate the role of FBP1 in chondrocytes. RESULTS The level of polysaccharides in cartilage was reduced in OA and the expression of FBP1 was also reduced. We treated the chondrocytes with IL-1β to cause OA in vitro, and then made chondrocytes overexpress FBP1 with plasma. It shows that FBP1 alleviated the degeneration and senescence of chondrocytes in vitro and that it also showed the same effects in vivo experiments. To further understand the mechanism of FBP1, we screened the downstream protein of FBP1 and found that CRB3 was significantly downregulated. And we confirmed that CRB3 suppressed the degeneration and delayed senescence of chondrocytes. CONCLUSIONS FBP1 promoted the polysaccharide synthesis in cartilage and alleviated the degeneration of cartilage by regulating CRB3, so FBP1 is a potential target in treating OA.
Collapse
Affiliation(s)
- Zhuolun Wang
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xinjie Wang
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Liangliang Liu
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xiongtian Guo
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Haiyan Zhang
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jianbing Yin
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Rengui Lin
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Yan Shao
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China.
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Daozhang Cai
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China.
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Mohammed EE, Türkel N, Yigit UM, Dalan AB, Sahin F. Boron Derivatives Inhibit the Proliferation of Breast Cancer Cells and Affect Tumor-Specific T Cell Activity In Vitro by Distinct Mechanisms. Biol Trace Elem Res 2023; 201:5692-5707. [PMID: 36940038 DOI: 10.1007/s12011-023-03632-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/11/2023] [Indexed: 03/21/2023]
Abstract
Breast cancer is the most frequently diagnosed cancer among women worldwide. Despite the initial clinical response obtained with the widely used conventional chemotherapy, an improved prognosis for breast cancer patients has been missing in the clinic because of the high toxicity to normal cells, induction of drug resistance, and the potential immunosuppressive effects of these agents. Therefore, we aimed to investigate the potential anti-carcinogenic effect of some boron derivatives (sodium pentaborate pentahydrate (SPP) and sodium perborate tetrahydrate (SPT)), which showed a promising effect on some types of cancers in the literature, on breast cancer cell lines, as well as immuno-oncological side effects on tumor-specific T cell activity. These findings suggest that both SPP and SPT suppressed proliferation and induced apoptosis in MCF7 and MDA-MB-231 cancer cell lines through downregulation of the monopolar spindle-one-binder (MOB1) protein. On the other hand, these molecules increased the expression of PD-L1 protein through their effect on the phosphorylation level of Yes-associated protein (Phospho-YAP (Ser127). In addition, they reduced the concentrations of pro-inflammatory cytokines such as IFN-γ and cytolytic effector cytokines such as sFasL, perforin, granzyme A, Granzyme B, and granulysin and increased the expression of PD-1 surface protein in activated T cells. In conclusion, SPP, SPT, and their combination could have growth inhibitory (antiproliferative) effects and could be a potential treatment for breast cancer. However, their stimulatory effects on the PD-1/PD-L1 signaling pathway and their effects on cytokines could ultimately account for the observed repression of the charging of specifically activated effector T cells against breast cancer cells.
Collapse
Affiliation(s)
- Eslam Essam Mohammed
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, 34755, Turkey
| | - Nezaket Türkel
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, 34755, Turkey
| | | | - Altay Burak Dalan
- Department of Medical Genetics, Faculty of Medicine, Yeditepe University, Istanbul, 34755, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, 34755, Turkey.
| |
Collapse
|
7
|
Fiedler J, Moennig T, Hinrichs JH, Weber A, Wagner T, Hemmer T, Schröter R, Weide T, Epting D, Bergmann C, Nedvetsky P, Krahn MP. PATJ inhibits histone deacetylase 7 to control tight junction formation and cell polarity. Cell Mol Life Sci 2023; 80:333. [PMID: 37878054 PMCID: PMC10600057 DOI: 10.1007/s00018-023-04994-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023]
Abstract
The conserved multiple PDZ-domain containing protein PATJ stabilizes the Crumbs-Pals1 complex to regulate apical-basal polarity and tight junction formation in epithelial cells. However, the molecular mechanism of PATJ's function in these processes is still unclear. In this study, we demonstrate that knockout of PATJ in epithelial cells results in tight junction defects as well as in a disturbed apical-basal polarity and impaired lumen formation in three-dimensional cyst assays. Mechanistically, we found PATJ to associate with and inhibit histone deacetylase 7 (HDAC7). Inhibition or downregulation of HDAC7 restores polarity and lumen formation. Gene expression analysis of PATJ-deficient cells revealed an impaired expression of genes involved in cell junction assembly and membrane organization, which is rescued by the downregulation of HDAC7. Notably, the function of PATJ regulating HDAC7-dependent cilia formation does not depend on its canonical interaction partner, Pals1, indicating a new role of PATJ, which is distinct from its function in the Crumbs complex. By contrast, polarity and lumen phenotypes observed in Pals1- and PATJ-deficient epithelial cells can be rescued by inhibition of HDAC7, suggesting that the main function of this polarity complex in this process is to modulate the transcriptional profile of epithelial cells by inhibiting HDAC7.
Collapse
Affiliation(s)
- Julia Fiedler
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Thomas Moennig
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Johanna H Hinrichs
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Annika Weber
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Thomas Wagner
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Tim Hemmer
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Rita Schröter
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Thomas Weide
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Daniel Epting
- Department of Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Carsten Bergmann
- Department of Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
- Medizinische Genetik Mainz, Limbach Genetics, 55128, Mainz, Germany
| | - Pavel Nedvetsky
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Michael P Krahn
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany.
| |
Collapse
|
8
|
Su D, Li Y, Zhang W, Gao H, Cheng Y, Hou Y, Li J, Ye Y, Lai Z, Li Z, Huang H, Li J, Li J, Cheng M, Nian C, Wu N, Zhou Z, Xing Y, Zhao Y, Liu H, Tang J, Chen Q, Hong L, Li W, Peng Z, Zhao B, Johnson RL, Liu P, Hong W, Chen L, Zhou D. SPTAN1/NUMB axis senses cell density to restrain cell growth and oncogenesis through Hippo signaling. J Clin Invest 2023; 133:e168888. [PMID: 37843276 PMCID: PMC10575737 DOI: 10.1172/jci168888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/22/2023] [Indexed: 10/17/2023] Open
Abstract
The loss of contact inhibition is a key step during carcinogenesis. The Hippo-Yes-associated protein (Hippo/YAP) pathway is an important regulator of cell growth in a cell density-dependent manner. However, how Hippo signaling senses cell density in this context remains elusive. Here, we report that high cell density induced the phosphorylation of spectrin α chain, nonerythrocytic 1 (SPTAN1), a plasma membrane-stabilizing protein, to recruit NUMB endocytic adaptor protein isoforms 1 and 2 (NUMB1/2), which further sequestered microtubule affinity-regulating kinases (MARKs) in the plasma membrane and rendered them inaccessible for phosphorylation and inhibition of the Hippo kinases sterile 20-like kinases MST1 and MST2 (MST1/2). WW45 interaction with MST1/2 was thereby enhanced, resulting in the activation of Hippo signaling to block YAP activity for cell contact inhibition. Importantly, low cell density led to SPTAN1 dephosphorylation and NUMB cytoplasmic location, along with MST1/2 inhibition and, consequently, YAP activation. Moreover, double KO of NUMB and WW45 in the liver led to appreciable organ enlargement and rapid tumorigenesis. Interestingly, NUMB isoforms 3 and 4, which have a truncated phosphotyrosine-binding (PTB) domain and are thus unable to interact with phosphorylated SPTAN1 and activate MST1/2, were selectively upregulated in liver cancer, which correlated with YAP activation. We have thus revealed a SPTAN1/NUMB1/2 axis that acts as a cell density sensor to restrain cell growth and oncogenesis by coupling external cell-cell contact signals to intracellular Hippo signaling.
Collapse
Affiliation(s)
- Dongxue Su
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yuxi Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Weiji Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Huan Gao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yao Cheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yongqiang Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Junhong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yi Ye
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Zhangjian Lai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Zhe Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Haitao Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Jiaxin Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Jinhuan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Mengyu Cheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Cheng Nian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Na Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Zhien Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yunzhi Xing
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yu Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - He Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Jiayu Tang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Qinghua Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Lixin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Wengang Li
- Department of Hepatobiliary and Pancreatic and Organ Transplantation Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhihai Peng
- Department of Hepatobiliary and Pancreatic and Organ Transplantation Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Randy L. Johnson
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Pingguo Liu
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Department of Hepatobiliary Surgery, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Lanfen Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| |
Collapse
|
9
|
Wang B, Liang Z, Tan T, Zhang M, Jiang Y, Shang Y, Gao X, Song S, Wang R, Chen H, Liu J, Li J, Ren Y, Liu P. CRB3 navigates Rab11 trafficking vesicles to promote γTuRC assembly during ciliogenesis. eLife 2023; 12:RP86689. [PMID: 37737843 PMCID: PMC10516600 DOI: 10.7554/elife.86689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
The primary cilium plays important roles in regulating cell differentiation, signal transduction, and tissue organization. Dysfunction of the primary cilium can lead to ciliopathies and cancer. The formation and organization of the primary cilium are highly associated with cell polarity proteins, such as the apical polarity protein CRB3. However, the molecular mechanisms by which CRB3 regulates ciliogenesis and the location of CRB3 remain unknown. Here, we show that CRB3, as a navigator, regulates vesicle trafficking in γ-tubulin ring complex (γTuRC) assembly during ciliogenesis and cilium-related Hh and Wnt signaling pathways in tumorigenesis. Crb3 knockout mice display severe defects of the primary cilium in the mammary ductal lumen and renal tubule, while mammary epithelial-specific Crb3 knockout mice exhibit the promotion of ductal epithelial hyperplasia and tumorigenesis. CRB3 is essential for lumen formation and ciliary assembly in the mammary epithelium. We demonstrate that CRB3 localizes to the basal body and that CRB3 trafficking is mediated by Rab11-positive endosomes. Significantly, CRB3 interacts with Rab11 to navigate GCP6/Rab11 trafficking vesicles to CEP290, resulting in intact γTuRC assembly. In addition, CRB3-depleted cells are unresponsive to the activation of the Hh signaling pathway, while CRB3 regulates the Wnt signaling pathway. Therefore, our studies reveal the molecular mechanisms by which CRB3 recognizes Rab11-positive endosomes to facilitate ciliogenesis and regulates cilium-related signaling pathways in tumorigenesis.
Collapse
Affiliation(s)
- Bo Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Zheyong Liang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Tan Tan
- Center for Precision Medicine, Affiliated to the First People’s Hospital of Chenzhou, University of South ChinaChenzhouChina
| | - Miao Zhang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Yina Jiang
- Department of Pathology, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Yangyang Shang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Xiaoqian Gao
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Shaoran Song
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Ruiqi Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - He Chen
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Jie Liu
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Juan Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Yu Ren
- Department of Breast Surgery, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Peijun Liu
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| |
Collapse
|
10
|
Harms J, Lüttgenau SM, Emming C, Guske J, Weber K, Wagner T, Schowe L, Nedvetsky P, Krahn MP. Pals1 functions in redundancy with SMAP1 to inhibit Arf6 in order to prevent Rac1-dependent colorectal cancer cell migration and invasion. Cancer Gene Ther 2023; 30:497-506. [PMID: 36494580 PMCID: PMC10014575 DOI: 10.1038/s41417-022-00570-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
Downregulation of cell-cell adhesion and increased motility are prerequisites for the metastasis of cancer cells. We have recently shown that downregulation of the tight junction adapter protein Pals1 in colorectal cancer cells results in an increase of cell migration, invasion, and metastasis due to the enhanced activation of Arf6 and Rac1. We now reveal a redundancy between the Arf6-GAP SMAP1 and Pals1 in regulating Arf6 activity and thereby Rac1-dependent cell migration. The gene encoding SMAP1 is frequently disrupted in microsatellite instable colorectal cancer specimen and cell lines. In cells expressing SMAP1, deletion of Pals1 leads to disturbed formation of tight junctions but has no impact on Arf6 activity and cell migration. In contrast, inactivation of both SMAP1 and Pals1 results in enhanced Arf6/Rac1 activity and increased cell migration and invasion. Furthermore, analyzing patient cohorts, we found a significant decrease in patient's survival when both genes were downregulated, in contrast to cases, when expression of only one of both genes was affected. Taken together, we identified a redundancy between SMAP1 and Pals1 in the regulation of activation of Arf6/Rac1, thereby controlling cell migration, invasion, and metastasis of colorectal cancer cells.
Collapse
Affiliation(s)
- Julia Harms
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | | | - Christin Emming
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Justine Guske
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Katrin Weber
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Thomas Wagner
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Larissa Schowe
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Pavel Nedvetsky
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Michael P Krahn
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany.
| |
Collapse
|
11
|
Pobbati AV, Kumar R, Rubin BP, Hong W. Therapeutic targeting of TEAD transcription factors in cancer. Trends Biochem Sci 2023; 48:450-462. [PMID: 36709077 DOI: 10.1016/j.tibs.2022.12.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023]
Abstract
The Hippo signaling pathway inhibits the activity of the oncogenic YAP (Yes-associated protein)/TAZ (transcriptional co-activator with PDZ-binding motif)-TEAD (TEA/ATTS domain) transcriptional complex. In cancers, inactivating mutations in upstream Hippo components and/or enhanced activity of YAP/TAZ and TEAD have been observed. The activity of this transcriptional complex can be effectively inhibited by targeting the TEAD family of transcription factors. The development of TEAD inhibitors has been driven by the discovery that TEAD has druggable hydrophobic pockets, and is currently at the clinical development stage. Three small molecule TEAD inhibitors are currently being tested in Phase I clinical trials. In this review, we highlight the role of TEADs in cancer, discuss various avenues through which TEAD activity can be inhibited, and outline the opportunities for the administration of TEAD inhibitors.
Collapse
Affiliation(s)
- Ajaybabu V Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ramesh Kumar
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673.
| |
Collapse
|
12
|
Dubois F, Bazille C, Levallet J, Maille E, Brosseau S, Madelaine J, Bergot E, Zalcman G, Levallet G. Molecular Alterations in Malignant Pleural Mesothelioma: A Hope for Effective Treatment by Targeting YAP. Target Oncol 2022; 17:407-431. [PMID: 35906513 PMCID: PMC9345804 DOI: 10.1007/s11523-022-00900-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 01/11/2023]
Abstract
Malignant pleural mesothelioma is a rare and aggressive neoplasm, which has primarily been attributed to the exposure to asbestos fibers (83% of cases); yet, despite a ban of using asbestos in many countries, the incidence of malignant pleural mesothelioma failed to decline worldwide. While little progress has been made in malignant pleural mesothelioma diagnosis, bevacizumab at first, then followed by double immunotherapy (nivolumab plus ipilumumab), were all shown to improve survival in large phase III randomized trials. The morphological analysis of the histological subtyping remains the primary indicator for therapeutic decision making at an advanced disease stage, while a platinum-based chemotherapy regimen combined with pemetrexed, either with or without bevacizumab, is still the main treatment option. Consequently, malignant pleural mesothelioma still represents a significant health concern owing to poor median survival (12-18 months). Given this context, both diagnosis and therapy improvements require better knowledge of the molecular mechanisms underlying malignant pleural mesothelioma's carcinogenesis and progression. Hence, the Hippo pathway in malignant pleural mesothelioma initiation and progression has recently received increasing attention, as the aberrant expression of its core components may be closely related to patient prognosis. The purpose of this review was to provide a critical analysis of our current knowledge on these topics, the main focus being on the available evidence concerning the role of each Hippo pathway's member as a promising biomarker, enabling detection of the disease at earlier stages and thus improving prognosis.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
- Federative Structure of Cyto-Molecular Oncogenetics (SF-MOCAE), CHU de Caen, Caen, France
| | - Céline Bazille
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
| | - Jérôme Levallet
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
| | - Elodie Maille
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
| | - Solenn Brosseau
- Department of Thoracic Oncology and CIC1425, Hospital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
- U830 INSERM "Genetics and Biology of Cancers, A.R.T Group", Curie Institute, Paris, France
| | - Jeannick Madelaine
- Department of Pulmonology and Thoracic Oncology, CHU de Caen, Caen, France
| | - Emmanuel Bergot
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pulmonology and Thoracic Oncology, CHU de Caen, Caen, France
| | - Gérard Zalcman
- Department of Thoracic Oncology and CIC1425, Hospital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
- U830 INSERM "Genetics and Biology of Cancers, A.R.T Group", Curie Institute, Paris, France
| | - Guénaëlle Levallet
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France.
- Department of Pathology, CHU de Caen, Caen, France.
- Federative Structure of Cyto-Molecular Oncogenetics (SF-MOCAE), CHU de Caen, Caen, France.
| |
Collapse
|
13
|
Pan J, Liu F, Xiao X, Xu R, Dai L, Zhu M, Xu H, Xu Y, Zhao A, Zhou W, Dang Y, Ji G. METTL3 promotes colorectal carcinoma progression by regulating the m6A-CRB3-Hippo axis. J Exp Clin Cancer Res 2022; 41:19. [PMID: 35012593 PMCID: PMC8744223 DOI: 10.1186/s13046-021-02227-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Colorectal carcinoma (CRC) is the third most common cancer and second most common cause of cancer-related deaths worldwide. Ribonucleic acid (RNA) N6-methyladnosine (m6A) and methyltransferase-like 3 (METTL3) play key roles in cancer progression. However, the roles of m6A and METTL3 in CRC progression require further clarification. METHODS Adenoma and CRC samples were examined to detect m6A and METTL3 levels, and tissue microarrays were performed to evaluate the association of m6A and METTL3 levels with the survival of patients with CRC. The biological functions of METTL3 were investigated through cell counting kit-8, wound healing, and transwell assays. M6A epitranscriptomic microarray, methylated RNA immunoprecipitation-qPCR, RNA stability, luciferase reporter, and RNA immunoprecipitation assays were performed to explore the mechanism of METTL3 in CRC progression. RESULTS M6A and METTL3 levels were substantially elevated in CRC tissues, and patients with CRC with a high m6A or METTL3 levels exhibited shorter overall survival. METTL3 knockdown substantially inhibited the proliferation, migration, and invasion of CRC cells. An m6A epitranscriptomic microarray revealed that the cell polarity regulator Crumbs3 (CRB3) was the downstream target of METTL3. METTL3 knockdown substantially reduced the m6A level of CRB3, and inhibited the degradation of CRB3 mRNA to increase CRB3 expression. Luciferase reporter assays also showed that the transcriptional level of wild-type CRB3 significantly increased after METTL3 knockdown but not its level of variation. Knockdown of YT521-B homology domain-containing family protein 2 (YTHDF2) substantially increased CRB3 expression. RNA immunoprecipitation assays also verified the direct interaction between the YTHDF2 and CRB3 mRNA, and this direct interaction was impaired after METTL3 inhibition. In addition, CRB3 knockdown significantly promoted the proliferation, migration, and invasion of CRC cells. Mechanistically, METTL3 knockdown activated the Hippo pathway and reduced nuclear localization of Yes1-associated transcriptional regulator, and the effects were reversed by CRB3 knockdown. CONCLUSIONS M6A and METTL3 levels were substantially elevated in CRC tissues relative to normal tissues. Patients with CRC with high m6A or METTL3 levels exhibited shorter overall survival, and METTL3 promoted CRC progression. Mechanistically, METTL3 regulated the progression of CRC by regulating the m6A-CRB3-Hippo pathway.
Collapse
Affiliation(s)
- Jiashu Pan
- China-Canada Center of Research for Digestive Diseases (ccCRDD), Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Department of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Feng Liu
- China-Canada Center of Research for Digestive Diseases (ccCRDD), Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xiaoli Xiao
- China-Canada Center of Research for Digestive Diseases (ccCRDD), Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ruohui Xu
- China-Canada Center of Research for Digestive Diseases (ccCRDD), Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Liang Dai
- China-Canada Center of Research for Digestive Diseases (ccCRDD), Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Mingzhe Zhu
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hanchen Xu
- China-Canada Center of Research for Digestive Diseases (ccCRDD), Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yangxian Xu
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wenjun Zhou
- China-Canada Center of Research for Digestive Diseases (ccCRDD), Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yanqi Dang
- China-Canada Center of Research for Digestive Diseases (ccCRDD), Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Guang Ji
- China-Canada Center of Research for Digestive Diseases (ccCRDD), Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
14
|
Chen D, Yu W, Aitken L, Gunn-Moore F. Willin/FRMD6: A Multi-Functional Neuronal Protein Associated with Alzheimer's Disease. Cells 2021; 10:cells10113024. [PMID: 34831245 PMCID: PMC8616527 DOI: 10.3390/cells10113024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
The FERM domain-containing protein 6 (FRMD6), also known as Willin, is an upstream regulator of Hippo signaling that has recently been shown to modulate actin cytoskeleton dynamics and mechanical phenotype of neuronal cells through ERK signaling. Physiological functions of Willin/FRMD6 in the nervous system include neuronal differentiation, myelination, nerve injury repair, and vesicle exocytosis. The newly established neuronal role of Willin/FRMD6 is of particular interest given the mounting evidence suggesting a role for Willin/FRMD6 in Alzheimer's disease (AD), including a series of genome wide association studies that position Willin/FRMD6 as a novel AD risk gene. Here we describe recent findings regarding the role of Willin/FRMD6 in the nervous system and its actions in cellular perturbations related to the pathogenesis of AD.
Collapse
|
15
|
Morciano G, Vezzani B, Missiroli S, Boncompagni C, Pinton P, Giorgi C. An Updated Understanding of the Role of YAP in Driving Oncogenic Responses. Cancers (Basel) 2021; 13:cancers13123100. [PMID: 34205830 PMCID: PMC8234554 DOI: 10.3390/cancers13123100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In 2020, the global cancer database GLOBOCAN estimated 19.3 million new cancer cases worldwide. The discovery of targeted therapies may help prognosis and outcome of the patients affected, but the understanding of the plethora of highly interconnected pathways that modulate cell transformation, proliferation, invasion, migration and survival remains an ambitious goal. Here we propose an updated state of the art of YAP as the key protein driving oncogenic response via promoting all those steps at multiple levels. Of interest, the role of YAP in immunosuppression is a field of evolving research and growing interest and this summary about the current pharmacological therapies impacting YAP serves as starting point for future studies. Abstract Yes-associated protein (YAP) has emerged as a key component in cancer signaling and is considered a potent oncogene. As such, nuclear YAP participates in complex and only partially understood molecular cascades that are responsible for the oncogenic response by regulating multiple processes, including cell transformation, tumor growth, migration, and metastasis, and by acting as an important mediator of immune and cancer cell interactions. YAP is finely regulated at multiple levels, and its localization in cells in terms of cytoplasm–nucleus shuttling (and vice versa) sheds light on interesting novel anticancer treatment opportunities and putative unconventional functions of the protein when retained in the cytosol. This review aims to summarize and present the state of the art knowledge about the role of YAP in cancer signaling, first focusing on how YAP differs from WW domain-containing transcription regulator 1 (WWTR1, also named as TAZ) and which upstream factors regulate it; then, this review focuses on the role of YAP in different cancer stages and in the crosstalk between immune and cancer cells as well as growing translational strategies derived from its inhibitory and synergistic effects with existing chemo-, immuno- and radiotherapies.
Collapse
|
16
|
Martin E, Girardello R, Dittmar G, Ludwig A. New insights into the organization and regulation of the apical polarity network in mammalian epithelial cells. FEBS J 2021; 288:7073-7095. [DOI: 10.1111/febs.15710] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Eleanor Martin
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
| | - Rossana Girardello
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
- Department of Life Sciences and Medicine University of Luxembourg Luxembourg
| | - Alexander Ludwig
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- NTU Institute of Structural Biology (NISB) Experimental Medicine Building Nanyang Technological University Singapore City Singapore
| |
Collapse
|
17
|
Höffken V, Hermann A, Pavenstädt H, Kremerskothen J. WWC Proteins: Important Regulators of Hippo Signaling in Cancer. Cancers (Basel) 2021; 13:cancers13020306. [PMID: 33467643 PMCID: PMC7829927 DOI: 10.3390/cancers13020306] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The conserved Hippo pathway regulates cell proliferation and apoptosis via a complex interplay of transcriptional activities, post-translational protein modifications, specific protein–protein interactions and cellular transport processes. Deregulating this highly balanced system can lead to hyperproliferation, organ overgrowth and cancer. Although WWC proteins are known as components of the Hippo signaling pathway, their association with tumorigenesis is often neglected. This review aims to summarize the current knowledge on WWC proteins and their contribution to Hippo signaling in the context of cancer. Abstract The Hippo signaling pathway is known to regulate cell differentiation, proliferation and apoptosis. Whereas activation of the Hippo signaling pathway leads to phosphorylation and cytoplasmic retention of the transcriptional coactivator YAP, decreased Hippo signaling results in nuclear import of YAP and subsequent transcription of pro-proliferative genes. Hence, a dynamic and precise regulation of the Hippo signaling pathway is crucial for organ size control and the prevention of tumor formation. The transcriptional activity of YAP is controlled by a growing number of upstream regulators including the family of WWC proteins. WWC1, WWC2 and WWC3 represent cytosolic scaffolding proteins involved in intracellular transport processes and different signal transduction pathways. Earlier in vitro experiments demonstrated that WWC proteins positively regulate the Hippo pathway via the activation of large tumor suppressor kinases 1/2 (LATS1/2) kinases and the subsequent cytoplasmic accumulation of phosphorylated YAP. Later, reduced WWC expression and subsequent high YAP activity were shown to correlate with the progression of human cancer in different organs. Although the function of WWC proteins as upstream regulators of Hippo signaling was confirmed in various studies, their important role as tumor modulators is often overlooked. This review has been designed to provide an update on the published data linking WWC1, WWC2 and WWC3 to cancer, with a focus on Hippo pathway-dependent mechanisms.
Collapse
|
18
|
Boon N, Wijnholds J, Pellissier LP. Research Models and Gene Augmentation Therapy for CRB1 Retinal Dystrophies. Front Neurosci 2020; 14:860. [PMID: 32922261 PMCID: PMC7456964 DOI: 10.3389/fnins.2020.00860] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are inherited degenerative retinal dystrophies with vision loss that ultimately lead to blindness. Several genes have been shown to be involved in early onset retinal dystrophies, including CRB1 and RPE65. Gene therapy recently became available for young RP patients with variations in the RPE65 gene. Current research programs test adeno-associated viral gene augmentation or editing therapy vectors on various disease models mimicking the disease in patients. These include several animal and emerging human-derived models, such as human-induced pluripotent stem cell (hiPSC)-derived retinal organoids or hiPSC-derived retinal pigment epithelium (RPE), and human donor retinal explants. Variations in the CRB1 gene are a major cause for early onset autosomal recessive RP with patients suffering from visual impairment before their adolescence and for LCA with newborns experiencing severe visual impairment within the first months of life. These patients cannot benefit yet from an available gene therapy treatment. In this review, we will discuss the recent advances, advantages and disadvantages of different CRB1 human and animal retinal degeneration models. In addition, we will describe novel therapeutic tools that have been developed, which could potentially be used for retinal gene augmentation therapy for RP patients with variations in the CRB1 gene.
Collapse
Affiliation(s)
- Nanda Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands.,The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Lucie P Pellissier
- Biology and Bioinformatics of Signalling Systems, Physiologie de la Reproduction et des Comportements INRAE UMR 0085, CNRS UMR 7247, Université de Tours, IFCE, Nouzilly, France
| |
Collapse
|
19
|
Mohammadi S, Arefnezhad R, Danaii S, Yousefi M. New insights into the core Hippo signaling and biological macromolecules interactions in the biology of solid tumors. Biofactors 2020; 46:514-530. [PMID: 32445262 DOI: 10.1002/biof.1634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/26/2022]
Abstract
As an evolutionarily conserved pathway, Hippo signaling pathway impacts different pathology and physiology processes such as wound healing, tissue repair/size and regeneration. When some components of Hippo signaling dysregulated, it affects cancer cells proliferation. Moreover, the relation Hippo pathway with other signaling including Wnt, TGFβ, Notch, and EGFR signaling leaves effect on the proliferation of cancer cells. Utilizing a number of therapeutic approaches, such as siRNAs and long noncoding RNA (lncRNA) to prevent cancer cells through the targeting of Hippo pathways, can provide new insights into cancer target therapy. The purpose of present review, first of all, is to demonstrate the importance of Hippo signaling and its relation with other signaling pathways in cancer. It also tries to demonstrate targeting Hippo signaling progress in cancer therapy.
Collapse
Affiliation(s)
- Solmaz Mohammadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Center, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Depatment of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Liu J, Li J, Chen H, Wang R, Li P, Miao Y, Liu P. Metformin suppresses proliferation and invasion of drug-resistant breast cancer cells by activation of the Hippo pathway. J Cell Mol Med 2020; 24:5786-5796. [PMID: 32281270 PMCID: PMC7214175 DOI: 10.1111/jcmm.15241] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/06/2020] [Accepted: 03/17/2020] [Indexed: 12/24/2022] Open
Abstract
Drug resistance limits the clinical efficacy of breast cancer therapies, and overexpression or activation of Yes-associated protein (YAP) is common in drug-resistant cancer cells. Thus, inhibition of YAP may reduce resistance to anti-cancer drugs. Metformin (MET), a first-line diabetes medication that also has anti-tumour activities, induces AMP-activated protein kinase (AMPK), directly phosphorylates YAP and inhibits YAP transcriptional activity. In this study, we determined the effect of MET on the proliferation and invasion of drug-resistant breast cancer cells and then investigated the underlying molecular mechanism. Our in vivo and in vitro experiments indicated that MET suppressed breast cancer by an AMPK-independent pathway to decrease YAP nuclear localization. In drug-sensitive cells, MET activated the Hippo pathway by increasing KIBRA and FRMD6 expression, but this did not occur in drug-resistant cells. Scribble (SCRIB), a cell polarity protein, was notably down-regulated in tamoxifen- and paclitaxel-resistant breast cancer cells relative to sensitive cells. We also found that MET suppressed the proliferation and invasion of drug-resistant breast cancer cells by increasing the expression and cell membrane localization of SCRIB, which enhanced the interaction of SCRIB with MST1 and LATS1, and inhibited YAP nuclear localization and transcriptional activity.
Collapse
Affiliation(s)
- Jie Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juan Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - He Chen
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruiqi Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pingping Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Miao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
21
|
Expression and regulation of FRMD6 in mouse DRG neurons and spinal cord after nerve injury. Sci Rep 2020; 10:1880. [PMID: 32024965 PMCID: PMC7002571 DOI: 10.1038/s41598-020-58261-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/10/2020] [Indexed: 12/26/2022] Open
Abstract
FRMD6, a member of the group of FERM-domain proteins, is involved both in communication between cells, interactions with extracellular matrix, cellular apoptotic and regenerative mechanisms. FRMD6 was first discovered in the rodent sciatic nerve, and in the present immunohistochemical study we investigated the distribution of FRMD6 in the dorsal root ganglia (DRGs), sciatic nerve and spinal cord following sciatic nerve injury. FRMD6-immunoreactivity was found in the cytoplasm, nucleus or both, and in a majority of DRG neurons. FRMD6-immunoreactivity co-existed with several well-known neuronal markers, including calcitonin gene-related peptide, isolectin B4 and neurofilament 200 in mouse DRGs. After peripheral nerve injury, the FRMD6 mRNA levels and the overall percentage of FRMD6-positive neuron profiles (NPs) were decreased in ipsilateral lumbar DRGs, the latter mainly affecting small size neurons with cytoplasmic localization. Conversely, the proportion of NPs with nuclear FRMD6-immunoreactivity was significantly increased. In the sciatic nerve, FRMD6-immunoreactivity was observed in non-neuronal cells and in axons, and accumulated proximally to a ligation of the nerve. In the spinal cord FRMD6-immunoreactivity was detected in neurons in both dorsal and ventral horns, and was upregulated in ipsilateral dorsal horn after peripheral nerve axotomy. Our results demonstrate that FRMD6 is strictly regulated by peripheral nerve injury at the spinal level.
Collapse
|
22
|
Wang D, He J, Dong J, Meyer TF, Xu T. The HIPPO pathway in gynecological malignancies. Am J Cancer Res 2020; 10:610-629. [PMID: 32195031 PMCID: PMC7061741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023] Open
Abstract
The Hippo pathway has been initially discovered by screening genes that regulate organ size in Drosophila. Recent studies have highlighted the role of the Hippo pathway in controlling organ size, tissue homeostasis and regeneration, and signaling dysregulation, especially the overactivation of the transcriptional coactivator YAP/TAZ, which leads to uncontrolled cell growth and malignant transformation. The core components of the Hippo pathway may initiate tumorigenesis by inducing tumor stem cells and proliferation, ultimately leading to metastasis and drug resistance, which occurs extensively in gynecological malignancies, including cervical cancer, ovarian cancer, and endometrial cancer. In this review, we attempt to systematically summarize recent progress in our understanding of the mechanism of Hippo pathway regulation in tumorigenesis and the mechanisms that underlie alterations during gynecological malignancies, as well as new therapeutic strategies.
Collapse
Affiliation(s)
- Dongying Wang
- Department of Obstetrics and Gynecology, Second Hospital of Jilin UniversityChangchun, Jilin, P. R. China
| | - Jiaxing He
- Department of Obstetrics and Gynecology, Second Hospital of Jilin UniversityChangchun, Jilin, P. R. China
| | - Junxue Dong
- Department of Obstetrics and Gynecology, Second Hospital of Jilin UniversityChangchun, Jilin, P. R. China
- Department of Molecular Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Tianmin Xu
- Department of Obstetrics and Gynecology, Second Hospital of Jilin UniversityChangchun, Jilin, P. R. China
| |
Collapse
|
23
|
Rausch V, Hansen CG. The Hippo Pathway, YAP/TAZ, and the Plasma Membrane. Trends Cell Biol 2019; 30:32-48. [PMID: 31806419 DOI: 10.1016/j.tcb.2019.10.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022]
Abstract
The plasma membrane allows the cell to sense and adapt to changes in the extracellular environment by relaying external inputs via intracellular signaling networks. One central cellular signaling pathway is the Hippo pathway, which regulates homeostasis and plays chief roles in carcinogenesis and regenerative processes. Recent studies have found that mechanical stimuli and diffusible chemical components can regulate the Hippo pathway primarily through receptors embedded in the plasma membrane. Morphologically defined structures within the plasma membrane, such as cellular junctions, focal adhesions, primary cilia, caveolae, clathrin-coated pits, and plaques play additional key roles. Here, we discuss recent evidence highlighting the importance of these specialized plasma membrane domains in cellular feedback via the Hippo pathway.
Collapse
Affiliation(s)
- Valentina Rausch
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Institute for Regeneration and Repair, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Carsten G Hansen
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Institute for Regeneration and Repair, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
24
|
Li Q, Nirala NK, Chen HJ, Nie Y, Wang W, Zhang B, Czech MP, Wang Q, Xu L, Mao J, Tony Ip Y. The Misshapen subfamily of Ste20 kinases regulate proliferation in the aging mammalian intestinal epithelium. J Cell Physiol 2019; 234:21925-21936. [PMID: 31042012 PMCID: PMC6711781 DOI: 10.1002/jcp.28756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 12/17/2022]
Abstract
The intestinal epithelium has a high rate of cell turn over and is an excellent system to study stem cell-mediated tissue homeostasis. The Misshapen subfamily of the Ste20 kinases in mammals consists of misshapen like kinase 1 (MINK1), mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), and TRAF2 and NCK interacting kinase (TNIK). Recent reports suggest that this subfamily has a novel function equal to the Hippo/MST subfamily as upstream kinases for Warts/Large tumor suppressor kinase (LATS) to suppress tissue growth. To study the in vivo functions of Mink1, Map4k4, and Tnik, we generated a compound knockout of these three genes in the mouse intestinal epithelium. The intestinal epithelia of the mutant animals were phenotypically normal up to approximately 12 months. The older animals then exhibited mildly increased proliferation throughout the lower GI tract. We also observed that the normally spatially organized Paneth cells in the crypt base became dispersed. The expression of one of the YAP pathway target genes Sox9 was increased while other target genes including CTGF did not show a significant change. Therefore, the Misshapen and Hippo subfamilies may have highly redundant functions to regulate growth in the intestinal epithelium, as illustrated in recent tissue culture models.
Collapse
Affiliation(s)
- Qi Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Niraj K. Nirala
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hsi-Ju Chen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yingchao Nie
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Wei Wang
- Guangzhou RiboBio Co., Ltd., Guangzhou 510663, China
| | - Biliang Zhang
- Guangzhou RiboBio Co., Ltd., Guangzhou 510663, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Michael P. Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qi Wang
- Neuroscience Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Lan Xu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Y. Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
25
|
Fulford AD, Holder MV, Frith D, Snijders AP, Tapon N, Ribeiro PS. Casein kinase 1 family proteins promote Slimb-dependent Expanded degradation. eLife 2019; 8:e46592. [PMID: 31567070 PMCID: PMC6768662 DOI: 10.7554/elife.46592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Hippo signalling integrates diverse stimuli related to epithelial architecture to regulate tissue growth and cell fate decisions. The Hippo kinase cascade represses the growth-promoting transcription co-activator Yorkie. The FERM protein Expanded is one of the main upstream Hippo signalling regulators in Drosophila as it promotes Hippo kinase signalling and directly inhibits Yorkie. To fulfil its function, Expanded is recruited to the plasma membrane by the polarity protein Crumbs. However, Crumbs-mediated recruitment also promotes Expanded turnover via a phosphodegron-mediated interaction with a Slimb/β-TrCP SCF E3 ligase complex. Here, we show that the Casein Kinase 1 (CKI) family is required for Expanded phosphorylation. CKI expression promotes Expanded phosphorylation and interaction with Slimb/β-TrCP. Conversely, CKI depletion in S2 cells impairs Expanded degradation downstream of Crumbs. In wing imaginal discs, CKI loss leads to elevated Expanded and Crumbs levels. Thus, phospho-dependent Expanded turnover ensures a tight coupling of Hippo pathway activity to epithelial architecture.
Collapse
Affiliation(s)
- Alexander D Fulford
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUnited Kingdom
- Department of Developmental BiologyWashington University School of MedicineSt. LouisUnited States
| | - Maxine V Holder
- Apoptosis and Proliferation Control LaboratoryThe Francis Crick InstituteLondonUnited Kingdom
| | - David Frith
- ProteomicsThe Francis Crick InstituteLondonUnited Kingdom
| | | | - Nicolas Tapon
- Apoptosis and Proliferation Control LaboratoryThe Francis Crick InstituteLondonUnited Kingdom
| | - Paulo S Ribeiro
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUnited Kingdom
| |
Collapse
|
26
|
Li P, Zhou C, Yan Y, Li J, Liu J, Zhang Y, Liu P. Crumbs protein homolog 3 (CRB3) expression is associated with oestrogen and progesterone receptor positivity in breast cancer. Clin Exp Pharmacol Physiol 2019; 46:837-844. [PMID: 31087799 PMCID: PMC6772053 DOI: 10.1111/1440-1681.13104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/11/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022]
Abstract
The crumbs protein homolog 3 (CRB3) regulates the tight junction to help maintain epithelial polarity. Altered CRB3 expression was associated with carcinogenesis of epithelial cells. This study detected CRB3 expression in 192 cases of breast cancer tissues and in the Molecular Taxonomy of Breast Cancer International Consortium (Metabric) and The Cancer Genome Atlas (TCGA) datasets for association with triple negative breast cancer (TNBC) phenotypes. The in vitro experiments confirm the ex vivo data. The data showed that levels of both CRB3 mRNA and protein were associated with TNBC phenotypes, ie, 41.1% (39/95) of ER+ breast cancer was CRB3-positive, whereas 26.9% (25/93) ER- tumour was CRB3-positive (P = 0.046). Moreover, 47.6% (30/63) of PR+ breast cancer was CRB3-positive vs 28.4% (33/116) PR- tumours positive for CRB3 (P = 0.013). In addition, 40.1% (27/66) of ER+/PR+ tumour was CRB3-positive, but only 22.4% (19/85) of TNBC showed CRB3 expression (P = 0.048). Indeed, levels of CRB3 mRNA were higher in non-TNBC than TNBC in both Metabric (P = 3.682e-10) and TCGA datasets (P = 2.501e-07). The in vitro data showed that CRB3 expression was higher in luminal (MCF7 and T47D) than in HER2 (MDA-MB-453 and SK-BR-3) and basal (MDA-MB-231 and BT-549) breast cancer cell lines. More interestingly, ERα regulated expression of CRB3 protein in MCF7 and BT-549 cells and ERα expression was associated with CRB3 expression in breast cancer tissues specimens. This study demonstrated that ERα could be a novel regulator for CRB3 expression in breast cancer.
Collapse
Affiliation(s)
- Pingping Li
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Can Zhou
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yu Yan
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Juan Li
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jie Liu
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yan Zhang
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Peijun Liu
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
27
|
Xu L, Zhang T, Huang W, Liu X, Lu J, Gao X, Zhang YF, Liu L. YAP mediates the positive regulation of hnRNPK on the lung adenocarcinoma H1299 cell growth. Acta Biochim Biophys Sin (Shanghai) 2019; 51:677-687. [PMID: 31187136 DOI: 10.1093/abbs/gmz053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 01/08/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide, and non-small cell lung cancer (NSCLC) accounts for 80%-85% of diagnostic cases. The molecular mechanisms of NSCLC pathogenesis are not well understood. Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is a multifunctional protein that regulates gene expression and signal transduction and closely associated with tumorigenesis, but its mechanism of action in the pathogenesis of NSCLC is unclear. In this study, we observed that the expression pattern of hnRNPK in H1299 lung adenocarcinoma cells varied depending on the cell density in culture. Moreover, hnRNPK stimulated the ability of proliferation and colony formation of H1299 cells, which is important for the multilayered cell growth in culture. We further investigated whether there is an association between hnRNPK and the elements involved in the cell contact inhibition pathway. By using quantitative reverse transcriptase-polymerase chain reaction assay and a YAP activity reporter system, we found that hnRNPK upregulated the mRNA and protein levels and transcriptional activity of Yes-associated protein 1 (YAP), a master negative regulator of Hippo contact inhibition pathway. Furthermore, YAP knockdown with siRNA abolished the stimulatory effect of hnRNPK on H1299 cell proliferation. These results suggested that YAP could be one of the effectors of hnRNPK. Our data may provide new clues for further understanding the biological functions of hnRNPK, particularly in the context of lung adenocarcinoma oncogenesis.
Collapse
Affiliation(s)
- Lipei Xu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Tingting Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Wensi Huang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Xiaohui Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Junlei Lu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Xuejuan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Yun-Fang Zhang
- Center of Kidney Disease, Huadu District People’s Hospital, Southern Medical University, Guangzhou 510800, China
| | - Langxia Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
28
|
Bazzoun D, Adissu HA, Wang L, Urazaev A, Tenvooren I, Fostok SF, Chittiboyina S, Sturgis J, Hodges K, Chandramouly G, Vidi PA, Talhouk RS, Lelièvre SA. Connexin 43 maintains tissue polarity and regulates mitotic spindle orientation in the breast epithelium. J Cell Sci 2019; 132:jcs.223313. [PMID: 30992345 DOI: 10.1242/jcs.223313] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Cell-cell communication is essential for tissue homeostasis, but its contribution to disease prevention remains to be understood. We demonstrate the involvement of connexin 43 (Cx43, also known as GJA1) and related gap junction in epithelial homeostasis, illustrated by polarity-mediated cell cycle entry and mitotic spindle orientation (MSO). Cx43 localization is restricted to the apicolateral membrane of phenotypically normal breast luminal epithelial cells in 3D culture and in vivo Chemically induced blockade of gap junction intercellular communication (GJIC), as well as the absence of Cx43, disrupt the apicolateral distribution of polarity determinant tight junction marker ZO-1 (also known as TJP1) and lead to random MSO and cell multilayering. Induced expression of Cx43 in cells that normally lack this protein reestablishes polarity and proper MSO in 3D culture. Cx43-directed MSO implicates PI3K-aPKC signaling, and Cx43 co-precipitates with signaling node proteins β-catenin (CTNNB1) and ZO-2 (also known as TJP2) in the polarized epithelium. The distribution of Cx43 is altered by pro-inflammatory breast cancer risk factors such as leptin and high-fat diet, as shown in cell culture and on tissue biopsy sections. The control of polarity-mediated quiescence and MSO may contribute to the tumor-suppressive role of Cx43.
Collapse
Affiliation(s)
- D Bazzoun
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA.,Biology Department, Faculty of Arts and Sciences, American University of Beirut, 11-0236 Beirut, Lebanon
| | - H A Adissu
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - L Wang
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - A Urazaev
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - I Tenvooren
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - S F Fostok
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, 11-0236 Beirut, Lebanon
| | - S Chittiboyina
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J Sturgis
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - K Hodges
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - G Chandramouly
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - P-A Vidi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - R S Talhouk
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, 11-0236 Beirut, Lebanon
| | - S A Lelièvre
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
29
|
The Ambivalent Function of YAP in Apoptosis and Cancer. Int J Mol Sci 2018; 19:ijms19123770. [PMID: 30486435 PMCID: PMC6321280 DOI: 10.3390/ijms19123770] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Yes-associated protein, a core regulator of the Hippo-YAP signaling pathway, plays a vital role in inhibiting apoptosis. Thus, several studies and reviews suggest that yes-associated protein is a good target for treating cancer. Unfortunately, more and more evidence demonstrates that this protein is also an essential contributor of p73-mediated apoptosis. This questions the concept that yes-associated protein is always a good target for developing novel anti-cancer drugs. Thus, the aim of this review was to evaluate the clinical relevance of yes-associated protein for cancer pathophysiology. This review also summarized the molecules, processes and drugs, which regulate Hippo-YAP signaling and discusses their effect on apoptosis. In addition, issues are defined, which should be addressed in the future in order to provide a solid basis for targeting the Hippo-YAP signaling pathway in clinical trials.
Collapse
|
30
|
Mussell AL, Denson KE, Shen H, Chen Y, Yang N, Frangou C, Zhang J. Loss of KIBRA function activates EGFR signaling by inducing AREG. Oncotarget 2018; 9:29975-29984. [PMID: 30042827 PMCID: PMC6057453 DOI: 10.18632/oncotarget.25724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022] Open
Abstract
The Hippo signaling pathway is a central regulator of organ size, tissue homeostasis, and tumorigenesis. KIBRA is a member of the WW domain-containing protein family and has recently been reported to be an upstream protein in the Hippo signaling pathway. However, the clinical significance of KIBRA deregulation and the underlying mechanisms by which KIBRA regulates breast cancer (BC) initiation and progression remain poorly understood. Here, we report that KIBRA knockdown in mammary epithelial cells induced epithelial-to-mesenchymal transition (EMT) and increased cell migration and tumorigenic potential. Mechanistically, we observed that inhibiting KIBRA induced growth factor-independent cell proliferation in 2D and 3D culture due to the secretion of amphiregulin (AREG), an epidermal growth factor receptor (EGFR) ligand. Also, we show that AREG activation in KIBRA-knockdown cells depended on the transcriptional coactivator YAP1. Significantly, decreased expression of KIBRA is correlated with recurrence and reduced BC patient survival. In summary, this study elucidates the molecular events that underpin the role of KIBRA in BC. As a result, our work provides biological insight into the role of KIBRA as a critical regulator of YAP1-mediated oncogenic growth, and may have clinical potential for facilitating patient stratification and identifying novel therapeutic approaches for BC patients.
Collapse
Affiliation(s)
- Ashley L Mussell
- Department of Cancer Genetics & Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kayla E Denson
- Department of Cancer Genetics & Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Current address: Frontier Science Foundation, Amherst, NY, USA
| | - He Shen
- Department of Cancer Genetics & Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Yanmin Chen
- Department of Cancer Genetics & Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Nuo Yang
- Department of Anesthesiology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Costa Frangou
- Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences, Boston, MA, USA
| | - Jianmin Zhang
- Department of Cancer Genetics & Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
31
|
Fiore APZP, Ribeiro PDF, Bruni-Cardoso A. Sleeping Beauty and the Microenvironment Enchantment: Microenvironmental Regulation of the Proliferation-Quiescence Decision in Normal Tissues and in Cancer Development. Front Cell Dev Biol 2018; 6:59. [PMID: 29930939 PMCID: PMC6001001 DOI: 10.3389/fcell.2018.00059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/18/2018] [Indexed: 01/18/2023] Open
Abstract
Cells from prokaryota to the more complex metazoans cease proliferating at some point in their lives and enter a reversible, proliferative-dormant state termed quiescence. The appearance of quiescence in the course of evolution was essential to the acquisition of multicellular specialization and compartmentalization and is also a central aspect of tissue function and homeostasis. But what makes a cell cease proliferating even in the presence of nutrients, growth factors, and mitogens? And what makes some cells "wake up" when they should not, as is the case in cancer? Here, we summarize and discuss evidence showing how microenvironmental cues such as those originating from metabolism, extracellular matrix (ECM) composition and arrangement, neighboring cells and tissue architecture control the cellular proliferation-quiescence decision, and how this complex regulation is corrupted in cancer.
Collapse
Affiliation(s)
| | | | - Alexandre Bruni-Cardoso
- e-Signal Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Fulford A, Tapon N, Ribeiro PS. Upstairs, downstairs: spatial regulation of Hippo signalling. Curr Opin Cell Biol 2018; 51:22-32. [PMID: 29154163 DOI: 10.1016/j.ceb.2017.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/13/2017] [Indexed: 12/31/2022]
Abstract
Cellular signalling lies at the heart of every decision involved in the development and homeostasis of multicellular organisms. The Hippo pathway was discovered nearly two decades ago through seminal work in Drosophila and rapidly emerged as a crucial signalling network implicated in developmental and oncogenic growth, tissue regeneration and stem cell biology. Here, we review recent advances in the field relating to the upstream regulation of Hippo signalling and the intracellular tug-of-war that tightly controls its main target, the transcriptional co-activator Yorkie/YAP.
Collapse
Affiliation(s)
- Alexander Fulford
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Nicolas Tapon
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Paulo S Ribeiro
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
33
|
Bazellières E, Aksenova V, Barthélémy-Requin M, Massey-Harroche D, Le Bivic A. Role of the Crumbs proteins in ciliogenesis, cell migration and actin organization. Semin Cell Dev Biol 2017; 81:13-20. [PMID: 29056580 DOI: 10.1016/j.semcdb.2017.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/09/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023]
Abstract
Epithelial cell organization relies on a set of proteins that interact in an intricate way and which are called polarity complexes. These complexes are involved in the determination of the apico-basal axis and in the positioning and stability of the cell-cell junctions called adherens junctions at the apico-lateral border in invertebrates. Among the polarity complexes, two are present at the apical side of epithelial cells. These are the Par complex including aPKC, PAR3 and PAR6 and the Crumbs complex including, CRUMBS, PALS1 and PATJ/MUPP1. These two complexes interact directly and in addition to their already well described functions, they play a role in other cellular processes such as ciliogenesis and polarized cell migration. In this review, we will focus on these aspects that involve the apical Crumbs polarity complex and its relation with the cortical actin cytoskeleton which might provide a more comprehensive hypothesis to explain the many facets of Crumbs cell and tissue properties.
Collapse
Affiliation(s)
- Elsa Bazellières
- Aix-Marseille University, CNRS, IBDM, Case 907, 13288 Marseille, Cedex 09, France
| | - Veronika Aksenova
- Aix-Marseille University, CNRS, IBDM, Case 907, 13288 Marseille, Cedex 09, France
| | | | | | - André Le Bivic
- Aix-Marseille University, CNRS, IBDM, Case 907, 13288 Marseille, Cedex 09, France.
| |
Collapse
|
34
|
Michgehl U, Pavenstädt H, Vollenbröker B. Cross talk between the Crumbs complex and Hippo signaling in renal epithelial cells. Pflugers Arch 2017; 469:917-926. [PMID: 28612137 DOI: 10.1007/s00424-017-2004-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022]
Abstract
Cell polarity has a crucial role in organizing cells into tissues and in mediating transport processes and cell-cell communication. Especially the cells of the nephron require apicobasal polarity to establish and maintain their barrier function. The Crumbs complex including the integral membrane protein Crumbs, as well as Pals1 and Patj, is essential for the establishment of apicobasal polarity. The interactions of the core proteins and the interplay with other processes have been characterized in various epithelial cell lines in detail. Notably, Crb2 and Crb3 are expressed within the kidney and play an important role in the proper function of podocytes and tubules, respectively. The interaction of polarity proteins and components of the Hippo pathway-an evolutionarily highly conserved kinase cascade regulating cell proliferation, organ size, and tissue regeneration-has been discovered recently. Here, we discuss potential molecular and physiological links between the Crumbs complex and the Hippo pathway in renal cells.
Collapse
Affiliation(s)
- U Michgehl
- Internal Medicine D, University Hospital of Muenster, Albert-Schweitzer-Campus 1, A14, D-48149, Muenster, Germany.
| | - H Pavenstädt
- Internal Medicine D, University Hospital of Muenster, Albert-Schweitzer-Campus 1, A14, D-48149, Muenster, Germany
| | - B Vollenbröker
- Internal Medicine D, University Hospital of Muenster, Albert-Schweitzer-Campus 1, A14, D-48149, Muenster, Germany
| |
Collapse
|