1
|
Bulatova LF, Skripova VS, Sagdeeva AR, Vlasenkova RA, Bugaenko TA, Galimova RR, Nesterova AI, Filina YV, Kiyamova RG. T330M Substitution in the Sodium-Dependent Phosphate Transporter NaPi2b Abolishes the Efficacy of Monoclonal Antibodies Against MX35 Epitope. Antibodies (Basel) 2025; 14:30. [PMID: 40265411 PMCID: PMC12015770 DOI: 10.3390/antib14020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/15/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
Background: Monoclonal antibodies against the sodium-dependent phosphate transporter NaPi2b (SLC34A2) represent a promising approach in the treatment of ovarian and lung cancer. Of particular interest is the potential cancer-specific MX35 epitope of NaPi2b, as it serves as a target for monoclonal antibodies studied at various stages of preclinical and clinical trials. However, variations in the NaPi2b protein structure may limit the efficacy of therapeutic antibodies by affecting the accessibility of the MX35 epitope. Methods: An in silico analysis was performed using data from 101,562 tumor samples. Genomic DNA sequencing was conducted on blood samples from patients with ovarian carcinoma, breast cancer, and renal carcinoma to access the frequency of germline mutations in the SLC34A2 gene region encoding the MX35 epitope. To assess the impact of the selected mutation, we generated a model cell line through site-directed mutagenesis carrying the mutant NaPi2b variant. Results: Using in silico analysis, we identified 17 unique variants in the SLC34A2 gene leading to amino acid substitutions within the MX35 epitope of the NaPi2b. Among these, the most prevalent mutation, c.989C>T, resulting in p.T330M substitution, was detected in 5 out of 64 patients through genomic DNA sequencing. Using site-directed mutagenesis, we created the OVCAR-8/NaPi2bp.T330M model cell line. L3 (28/1) monoclonal antibodies specific to the MX35 epitope failed to recognize the mutant NaPi2bp.T330M variant compared to the wild-type of the NaPi2b in both Western blot and confocal microscopy experiments. Conclusions: The obtained data may serve as a basis for predicting the efficacy of monoclonal antibody-based targeted therapy binding to the MX35 epitope of NaPi2b in the treatment of oncological diseases.
Collapse
Affiliation(s)
- Leisan F. Bulatova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.F.B.); (V.S.S.); (A.R.S.); (R.A.V.); (T.A.B.); (Y.V.F.)
| | - Vera S. Skripova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.F.B.); (V.S.S.); (A.R.S.); (R.A.V.); (T.A.B.); (Y.V.F.)
| | - Aisylu R. Sagdeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.F.B.); (V.S.S.); (A.R.S.); (R.A.V.); (T.A.B.); (Y.V.F.)
| | - Ramilia A. Vlasenkova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.F.B.); (V.S.S.); (A.R.S.); (R.A.V.); (T.A.B.); (Y.V.F.)
| | - Tatiana A. Bugaenko
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.F.B.); (V.S.S.); (A.R.S.); (R.A.V.); (T.A.B.); (Y.V.F.)
| | - Rezeda R. Galimova
- Republican Clinical Oncology Dispensary, 420029 Kazan, Russia; (R.R.G.); (A.I.N.)
| | - Alfiya I. Nesterova
- Republican Clinical Oncology Dispensary, 420029 Kazan, Russia; (R.R.G.); (A.I.N.)
| | - Yuliya V. Filina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.F.B.); (V.S.S.); (A.R.S.); (R.A.V.); (T.A.B.); (Y.V.F.)
| | - Ramziya G. Kiyamova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.F.B.); (V.S.S.); (A.R.S.); (R.A.V.); (T.A.B.); (Y.V.F.)
| |
Collapse
|
2
|
Geng W, An J, Dong K, Zhang H, Zhang X, Liu Y, Xu R, Liu Y, Huang X, Song H, Yan W, Sun A, He F, Wang J, Gao H, Tian C. ZNF8 Orchestrates with Smad3 to Promote Lung Metastasis by Recruiting SMYD3 in Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404904. [PMID: 39225541 PMCID: PMC11515916 DOI: 10.1002/advs.202404904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Most deaths in breast cancer patients are attributed to metastasis, and lung metastasis is associated with a particularly poor prognosis; therefore it is imperative to identify potential target for intervention. The transforming growth factor-β (TGF-β) pathway plays a vital role in breast cancer metastasis, in which Smad3 is the key mediator and performs specific functions by binding with different cofactors. However, Smad3 cofactors involved in lung metastasis have not yet been identified. This study first establishes the interactome of Smad3 in breast cancer cells and identifies ZNF8 as a novel Smad3 cofactor. Furthermore, the results reveal that ZNF8 is closely associated with breast cancer lung metastasis prognosis, and specifically facilitates TGF-β pathway-mediated breast cancer lung metastasis by participating in multiple processes. Mechanistically, ZNF8 binds with Smad3 to enhance the H3K4me3 modification and promote the expression of lung metastasis signature genes by recruiting SMYD3. SMYD3 inhibition by BCI121 effectively prevents ZNF8-mediated lung metastasis. Overall, the study identifies a novel cofactor of TGF-β/Smad3 that promotes lung metastasis in breast cancer and introduces potential therapeutic strategies for the early management of breast cancer lung metastasis.
Collapse
Affiliation(s)
- Wenwen Geng
- Department of Breast SurgeryQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
- Laboratory of OncologyQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
| | - Junhua An
- Department of Breast SurgeryQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
- Laboratory of OncologyQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
| | - Ke Dong
- Department of Breast SurgeryQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
- Laboratory of OncologyQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
| | - Hailu Zhang
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
- College of Life SciencesHebei UniversityBaodingHebei071002China
| | - Xiuyuan Zhang
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Yuchen Liu
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Rong Xu
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Yifan Liu
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Xiaofen Huang
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
- College of Life SciencesHebei UniversityBaodingHebei071002China
| | - Haiyun Song
- Department of PathologyQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
| | - Wei Yan
- The First Medical Center of Chinese PLA General HospitalBeijing100036China
| | - Aihua Sun
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
- College of Life SciencesHebei UniversityBaodingHebei071002China
- Research Unit of Proteomics Dirven Cancer Precision MedicineChinese Academy of Medical SciencesBeijing102206China
| | - Fuchu He
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
- Research Unit of Proteomics Dirven Cancer Precision MedicineChinese Academy of Medical SciencesBeijing102206China
| | - Jian Wang
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
- College of Life SciencesHebei UniversityBaodingHebei071002China
| | - Haidong Gao
- Department of Breast SurgeryQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
- Laboratory of OncologyQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
| | - Chunyan Tian
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
- College of Life SciencesHebei UniversityBaodingHebei071002China
- Research Unit of Proteomics Dirven Cancer Precision MedicineChinese Academy of Medical SciencesBeijing102206China
| |
Collapse
|
3
|
Hushmandi K, Saadat SH, Raei M, Daneshi S, Aref AR, Nabavi N, Taheriazam A, Hashemi M. Implications of c-Myc in the pathogenesis and treatment efficacy of urological cancers. Pathol Res Pract 2024; 259:155381. [PMID: 38833803 DOI: 10.1016/j.prp.2024.155381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Urological cancers, including prostate, bladder, and renal cancers, are significant causes of death and negatively impact the quality of life for patients. The development and progression of these cancers are linked to the dysregulation of molecular pathways. c-Myc, recognized as an oncogene, exhibits abnormal levels in various types of tumors, and current evidence supports the therapeutic targeting of c-Myc in cancer treatment. This review aims to elucidate the role of c-Myc in driving the progression of urological cancers. c-Myc functions to enhance tumorigenesis and has been documented to increase growth and metastasis in prostate, bladder, and renal cancers. Furthermore, the dysregulation of c-Myc can result in a diminished response to therapy in these cancers. Non-coding RNAs, β-catenin, and XIAP are among the regulators of c-Myc in urological cancers. Targeting and suppressing c-Myc therapeutically for the treatment of these cancers has been explored. Additionally, the expression level of c-Myc may serve as a prognostic factor in clinical settings.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health,School of Health,Jiroft University Of Medical Sciences, Jiroft, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Xu Y, Duan S, Ye W, Zheng Z, Zhang J, Gao Y, Ye S. SLC34A2 promotes cell proliferation by activating STX17-mediated autophagy in esophageal squamous cell carcinoma. Thorac Cancer 2024; 15:1369-1384. [PMID: 38720472 PMCID: PMC11168907 DOI: 10.1111/1759-7714.15314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Solute carrier family 34 member 2 (SLC34A2) has been implicated in the development of various malignancies. However, the clinical significance and underlying molecular mechanisms of SLC34A2 in esophageal squamous cell carcinoma (ESCC) remain elusive. METHODS Western blotting, quantitative real-time PCR and immunohistochemistry were utilized to evaluate the expression levels of SLC34A2 mRNA/protein in ESCC cell lines or tissues. Kaplan-Meier curves were employed for survival analysis. CCK-8, colony formation, EdU and xenograft tumor model assays were conducted to determine the impact of SLC34A2 on ESCC cell proliferation. Cell cycle was examined using flow cytometry. RNA-sequencing and enrichment analysis were carried out to explore the potential signaling pathways. The autophagic flux was evaluated by western blotting, mRFP-GFP-LC3 reporter system and transmission electron microscopy. Immunoprecipitation and mass spectrometry were utilized for identification of potential SLC34A2-interacting proteins. Cycloheximide (CHX) chase and ubiquitination assays were conducted to test the protein stability. RESULTS The expression of SLC34A2 was significantly upregulated in ESCC and correlated with unfavorable clinicopathologic characteristics particularly the Ki-67 labeling index and poor prognosis of ESCC patients. Overexpression of SLC34A2 promoted ESCC cell proliferation, while silencing SLC34A2 had the opposite effect. Moreover, SLC34A2 induced autophagy to promote ESCC cell proliferation, whereas inhibition of autophagy suppressed the proliferation of ESCC cells. Further studies showed that SLC34A2 interacted with an autophagy-related protein STX17 to promote autophagy and proliferation of ESCC cells by inhibiting the ubiquitination and degradation of STX17. CONCLUSIONS These findings indicate that SLC34A2 may serve as a prognostic biomarker for ESCC.
Collapse
Affiliation(s)
- Yi Xu
- Department of Oncology, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Shiyu Duan
- Department of Pathology, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Wen Ye
- Department of Oncology, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Zhousan Zheng
- Department of Oncology, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Jiaxing Zhang
- Department of Oncology, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Ying Gao
- Department of Radiation Oncology, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Sheng Ye
- Department of Oncology, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
5
|
Zhang Y, Liu Z, Li L, Zeng D, Sun H, Wu J, Zhou R, Liao W. Co-expression pattern of SLC transporter genes associated with the immune landscape and clinical outcomes in gastric cancer. J Cell Mol Med 2023; 27:4181-4194. [PMID: 37909856 PMCID: PMC10746955 DOI: 10.1111/jcmm.18003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
Solute carrier (SLC) transporters play a dual role in the occurrence and progression of tumours by acting as both suppressors and promoters. However, the overall impact of SLC transcriptome signatures on the tumour microenvironment, biological behaviour and clinical stratification of gastric cancer has not been thoroughly investigated. Therefore, we comprehensively analysed the expression profiles of the SLC transporter family members to identify novel molecular subtypes in gastric cancer. We identified two distinct SLC subtypes, SLC-S1 and SLC-S2, using non-negative matrix factorization. These subtypes were markedly linked with the tumour microenvironment landscape, biological pathway activation and distinct clinical features of gastric cancer. Furthermore, a new scoring model, the SLC score, was developed to quantify the SLC subtypes. High SLC scores indicated a pattern of 'SLC-S2', characterized by stromal infiltration and activation, poor prognosis and insensitivity to chemotherapy and immunotherapy, but high sensitivity to imatinib. The SLC score could serve as a supplement to the Tumour Node Metastasis (TNM) staging system to guide personalized treatment strategies and predict prognosis for patients with gastric cancer.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhihong Liu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Lingbo Li
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Dongqiang Zeng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Huiying Sun
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jianhua Wu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Rui Zhou
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Wangjun Liao
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
6
|
Lavoro A, Falzone L, Tomasello B, Conti GN, Libra M, Candido S. In silico analysis of the solute carrier (SLC) family in cancer indicates a link among DNA methylation, metabolic adaptation, drug response, and immune reactivity. Front Pharmacol 2023; 14:1191262. [PMID: 37397501 PMCID: PMC10308049 DOI: 10.3389/fphar.2023.1191262] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction: The oncogenic transformation is driven by genetic and epigenetic alterations influencing cancer cell fate. These alterations also result in metabolic reprogramming by modulating the expression of membrane Solute Carrier (SLC) transporters involved in biomolecules trafficking. SLCs act as tumor suppressors or promoters influencing cancer methylome, tumor growth, immune-escape, and chemoresistance. Methods: This in silico study aimed to identify the deregulated SLCs in various tumor types compared to normal tissues by analyzing the TCGA Target GTEx dataset. Furthermore, the relationship between SLCs expression and the most relevant tumor features was tackled along with their genetic regulation mediated by DNA methylation. Results: We identified 62 differentially expressed SLCs, including the downregulated SLC25A27 and SLC17A7, as well as the upregulated SLC27A2 and SLC12A8. Notably, SLC4A4 and SLC7A11 expression was associated with favorable and unfavorable outcome, respectively. Moreover, SLC6A14, SLC34A2, and SLC1A2 were linked to tumor immune responsiveness. Interestingly, SLC24A5 and SLC45A2 positively correlated with anti-MEK and anti-RAF sensitivity. The expression of relevant SLCs was correlated with hypo- and hyper-methylation of promoter and body region, showing an established DNA methylation pattern. Noteworthy, the positive association of cg06690548 (SLC7A11) methylation with cancer outcome suggests the independent predictive role of DNA methylation at a single nucleotide resolution. Discussion: Although our in silico overview revealed a wide heterogeneity depending on different SLCs functions and tumor types, we identified key SLCs and pointed out the role of DNA methylation as regulatory mechanism of their expression. Overall, these findings deserve further studies to identify novel cancer biomarkers and promising therapeutic targets.
Collapse
Affiliation(s)
- Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Naples, Italy
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Giuseppe Nicolò Conti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| |
Collapse
|
7
|
Zhang JX, Xu Y, Gao Y, Chen C, Zheng ZS, Yun M, Weng HW, Xie D, Ye S. Retraction Note: Decreased expression of miR-939 contributes to chemoresistance and metastasis of gastric cancer via dysregulation of SLC34A2 and Raf/MEK/ERK pathway. Mol Cancer 2022; 21:227. [PMID: 36577974 PMCID: PMC9795626 DOI: 10.1186/s12943-022-01702-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1186/s12943-017-0586-y.
Collapse
Affiliation(s)
- Jia-Xing Zhang
- grid.412615.50000 0004 1803 6239Department of Oncology, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan road II, 510080 Guangzhou, People’s Republic of China ,grid.12981.330000 0001 2360 039XThe State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| | - Yi Xu
- grid.412615.50000 0004 1803 6239Department of Oncology, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan road II, 510080 Guangzhou, People’s Republic of China
| | - Ying Gao
- grid.412615.50000 0004 1803 6239Department of Oncology, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan road II, 510080 Guangzhou, People’s Republic of China
| | - Cui Chen
- grid.412615.50000 0004 1803 6239Department of Oncology, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan road II, 510080 Guangzhou, People’s Republic of China
| | - Zhou-San Zheng
- grid.412615.50000 0004 1803 6239Department of Oncology, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan road II, 510080 Guangzhou, People’s Republic of China
| | - Miao Yun
- grid.12981.330000 0001 2360 039XThe State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| | - Hui-Wen Weng
- grid.412615.50000 0004 1803 6239Department of Oncology, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan road II, 510080 Guangzhou, People’s Republic of China
| | - Dan Xie
- grid.12981.330000 0001 2360 039XThe State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, 510060 Guangzhou, People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Sheng Ye
- grid.412615.50000 0004 1803 6239Department of Oncology, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan road II, 510080 Guangzhou, People’s Republic of China
| |
Collapse
|
8
|
Yang Y, Wu J, Yu X, Wu Q, Cao H, Dai X, Chen H. SLC34A2 promotes cancer proliferation and cell cycle progression by targeting TMPRSS3 in colorectal cancer. Pathol Res Pract 2021; 229:153706. [PMID: 34929599 DOI: 10.1016/j.prp.2021.153706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/26/2021] [Accepted: 11/20/2021] [Indexed: 10/19/2022]
Abstract
Solute carrier family 34 member 2 (SLC34A2), a family member of sodium-driven phosphate cotransporters, has been reported to facilitate cell proliferation and tumor growth. However, the functional mechanism by which SLC34A2 promotes cell growth and cell cycle progression remains poorly understood. Here, we reported that SLC34A2 was overexpressed in CRC by analysis of TCGA and GEO datasets. A total of 45 differentially expressed genes (DEGs) were identified from comparing SLC34A2-high or -low groups and functional enrichment analysis of these DEGs demonstrated that cell cycle pathway was enriched. Interestingly, we found a positive correlation between TMPRSS3 (transmembrane serine protease 3) and SLC34A2, which was confirmed by RT-qPCR and western blotting. Furthermore, TMPRSS3 was also upregulated in CRC tumor tissues compared to normal tissues. Patients with high TMPRSS3 expression had poor prognosis. Functionally, TMPRSS3 deficiency inhibited cell proliferation and colony formation in CRC cells. TMPRSS3 overexpression in SLC34A2-deficient cells antagonized siSLC34A2-mediated cell cycle inhibition by promoting cyclin E, cyclin A protein expression. Based on these results, our study suggests that SLC34A2 promotes cancer proliferation and cell cycle progression by targeting TMPRSS3 in colorectal cancer cells.
Collapse
Affiliation(s)
- Yi Yang
- Department of Oncological Surgery, Kunshan Traditional Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan City, Jiangsu Province 215300, China
| | - Jiang Wu
- Department of Oncological Surgery, Kunshan Traditional Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan City, Jiangsu Province 215300, China
| | - Xiaofeng Yu
- Department of Oncological Surgery, Kunshan Traditional Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan City, Jiangsu Province 215300, China
| | - Qing Wu
- Department of Oncological Surgery, Kunshan Traditional Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan City, Jiangsu Province 215300, China
| | - Huihua Cao
- Department of Oncological Surgery, Kunshan Traditional Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan City, Jiangsu Province 215300, China
| | - Xinyi Dai
- Department of Spleen and Stomach Disease Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210092, China
| | - Haijun Chen
- Department of Oncological Surgery, Kunshan Traditional Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan City, Jiangsu Province 215300, China.
| |
Collapse
|
9
|
Gu L, Xu Y, Jian H. Identification of a 15 DNA Damage Repair-Related Gene Signature as a Prognostic Predictor for Lung Adenocarcinoma. Comb Chem High Throughput Screen 2021; 25:1437-1449. [PMID: 34279196 DOI: 10.2174/1386207324666210716104714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung Adenocarcinoma (LUAD) is a common malignancy with a poor prognosis due to the lack of predictive markers. DNA Damage Repair (DDR)-related genes are closely related to cancer progression and treatment. INTRODUCTION To identify a reliable DDR-related gene signature as an independent predictor of LUAD. METHODS DDR-related genes were obtained using combined analysis of TCGA-LUAD data and literature information, followed by the identification of DDR-related prognostic genes. The DDR-related molecular subtypes were then screened, followed by Kaplan-Meier analysis, feature gene identification, and pathway enrichment analysis of each subtype. Moreover, Cox and LASSO regression analyses were performed for the feature genes of each subtype to construct a prognostic model. The clinical utility of the prognostic model was confirmed using the validation dataset GSE72094 and nomogram analysis. RESULTS Eight DDR-related prognostic genes were identified from 31 DDR-related genes. Using consensus cluster analysis, three molecular subtypes were screened. Cluster 2 had the best prognosis, while cluster 3 had the worst. Compared to cluster 2, clusters 1 and 3 consisted of more stage 3 - 4, T2-T4, male, and older samples. The feature genes of clusters 1, 2, and 3 were mainly enriched in the cell cycle, arachidonic acid metabolism, and ribosomes. Furthermore, a 15-feature gene signature was identified for improving the prognosis of LUAD patients. CONCLUSION The 15 DDR-related feature gene signature is an independent and powerful prognostic biomarker for LUAD that may improve risk classification and provide supplementary information for a more accurate evaluation and personalized treatment.
Collapse
Affiliation(s)
- Linping Gu
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Yuanyuan Xu
- Department of Surgery Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Hong Jian
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, 200030, China
| |
Collapse
|
10
|
Evaluation of the Prognostic Value of Solute Carrier Family 34 Member 2 "SLC34A2" in Papillary Thyroid Carcinoma: An Immunohistochemical Study. ACTA ACUST UNITED AC 2021; 2021:3198555. [PMID: 34336552 PMCID: PMC8298178 DOI: 10.1155/2021/3198555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022]
Abstract
Background Papillary thyroid carcinoma (PTC) usually has an indolent clinical course, yet a subset of patients might show an aggressive course. Thus, better stratification of at-risk patients is mandatory for proper management. Solute carrier family 34 member 2 (SLC34A2) is an independent prognostic indicator in several cancers. However, only a few studies have been conducted to evaluate the prognostic value of SLC34A2 in PTC, with none of them assessing its immunohistochemical (IHC) expression in a large cohort of patients with PTC or exploring its possible relationship with tumor progression. Aim of the Study. We aimed to evaluate the IHC expression of SLC34A2 in a large series of PTC patients, correlate its expression with established clinicopathological factors, and find any possible relationship between this marker and patient prognosis. Material and Methods. A total of 476 samples (including 238 samples of PTC and 238 samples of normal thyroid tissue) collected between 2002 and 2005 were extracted from the archives of the Pathology Lab, Ain Shams University Hospitals. IHC analysis was performed using an anti-SLC34A2 antibody. Follow-up data were obtained. Results High SLC34A2 expression significantly correlated with important adverse clinicopathological parameters of PTC—i.e., late tumor stage, positive extrathyroid extension, tumor size > 4 cm, and age ≥ 55 years (p ≤ 0.001 for each). Kaplan–Meier analysis revealed that high SLC34A2 expression significantly correlated with shorter disease-free survival (DFS; p = 0.005), but not with overall survival (p = 0.111). Multivariate analysis showed SLC34A2 to be an independent prognostic factor affecting DFS. Conclusions High SLC34A2 IHC expression correlated with adverse clinicopathological prognostic parameters. Furthermore, SLC34A2 was identified as an independent factor for DFS that could serve to improve risk stratification of PTC patients for better management.
Collapse
|
11
|
Pizzagalli MD, Bensimon A, Superti‐Furga G. A guide to plasma membrane solute carrier proteins. FEBS J 2021; 288:2784-2835. [PMID: 32810346 PMCID: PMC8246967 DOI: 10.1111/febs.15531] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.
Collapse
Affiliation(s)
- Mattia D. Pizzagalli
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaAustria
| |
Collapse
|
12
|
Huo J, Wu L, Zang Y. A Prognostic Model of 15 Immune-Related Gene Pairs Associated With Tumor Mutation Burden for Hepatocellular Carcinoma. Front Mol Biosci 2020; 7:581354. [PMID: 33282911 PMCID: PMC7691640 DOI: 10.3389/fmolb.2020.581354] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/08/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Tumor mutation burden (TMB) is an emerging biomarker for immunotherapy of hepatocellular carcinoma (HCC), but its value for clinical application has not been fully revealed. Materials and Methods We used the Wilcox test to identify the differentially expressed immune-related genes (DEIRGs) in groups with high and low TMB as well as screened the immune gene pairs related to prognosis using univariate Cox regression analysis. A LASSO Cox regression prognostic model was developed by combining The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) with the International Cancer Genome Consortium (ICGC) LIRI-JP cohort, and internal (TCGA, ICGC) and external (GSE14520) validation analyses were conducted on the predictive value of the model. We also explored the relationship between the prognostic model and tumor microenvironment via the ESTIMATE algorithm and performed clinical correlation analysis by the chi-square test, revealing its underlying molecular mechanism with the help of Gene Set Enrichment Analysis (GSEA). Results The prognostic model consisting of 15 immune gene pairs showed high predictive value for short- and long-term survival of HCC in three independent cohorts. Based on univariate multivariate Cox regression analysis, the prognostic model could be used to independently predict the prognosis in each independent cohort. The immune score, stromal score, and estimated score values were lower in the high-risk group than in the low-risk group. As shown by the chi-square test, the prognostic model exhibited an obvious correlation with the tumor stage [American Joint Committee on Cancer tumor–node–metastasis (AJCC-TNM) (p < 0.001), Barcelona Clinic Liver Cancer (BCLC) (p = 0.003)], histopathological grade (p = 0.033), vascular invasion (p = 0.009), maximum tumor diameter (p = 0.013), and background of liver cirrhosis (p < 0.001). GSEA revealed that the high-risk group had an enrichment of many oncology features, including the cell cycle, mismatch repair, DNA replication, RNA degradation, etc. Conclusion Our research developed and validated a reliable prognostic model associated with TMB for HCC, which may help to further enrich the therapeutic targets of HCC.
Collapse
Affiliation(s)
- Junyu Huo
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liqun Wu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yunjin Zang
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Arnst JL, Beck GR. Modulating phosphate consumption, a novel therapeutic approach for the control of cancer cell proliferation and tumorigenesis. Biochem Pharmacol 2020; 183:114305. [PMID: 33129806 DOI: 10.1016/j.bcp.2020.114305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023]
Abstract
Phosphorus, often in the form of inorganic phosphate (Pi), is critical to cellular function on many levels; it is required as an integral component of kinase signaling, in the formation and function of DNA and lipids, and energy metabolism in the form of ATP. Accordingly, crucial aspects of cell mitosis - such as DNA synthesis and ATP energy generation - elevate the cellular requirement for Pi, with rapidly dividing cells consuming increased levels. Mechanisms to sense, respond, acquire, accumulate, and potentially seek Pi have evolved to support highly proliferative cellular states such as injury and malignant transformation. As such, manipulating Pi availability to target rapidly dividing cells presents a novel strategy to reduce or prevent unrestrained cell growth. Currently, limited knowledge exists regarding how modulating Pi consumption by pre-cancerous cells might influence the initiation of aberrant growth during malignant transformation, and if reducing the bioavailability or suppressing Pi consumption by malignant cells could alter tumorigenesis. The concept of targeting Pi-regulated pathways and/or consumption by pre-cancerous or tumor cells represents a novel approach to cancer prevention and control, although current data remains insufficient as to rigorously assess the therapeutic value and physiological relevance of this strategy. With this review, we present a critical evaluation of the paradox of how an element critical to essential cellular functions can, when available in excess, influence and promote a cancer phenotype. Further, we conjecture how Pi manipulation could be utilized as a therapeutic intervention, either systemically or at the cell level, to ultimately suppress or treat cancer initiation and/or progression.
Collapse
Affiliation(s)
- Jamie L Arnst
- Emory University, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta, GA 30322, United States
| | - George R Beck
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA 30033, United States; Emory University, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta, GA 30322, United States; The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
14
|
Deng HY, Zhu XQ, Ding YY, Li JD, Yang J, Ke TF, Wang R, Chen Q, Hu J, Wang YY, Liao CD. Multislice spiral CT images combined with CEA and lymphocyte-to-neutrophil ratio predict recurrence and post-operative metastasis of rectal cancer. Mol Cell Probes 2019; 50:101502. [PMID: 31891748 DOI: 10.1016/j.mcp.2019.101502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/03/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022]
Abstract
To explore the early predictors of post-operative recurrence and metastasis of rectal cancer, analyse the associated risk, and construct a model. Retrospective collection. Four hundred patients with rectal cancer underwent surgical resection and pathological diagnosis from September 2013 to September 2014. During the post-operative period, the patients were tested by imaging examination, serum tumour markers, and routine blood follow-up for at least 3 years. Preoperative CT examination of tumour size, lymphocyte-to-neutrophil ratio, and CEA were significant biomarkers for predicting recurrence and/or metastasis of post-operative rectal cancer. The stratified threshold of the lesion size cut-off point in CT images of patients with rectal cancer was 18.75 cm3, the cut-off point value of the lymphocyte-to-neutrophil ratio was 0.33, and the CEA cut-off point value was 16.97 ng/ml. We used the cut-off point to perform stratified survival analysis to obtain two K-M curves and conduct a log-rank test. The Cox multivariate risk regression results were as follows: preoperative CT images of lesion size, lymphocyte-to-neutrophil ratio, and CEA. The AUC of the normogram model for the prediction of post-operative recurrence and metastasis of rectal cancer is 0.939. Preoperative CT examination of tumour size can predict post-operative recurrence and metastasis of rectal cancer and can be used to analyse its risk. The lymphocyte-to-neutrophil ratio and CEA can also predict post-operative tumour recurrence and metastasis risk.
Collapse
Affiliation(s)
- Hui-Yuan Deng
- The Third Affiliated Hospital of Kunming Medical University, Radiology Department of Yunnan Cancer Hospital, Kunming, 650118, Yunnan, China
| | - Xiang-Qing Zhu
- The 920th Hospital of Joint Logistics Support Force, Kunming, 650032, Yunnan, China
| | - Ying-Ying Ding
- The Third Affiliated Hospital of Kunming Medical University, Radiology Department of Yunnan Cancer Hospital, Kunming, 650118, Yunnan, China
| | - Jin-Dan Li
- The Third Affiliated Hospital of Kunming Medical University, Radiology Department of Yunnan Cancer Hospital, Kunming, 650118, Yunnan, China
| | - Jun Yang
- The Third Affiliated Hospital of Kunming Medical University, Radiology Department of Yunnan Cancer Hospital, Kunming, 650118, Yunnan, China
| | - Teng-Fei Ke
- The Third Affiliated Hospital of Kunming Medical University, Radiology Department of Yunnan Cancer Hospital, Kunming, 650118, Yunnan, China
| | - Rui Wang
- The Third Affiliated Hospital of Kunming Medical University, Radiology Department of Yunnan Cancer Hospital, Kunming, 650118, Yunnan, China
| | - Qiang Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jing Hu
- Department of Medical Oncology, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
| | - Yan-Ying Wang
- The 920th Hospital of Joint Logistics Support Force, Kunming, 650032, Yunnan, China
| | - Cheng-de Liao
- The Third Affiliated Hospital of Kunming Medical University, Radiology Department of Yunnan Cancer Hospital, Kunming, 650118, Yunnan, China.
| |
Collapse
|
15
|
Geng W, Dong K, Pu Q, Lv Y, Gao H. SHOC2 is associated with the survival of breast cancer cells and has prognostic value for patients with breast cancer. Mol Med Rep 2019; 21:867-875. [PMID: 31974612 PMCID: PMC6947812 DOI: 10.3892/mmr.2019.10889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
SHOC2 leucine rich repeat scaffold protein (SHOC2) has been identified as a positive regulator of the Ras pathway; however, the function of SHOC2 in breast cancer has rarely been explored. The current study investigated the effects of SHOC2 on breast cancer cell growth and evaluated its prognostic value in patients with breast cancer. The effects of SHOC2 on MCF‑7 and MDA‑MB‑231 breast cancer cells were studied using short hairpin RNA. In total, 120 pairs of formalin‑fixed, paraffin‑embedded breast cancer tissue specimens were compared to normal tissue using immunohistochemical staining. SHOC2 knockdown significantly inhibited MCF‑7 and MDA‑MB‑231 breast cancer cell proliferation, and induced cell apoptosis and cell cycle arrest. Additionally, the RAS‑MAPK/PI3K pathway was inhibited by SHOC2 knockdown. In a clinical study, the results revealed that high SHOC2 expression was associated with more aggressive clinical characteristics of breast cancer. Moreover, Kaplan‑Meier and Cox regression analyses indicated that SHOC2 expression was an independent prognostic factor for survival, suggesting that increased SHOC2 expression predicted a worse overall survival. This indicated that SHOC2 knockdown could affect breast cancer cell survival, and SHOC2 upregulation may be associated with a poor prognosis in patients with breast cancer.
Collapse
Affiliation(s)
- Wenwen Geng
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ke Dong
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qian Pu
- Department of Breast Surgery, Qilu Hospital (Qingdao) of Shandong University, Qingdao, Shandong 266000, P.R. China
| | - Yanrong Lv
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Haidong Gao
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
16
|
Wang SS, Chen G, Li SH, Pang JS, Cai KT, Yan HB, Huang ZG, He RQ. Identification and validation of an individualized autophagy-clinical prognostic index in bladder cancer patients. Onco Targets Ther 2019; 12:3695-3712. [PMID: 31190871 PMCID: PMC6526186 DOI: 10.2147/ott.s197676] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/22/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose: Autophagy is a major catabolic system by which eukaryotic cells undergo self-degradation of damaged, defective, or unwanted intracellular components. An abnormal autophagic level is implicated in the pathogenesis of multiple diseases, including cancers. The aim of this study is to explore the prognostic value of autophagy in bladder cancer (BC), which is a major cause of cancer-related death globally. Patients and methods: First, 27 differentially expressed autophagy-related genes (ARGs) were identified in BC patients based on The Cancer Genome Atlas (TCGA) database. Functional enrichment analyses hinted that autophagy may act in a tumor-suppressive role in the initiation of BC. Then, the Cox proportional hazard regression model were employed to identify three key prognostic ARGs (JUN, MYC, and ITGA3), which were related with overall survival (OS) significantly in BC. The three genes represented important clinical significance and prognostic value in BC. Then a prognostic index (PI) was constructed. Results: The PI was constructed based on the three genes, and significantly stratified BC patients into high- and low-risk groups in terms of OS (HR=1.610, 95% CI=1.200–2.160, P=0.002). PI remained as an independent prognostic factor in multivariate analyses (HR=2.355, 95% CI=1.483–3.739, P<0.001). When integrated with clinical characteristics of age and stage, an autophagy-clinical prognostic index (ACPI) was finally validated, which had improved performance in predicting OS of BC patients (HR=2.669, 95% CI=1.986–3.587, P<0.001). The ACPI was confirmed in datasets of GSE13507 (HR=7.389, 95% CI=3.645–14.980, P<0.001) and GSE31684 (HR=1.665, 95% CI=0.872–3.179, P=0.122). Conclusion: This study provides a potential prognostic signature for predicting prognosis of BC patients and molecular insights of autophagy in BC.
Collapse
Affiliation(s)
- Shi-Shuo Wang
- Department of Pathology, The First Affilated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affilated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Sheng-Hua Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jin-Shu Pang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Kai-Teng Cai
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hai-Biao Yan
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affilated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Rong-Quan He
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
17
|
Chen J, Wang P, Cai R, Peng H, Zhang C, Zhang M. SLC34A2 promotes neuroblastoma cell stemness via enhancement of miR-25/Gsk3β-mediated activation of Wnt/β-catenin signaling. FEBS Open Bio 2019; 9:527-537. [PMID: 30868061 PMCID: PMC6396163 DOI: 10.1002/2211-5463.12594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/24/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer stem cells contribute to cancer progression, but the mechanisms underlying neuroblastoma stem cell development are unclear. Here, we examined the roles of the transcription factor SLC34A2 in regulating the stemness of neuroblastoma cells. We found that SLC34A2 expression was negatively correlated with the overall survival and relapse‐free survival probability of neuroblastoma patients. Additionally, SLC34A2 expression was observed to be remarkably increased in spheroids derived from neuroblastoma cells. Knockdown of SLC34A2 attenuated the expression of stemness markers and spheroid formation capacity of neuroblastoma cell‐derived spheroids, and overexpression of SLC34A2 exerted the opposite effects in neuroblastoma cells. Mechanistically, SLC34A2 was found to directly bind to the promoter of MIR25, which targets glycogen synthesis kinase 3β (Gsk3β), an antagonist of Wnt signaling. Transfection of miR‐25 inhibitor or a Gsk3β overexpression plasmid attenuated the effects of SLC34A2 overexpression on the stemness of neuroblastoma cells. Our results demonstrate that miR‐25/Gsk3β‐mediated activation of Wnt signaling is responsible for SLC34A2‐induced enhancement of neuroblastoma cell stemness.
Collapse
Affiliation(s)
- Jianlong Chen
- Department of Neurosurgery Hainan General Hospital Xiuying District Haikou China
| | - Pengcheng Wang
- Department of Neurosurgery Hainan General Hospital Xiuying District Haikou China
| | - Renduan Cai
- Department of Neurosurgery Hainan General Hospital Xiuying District Haikou China
| | - Hao Peng
- Department of Neurosurgery Hainan General Hospital Xiuying District Haikou China
| | - Chaocai Zhang
- Department of Neurosurgery Hainan General Hospital Xiuying District Haikou China
| | - Mao Zhang
- Department of Neurosurgery Hainan General Hospital Xiuying District Haikou China
| |
Collapse
|
18
|
Solute carrier family 34 member 2 overexpression contributes to tumor growth and poor patient survival in colorectal cancer. Biomed Pharmacother 2018; 99:645-654. [PMID: 29653487 DOI: 10.1016/j.biopha.2018.01.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/14/2018] [Accepted: 01/24/2018] [Indexed: 02/07/2023] Open
Abstract
Solute carrier family 34 member 2 (SLC34A2) is a well-known sodium-dependent phosphate transporter that has recently been linked to cancer development. However, its specific oncogenic role remains controversial in numerous human malignancies, and is currently unknown in colorectal cancer (CRC). Therefore, in this study we firstly used Oncomine database to determine its expression in cancer tissues and found it is overexpressed in thyroid, ovarian and renal cancer, while it is opposite in lung, breast and pancreas cancer. Using qRT-PCR and western blot, we then demonstrated its overexpression in CRC tissues as compared with adjacent normal tissues (n = 20). In a retrospective cohort enrolling 190 CRC patients, we proved its expression was significantly correlated with N stage. Furthermore, high SLC34A2 expression is associated with higher postoperative metastasis rate and serves as an independent adverse factor affecting patient prognosis. In subgroup analysis, SLC34A2 expression could stratify the patient prognosis in stage II and III CRC, but failed in stage IV CRC. In cellular assays in vitro, knockdown of SLC34A2 dramatically inhibited the proliferation and colony formation, induced the apoptosis and arrests the cell cycle progression of HCT-116 CRC cells. In cellular assays in vivo, knockdown of SLC34A2 significantly inhibited the growth of xenografts, decreasing Ki-67 and proliferating cell nuclear antigen (PCNA) expression and increasing apoptosis rate. Taken together, our study indicates SLC34A2 plays a crucial promoting role in CRC development and therefore has great potential to be further developed as a reliable biomarker for CRC diagnosis and treatment.
Collapse
|
19
|
Ecke TH, Stier K, Weickmann S, Zhao Z, Buckendahl L, Stephan C, Kilic E, Jung K. miR-199a-3p and miR-214-3p improve the overall survival prediction of muscle-invasive bladder cancer patients after radical cystectomy. Cancer Med 2017; 6:2252-2262. [PMID: 28879675 PMCID: PMC5633587 DOI: 10.1002/cam4.1161] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 07/05/2017] [Accepted: 07/17/2017] [Indexed: 12/19/2022] Open
Abstract
To improve the clinical decision‐making regarding further treatment management and follow‐up scheduling for patients with muscle‐invasive bladder cancer (MIBC) after radical cystectomy (RC), a better prediction accuracy of prognosis for these patients is urgently needed. The objective of this study was to evaluate the validity of differentially expressed microRNAs (miRNAs) based on a previous study as prognostic markers for overall survival (OS) after RC in models combined with clinicopathological data. The expression of six miRNAs (miR‐100‐5p, miR‐130b‐3p, miR‐141‐3p, miR‐199a‐3p, miR‐205‐5p, and miR‐214‐3p) was measured by RT‐qPCR in formalin‐fixed, paraffin‐embedded tissue samples from 156 MIBC patients who received RC in three urological centers. Samples from 2000 to 2013 were used according to their tissue availability, with follow‐up until June 2016. The patient cohort was randomly divided into a training (n = 100) and test set (n = 56). Seventy‐three samples from adjacent normal tissue were used as controls. Kaplan–Meier, univariate and multivariate Cox regression, and decision curve analyses were carried out to assess the association of clinicopathological variables and miRNAs to OS. Both increased (miR‐130b‐3p and miR‐141‐3p) and reduced (miR‐100‐5p, miR‐199a‐3p, and miR‐214‐3p) miRNA expressions were found in MIBC samples in comparison to nonmalignant tissue samples (P < 0.0001). miR‐199a‐3p and miR‐214‐3p were independent markers of OS in Cox regression models with the significant clinicopathological variables age, tumor status, and lymph node status. The prediction model with the clinicopathological variables was improved by these two miRNAs in both sets. The predictive benefit was confirmed by decision curve analysis. In conclusion, the inclusion of both miRNAs into models based on clinical data for the outcome prediction of MIBC patients after RC could be a valuable approach to improve prognostic accuracy.
Collapse
Affiliation(s)
| | - Katja Stier
- Department of Urology, Campus Benjamin Franklin, University Hospital Charité, Germany
| | - Sabine Weickmann
- Department of Urology, Campus Charité Mitte, University Hospital Charité, Germany
| | - Zhongwei Zhao
- Department of Urology, Campus Charité Mitte, University Hospital Charité, Germany
| | - Laura Buckendahl
- Department of Urology, Campus Charité Mitte, University Hospital Charité, Germany
| | - Carsten Stephan
- Department of Urology, Campus Charité Mitte, University Hospital Charité, Germany.,Berlin Institute for Urologic Research, Berlin, Germany
| | - Ergin Kilic
- Institute of Pathology, University Hospital Charité, Germany
| | - Klaus Jung
- Department of Urology, Campus Charité Mitte, University Hospital Charité, Germany.,Berlin Institute for Urologic Research, Berlin, Germany
| |
Collapse
|
20
|
Zhang Z, Ye S, Zhang M, Wu J, Yan H, Li X, He J. High expression of SLC34A2 is a favorable prognostic marker in lung adenocarcinoma patients. Tumour Biol 2017; 39:1010428317720212. [PMID: 28720066 DOI: 10.1177/1010428317720212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dysregulation of SLC34A2 (NaPi2b) in tumors has attracted wide attention, but its expression and function in non-small cell lung cancer remains unclear. By examining its expression in lung adenocarcinoma and correlation to patient outcome, we aimed to explore its prognostic and therapeutic values in this deadly disease. Overall, 175 cases of lung adenocarcinoma sample were included in this study. Histological subtyping of them was diagnosed according to standards of the International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society in 2011. Protein expression of SLC34A2 and anaplastic lymphoma kinase in these samples was determined by immunohistochemistry. Epidermal growth factor receptor mutations were examined using amplification refractory mutation system. Statistical analysis was performed using software of Pearson's correlation coefficient. High expression of SLC34A2 was identified in about 2/3 patients and correlated with significantly better patient's overall survival. Epidermal growth factor receptor mutations were detected in about 53% of patients with no statistically significant difference to patient's overall survival. Anaplastic lymphoma kinase rearrangement was found in 8 out of 175 patients, harboring this abnormality leads to shorter overall survival. No correlation has been found between SLC34A2 expression and epidermal growth factor receptor mutation or anaplastic lymphoma kinase rearrangements in lung adenocarcinoma. High expression of SLC34A2 is present in about 3/4 lung adenocarcinoma samples and predicts better outcome. Since it is a membrane protein, antibody-based drugs targeting this marker might bring new resolution to this deadly disease.
Collapse
Affiliation(s)
- Zhaoxuan Zhang
- 1 Anhui Provincial Hospital, Anhui Medical University, Hefei, P.R. China.,2 Department of Pathology, Anhui Provincial Cancer Hospital, Hefei, P.R. China
| | - Shan Ye
- 2 Department of Pathology, Anhui Provincial Cancer Hospital, Hefei, P.R. China
| | - Min Zhang
- 2 Department of Pathology, Anhui Provincial Cancer Hospital, Hefei, P.R. China
| | - Jing Wu
- 2 Department of Pathology, Anhui Provincial Cancer Hospital, Hefei, P.R. China
| | - Hong Yan
- 2 Department of Pathology, Anhui Provincial Cancer Hospital, Hefei, P.R. China
| | - Xiaojie Li
- 2 Department of Pathology, Anhui Provincial Cancer Hospital, Hefei, P.R. China
| | - Jie He
- 1 Anhui Provincial Hospital, Anhui Medical University, Hefei, P.R. China.,2 Department of Pathology, Anhui Provincial Cancer Hospital, Hefei, P.R. China
| |
Collapse
|