1
|
Zhang X, Bi F, Yang Q. Mechanism underlying CDC20 affecting epithelial ovarian cancer biological behavior by regulating BAG6 ubiquitination. Cell Signal 2025; 127:111577. [PMID: 39710091 DOI: 10.1016/j.cellsig.2024.111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Epithelial ovarian cancer (EOC) endangers women's life and health. It is reported that cell division cycle 20 (CDC20) plays a role in EOC, but its underlying mechanisms remain unclear. Additionally, the involvement of bcl-2-associated athanogen-6 (BAG6) in EOC has not been previously reported. This study demonstrated that CDC20 was highly expressed in EOC and exhibited oncogenic properties through both in vitro and in vivo molecular biology experiments. In contrast, BAG6 was low expressed and functioned as a tumor suppressor. Both CDC20 and BAG6 were found to correlate with patient stage. Notably, the degradation of BAG6, mediated by CDC20 via ubiquitin-proteasome pathway, was shown to enhance the malignant biological behavior of EOC. Furthermore, the interaction between CDC20 and BAG6 was dependent on the WD40 domain of CDC20 and the D-box of BAG6. These findings provided valuable insights into the molecular mechanisms of EOC and established a theoretical basis for novel therapeutic targets in clinical treatment.
Collapse
Affiliation(s)
- Xiaocui Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Fangfang Bi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
2
|
Sevim Nalkiran H, Biri I, Nalkiran I, Uzun H, Durur S, Bedir R. CDC20 and CCNB1 Overexpression as Prognostic Markers in Bladder Cancer. Diagnostics (Basel) 2024; 15:59. [PMID: 39795587 PMCID: PMC11719780 DOI: 10.3390/diagnostics15010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/05/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Bladder cancer (BC) is one of the ten most common cancers worldwide, with a high recurrence rate and significant variation in clinical outcomes based on tumor grade and stage. This study aimed to investigate the gene expression profiles at different cancer stages to assess their potential prognostic value. Methods: RNA was extracted from paraffin-embedded BC tissues and the gene expression levels of CDC20 and CCNB1 were analyzed using qRT-PCR. A total of 54 BC patient samples were included in the analysis and categorized into low-grade (LG) (n = 23) and high-grade (HG) (n = 31) tumors, as well as stages pTa, pT1, and pT2. Results: CDC20 gene expression was significantly higher in the HG group (mean fold-change: 16.1) compared to the LG group (mean fold-change: 10.54), indicating a significant association with tumor grade (p = 0.039). However, no significant differences were observed in CDC20 expression across the cancer stages. For CCNB1, while gene expression was significantly elevated in higher-stage tumors (pT2 vs. pTa; p = 0.038), no significant association was found between CCNB1 expression and tumor grade. Survival analysis revealed that increased CCNB1 expression and advanced cancer stage were associated with poorer overall survival, whereas no significant impact of CDC20 expression or tumor grade on survival was observed. Correlation analysis indicated a positive relationship between CDC20 expression and tumor grade (r = 0.284, p = 0.038) and between CCNB1 expression and tumor stage (r = 0.301, p = 0.027). Conclusions: Our findings suggest that CDC20 overexpression is linked to higher tumor grades, while CCNB1 overexpression is associated with more advanced cancer stages in BC. These results underscore the potential utility of CDC20 and CCNB1 as biomarkers for tumor prognosis and as therapeutic targets. Further studies with larger cohorts are needed to validate these findings and better understand the molecular mechanisms driving BC progression.
Collapse
Affiliation(s)
- Hatice Sevim Nalkiran
- Department of Medical Biology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Türkiye; (H.S.N.); (I.B.); (S.D.)
| | - Ilknur Biri
- Department of Medical Biology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Türkiye; (H.S.N.); (I.B.); (S.D.)
| | - Ihsan Nalkiran
- Department of Medical Biology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Türkiye; (H.S.N.); (I.B.); (S.D.)
| | - Hakki Uzun
- Department of Urology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Türkiye;
| | - Sumeyye Durur
- Department of Medical Biology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Türkiye; (H.S.N.); (I.B.); (S.D.)
| | - Recep Bedir
- Department of Medical Pathology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Türkiye;
| |
Collapse
|
3
|
Bose GS, Jindal S, Landage KG, Jindal A, Mahale MP, Kulkarni AP, Mittal S. SMAR1 and p53-regulated lncRNA RP11-431M3.1 enhances HIF1A translation via miR-138 in colorectal cancer cells under oxidative stress. FEBS J 2024; 291:4696-4713. [PMID: 39240540 DOI: 10.1111/febs.17253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/16/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
Eukaryotic cells respond to stress by altering coding and non-coding gene expression programs. Alongside many approaches and regulatory mechanisms, long non-coding RNAs (lncRNA) are finding a significant place in gene regulation, suggesting an involvement in various cellular processes and pathophysiology. LncRNAs are regulated by many transcription factors, including SMAR1 and p53, which are tumor suppressor genes. SMAR1 inhibits cancer cell metastasis and invasion and is also known to inhibit apoptosis during low-dose stress in coordination with p53. Data mining analysis suggested that these tumor suppressor genes might coregulate the lncRNA RP11-431M3.1 in colon cancer cells. Importantly, RP11-431M3.1 expression was found to be negatively correlated with patient survival rates in a number of cancers. Oxidative stress occurs when an imbalance in the body is caused by reactive oxygen species (ROS). This imbalance is known to be important in the development/pathogenesis of colon cancer. We are researching the role and control of this lncRNA in HCT116 cells under conditions of oxidative stress. We observed a dose-dependent differential expression of lncRNA upon H2O2 treatment and found that p53 and SMAR1 bind differentially to the promoter in response to the dose of stress inducer used. RP11-431M3.1 was observed to sponge miR-138 which has an important target gene, hypoxia-inducible factor (HIF1A). miR-138 was observed to bind differentially to RP11-431M3.1 and HIF1A RNA depending on the dose of oxidative stress. Furthermore, the knockdown of RP11-431M3.1 decreased the migration and proliferation of colon cancer cells. Our results suggest a previously undescribed regulatory mechanism through which RP11-431M3.1 is transcriptionally regulated by SMAR1 and p53, target HIF1A through miR-138, and highlight its potential as a therapeutic and diagnostic marker for cancer.
Collapse
Affiliation(s)
- Ganesh Suraj Bose
- Department of Biotechnology, Savitribai Phule Pune University, India
| | - Shruti Jindal
- Department of Biotechnology, Savitribai Phule Pune University, India
| | | | - Aarzoo Jindal
- Department of Biotechnology, Savitribai Phule Pune University, India
| | | | | | - Smriti Mittal
- Department of Biotechnology, Savitribai Phule Pune University, India
| |
Collapse
|
4
|
Miao R, Xu Z, Han T, Liu Y, Zhou J, Guo J, Xing Y, Bai Y, He Z, Wu J, Wang W, Hu D. Based on machine learning, CDC20 has been identified as a biomarker for postoperative recurrence and progression in stage I & II lung adenocarcinoma patients. Front Oncol 2024; 14:1351393. [PMID: 39114311 PMCID: PMC11303833 DOI: 10.3389/fonc.2024.1351393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
Objective By utilizing machine learning, we can identify genes that are associated with recurrence, invasion, and tumor stemness, thus uncovering new therapeutic targets. Methods To begin, we obtained a gene set related to recurrence and invasion from the GEO database, a comprehensive gene expression database. We then employed the Weighted Gene Co-expression Network Analysis (WGCNA) to identify core gene modules and perform functional enrichment analysis on them. Next, we utilized the random forest and random survival forest algorithms to calculate the genes within the key modules, resulting in the identification of three crucial genes. Subsequently, one of these key genes was selected for prognosis analysis and potential drug screening using the Kaplan-Meier tool. Finally, in order to examine the role of CDC20 in lung adenocarcinoma (LUAD), we conducted a variety of in vitro and in vivo experiments, including wound healing assay, colony formation assays, Transwell migration assays, flow cytometric cell cycle analysis, western blotting, and a mouse tumor model experiment. Results First, we collected a total of 279 samples from two datasets, GSE166722 and GSE31210, to identify 91 differentially expressed genes associated with recurrence, invasion, and stemness in lung adenocarcinoma. Functional enrichment analysis revealed that these key gene clusters were primarily involved in microtubule binding, spindle, chromosomal region, organelle fission, and nuclear division. Next, using machine learning, we identified and validated three hub genes (CDC45, CDC20, TPX2), with CDC20 showing the highest correlation with tumor stemness and limited previous research. Furthermore, we found a close association between CDC20 and clinical pathological features, poor overall survival (OS), progression-free interval (PFI), progression-free survival (PFS), and adverse prognosis in lung adenocarcinoma patients. Lastly, our functional research demonstrated that knocking down CDC20 could inhibit cancer cell migration, invasion, proliferation, cell cycle progression, and tumor growth possibly through the MAPK signaling pathway. Conclusion CDC20 has emerged as a novel biomarker for monitoring treatment response, recurrence, and disease progression in patients with lung adenocarcinoma. Due to its significance, further research studying CDC20 as a potential therapeutic target is warranted. Investigating the role of CDC20 could lead to valuable insights for developing new treatments and improving patient outcomes.
Collapse
Affiliation(s)
- Rui Miao
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
- Institute of Precision Medicine (AUST-IPM), Anhui University of Science and Technology, Huainan, China
| | - Zhi Xu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Tao Han
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Yingru Xing
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Zhonglei He
- Institute of Precision Medicine (AUST-IPM), Anhui University of Science and Technology, Huainan, China
- School of Public Health, Anhui University of Science and Technology, Huainan, China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Wenxin Wang
- Institute of Precision Medicine (AUST-IPM), Anhui University of Science and Technology, Huainan, China
- School of Public Health, Anhui University of Science and Technology, Huainan, China
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
5
|
Zhou H, Deng N, Li Y, Hu X, Yu X, Jia S, Zheng C, Gao S, Wu H, Li K. Distinctive tumorigenic significance and innovative oncology targets of SUMOylation. Theranostics 2024; 14:3127-3149. [PMID: 38855173 PMCID: PMC11155398 DOI: 10.7150/thno.97162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
Protein SUMOylation, a post-translational modification, intricately regulates diverse biological processes including gene expression, cell cycle progression, signaling pathway transduction, DNA damage response, and RNA metabolism. This modification contributes to the acquisition of tumorigenicity and the maintenance of cancer hallmarks. In malignancies, protein SUMOylation is triggered by various cellular stresses, promoting tumor initiation and progression. This augmentation is orchestrated through its specific regulatory mechanisms and characteristic biological functions. This review focuses on elucidating the fundamental regulatory mechanisms and pathological functions of the SUMO pathway in tumor pathogenesis and malignant evolution, with particular emphasis on the tumorigenic potential of SUMOylation. Furthermore, we underscore the potential therapeutic benefits of targeting the SUMO pathway, paving the way for innovative anti-tumor strategies by perturbing this dynamic and reversible modifying process.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Na Deng
- Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yanshu Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaoyun Hu
- Scientific Experimental Center, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Shiheng Jia
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Chen Zheng
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Shan Gao
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation; Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning 110122, China
- Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Liaoning Province, China
| | - Kai Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| |
Collapse
|
6
|
Cao X, Zhou X, Hou F, Huang YE, Yuan M, Long M, Chen S, Lei W, Zhu J, Chen J, Zhang T, Guo AY, Jiang W. ncRNADrug: a database for validated and predicted ncRNAs associated with drug resistance and targeted by drugs. Nucleic Acids Res 2024; 52:D1393-D1399. [PMID: 37953323 PMCID: PMC10767907 DOI: 10.1093/nar/gkad1042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Drug resistance is a major barrier in cancer treatment and anticancer drug development. Growing evidence indicates that non-coding RNAs (ncRNAs), especially microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play pivotal roles in cancer progression, therapy, and drug resistance. Furthermore, ncRNAs have been proven to be promising novel therapeutic targets for cancer treatment. Reversing dysregulated ncRNAs by drugs holds significant potential as an effective therapeutic strategy for overcoming drug resistance. Therefore, we developed ncRNADrug, an integrated and comprehensive resource that records manually curated and computationally predicted ncRNAs associated with drug resistance, ncRNAs targeted by drugs, as well as potential drug combinations for the treatment of resistant cancer. Currently, ncRNADrug collects 29 551 experimentally validated entries involving 9195 ncRNAs (2248 miRNAs, 4145 lncRNAs and 2802 circRNAs) associated with the drug resistance of 266 drugs, and 32 969 entries involving 10 480 ncRNAs (4338 miRNAs, 6087 lncRNAs and 55 circRNAs) targeted by 965 drugs. In addition, ncRNADrug also contains associations between ncRNAs and drugs predicted from ncRNA expression profiles by differential expression analysis. Altogether, ncRNADrug surpasses the existing related databases in both data volume and functionality. It will be a useful resource for drug development and cancer treatment. ncRNADrug is available at http://www.jianglab.cn/ncRNADrug.
Collapse
Affiliation(s)
- Xinyu Cao
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Xu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Fei Hou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yu-e Huang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Mengqin Yuan
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Min Long
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Sina Chen
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Wanyue Lei
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jicun Zhu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jiahao Chen
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Tao Zhang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - An-Yuan Guo
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Jiang
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
7
|
Xian F, Zhao C, Huang C, Bie J, Xu G. The potential role of CDC20 in tumorigenesis, cancer progression and therapy: A narrative review. Medicine (Baltimore) 2023; 102:e35038. [PMID: 37682144 PMCID: PMC10489547 DOI: 10.1097/md.0000000000035038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
The cell division cycle 20 homologue (CDC20) is known to regulate the cell cycle. Many studies have suggested that dysregulation of CDC20 is associated with various pathological processes in malignant solid tumors, including tumorigenesis, progression, chemoradiotherapy resistance, and poor prognosis, providing a biomarker for cancer diagnosis and prognosis. Some researchers have demonstrated that CDC20 also regulates apoptosis, immune microenvironment, and tumor angiogenesis. In this review, we have systematically summarized the biological functions of CDC20 in solid cancers. Furthermore, we briefly synthesized multiple medicines that inhibited CDC20. We anticipate that CDC20 will be a promising and effective biomarker and therapeutic target for the treatment of human cancer.
Collapse
Affiliation(s)
- Feng Xian
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Oncology, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Caixia Zhao
- Department of Oncology, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Chun Huang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Bie
- Department of Oncology, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Guohui Xu
- Department of Interventional Radiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
8
|
Jour G, Illa-Bochaca I, Ibrahim M, Donnelly D, Zhu K, Miera EVSD, Vasudevaraja V, Mezzano V, Ramswami S, Yeh YH, Winskill C, Betensky RA, Mehnert J, Osman I. Genomic and Transcriptomic Analyses of NF1-Mutant Melanoma Identify Potential Targeted Approach for Treatment. J Invest Dermatol 2023; 143:444-455.e8. [PMID: 35988589 DOI: 10.1016/j.jid.2022.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022]
Abstract
There is currently no targeted therapy to treat NF1-mutant melanomas. In this study, we compared the genomic and transcriptomic signatures of NF1-mutant and NF1 wild-type melanoma to reveal potential treatment targets for this subset of patients. Genomic alterations were verified using qPCR, and differentially expressed genes were independently validated using The Cancer Genome Atlas data and immunohistochemistry. Digital spatial profiling with multiplex immunohistochemistry and immunofluorescence were used to validate the signatures. The efficacy of combinational regimens driven by these signatures was tested through in vitro assays using low-passage cell lines. Pathogenic NF1 mutations were identified in 27% of cases. NF1-mutant melanoma expressed higher proliferative markers MK167 and CDC20 than NF1 wild-type (P = 0.008), which was independently validated both in The Cancer Genome Atlas dataset (P = 0.01, P = 0.03) and with immunohistochemistry (P = 0.013, P = 0.036), respectively. Digital spatial profiling analysis showed upregulation of LY6E within the tumor cells (false discovery rate < 0.01, log2 fold change > 1), confirmed with multiplex immunofluorescence showing colocalization of LY6E in melanoma cells. The combination of MAPK/extracellular signal‒regulated kinase kinase and CDC20 coinhibition induced both cytotoxic and cytostatic effects, decreasing CDC20 expression in multiple NF1-mutant cell lines. In conclusion, NF1-mutant melanoma is associated with a distinct genomic and transcriptomic profile. Our data support investigating CDC20 inhibition with MAPK pathway inhibitors as a targeted regimen in this melanoma subtype.
Collapse
Affiliation(s)
- George Jour
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA; Department of Pathology, Molecular Pathology and Diagnostics, NYU Langone Medical Center, New York, New York, USA.
| | - Irineu Illa-Bochaca
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Milad Ibrahim
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Douglas Donnelly
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Kelsey Zhu
- Department of Pathology, Molecular Pathology and Diagnostics, NYU Langone Medical Center, New York, New York, USA
| | - Eleazar Vega-Saenz de Miera
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Varshini Vasudevaraja
- Department of Pathology, Molecular Pathology and Diagnostics, NYU Langone Medical Center, New York, New York, USA
| | - Valeria Mezzano
- Department of Pathology, Molecular Pathology and Diagnostics, NYU Langone Medical Center, New York, New York, USA
| | - Sitharam Ramswami
- Department of Pathology, Molecular Pathology and Diagnostics, NYU Langone Medical Center, New York, New York, USA
| | - Yu-Hsin Yeh
- Department of Biostatistics, NYU School of Global Public Health, New York, New York, USA
| | - Carolyn Winskill
- Department of Biostatistics, NYU School of Global Public Health, New York, New York, USA
| | - Rebecca A Betensky
- Department of Biostatistics, NYU School of Global Public Health, New York, New York, USA
| | - Janice Mehnert
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Iman Osman
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
9
|
He W, Meng J. CDC20: a novel therapeutic target in cancer. Am J Transl Res 2023; 15:678-693. [PMID: 36915766 PMCID: PMC10006751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/27/2022] [Indexed: 03/16/2023]
Abstract
Cell division cycle protein 20 (Cdc20) is a member of the cell cyclin family. In the early stage of mitosis, it activates the anaphase-promoting complex (APC) and forms the E3 ubiquitin ligase complex APCCdc20, which destroys key regulators of the cell cycle and promotes mitosis. Cdc20 serves as a target for the spindle checkpoint, ensuring proper chromosome segregation. As an oncoprotein, Cdc20 is highly expressed in a variety of malignant tumors, and Cdc20 overexpression is associated with poor prognosis of these tumors. This review aims to dissect the tumorigenic role of Cdc20 in human malignancies and its targeting strategies.
Collapse
Affiliation(s)
- Wenning He
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University Hohhot 010050, Inner Mongolia Autonomous Region, P. R. China
| | - Jun Meng
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University Hohhot 010050, Inner Mongolia Autonomous Region, P. R. China
| |
Collapse
|
10
|
Ni K, Hong L. Current Progress and Perspectives of CDC20 in Female Reproductive Cancers. Curr Mol Med 2023; 23:193-199. [PMID: 35319365 DOI: 10.2174/1573405618666220321130102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 02/08/2023]
Abstract
The cancers of the cervix, endometrium, ovary, and breast are great threats to women's health. Cancer is characterized by the uncontrolled proliferation of cells and deregulated cell cycle progression is one of the main causes of malignancy. Agents targeting cell cycle regulators may have potential anti-tumor effects. CDC20 (cell division cycle 20 homologue) is a co-activator of the anaphase-promoting complex/cyclosome (APC/C) and thus acts as a mitotic regulator. In addition, CDC20 serves as a subunit of the mitotic checkpoint complex (MCC) whose function is to inhibit APC/C. Recently, higher expression of CDC20 has been reported in these cancers and was closely associated with their clinicopathological parameters, indicating CDC20 a potential target for cancer treatment that is worth further study. In the present review, we summarized current progress and put forward perspectives of CDC20 in female reproductive cancers.
Collapse
Affiliation(s)
- Ke Ni
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
11
|
Bao P, Li P, Zhou X, Zhang H, You S, Xu Z, Wu Q. SMAR1 inhibits proliferation, EMT and Warburg effect of bladder cancer cells by suppressing the activity of the Wnt/β-catenin signaling pathway. Cell Cycle 2023; 22:229-241. [PMID: 35980125 PMCID: PMC9817122 DOI: 10.1080/15384101.2022.2112006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 01/11/2023] Open
Abstract
This study aimed to investigate the effects of scaffold matrix attachment region binding protein 1 (SMAR1) on the development of bladder cancer (BCa). SMAR1 expression in paired tumor and corresponding adjacent normal tissues from 55 BCa patients was detected by quantitative reverse transcription-polymerase chain reaction. BCa cells were transfected to regulate SMAR1 expression. BCa cells were treated with XAV-939, LiCl and 2-deoxyglucose. The effect of SMAR1 on the viability, proliferation, migration, invasion and Warburg effect of BCa cells was researched by counting kit-8, colony formation assay, Transwell and aerobic glycolysis assays. Western blot was performed to detect protein expression. BCa cell growth in vivo was recorded in nude mice. Immunohistochemical staining was performed for clinical and xenografted tumor tissue specimens. SMAR1 expression was down-regulated in BCa patients, associating with worse prognoses. SMAR1 knockdown enhanced the viability, proliferation, migration, invasion, EMT and Warburg effect of BCa cells. The opposite effect was found in the SMAR1 overexpression BCa cells. XAV-939 treatment reversed the elevation of β-catenin, c-Myc and Cyclin D1 proteins expression and Warburg effect in Bca cells post-SMAR1 knockdown. LiCl treatment abrogated the inhibition of β-catenin, c-Myc and Cyclin D1 proteins expression and Warburg effect proteins due to SMAR1 overexpression in BCa cells. SMAR1 overexpression inhibited the growth of BCa cells in vivo. SMAR1 might suppress the Wnt/β-catenin signaling pathway activity to inhibit the progression of BCa. It might be an effective treatment target for BCa.
Collapse
Affiliation(s)
- Pengfei Bao
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, P. R. China
| | - Peng Li
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, P. R. China
| | - Xiaoqing Zhou
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, P. R. China
| | - Huijiang Zhang
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, P. R. China
| | - Shengjie You
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, P. R. China
| | - Zhaoyu Xu
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, P. R. China
| | - Qi Wu
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, P. R. China
| |
Collapse
|
12
|
Paul D, Kales SC, Cornwell JA, Afifi MM, Rai G, Zakharov A, Simeonov A, Cappell SD. Revealing β-TrCP activity dynamics in live cells with a genetically encoded biosensor. Nat Commun 2022; 13:6364. [PMID: 36289220 PMCID: PMC9606124 DOI: 10.1038/s41467-022-33762-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/30/2022] [Indexed: 12/25/2022] Open
Abstract
The F-box protein beta-transducin repeat containing protein (β-TrCP) acts as a substrate adapter for the SCF E3 ubiquitin ligase complex, plays a crucial role in cell physiology, and is often deregulated in many types of cancers. Here, we develop a fluorescent biosensor to quantitatively measure β-TrCP activity in live, single cells in real-time. We find β-TrCP remains constitutively active throughout the cell cycle and functions to maintain discreet steady-state levels of its substrates. We find no correlation between expression levels of β-TrCP and β-TrCP activity, indicating post-transcriptional regulation. A high throughput screen of small-molecules using our reporter identifies receptor-tyrosine kinase signaling as a key axis for regulating β-TrCP activity by inhibiting binding between β-TrCP and the core SCF complex. Our study introduces a method to monitor β-TrCP activity in live cells and identifies a key signaling network that regulates β-TrCP activity throughout the cell cycle.
Collapse
Affiliation(s)
- Debasish Paul
- grid.48336.3a0000 0004 1936 8075Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Stephen C. Kales
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850 USA
| | - James A. Cornwell
- grid.48336.3a0000 0004 1936 8075Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Marwa M. Afifi
- grid.48336.3a0000 0004 1936 8075Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Ganesha Rai
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850 USA
| | - Alexey Zakharov
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850 USA
| | - Anton Simeonov
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850 USA
| | - Steven D. Cappell
- grid.48336.3a0000 0004 1936 8075Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| |
Collapse
|
13
|
Zheng Y, Lu W, Chen B, Zhao K. Identification of a novel ubiquitination related gene signature for patients with breast cancer. Medicine (Baltimore) 2022; 101:e30598. [PMID: 36123926 PMCID: PMC9478291 DOI: 10.1097/md.0000000000030598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ubiquitination related genes (URGs) are important biomarkers and therapeutic targets in cancer. However, URG prognostic prediction models have not been established in breast cancer (BC) before. Our study aimed to identify URGs to serve as potential prognostic indicators in patients with BC.The URGs were downloaded from the ubiquitin and ubiquitin-like conjugation database. GSE42568 and The Cancer Genome Atlas were exploited to screen differentially expressed URGs in BC. The univariate Cox proportional hazards regression analysis, least absolute shrinkage and selection operator analysis, and multivariate Cox proportional hazards regression analysis were employed to construct multi-URG signature in the training set (GSE42568). Kaplan-Meier curve and log-rank method analysis, and ROC curve were applied to validate the predictive ability of the multi-URG signature in BC. Next, we validated the signature in test set (GSE20685). Finally, we performed GSEA analysis to explore the mechanism.We developed a 4-URG (CDC20, PCGF2, UBE2S, and SOCS2) signature with good performance for patients with BC. According to this signature, BC patients can be classified into a high-risk and a low-risk group with significantly different overall survival. The predictive ability of this signature was favorable in the test set. Univariate and multivariate Cox regression analysis showed that the 4-URG signature was independent risk factor for BC patients. GSEA analysis showed that the 4-URG signature may related to the function of DNA replication, DNA repair, and cell cycle.Our study developed a novel 4-URG signature as a potential indicator for BC.
Collapse
Affiliation(s)
- Yuan Zheng
- Department of Thyroid and Breast Surgery, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, P.R. China
| | - Wenliang Lu
- Department of Thyroid and Breast Surgery, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, P.R. China
| | - Bo Chen
- Department of Thyroid and Breast Surgery, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, P.R. China
| | - Kankan Zhao
- Department of Thyroid and Breast Surgery, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, P.R. China
- *Correspondence: Kankan Zhao, Department of Thyroid and Breast Surgery, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan City, Hubei Province 430070, P.R. China (e-mail: )
| |
Collapse
|
14
|
The Prognostic Assessment of CDC20 in Patients with Renal Clear Cell Carcinoma and Its Relationship with Body Immunity. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:7727539. [PMID: 35800227 PMCID: PMC9200543 DOI: 10.1155/2022/7727539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022]
Abstract
This article analyzes the relationship between cell division cycle (CDC20) molecules and oncology outcomes in patients with renal clear cell carcinoma (KIRC). CDC20 appears to act as a regulatory protein interacting with many other proteins at multiple points in the cycle. The RNA sequencing data and corresponding clinical information of CDC20 molecules were obtained from The Cancer Genome Atlas (TCGA) database. The expression of CDC20 in kidney renal clear cell carcinoma tissue and adjacent normal tissue was detected by immunohistochemical methods. Logistic analysis was performed to analyze the role of CDC20 in the clinicopathological characteristics and prognosis of KIRC. Gene Set Enrichment Analysis (GSEA) was used to identify the signal pathways which were related to CDC20. Independent prognostic factors were evaluated using univariate and multivariate Cox regression analysis. A nomogram involved in CDC20 expression and clinicopathological variables was conducted to predict overall survival (OS) in KIRC patients at 1, 3, and 5 years. Furthermore, the relation between CDC20 and immunity was also studied. Our results showed that CDC20 was upregulated in kidney renal clear cell carcinoma tissues, accompanying shorter OS (all P < 0.05). According to the results obtained by immunohistochemistry and TCGA database, CDC20 was significantly upregulated in kidney renal clear cell carcinoma tissues compared with neighboring normal kidney tissues. Univariate and multivariate Cox regression analysis showed that high expression of CDC20 was an independent prognostic factor of poor prognosis in kidney renal clear cell carcinoma patients (all P < 0.05). GSEA analysis suggested that the high expression of CDC20 was related to eight multiple signaling pathways. In addition, CDC20 was linked to tumour mutation burden (TMB), immune checkpoint molecules, tumour microenvironment, and immunological infiltration.
Collapse
|
15
|
Bruno S, Ghelli Luserna di Rorà A, Napolitano R, Soverini S, Martinelli G, Simonetti G. CDC20 in and out of mitosis: a prognostic factor and therapeutic target in hematological malignancies. J Exp Clin Cancer Res 2022; 41:159. [PMID: 35490245 PMCID: PMC9055704 DOI: 10.1186/s13046-022-02363-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
Cell division cycle 20 homologue (CDC20) is a well-known regulator of cell cycle, as it controls the correct segregation of chromosomes during mitosis. Many studies have focused on the biological role of CDC20 in cancer development, as alterations of its functionality have been linked to genomic instability and evidence demonstrated that high CDC20 expression levels are associated with poor overall survival in solid cancers. More recently, novel CDC20 functions have been demonstrated or suggested, including the regulation of apoptosis and stemness properties and a correlation with immune cell infiltration. Here, we here summarize and discuss the role of CDC20 inside and outside mitosis, starting from its network of interacting proteins. In the last years, CDC20 has also attracted more interest in the blood cancer field, being overexpressed and showing an association with prognosis both in myeloid and lymphoid malignancies. Preclinical findings showed that selective CDC20 and APC/CCDC20/APC/CCDH1 inhibitors, namely Apcin and proTAME, are effective against lymphoma and multiple myeloma cells, resulting in mitotic arrest and apoptosis and synergizing with clinically-relevant drugs. The evidence and hypothesis presented in this review provide the input for further biological and chemical studies aiming to dissect novel potential CDC20 roles and targeting strategies in hematological malignancies.
Collapse
Affiliation(s)
- Samantha Bruno
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy.
| | - Roberta Napolitano
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Simona Soverini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| |
Collapse
|
16
|
Bhuniya R, Yuan X, Bai L, Howie KL, Wang R, Li W, Park F, Yang CY. Design, Synthesis, and Biological Evaluation of Apcin-Based CDC20 Inhibitors. ACS Med Chem Lett 2022; 13:188-195. [PMID: 35178174 PMCID: PMC8842116 DOI: 10.1021/acsmedchemlett.1c00544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022] Open
Abstract
CDC20 binds to anaphase-promoting complex/cyclosome E3 ubiquitin ligase to recruit substrates for ubiquitination to promote mitotic progression. In breast and other cancers, CDC20 overexpression causes cell cycle dysregulation and is associated with poor prognosis. Apcin was previously discovered as a CDC20 inhibitor exhibiting high micromolar activities. Here, we designed and developed new apcin-based inhibitors by eliminating a controlled substance, chloral hydrate, required for synthesis. We further improved the antitumor activities of the inhibitors by replacing the pyrimidine group with substituted thiazole-containing groups. When evaluated in MDA-MB-231 and MDA-MB-468 triple negative breast cancer cell lines, several analogs showed 5-10-fold improvement over apcin with IC50 values at ∼10 μM in cell viability assays. Tubulin polymerization assay showed our CDC20 inhibitors had no off-target effects against tubulin. Proapoptotic Bim accumulation was detected in our CDC20 inhibitor treated MDA-MB-468 cells. The most effective inhibitors, 22, warrant further development to target CDC20 in diseases.
Collapse
Affiliation(s)
- Rajib Bhuniya
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Xinrui Yuan
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Longchuan Bai
- Department
of Internal Medicine, Hematology & Oncology Division, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kathryn L. Howie
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Rui Wang
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Wei Li
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Frank Park
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Chao-Yie Yang
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States,E-mail: . Phone: (901) 448-6931
| |
Collapse
|
17
|
Zhang X. Identification of potential prognostic markers associated with lung metastasis in breast cancer by weighted gene co-expression network analysis. Cancer Biomark 2022; 33:299-310. [PMID: 34459389 DOI: 10.3233/cbm-210199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Breast cancer (BC) is an aggressive cancer with a high percentage recurrence and metastasis. As one of the most common distant metastasis organ in BC, lung metastasis has a worse prognosis than that of liver and bone. Therefore, it's important to explore some potential prognostic markers associated with the lung metastasis in BC for preventive treatment. In this study, transcriptomic data and clinical information of BC patients were downloaded from The Cancer Genome Atlas (TCGA) database. Co-expression modules constructed by weighted gene co-expression network analysis (WGCNA) found the royal blue module was significantly associated with lung metastasis in BC. Then, co-expression genes of this module were analyzed for functional enrichment. Furthermore, the prognostic value of these genes was assessed by GEPIA Database and Kaplan-Meier Plotter. Results showed that the hub genes, LMNB and CDC20, were up-regulated in BC and had a worse survival of the patients. Therefore, we speculate that these two genes play crucial roles in the process of lung metastasis in BC, which can be used as potential prognostic markers in lung metastasis of BC. Collectively, our study identified two potential key genes in the lung metastasis of BC, which might be applied as the prognostic markers of the precise treatment in breast cancer with lung metastasis.
Collapse
Affiliation(s)
- Xixun Zhang
- The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515041, China
| |
Collapse
|
18
|
Peptide Nanoparticle-Mediated Combinatorial Delivery of Cancer-Related siRNAs for Synergistic Anti-Proliferative Activity in Triple Negative Breast Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14100957. [PMID: 34681181 PMCID: PMC8540820 DOI: 10.3390/ph14100957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022] Open
Abstract
Triple negative breast cancer (TNBC) is one of the deadliest types of cancer for women of different age groups. Frequently this cancer does not respond to conservative treatment. Combinatorial RNAi can be suggested as an advanced approach to TNBC therapy. Due to the fact that TNBC cells overexpress chemokine receptor 4 we used modular L1 peptide-based nanoparticles modified with CXCR4 ligand for combinatorial delivery of siRNAs suppressing major transduction pathways. TNBC cell line MDA-MB-231 was used as a cellular model. Genes encoding the AQP3, CDC20, and COL4A2 proteins responsible for proliferative activity in TNBC cells were selected as RNAi targets. The siRNA binding ability of the carrier was studied at different charge ratios. The silencing specificity was demonstrated for all siRNAs studied. Alamar Blue proliferation assay has shown significant reduction in the anti-proliferative activity after combinatorial siRNA transfection compared to single siRNA delivery. The most significant synergistic effect has been demonstrated for combinatorial transfection of anti-COL4A2 and anti-CDC20 siRNAs what resulted in 1.5-2 fold inhibition of proliferation and migration of TNBC cells. Based on our findings, we have concluded that combinatorial treatment by CXCR4-ligand modified L1-polyplexes formed with AQP3, CDC20, and COL4A2 siRNAs effectively inhibits proliferation of TNBC cells and can be suggested as useful tool for RNAi-mediated cancer therapy.
Collapse
|
19
|
Pant R, Alam A, Choksi A, Shah VK, Firmal P, Chattopadhyay S. Chromatin remodeling protein SMAR1 regulates adipogenesis by modulating the expression of PPARγ. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159045. [PMID: 34450266 DOI: 10.1016/j.bbalip.2021.159045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/15/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022]
Abstract
Adipogenesis is described as the process of conversion of pre-adipocytes into differentiated lipid-laden adipocytes. Adipogenesis is known to be regulated by a myriad of transcription factors and co-regulators. However, there is a dearth of information regarding the mechanisms that regulate these transcription factors and hence control adipogenesis. PPARγ is the master transcriptional regulator of adipogenesis and its expression is essential for adipocyte differentiation. Herein, we identified that scaffold/matrix attachment region-binding protein 1 (SMAR1) negatively regulates adipogenesis. We observed that SMAR1 gets downregulated during adipocyte differentiation and knockdown of SMAR1 promotes lipid accumulation and adipocyte differentiation. Mechanistically, we have shown that SMAR1 suppresses PPARγ through recruitment of the HDAC1/mSin3a repressor complex to the PPARγ promoter. We further identified cell division cycle 20 (cdc20) mediated proteasomal degradation of SMAR1 during adipogenesis. Moreover, knockdown of cdc20 resulted in stabilization of SMAR1 and a reduction in adipocyte differentiation. Taken together, our observations suggest that SMAR1 functions as a negative regulator of adipogenesis by inhibiting PPARγ expression in differentiating adipocytes.
Collapse
Affiliation(s)
- Richa Pant
- National Centre for Cell Science, S P Pune University Campus, Ganeshkhind, Pune 411007, India.
| | - Aftab Alam
- National Centre for Cell Science, S P Pune University Campus, Ganeshkhind, Pune 411007, India; Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, United States of America
| | - Arpankumar Choksi
- National Centre for Cell Science, S P Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Vibhuti Kumar Shah
- National Centre for Cell Science, S P Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Priyanka Firmal
- National Centre for Cell Science, S P Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Samit Chattopadhyay
- National Centre for Cell Science, S P Pune University Campus, Ganeshkhind, Pune 411007, India; Department of Biological Sciences, BITS Pilani, K. K. Birla Goa Campus, NH 17B, Zuarinagar, Goa 403726, India; Indian Institute of Chemical Biology; 4, Raja S C Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
20
|
Yang Q, Zhao J, Chen D, Wang Y. E3 ubiquitin ligases: styles, structures and functions. MOLECULAR BIOMEDICINE 2021; 2:23. [PMID: 35006464 PMCID: PMC8607428 DOI: 10.1186/s43556-021-00043-2] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/30/2021] [Indexed: 01/10/2023] Open
Abstract
E3 ubiquitin ligases are a large family of enzymes that join in a three-enzyme ubiquitination cascade together with ubiquitin activating enzyme E1 and ubiquitin conjugating enzyme E2. E3 ubiquitin ligases play an essential role in catalyzing the ubiquitination process and transferring ubiquitin protein to attach the lysine site of targeted substrates. Importantly, ubiquitination modification is involved in almost all life activities of eukaryotes. Thus, E3 ligases might be involved in regulating various biological processes and cellular responses to stress signal associated with cancer development. Thanks to their multi-functions, E3 ligases can be a promising target of cancer therapy. A deeper understanding of the regulatory mechanisms of E3 ligases in tumorigenesis will help to find new prognostic markers and accelerate the growth of anticancer therapeutic approaches. In general, we mainly introduce the classifications of E3 ligases and their important roles in cancer progression and therapeutic functions.
Collapse
Affiliation(s)
- Quan Yang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Jinyao Zhao
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Dan Chen
- Department of Pathology, First Affiliated Hospital, Dalian Medical University, Dalian, 116044, China.
| | - Yang Wang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
21
|
Guo H, Li Y, Liu Y, Chen L, Gao Z, Zhang L, Zhou N, Guo H, Shi B. Prognostic Role of the Ubiquitin Proteasome System in Clear Cell Renal Cell Carcinoma: A Bioinformatic Perspective. J Cancer 2021; 12:4134-4147. [PMID: 34093816 PMCID: PMC8176417 DOI: 10.7150/jca.53760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 04/24/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Clear cell renal cell carcinoma (ccRCC) is a common malignant tumor of the urinary system. The ubiquitin proteasome system (UPS) plays an important role in the generation, metabolism and survival of tumor. We are aimed to make a comprehensive exploration of the UPS's role in ccRCC with bioinformatic tools, which may contribute to the understanding of UPS in ccRCC, and give insight for further research. Methods: The UPS-related genes (UPSs) were collected by an integrative approach. The expression and clinical data were downloaded from TCGA database. R soft was used to perform the differentially expressed UPSs analysis, functional enrichment analysis. We also estimated prognostic value of each UPS with the help of GEPIA database. Two predicting models were constructed with the differentially expressed UPSs and prognosis-related genes, respectively. The correlations of risk score with clinical characteristics were also evaluated. Data of GSE29609 cohort were obtained from GEO database to validate the prognostic models. Results: We finally identified 91 differentially expressed UPSs, 48 prognosis related genes among them, and constructed a prognostic model with 18 UPSs successfully, the AUC was 0.760. With the help of GEPIA, we found 391 prognosis-related UPSs, accounting for 57.84% of all UPSs. Another prognostic model was constructed with 28 prognosis-related genes of them, and with a better AUC of 0.825. Additionally, our models can also stratify patients into high and low risk groups accurately in GSE29609 cohort. Similar prognostic values of our models were observed in the validated GSE29609 cohort. Conclusions: UPS is dysregulated in ccRCC. UPS related genes have significant prognostic value in ccRCC. Models constructed with UPSs are effective and applicable. An abnormal ubiquitin proteasome system should play an important role in ccRCC and be worthy of further study.
Collapse
Affiliation(s)
- Hongda Guo
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, P.R. China
| | - Yan Li
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, P.R. China
| | - Yaxiao Liu
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, P.R. China
| | - Lipeng Chen
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, P.R. China
| | - Zhengdong Gao
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, P.R. China
| | - Lekai Zhang
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, P.R. China
| | - Nan Zhou
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, P.R. China
| | - Hu Guo
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, P.R. China
| | - Benkang Shi
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, P.R. China
| |
Collapse
|
22
|
Choksi A, Parulekar A, Pant R, Shah VK, Nimma R, Firmal P, Singh S, Kundu GC, Shukla S, Chattopadhyay S. Tumor suppressor SMAR1 regulates PKM alternative splicing by HDAC6-mediated deacetylation of PTBP1. Cancer Metab 2021; 9:16. [PMID: 33863392 PMCID: PMC8052847 DOI: 10.1186/s40170-021-00252-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/30/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Highly proliferating cancer cells exhibit the Warburg effect by regulation of PKM alternative splicing and promoting the expression of PKM2. Majority of the alternative splicing events are known to occur in the nuclear matrix where various MARBPs actively participate in the alternative splicing events. SMAR1, being a MARBP and an important tumor suppressor, is known to regulate the splicing of various cancer-associated genes. This study focuses on the regulation of PKM alternative splicing and inhibition of the Warburg effect by SMAR1. METHODS Immunohistochemistry was performed in breast cancer patient samples to establish the correlation between SMAR1 and PKM isoform expression. Further, expression of PKM isoforms upon modulation in SMAR1 expression in breast cancer cell lines was quantified by qRT-PCR and western blot. The acetylation status of PTBP1 was estimated by immunoprecipitation along with its enrichment on PKM pre-mRNA by CLIP in SMAR1 knockdown conditions. The role of SMAR1 in tumor metabolism and tumorigenesis was explored by in vitro enzymatic assays and functional assays upon SMAR1 knockdown. Besides, in vivo tumor formation by injecting adeno-SMAR1-transduced MDA-MB-231 cells in NOD/SCID mice was performed. RESULTS The expression profile of SMAR1 and PKM isoforms in breast cancer patients revealed that SMAR1 has an inverse correlation with PKM2 and a positive correlation with PKM1. Further quantitative PKM isoform expression upon modulation in SMAR1 expression also reflects that SMAR1 promotes the expression of PKM1 over tumorigenic isoform PKM2. SMAR1 deacetylates PTBP1 via recruitment of HDAC6 resulting in reduced enrichment of PTBP1 on PKM pre-mRNA. SMAR1 inhibits the Warburg effect, tumorigenic potential of cancer cells, and in vivo tumor generation in a PKM2-dependent manner. CONCLUSIONS SMAR1 regulates PKM alternative splicing by causing HDAC6-dependent deacetylation of PTBP1, resulting in reduced enrichment of PTBP1 on PKM pre-mRNA. Additionally, SMAR1 suppresses glucose utilization and lactate production via repression of PKM2 expression. This suggests that tumor suppressor SMAR1 inhibits tumor cell metabolism and tumorigenic properties of cancer cells via regulation of PKM alternative splicing.
Collapse
Affiliation(s)
| | | | - Richa Pant
- National Centre for Cell Science, Pune, 411007, India
| | | | | | | | - Smriti Singh
- Indian Institute of Science Education and Research, Bhopal, 462066, India
| | - Gopal C Kundu
- National Centre for Cell Science, Pune, 411007, India.,Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, 751024, India
| | - Sanjeev Shukla
- Indian Institute of Science Education and Research, Bhopal, 462066, India
| | - Samit Chattopadhyay
- National Centre for Cell Science, Pune, 411007, India. .,Birla Institute of Technology and Science, Pilani - K K Birla Goa Campus, Goa, 403726, India.
| |
Collapse
|
23
|
Jia R, Weng Y, Li Z, Liang W, Ji Y, Liang Y, Ning P. Bioinformatics Analysis Identifies IL6ST as a Potential Tumor Suppressor Gene for Triple-Negative Breast Cancer. Reprod Sci 2021; 28:2331-2341. [PMID: 33650093 DOI: 10.1007/s43032-021-00509-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/21/2021] [Indexed: 12/11/2022]
Abstract
Improved insight into the molecular mechanisms of triple-negative breast cancer (TNBC) is required to predict prognosis and develop a new therapeutic strategy for targeted genes. The aim of this study was to identify genes significantly associated with TNBC and further analyze their prognostic significance. The Cancer Genome Atlas (TCGA) TNBC database and gene expression profiles of GSE76275 from Gene Expression Omnibus (GEO) were used to explore differentially co-expressed genes in TNBC compared with those in normal tissues and non-TNBC breast cancer tissues. Differential gene expression and weighted gene co-expression network analyses identified 24 differentially co-expressed genes. Functional annotation suggested that these genes were primarily enriched in processes such as metabolism, membrane, and protein binding. The protein-protein interaction (PPI) network further identified ten hub genes, five of which (MAPT, CBS, SOX11, IL6ST, and MEX3A) were confirmed to be differentially expressed in an independent dataset (GSE38959). Moreover, CBS and MEX3A expression was upregulated, whereas IL6ST expression was downregulated in TNBC tissues compared to that in other breast cancer subtypes. Furthermore, lower expression of IL6ST was associated with worse overall survival in patients with TNBC. Thus, IL6ST might play an important role in TNBC progression and could serve as a tumor suppressor gene for diagnosis and treatment.
Collapse
Affiliation(s)
- Rong Jia
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Yujie Weng
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Zhongxian Li
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Wei Liang
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Yucheng Ji
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Ying Liang
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Pengfei Ning
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
24
|
Lambrou GI, Vichos K, Koutsouris D, Zaravinos A. Identification of Co-Deregulated Genes in Urinary Bladder Cancer Using High-Throughput Methodologies. APPLIED SCIENCES 2021; 11:1785. [DOI: 10.3390/app11041785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Although several genes are known to be deregulated in urinary bladder cancer (UBC), the list of candidate prognostic markers has expanded due to the advance of high-throughput methodologies, but they do not always accord from study to study. We aimed to detect global gene co-expressional profiles among a high number of UBC tumors. We mined gene expression data from 5 microarray datasets from GEO, containing 131 UBC and 15 normal samples. Data were analyzed using unsupervised classification algorithms. The application of clustering algorithms resulted in the isolation of 6 down-regulated genes (TMP2, ACTC1, TAGLN, MFAP4, SPARCL1, and GLP1R), which were mainly implicated in the proteasome, base excision repair, and DNA replication functions. We also detected 6 up-regulated genes (CDC20, KRT14, APOBEC3B, MCM5, STMN, and YWHAB) mainly involved in cancer pathways. We identified lists of drugs that could potentially associate with the Differentially Expressed Genes (DEGs), including Vardenafil, Pyridone 6, and Manganese (co-upregulated genes) or 1D-myo-inositol 1,4,5-triphosphate (co-down regulated genes). We propose 12 novel candidate markers for UBC, as well as potential drugs, shedding more light on the underlying cause of the development and progression of the disease.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, 15127 Athens, Greece
- Biomedical Engineering Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - Kleanthis Vichos
- Biomedical Engineering Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
- School of Electrical and Computer Engineering, University of Patras, 26504 Patras, Greece
| | - Dimitrios Koutsouris
- Biomedical Engineering Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - Apostolos Zaravinos
- Department of Basic Medical Sciences, College of Medicine, Member of QU Health, Qatar University, Doha 2713, Qatar
| |
Collapse
|
25
|
Weng Y, Liang W, Ji Y, Li Z, Jia R, Liang Y, Ning P, Xu Y. Key Genes and Prognostic Analysis in HER2+ Breast Cancer. Technol Cancer Res Treat 2021; 20:1533033820983298. [PMID: 33499770 PMCID: PMC7844453 DOI: 10.1177/1533033820983298] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human epidermal growth factor 2 (HER2)+ breast cancer is considered the most dangerous type of breast cancers. Herein, we used bioinformatics methods to identify potential key genes in HER2+ breast cancer to enable its diagnosis, treatment, and prognosis prediction. Datasets of HER2+ breast cancer and normal tissue samples retrieved from Gene Expression Omnibus and The Cancer Genome Atlas databases were subjected to analysis for differentially expressed genes using R software. The identified differentially expressed genes were subjected to gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses followed by construction of protein-protein interaction networks using the STRING database to identify key genes. The genes were further validated via survival and differential gene expression analyses. We identified 97 upregulated and 106 downregulated genes that were primarily associated with processes such as mitosis, protein kinase activity, cell cycle, and the p53 signaling pathway. Visualization of the protein-protein interaction network identified 10 key genes (CCNA2, CDK1, CDC20, CCNB1, DLGAP5, AURKA, BUB1B, RRM2, TPX2, and MAD2L1), all of which were upregulated. Survival analysis using PROGgeneV2 showed that CDC20, CCNA2, DLGAP5, RRM2, and TPX2 are prognosis-related key genes in HER2+ breast cancer. A nomogram showed that high expression of RRM2, DLGAP5, and TPX2 was positively associated with the risk of death. TPX2, which has not previously been reported in HER2+ breast cancer, was associated with breast cancer development, progression, and prognosis and is therefore a potential key gene. It is hoped that this study can provide a new method for the diagnosis and treatment of HER2 + breast cancer.
Collapse
Affiliation(s)
- Yujie Weng
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Wei Liang
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yucheng Ji
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Zhongxian Li
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Rong Jia
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Ying Liang
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Pengfei Ning
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yingqi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
26
|
VanGenderen C, Harkness TAA, Arnason TG. The role of Anaphase Promoting Complex activation, inhibition and substrates in cancer development and progression. Aging (Albany NY) 2020; 12:15818-15855. [PMID: 32805721 PMCID: PMC7467358 DOI: 10.18632/aging.103792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The Anaphase Promoting Complex (APC), a multi-subunit ubiquitin ligase, facilitates mitotic and G1 progression, and is now recognized to play a role in maintaining genomic stability. Many APC substrates have been observed overexpressed in multiple cancer types, such as CDC20, the Aurora A and B kinases, and Forkhead box M1 (FOXM1), suggesting APC activity is important for cell health. We performed BioGRID analyses of the APC coactivators CDC20 and CDH1, which revealed that at least 69 proteins serve as APC substrates, with 60 of them identified as playing a role in tumor promotion and 9 involved in tumor suppression. While these substrates and their association with malignancies have been studied in isolation, the possibility exists that generalized APC dysfunction could result in the inappropriate stabilization of multiple APC targets, thereby changing tumor behavior and treatment responsiveness. It is also possible that the APC itself plays a crucial role in tumorigenesis through its regulation of mitotic progression. In this review the connections between APC activity and dysregulation will be discussed with regards to cell cycle dysfunction and chromosome instability in cancer, along with the individual roles that the accumulation of various APC substrates may play in cancer progression.
Collapse
Affiliation(s)
- Cordell VanGenderen
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Troy Anthony Alan Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Terra Gayle Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.,Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
27
|
Akhtar N, Pradhan N, Barik GK, Chatterjee S, Ghosh S, Saha A, Satpati P, Bhattacharyya A, Santra MK, Manna D. Quinine-Based Semisynthetic Ion Transporters with Potential Antiproliferative Activities. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25521-25533. [PMID: 32425038 DOI: 10.1021/acsami.0c01259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Synthetic ion transporters have attracted tremendous attention for their therapeutic potential against various ion-transport-related diseases, including cancer. Inspired by the structure and biological activities of natural products, we synthesized a small series of squaramide and thiourea derivatives of quinine and investigated their ion transport activities. The involvement of a quinuclidine moiety for the cooperative interactions of Cl- and H+ ions with the thiourea or squaramide moiety resulted in an effectual transport of these ions across membranes. The interference of ionic equilibrium by the potent Cl- ion carrier selectively induced cancer cell death by endorsing caspase-arbitrated apoptosis. In vivo assessment of the potent ionophore showed an efficient reduction in tumor growth with negligible immunotoxicity to other organs.
Collapse
Affiliation(s)
- Nasim Akhtar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Nirmalya Pradhan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | | | - Soumya Chatterjee
- Department of Zoology, University of Calcutta, Kolkata, West Bengal 700019, India
| | - Suvankar Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Abhishek Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Priyadarshi Satpati
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | | | | | - Debasis Manna
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
28
|
Guo C, Kong F, Lv Y, Gao N, Xiu X, Sun X. CDC20 inhibitor Apcin inhibits embryo implantation in vivo and in vitro. Cell Biochem Funct 2020; 38:810-816. [PMID: 32458533 PMCID: PMC7496523 DOI: 10.1002/cbf.3550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/09/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
For successful implantation, endometrial receptivity must be established. The high expression of CDC20 in many kinds of malignant tumours has been reported, and it is related to the occurrence and development of tumours. According to these functions, we think that CDC20 may also play important roles in the process of embryo implantation. To prove our hypothesis, we observed the distribution and expression of CDC20 in mouse and human early pregnancy. The effect of E2 and/or P4 on the expression of CDC20 in human endometrial cells was detected by Western blot. To further explore whether CDC20 is an important factor in adhesion and proliferation. The results showed that the expression of CDC20 in the uterus and menstrual cycle of early pregnant mice was spatiotemporal. E2 can promote the expression of CDC20. On the contrary, P4 and E2 + P4 inhibited the expression of CDC20. We also detected the proliferation and adhesion of human endometrial cells. We found that the inhibition of CDC20 with its inhibitor Apcin could reduce the adhesion rate and proliferation ability to RL95‐2 and HEC‐1A cells, respectively. Inhibiting CDC20 by Apcin could interfere the embryo implantation of mouse. It is suggested that CDC20 may play an important role in the process of embryo implantation. Significance of the study Embryo implantation is an extremely complex and delicate process, including identification, localisation, adhesion and invasion between embryo and endometrium. Studies have shown the process of embryo implantation is very similar to that of tumour invasion. CDC20 is a cancer‐promoting factor. We found CDC20 is spatially and spatially expressed in mouse and human menstrual cycles and is regulated by oestrogen and progesterone. Apcin can inhibit the adhesion of JAR cells and embryo implantation of mouse. CDC20 may provide a new way to improve the success rate of assisted reproduction.
Collapse
Affiliation(s)
- Chuanjia Guo
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fandou Kong
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yunyi Lv
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Na Gao
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaoxin Xiu
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaojing Sun
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
29
|
Ye Z, Zeng Z, Wang D, Lei S, Shen Y, Chen Z. Identification of key genes associated with the progression of intrahepatic cholangiocarcinoma using weighted gene co-expression network analysis. Oncol Lett 2020; 20:483-494. [PMID: 32565973 PMCID: PMC7286119 DOI: 10.3892/ol.2020.11600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to identify the key genes that are associated with the progression of intrahepatic cholangiocarcinoma through weighted gene co-expression network analysis (WGCNA). A total of three gene datasets were downloaded from the Gene Expression Omnibus database, including GSE107943, GSE119336 and GSE26566. Differentially expressed genes (DEGs) between intrahepatic cholangiocarcinoma tissues and adjacent liver tissues were identified using GSE107943, while tissue specific genes between bile duct and liver tissues were identified using GSE26566. Following the removal of tissue-specific genes, real DEGs were used to construct the WGCNA to investigate the association between gene modules and clinical traits. Following functional analysis, pathway enrichment analysis and the construction of a protein-protein interaction (PPI) network were performed, hub genes were selected and their diagnostic value was verified in GSE119336 using a receiver operating characteristic curve. Finally, the protein levels of the hub genes were also verified in intrahepatic cholangiocarcinoma tissues. A total of 1,643 real DEGs were identified and used to construct the WGCNA. Additionally, a total of seven co-expressed gene modules were identified following WGCNA, while genes in brown and yellow modules were identified to be associated with multiple clinical traits (the number of clinical traits >3) and used as key modules. A total of 63 core key module genes were subsequently identified, and it was indicated that these genes were most enriched in the nucleus (Gene Ontology term) and the cell cycle pathway (Kyoto Encyclopedia of Genes and Genomes term). Finally, a total of eight genes, including cyclin B1, cell division cycle 20, cell division cycle associated 8, cyclin dependent kinase 1, centrosomal protein 55, kinesin family member 2C, DNA topoisomerase IIα and TPX2 microtubule nucleation factor, exhibited the highest score in PPI analysis and had a high diagnostic value for intrahepatic cholangiocarcinoma. In addition, the protein levels of these genes were also revealed to be increased in most intrahepatic cholangiocarcinoma tissues. These eight genes may be used as novel biomarkers for the diagnosis of intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Zi Ye
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhirui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China.,Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Da Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430060, P.R. China
| | - Shan Lei
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China.,Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Yiyi Shen
- Department of Liver-Biliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Zubing Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
30
|
Guo D, Wang H, Sun L, Liu S, Du S, Qiao W, Wang W, Hou G, Zhang K, Li C, Teng Q. Identification of key gene modules and hub genes of human mantle cell lymphoma by coexpression network analysis. PeerJ 2020; 8:e8843. [PMID: 32219041 PMCID: PMC7087492 DOI: 10.7717/peerj.8843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose Mantle cell lymphoma (MCL) is a rare and aggressive subtype of non-Hodgkin lymphoma that is incurable with standard therapies. The use of gene expression analysis has been of interest, recently, to detect biomarkers for cancer. There is a great need for systemic coexpression network analysis of MCL and this study aims to establish a gene coexpression network to forecast key genes related to the pathogenesis and prognosis of MCL. Methods The microarray dataset GSE93291 was downloaded from the Gene Expression Omnibus database. We systematically identified coexpression modules using the weighted gene coexpression network analysis method (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis were performed on the modules deemed important. The protein-protein interaction networks were constructed and visualized using Cytoscape software on the basis of the STRING website; the hub genes in the top weighted network were identified. Survival data were analyzed using the Kaplan-Meier method and were compared using the log-rank test. Results Seven coexpression modules consisting of different genes were applied to 5,000 genes in the 121 human MCL samples using WGCNA software. GO and KEGG enrichment analysis identified the blue module as one of the most important modules; the most critical pathways identified were the ribosome, oxidative phosphorylation and proteasome pathways. The hub genes in the top weighted network were regarded as real hub genes (IL2RB, CD3D, RPL26L1, POLR2K, KIF11, CDC20, CCNB1, CCNA2, PUF60, SNRNP70, AKT1 and PRPF40A). Survival analysis revealed that seven genes (KIF11, CDC20, CCNB1, CCNA2, PRPF40A, CD3D and PUF60) were associated with overall survival time (p < 0.05). Conclusions The blue module may play a vital role in the pathogenesis of MCL. Five real hub genes (KIF11, CDC20, CCNB1, CCNA2 and PUF60) were identified as potential prognostic biomarkers as well as therapeutic targets with clinical utility for MCL.
Collapse
Affiliation(s)
- Dongmei Guo
- Department of Hematology, Taian City Central Hospital, Taian, Shandong, China
| | - Hongchun Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Li Sun
- Department of Occupational Disease, Taian City Central Hospital Branch, Taian, Shandong, China
| | - Shuang Liu
- Department of Hematology, Taian City Central Hospital, Taian, Shandong, China
| | - Shujing Du
- Department of Hematology, Taian City Central Hospital, Taian, Shandong, China
| | - Wenjing Qiao
- Department of Hematology, Taian City Central Hospital, Taian, Shandong, China
| | - Weiyan Wang
- Department of Hematology, Taian City Central Hospital, Taian, Shandong, China
| | - Gang Hou
- Department of Pathology, Taian City Central Hospital, Taian, Shandong, China
| | - Kaigang Zhang
- Department of Orthopedics, Taian City Central Hospital, Taian, Shandong, China
| | - Chunpu Li
- Department of Orthopedics, Taian City Central Hospital, Taian, Shandong, China.,Department of Orthopedics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qingliang Teng
- Department of Hematology, Taian City Central Hospital, Taian, Shandong, China
| |
Collapse
|
31
|
APC/C ubiquitin ligase: Functions and mechanisms in tumorigenesis. Semin Cancer Biol 2020; 67:80-91. [PMID: 32165320 DOI: 10.1016/j.semcancer.2020.03.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
The anaphase promoting complex/ cyclosome (APC/C), is an evolutionarily conserved protein complex essential for cellular division due to its role in regulating the mitotic transition from metaphase to anaphase. In this review, we highlight recent work that has shed light on our understanding of the role of APC/C coactivators, Cdh1 and Cdc20, in cancer initiation and development. We summarize the current state of knowledge regarding APC/C structure and function, as well as the distinct ways Cdh1 and Cdc20 are dysregulated in human cancer. We also discuss APC/C inhibitors, novel approaches for targeting the APC/C as a cancer therapy, and areas for future work.
Collapse
|
32
|
Yu CJ, Liu X, Zhou ZY, Chen XJ, Meng YC, Gu HC, Xu JJ, Ding GL, Liu XM, Sheng JZ, Huang HF. The casein kinase 2α promotes the occurrence polycystic ovary syndrome. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30333-8. [PMID: 32081430 DOI: 10.1016/j.bbrc.2020.02.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/09/2020] [Indexed: 12/26/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a complicated reproductive endocrine disease characterized by hyperandrogenism, polycystic ovaries, and anovulation. Previous studies have revealed that androgen receptors (ARs) are strongly associated with hyperandrogenism and abnormalities in folliculogenesis in patients with PCOS. However, the kinases responsible for androgen receptor activity, especially in granulosa cells, and the role of casein kinase 2α (CK2α) specifically in the pathogenesis of PCOS, remain unknown. Here, we show that both CK2α protein and mRNA levels were higher in luteinized granulosa cells of patients with PCOS compared with non-PCOS, as well as in the ovarian tissues of mice with a dehydroepiandrosterone-induced PCOS-like phenotype, compared with controls. In addition, CK2α not only interacted with AR in vivo and in vitro, but it also phosphorylated and stabilized AR, triggering AR and ovulation related genes excessive expression. CK2α also promoted cell proliferation in the KGN cell line and inhibited apoptosis. Collectively, the finding highlighted that the CK2α-AR axis probably caused the etiology of the PCOS. Thus, CK2α might be a promising clinical therapeutic target for PCOS treatment.
Collapse
Affiliation(s)
- Chuan-Jin Yu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, PR China; Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xia Liu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, PR China; Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhi-Yang Zhou
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, PR China; Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiao-Jun Chen
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, PR China; Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yi-Cong Meng
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, PR China; Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hang-Chao Gu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, PR China; Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jing-Jing Xu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, PR China; Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Guo-Lian Ding
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, PR China; Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xin-Mei Liu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, PR China; Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Jian-Zhong Sheng
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Zhejiang, 310058, PR China.
| | - He-Feng Huang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, PR China; Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
33
|
Patel S, Alam A, Pant R, Chattopadhyay S. Wnt Signaling and Its Significance Within the Tumor Microenvironment: Novel Therapeutic Insights. Front Immunol 2019; 10:2872. [PMID: 31921137 PMCID: PMC6927425 DOI: 10.3389/fimmu.2019.02872] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/22/2019] [Indexed: 01/05/2023] Open
Abstract
Wnt signaling is one of the central mechanisms regulating tissue morphogenesis during embryogenesis and repair. The pivot of this signaling cascade is the Wnt ligand, which binds to receptors belonging to the Frizzled family or the ROR1/ROR2 and RYK family. This interaction governs the downstream signaling cascade (canonical/non-canonical), ultimately extending its effect on the cellular cytoskeleton, transcriptional control of proliferation and differentiation, and organelle dynamics. Anomalous Wnt signaling has been associated with several cancers, the most prominent ones being colorectal, breast, lung, oral, cervical, and hematopoietic malignancies. It extends its effect on tumorigenesis by modulating the tumor microenvironment via fine crosstalk between transformed cells and infiltrating immune cells, such as leukocytes. This review is an attempt to highlight the latest developments in the understanding of Wnt signaling in the context of tumors and their microenvironment. A dynamic process known as immunoediting governs the fate of tumor progression based on the correlation of various signaling pathways in the tumor microenvironment and immune cells. Cancer cells also undergo a series of mutations in the tumor suppressor gene, which favors tumorigenesis. Wnt signaling, and its crosstalk with various immune cells, has both negative as well as positive effects on tumor progression. On one hand, it helps in the maintenance and renewal of the leucocytes. On the other hand, it promotes immune tolerance, limiting the antitumor response. Wnt signaling also plays a role in epithelial-mesenchymal transition (EMT), thereby promoting the maintenance of Cancer Stem Cells (CSCs). Furthermore, we have summarized the ongoing strategies used to target aberrant Wnt signaling as a novel therapeutic intervention to combat various cancers and their limitations.
Collapse
Affiliation(s)
- Sonal Patel
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Aftab Alam
- Department of Cancer Biology and Inflammatory Disorder, Indian Institute of Chemical Biology, Kolkata, India
| | - Richa Pant
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Samit Chattopadhyay
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India.,Department of Cancer Biology and Inflammatory Disorder, Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
34
|
Li J, Ma S, Lin T, Li Y, Yang S, Zhang W, Zhang R, Wang Y. Comprehensive Analysis of Therapy-Related Messenger RNAs and Long Noncoding RNAs as Novel Biomarkers for Advanced Colorectal Cancer. Front Genet 2019; 10:803. [PMID: 31850052 PMCID: PMC6900565 DOI: 10.3389/fgene.2019.00803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of human cancers. However, the mechanisms underlying CRC progression remained elusive. This study identified differently expressed messenger RNAs (mRNAs), long noncoding RNAs (lncRNAs), and small nucleolar RNAs (snoRNAs) between pre-therapeutic biopsies and post-therapeutic resections of locally advanced CRC by analyzing a public dataset, GSE94104. We identified 427 dysregulated mRNAs, 4 dysregulated lncRNAs, and 19 dysregulated snoRNAs between pre- and post-therapeutic locally advanced CRC samples. By constructing a protein–protein interaction network and co-expressing networks, we identified 10 key mRNAs, 4 key lncRNAs, and 7 key snoRNAs. Bioinformatics analysis showed therapy-related mRNAs were associated with nucleosome assembly, chromatin silencing at recombinant DNA, negative regulation of gene expression, and DNA replication. Therapy-related lncRNAs were associated with cell adhesion, extracellular matrix organization, angiogenesis, and sister chromatid cohesion. In addition, therapy-related snoRNAs were associated with DNA replication, nucleosome assembly, and telomere organization. We thought this study provided useful information for identifying novel biomarkers for CRC.
Collapse
Affiliation(s)
- Jibin Li
- Department of Colorectal Surgery, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| | - Siping Ma
- Department of Colorectal Surgery, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| | - Tao Lin
- Department of Colorectal Surgery, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| | - Yanxi Li
- Department of Colorectal Surgery, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| | | | | | - Rui Zhang
- Department of Colorectal Surgery, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| | - Yongpeng Wang
- Department of Colorectal Surgery, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Zhou Q, Ren J, Hou J, Wang G, Ju L, Xiao Y, Gong Y. Co-expression network analysis identified candidate biomarkers in association with progression and prognosis of breast cancer. J Cancer Res Clin Oncol 2019; 145:2383-2396. [PMID: 31280346 DOI: 10.1007/s00432-019-02974-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/04/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Breast cancer is one of the most common malignancies among females, and its prognosis is affected by a complex network of gene interactions. Weighted gene co-expression network analysis was used to construct free-scale gene co-expression networks and to identify potential biomarkers for breast cancer progression. METHODS The gene expression profiles of GSE42568 were downloaded from the Gene Expression Omnibus database. RNA-sequencing data and clinical information of breast cancer from TCGA were used for validation. RESULTS A total of ten modules were established by the average linkage hierarchical clustering. We identified 58 network hub genes in the significant module (R2 = 0.44) and 6 hub genes (AGO2, CDC20, CDCA5, MCM10, MYBL2, and TTK), which were significantly correlated with prognosis. Receiver-operating characteristic curve validated that the mRNA levels of these six genes exhibited excellent diagnostic efficiency in the test data set of GSE42568. RNA-sequencing data from TCGA showed that the expression levels of these six genes were higher in triple-negative tumors. One-way ANOVA suggested that these six genes were upregulated at more advanced stages. The results of independent sample t test indicated that MCM10 and TTK were associated with tumor size, and that AGO2, CDC20, CDCA5, MCM10, and MYBL2 were overexpressed in lymph-node positive breast cancer. CONCLUSIONS AGO2, CDC20, CDCA5, MCM10, MYBL2, and TTK were identified as candidate biomarkers for further basic and clinical research on breast cancer based on co-expression analysis.
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jinxuan Hou
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetics Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetics Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Human Genetics Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Human Genetics Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
36
|
Alam A, Taye N, Patel S, Thube M, Mullick J, Shah VK, Pant R, Roychowdhury T, Banerjee N, Chatterjee S, Bhattacharya R, Roy R, Mukhopadhyay A, Mogare D, Chattopadhyay S. SMAR1 favors immunosurveillance of cancer cells by modulating calnexin and MHC I expression. Neoplasia 2019; 21:945-962. [PMID: 31422285 PMCID: PMC6706529 DOI: 10.1016/j.neo.2019.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/17/2019] [Indexed: 01/17/2023] Open
Abstract
Down-regulation or loss of MHC class I expression is a major mechanism used by cancer cells to evade immunosurveillance and increase their oncogenic potential. MHC I mediated antigen presentation is a complex regulatory process, controlled by antigen processing machinery (APM) dictating immune response. Transcriptional regulation of the APM that can modulate gene expression profile and their correlation to MHC I mediated antigen presentation in cancer cells remain enigmatic. Here, we reveal that Scaffold/Matrix-Associated Region 1- binding protein (SMAR1), positively regulates MHC I surface expression by down-regulating calnexin, an important component of antigen processing machinery (APM) in cancer cells. SMAR1, a bonafide MAR binding protein acts as a transcriptional repressor of several oncogenes. It is down-regulated in higher grades of cancers either through proteasomal degradation or through loss of heterozygosity (LOH) at the Chr.16q24.3 locus where the human homolog of SMAR1 (BANP) has been mapped. It binds to a short MAR region of the calnexin promoter forming a repressor complex in association with GATA2 and HDAC1. A reverse correlation between SMAR1 and calnexin was thus observed in SMAR1-LOH cells and also in tissues from breast cancer patients. To further extrapolate our findings, influenza A (H1N1) virus infection assay was performed. Upon viral infection, the levels of SMAR1 significantly increased resulting in reduced calnexin expression and increased MHC I presentation. Taken together, our observations establish that increased expression of SMAR1 in cancers can positively regulate MHC I surface expression thereby leading to higher chances of tumor regression and elimination of cancer cells.
Collapse
Affiliation(s)
- Aftab Alam
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Nandaraj Taye
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Sonal Patel
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Milind Thube
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Jayati Mullick
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | | | - Richa Pant
- National Centre for Cell Science, Pune, Maharashtra, India
| | | | | | | | | | - Rini Roy
- Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata, India
| | | | - Devraj Mogare
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Samit Chattopadhyay
- National Centre for Cell Science, Pune, Maharashtra, India; Indian Institute of Chemical Biology, Kolkata, India.
| |
Collapse
|
37
|
Kimata Y. APC/C Ubiquitin Ligase: Coupling Cellular Differentiation to G1/G0 Phase in Multicellular Systems. Trends Cell Biol 2019; 29:591-603. [DOI: 10.1016/j.tcb.2019.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/27/2022]
|
38
|
Tang J, Lu M, Cui Q, Zhang D, Kong D, Liao X, Ren J, Gong Y, Wu G. Overexpression of ASPM, CDC20, and TTK Confer a Poorer Prognosis in Breast Cancer Identified by Gene Co-expression Network Analysis. Front Oncol 2019; 9:310. [PMID: 31106147 PMCID: PMC6492458 DOI: 10.3389/fonc.2019.00310] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/05/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the most common malignancies among females, and its prognosis is affected by a complex network of gene interactions. In this study, we constructed free-scale gene co-expression networks using weighted gene co-expression network analysis (WGCNA). The gene expression profiles of GSE25055 were downloaded from the Gene Expression Omnibus (GEO) database to identify potential biomarkers associated with breast cancer progression. GSE42568 was downloaded for validation. A total of 9 modules were established via the average linkage hierarchical clustering. We identified 3 hub genes (ASPM, CDC20, and TTK) in the significant module (R 2 = 0.52), which were significantly correlated with poor prognosis both in test and validation datasets. In the datasets GSE25055 and GSE42568, higher expression levels of ASPM, CDC20, and TTK correlated with advanced tumor grades. Immunohistochemistry data from the Human Protein Atlas also demonstrated that their protein levels were higher in tumor samples. According to gene set enrichment analysis, 4 commonly enriched pathways were identified: cell cycle pathway, DNA replication pathway, homologous recombination pathway, and P53 signaling pathway. In addition, strong correlations were found among their expression levels. In conclusion, our WGCNA analysis identified candidate prognostic biomarkers for further basic and clinical researches.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengxin Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuxia Cui
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dan Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Deguang Kong
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xing Liao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
39
|
Cheng S, Castillo V, Sliva D. CDC20 associated with cancer metastasis and novel mushroom‑derived CDC20 inhibitors with antimetastatic activity. Int J Oncol 2019; 54:2250-2256. [PMID: 31081056 DOI: 10.3892/ijo.2019.4791] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/26/2019] [Indexed: 11/06/2022] Open
Abstract
Aberrant expression of cell division cycle 20 (CDC20) is associated with malignant progression and poor prognosis in various types of cancer. The development of specific CDC20 inhibitors may be a novel strategy for the treatment of cancer with elevated expression of CDC20. The aim of the current study was to elucidate the role of CDC20 in cancer cell invasiveness and to identify novel natural inhibitors of CDC20. The authors found that CDC20 knockdown inhibited the migration of chemoresistant PANC‑1 pancreatic cancer cells and the metastatic MDA‑MB‑231 breast cancer cell line. By contrast, the overexpression of CDC20 by plasmid transfection promoted the metastasizing capacities of the PANC‑1 cells and MCF‑7 breast cancer cells. It was also identified that a triterpene mixture extracted from the mushroom Poria cocos (PTE), purified triterpenes dehydropachymic acid, and polyporenic acid C (PPAC) downregulated the expression of CDC20 in PANC‑1 cells dose‑dependently. Migration was also suppressed by PTE and PPAC in a dose‑dependent manner, which was consistent with expectations. Taken together, the present study is the first, to the best of our knowledge, to demonstrate that CDC20 serves an important role in cancer metastasis and that triterpenes from P. cocos inhibit the migration of pancreatic cancer cells associated with CDC20. Further investigations are in progress to investigate the specific mechanism associated with CDC20 and these triterpenes, which may have future potential use as natural agents in the treatment of metastatic cancer.
Collapse
Affiliation(s)
- Shujie Cheng
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Victor Castillo
- Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN 46202, USA
| | - Daniel Sliva
- Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN 46202, USA
| |
Collapse
|
40
|
Jiao J, Sagnelli M, Shi B, Fang Y, Shen Z, Tang T, Dong B, Li D, Wang X. Genetic and epigenetic characteristics in ovarian tissues from polycystic ovary syndrome patients with irregular menstruation resemble those of ovarian cancer. BMC Endocr Disord 2019; 19:30. [PMID: 30866919 PMCID: PMC6416936 DOI: 10.1186/s12902-019-0356-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/03/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Irregular menstruation is clinically associated with an increased risk for ovarian cancer and disease-related mortality. This relationship remains poorly understood, and a mechanism explaining it has yet to be described. METHODS Ovarian tissues from women with polycystic ovary syndrome (PCOS) and regular menstruation (n = 10) or irregular menstruation (n = 10) were subjected to DNA methylation sequencing, real-time PCR array, whole-exome sequencing, and bioinformatics analysis. RESULTS We demonstrated that ovarian tissue from PCOS patients with irregular menstruation displayed global DNA hypomethylation, as well as hypomethylation at several functionally and oncologically significant regions. Furthermore, we showed that several cancer-related genes were aberrantly expressed in ovarian tissue from patients with irregular menstruation, and that their mRNA and microRNA profiles shared appreciable levels of coincidence with those from ovarian cancer tissue. We identified multiple point mutations in both the BRCA1 and MLH1 genes in patients with irregular menstruation, and predicted the potential pathogenicity of these mutations using bioinformatics analyses. CONCLUSIONS Due to the nature of ovarian cancer, it is important to broaden our understanding of the pathogenesis and risk factors of the disease. Herein, we provide the first description of a genetic and epigenetic basis for the clinical relationship between irregular menstruation and an increased risk for ovarian cancer.
Collapse
Affiliation(s)
- Jiao Jiao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004 China
| | - Matthew Sagnelli
- University of Connecticut School of Medicine, Farmington, CT 06030 USA
| | - Bei Shi
- Department of Physiology, College of Life Science, China Medical University, Shenyang, 110122 China
- Functional Laboratory Center, College of Basic Medical Science, China Medical University, Shenyang, 110122 China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004 China
| | - Ziqi Shen
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004 China
| | - Tianyu Tang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004 China
| | - Bingying Dong
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004 China
| | - Da Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004 China
| | - Xiuxia Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004 China
| |
Collapse
|
41
|
Paul D, Islam S, Manne RK, Dinesh US, Malonia SK, Maity B, Boppana R, Rapole S, Shetty PK, Santra MK. F-box protein FBXO16 functions as a tumor suppressor by attenuating nuclear β-catenin function. J Pathol 2019; 248:266-279. [PMID: 30714168 PMCID: PMC6619347 DOI: 10.1002/path.5252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 12/24/2022]
Abstract
Aberrant activation of β‐catenin has been implicated in a variety of human diseases, including cancer. In spite of significant progress, the regulation of active Wnt/β‐catenin‐signaling pathways is still poorly understood. In this study, we show that F‐box protein 16 (FBXO16) is a putative tumor suppressor. It is a component of the SCF (SKP1‐Cullin1‐F‐box protein) complex, which targets the nuclear β‐catenin protein to facilitate proteasomal degradation through the 26S proteasome. FBXO16 interacts physically with the C‐terminal domain of β‐catenin and promotes its lysine 48‐linked polyubiquitination. In addition, it inhibits epithelial‐to‐mesenchymal transition (EMT) by attenuating the level of β‐catenin. Therefore, depletion of FBXO16 leads to increased levels of β‐catenin, which then promotes cell invasion, tumor growth, and EMT of cancer cells. Furthermore, FBXO16 and β‐catenin share an inverse correlation of cellular expression in clinical breast cancer patient samples. In summary, we propose that FBXO16 functions as a putative tumor suppressor by forming an SCFFBXO16 complex that targets nuclear β‐catenin in a unique manner for ubiquitination and subsequent proteasomal degradation to prevent malignancy. This work suggests a novel therapeutic strategy against human cancers related to aberrant β‐catenin activation. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Debasish Paul
- Cancer Biology division, National Centre for Cell Science, Pune, India.,Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Sehbanul Islam
- Cancer Biology division, National Centre for Cell Science, Pune, India.,Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Rajesh Kumar Manne
- Cancer Biology division, National Centre for Cell Science, Pune, India.,Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - U S Dinesh
- Department of Biochemistry/Central Research Laboratory, SDM College of Medical Sciences and Hospital, Dharwad, India
| | - Sunil K Malonia
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | - Srikanth Rapole
- Cancer Biology division, National Centre for Cell Science, Pune, India
| | - Praveen Kumar Shetty
- Department of Biochemistry/Central Research Laboratory, SDM College of Medical Sciences and Hospital, Dharwad, India
| | | |
Collapse
|
42
|
Pan JP, Hu Y, Wang JH, Xin YR, Jiang JX, Chen KQ, Yang CY, Gao Q, Xiao F, Yan L, Luo HM. Methyl 3,4-Dihydroxybenzoate Induces Neural Stem Cells to Differentiate Into Cholinergic Neurons in vitro. Front Cell Neurosci 2018; 12:478. [PMID: 30581378 PMCID: PMC6292956 DOI: 10.3389/fncel.2018.00478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/22/2018] [Indexed: 01/08/2023] Open
Abstract
Neural stem cells (NSCs) have been shown as a potential source for replacing degenerated neurons in neurodegenerative diseases. However, the therapeutic potential of these cells is limited by the lack of effective methodologies for controlling their differentiation. Inducing endogenous pools of NSCs by small molecule can be considered as a potential approach of generating the desired cell types in large numbers. Here, we reported the characterization of a small molecule (Methyl 3,4-dihydroxybenzoate; MDHB) that selectively induces hippocampal NSCs to differentiate into cholinergic motor neurons which expressed synapsin 1 (SYN1) and postsynaptic density protein 95 (PSD-95). Studies on the mechanisms revealed that MDHB induced the hippocampal NSCs differentiation into cholinergic motor neurons by inhibiting AKT phosphorylation and activating autophosphorylation of GSK3β at tyrosine 216. Furthermore, we found that MDHB enhanced β-catenin degradation and abolished its entering into the nucleus. Collectively, this report provides the strong evidence that MDHB promotes NSCs differentiation into cholinergic motor neurons by enhancing gene Isl1 expression and inhibiting cell cycle progression. It may provide a basis for pharmacological effects of MDHB directed on NSCs.
Collapse
Affiliation(s)
- Jun-Ping Pan
- Department of Pharmacology, College of Basic Medicine, Jinan University, Guangzhou, China.,Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yang Hu
- Department of Pharmacology, College of Basic Medicine, Jinan University, Guangzhou, China.,Institute of Brain Sciences, Jinan University, Guangzhou, China
| | - Jia-Hui Wang
- Department of Pharmacology, College of Basic Medicine, Jinan University, Guangzhou, China
| | - Yi-Rong Xin
- Department of Pharmacology, College of Basic Medicine, Jinan University, Guangzhou, China
| | - Jun-Xing Jiang
- Department of Pharmacology, College of Basic Medicine, Jinan University, Guangzhou, China
| | - Ke-Qi Chen
- Department of Pharmacology, College of Basic Medicine, Jinan University, Guangzhou, China
| | - Cheng-You Yang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qin Gao
- Department of Pharmacology, College of Basic Medicine, Jinan University, Guangzhou, China
| | - Fei Xiao
- Department of Pharmacology, College of Basic Medicine, Jinan University, Guangzhou, China.,Institute of Brain Sciences, Jinan University, Guangzhou, China
| | - Li Yan
- Guangzhou Quality R&D Center of Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huan-Min Luo
- Department of Pharmacology, College of Basic Medicine, Jinan University, Guangzhou, China.,Institute of Brain Sciences, Jinan University, Guangzhou, China
| |
Collapse
|
43
|
Protein Phosphatase 1 Regulatory Subunit SDS22 Inhibits Breast Cancer Cell Tumorigenesis by Functioning as a Negative Regulator of the AKT Signaling Pathway. Neoplasia 2018; 21:30-40. [PMID: 30500680 PMCID: PMC6262785 DOI: 10.1016/j.neo.2018.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023] Open
Abstract
Protein phosphatases play a crucial role in cell cycle progression, cell survival, cellular signaling, and genomic integrity. The protein phosphatase 1 (PP1) regulatory subunit SDS22 plays a significant role in cell cycle progression. A recent study showed that SDS22 plays a vital role in epithelial integrity and tumor suppression in Drosophila. However, its tumor suppressive activity remains obscure in the mammalian system. Here, for the first time, we show that SDS22 inhibits the growth of breast cancer cells through induction of apoptosis. SDS22 negatively regulates the AKT kinase signaling pathway through PP1. SDS22 associates predominantly with AKT and dephosphorylates the phospho Thr308 and phospho Ser473 through PP1 and hence abrogates the cell migration, invasion, and tumor growth. Thus, our study deciphers the long-standing question of how PP1 negatively regulates the AKT signaling pathway. Further, we observed a significant converse correlation in the expression levels of SDS22 and phospho form of AKT with reduced levels of SDS22 in the higher grades of cancer. Overall, our results suggest that SDS22 could be a putative tumor suppressor and replenishment of SDS22 would be an important strategy to restrict the tumor progression.
Collapse
|
44
|
Identification of Key Genes and Pathways in Triple-Negative Breast Cancer by Integrated Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2760918. [PMID: 30175120 PMCID: PMC6098886 DOI: 10.1155/2018/2760918] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/15/2018] [Accepted: 07/04/2018] [Indexed: 12/28/2022]
Abstract
Purpose Triple-negative breast cancer refers to breast cancer that does not express estrogen receptor (ER), progesterone receptor (PR), or human epidermal growth factor receptor 2 (Her2). This study aimed to identify the key pathways and genes and find the potential initiation and progression mechanism of triple-negative breast cancer (TNBC). Methods We downloaded the gene expression profiles of GSE76275 from Gene Expression Omnibus (GEO) datasets. This microarray Super-Series sets are composed of gene expression data from 265 samples which included 67 non-TNBC and 198 TNBC. Next, all the differentially expressed genes (DEGs) with p<0.01 and fold change ≥1.5 or ≤-1.5 were identified. Result 56 upregulated and 151 downregulated genes were listed and the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analysis was performed. These significantly changed genes were mainly involved in the biological process termed prostate gland morphogenesis, inner ear morphogenesis, cell maturation, digestive tract morphogenesis, autonomic nervous system development, monovalent inorganic anion homeostasis, neural crest cell development, regulation of dendrite extension and glial cell proliferation, immune system process termed T cell differentiation, regulation of immune response, and macrophage activation. Genes are mainly involved in the KEGG pathway termed Oocyte meiosis. All DEGs underwent survival analysis using datasets from The Cancer Genome Atlas (TCGA) integrated by cBioPortal, of which amplification of SRY-related HMG-box 8 (SOX8), androgen receptor (AR), and Chromosome 9 Open Reading Frame 152 (C9orf152) were significantly negative while Nik Related Kinase (NRK) and RAS oncogene family 30 (RAB30) were positively correlated to the life expectancy (p<0.05). Conclusions In conclusion, these pathways and genes identified could help understanding the mechanism of development of TNBC. Besides, SOX8, AR, C9orf152, NRK and RAB30, and other key genes and pathways might be promising targets for the TNBC treatment.
Collapse
|
45
|
Taye N, Alam A, Ghorai S, Chatterji DG, Parulekar A, Mogare D, Singh S, Sengupta P, Chatterjee S, Bhat MK, Santra MK, Salunkhe PB, Finston SK, Chattopadhyay S. SMAR1 inhibits Wnt/β-catenin signaling and prevents colorectal cancer progression. Oncotarget 2018; 9:21322-21336. [PMID: 29765542 PMCID: PMC5940383 DOI: 10.18632/oncotarget.25093] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/21/2018] [Indexed: 12/13/2022] Open
Abstract
Reduced expression of Scaffold/Matrix Attachment Region Binding Protein 1 (SMAR1) is associated with various cancers resulting in poor prognosis of the diseases. However, the precise underlying mechanism elucidating the loss of SMAR1 requires ongoing study. Here, we show that SMAR1 is highly downregulated during aberrant Wnt3a signaling due to proteasomal degradation and predicted poor prognosis of colorectal cancer. However, substitution mutation (Arginine and Lysine to Alanine) in the D-box elements of SMAR1 viz. "RCHL" and "RQRL" completely abrogated its proteasomal degradation despite Wnt3a activity. SMAR1 inhibited Wnt/β-catenin signaling by recruiting Histone deacetylase-5 to β-catenin promoter resulting in reduced cell migration and invasion. Consequently, reduced tumor sizes in in-vivo NOD-SCID mice were observed that strongly associated with suppression of β-catenin. However, loss of SMAR1 led to enriched H3K9 Acetylation in the β-catenin promoter that further increased Wnt/β-catenin signaling activities and enhanced colorectal cancer progression drastically. Using docking and isothermal titration calorimetric studies we show that small microbial peptides viz. AT-01C and AT-01D derived from Mycobacterium tuberculosis mask the D-box elements of SMAR1. These peptides stabilized SMAR1 expression that further inhibited metastatic SW480 colorectal cancer cell migration and invasion. Drastically reduced subcutaneous tumors were observed in in-vivo NOD-SCID mice upon administration of these peptides (25 mg/kg body weight) intraperitoneally. Taken together our structural studies, in-vitro and in-vivo results strongly suggest that the D-box elements of SMAR1 represent novel druggable targets, where the microbial peptides hold promise as novel colorectal cancer therapeutics.
Collapse
Affiliation(s)
- Nandaraj Taye
- National Centre for Cell Science, Pune 411 007, India
| | - Aftab Alam
- National Centre for Cell Science, Pune 411 007, India
| | | | | | | | - Devraj Mogare
- National Centre for Cell Science, Pune 411 007, India
| | | | - Pallabi Sengupta
- Department of Biophysics, Bose Institute, Kolkata 700 054, India
| | | | | | | | | | | | - Samit Chattopadhyay
- National Centre for Cell Science, Pune 411 007, India
- Indian Institute of Chemical Biology (CSIR), West Bengal, Kolkata 700 032, India
| |
Collapse
|
46
|
Cui C, Li L, Zhen J. Bioinformatic analysis reveals the key pathways and genes in early-onset breast cancer. Med Oncol 2018; 35:67. [PMID: 29644522 DOI: 10.1007/s12032-018-1130-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/06/2018] [Indexed: 02/01/2023]
Abstract
Early-onset breast cancer is the most prevalent cancer in the female. To identify the differentially expressed genes and the key signaling pathways in early-onset breast cancer, we have carried out the bioinformatic analysis of an RNA array dataset in the GEO database, GSE109169, which was acquired from early-onset breast cancer patient. A total of 118 differentially expressed genes in early-onset breast cancer were significantly changed compared with that in adjacent normal tissues. Most of these genes are classified into three categories: signaling molecule, enzyme modulator, and hydrolase. Gene ontology terms reveal that most of these genes are involved in cellular and metabolic processes, biological regulation, binding and catalytic activities, and receptor regulation. Protein-protein interaction network was constructed and has two highly enriched modules: one with up-regulated genes and the other with down-regulated genes. The singling pathways are mainly enriched in the cellular immune system, lipid metabolism and other types of metabolic pathways. Finally, we have plotted the Kaplan-Meier curves of two up-regulated and two down-regulated genes for the overall survival prediction in breast cancer. These results greatly expand the current view of early-onset breast cancer and shed light on the discovery of drug candidates and the improvement for the prognosis.
Collapse
Affiliation(s)
- Chuanlong Cui
- School of Graduate Studies, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Lun Li
- School of Graduate Studies, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Jing Zhen
- Department of Medicinal Chemistry, Rutgers, The State University of New Jersey, 59 Dudley Road, Foran Hall, New Brunswick, NJ, 08901, USA.
- Teva Pharmaceutical Industries, 145 Brandywine Parkway, West Chester, PA, 19380, USA.
| |
Collapse
|
47
|
Shang G, Ma X, Lv G. Cell division cycle 20 promotes cell proliferation and invasion and inhibits apoptosis in osteosarcoma cells. Cell Cycle 2017; 17:43-52. [PMID: 28980876 DOI: 10.1080/15384101.2017.1387700] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Cdc20 (cell division cycle 20 homologue) has been reported to exhibit an oncogenic role in human tumorigenesis. However, the function of Cdc20 in osteosarcoma (OS) has not been investigated. In the current study, we aim to explore the role of Cdc20 in human OS cells. Multiple approaches were used to measure cell growth, apoptosis, cell cycle, migration and invasion in OS cells after depletion of Cdc20 or overexpression of Cdc20. We found that down-regulation of Cdc20 inhibited cell growth, induced apoptosis and triggered cell cycle arrest in OS cells. Moreover, Cdc20 down-regulation let to inhibition of cell migration and invasion in OS cells. Consistently, overexpression of Cdc20 in OS cells promoted cell growth, inhibited apoptosis, enhanced cell migration and invasion. Mechanistically, our Western blotting results showed that overexpression of Cdc20 reduced the expression of Bim and p21, whereas depletion of Cdc20 upregulated Bim and p21 levels in OS cells. Altogether, our findings demonstrated that Cdc20 exerts its oncogenic role partly due to regulation of Bim and p21 in OS cells, suggesting that targeting Cdc20 could be useful for the treatment of OS.
Collapse
Affiliation(s)
- Guanning Shang
- a Department of Orthopaedics , The First Affiliated Hospital , China Medical University , Shenyang , Liaoning Province , PR China
| | - Xu Ma
- a Department of Orthopaedics , The First Affiliated Hospital , China Medical University , Shenyang , Liaoning Province , PR China
| | - Gang Lv
- a Department of Orthopaedics , The First Affiliated Hospital , China Medical University , Shenyang , Liaoning Province , PR China
| |
Collapse
|
48
|
Meshram SN, Paul D, Manne R, Choppara S, Sankaran G, Agrawal Y, Santra MK. FBXO32 activates NF-κB through IκBα degradation in inflammatory and genotoxic stress. Int J Biochem Cell Biol 2017; 92:134-140. [PMID: 28970077 DOI: 10.1016/j.biocel.2017.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/04/2017] [Accepted: 09/28/2017] [Indexed: 01/14/2023]
Abstract
In response to diverse stresses, the canonical NF-κB pathway gets activated primarily to protect the cells and maintain their genomic integrity. It activates the cell cycle checkpoints allowing the cells with limited damage to restore a normal life cycle. One of the key events in activation of the canonical NF-κB pathway is the selective proteasomal degradation of IκBα. It has been previously shown that F-box protein βTRCP1 has limited role in directing the proteasomal degradation of IκBα during stress conditions. Here, we report another member of F-box family proteins, FBXO32, as a potential activator of NF-κB signaling during genotoxic stress and inflammatory response. Following genotoxic or inflammatory stress, FBXO32 is stabilized, which leads to polyubiquitination and proteasome mediated degradation of IκBα. We also found that FBXO32 is required for physiological regulation of IκBα levels in unstressed cells. Thus, we decipher the new role of FBXO32 in regulation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Sachin N Meshram
- Laboratory of Molecular Cancer Biology and Epigenetics, National Centre for Cell Science, Ganeshkhind Road, Pune 411007, India; S. P. Pune University, Ganeshkhind Road, Pune 411007, India
| | - Debasish Paul
- Laboratory of Molecular Cancer Biology and Epigenetics, National Centre for Cell Science, Ganeshkhind Road, Pune 411007, India; S. P. Pune University, Ganeshkhind Road, Pune 411007, India
| | - Rajeshkumar Manne
- Laboratory of Molecular Cancer Biology and Epigenetics, National Centre for Cell Science, Ganeshkhind Road, Pune 411007, India; S. P. Pune University, Ganeshkhind Road, Pune 411007, India
| | - Srinadh Choppara
- Laboratory of Molecular Cancer Biology and Epigenetics, National Centre for Cell Science, Ganeshkhind Road, Pune 411007, India; S. P. Pune University, Ganeshkhind Road, Pune 411007, India
| | - Ganga Sankaran
- Laboratory of Molecular Cancer Biology and Epigenetics, National Centre for Cell Science, Ganeshkhind Road, Pune 411007, India
| | - Yashika Agrawal
- Laboratory of Molecular Cancer Biology and Epigenetics, National Centre for Cell Science, Ganeshkhind Road, Pune 411007, India; S. P. Pune University, Ganeshkhind Road, Pune 411007, India
| | - Manas Kumar Santra
- Laboratory of Molecular Cancer Biology and Epigenetics, National Centre for Cell Science, Ganeshkhind Road, Pune 411007, India.
| |
Collapse
|