1
|
Boka HJ, Engel RM, Georges C, McMurrick PJ, Abud HE. Does side matter? Deciphering mechanisms that underpin side-dependent pathogenesis and therapy response in colorectal cancer. Mol Cancer 2025; 24:130. [PMID: 40312719 PMCID: PMC12046799 DOI: 10.1186/s12943-025-02327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025] Open
Abstract
Colorectal cancer (CRC) is stratified by heterogeneity between disease sites, with proximal right-sided CRC (RCRC) multifactorial in its distinction from distal left-sided CRC (LCRC). Notably, right-sided tumors are associated with aggressive disease characteristics which culminate in poor clinical outcomes for these patients. While factors such as mutational profile and patterns of metastasis have been suggested to contribute to differences in therapy response, the exact mechanisms through which RCRC resists effective treatment have yet to be elucidated. In response, recent analyzes, including those utilizing whole genome sequencing, transcriptional profiling, and single-cell analyses, have demonstrated that key molecular differences exist between disease sites, with differentially expressed genes spanning a diverse range of cellular functions. Here, we review and contextualize the most recent data on molecular biomarkers found to exhibit discordance between RCRC and LCRC, and highlight candidates for further investigation, including those which present promise for future clinical application. Given the present disparity in survival outcomes for RCRC patients, we expect the prognostic biomarkers presented in our review to be useful in establishing future directions for the side-specific treatment of CRC.
Collapse
Affiliation(s)
- Harrison J Boka
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Surgery, Cabrini Monash University, Cabrini Hospital, Malvern, VIC, 3144, Australia
| | - Rebekah M Engel
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Surgery, Cabrini Monash University, Cabrini Hospital, Malvern, VIC, 3144, Australia
| | - Christine Georges
- Department of Surgery, Cabrini Monash University, Cabrini Hospital, Malvern, VIC, 3144, Australia
| | - Paul J McMurrick
- Department of Surgery, Cabrini Monash University, Cabrini Hospital, Malvern, VIC, 3144, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- Department of Surgery, Cabrini Monash University, Cabrini Hospital, Malvern, VIC, 3144, Australia.
| |
Collapse
|
2
|
Li Y, Sun Y, Yu K, Li Z, Miao H, Xiao W. Keratin: A potential driver of tumor metastasis. Int J Biol Macromol 2025; 307:141752. [PMID: 40049479 DOI: 10.1016/j.ijbiomac.2025.141752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Keratins, as essential components of intermediate filaments in epithelial cells, play a crucial role in maintaining cell structure and function. In various malignant epithelial tumors, abnormal keratin expression is frequently observed and serves not only as a diagnostic marker but also closely correlates with tumor progression. Extensive research has demonstrated that keratins are pivotal in multiple stages of tumor metastasis, including responding to mechanical forces, evading the immune system, reprogramming metabolism, promoting angiogenesis, and resisting apoptosis. Here we emphasize that keratins significantly enhance the migratory and invasive capabilities of tumor cells, making them critical drivers of tumor metastasis. These findings highlight the importance of targeting keratins as a strategic approach to combat tumor metastasis, thereby advancing our understanding of their role in cancer progression and offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Yuening Li
- Army Medical University, Chongqing, China
| | - Yiming Sun
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Kun Yu
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zhixi Li
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China.
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Jinfeng Laboratory, Chongqing, China.
| | - Weidong Xiao
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China.
| |
Collapse
|
3
|
Song C, Zhao L, Deng J, Wang L, Mao M, Peng S, Tang W. E2F8-induced GRPEL2 promoted colorectal cancer progression via targeting TIGAR. J Transl Med 2025; 23:466. [PMID: 40269881 PMCID: PMC12020167 DOI: 10.1186/s12967-025-06451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/02/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the leading cause for cancer mortality across the world. GRPEL2 is a critical regulator of mitochondria's function with an oncogenic role in different kinds of cancer. The exact function of GRPEL2 -driven mitochondrial regulation and CRC progression have not been elucidated. METHODS RNA-seq data from TCGA database was analyzed to identify biomarkers and therapeutic targets of CRC. The gene expression profile was validated by quantitative real-time PCR on 68 paired tumor and non-tumor samples from CRC patients. Tumorigenesis regulated by GRPEL2 was tested through EdU staining, Transwell assay, in vivo tumor growth and in vivo metastasis. The function of Mitochondria mediated by GRPEL2 was evaluated by transmission electron microscopy, DCFH-DA staining, mitochondrial membrane potential detection, and Calcein staining. LC-MS/MS screening and Co-IP were performed to discover protein partners of GRPEL2. E2F8-mediated transcriptional regulation of GRPEL2 was verified via Luciferase reporter and ChIP assays. RESULTS GRPEL2 was upregulated in CRC tumor tissues and cell lines. High expression of GRPEL2 was associated with poor prognosis of CRC and inhibition of GRPEL2 suppressed CRC proliferation and migration by inducing mitochondria injury. Meanwhile, TIGAR was shown to interact with GRPEL2 and overexpression of TIGAR rescued CRC progression in the presence of GRPEL2 inhibition. Moreover, E2F8 was the upstream regulator of GRPEL2, which positively induced GRPEL2 transcription and expression in CRC. CONCLUSION Our work illustrated the oncogenic role of GRPEL2 in CRC development and determined the molecular mechanism of E2F8/GRPEL2/TIGAR pathway. These findings will provide novel insights and promising therapeutic targets for CRC treatment in the future.
Collapse
Affiliation(s)
- Cheng Song
- Center of Integrated Traditional Chinese and Western Medicine, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Lei Zhao
- Center of Integrated Traditional Chinese and Western Medicine, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Jing Deng
- Center of Integrated Traditional Chinese and Western Medicine, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Li Wang
- Center of Integrated Traditional Chinese and Western Medicine, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Min Mao
- Center of Integrated Traditional Chinese and Western Medicine, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Siyuan Peng
- Center of Integrated Traditional Chinese and Western Medicine, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Wei Tang
- Department of Oncology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, No. 58, Lushan Road, Yuelu District, Changsha, Hunan, China.
| |
Collapse
|
4
|
Börding T, Janik T, Bischoff P, Morkel M, Sers C, Horst D. GPA33 expression in colorectal cancer can be induced by WNT inhibition and targeted by cellular therapy. Oncogene 2025; 44:30-41. [PMID: 39472498 DOI: 10.1038/s41388-024-03200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 01/07/2025]
Abstract
GPA33 is a promising surface antigen for targeted therapy in colorectal cancer (CRC). It is expressed almost exclusively in CRC and intestinal epithelia. However, previous clinical studies have not achieved expected response rates. We investigated GPA33 expression and regulation in CRC and developed a GPA33-targeted cellular therapy. We examined GPA33 expression in CRC cohorts using immunohistochemistry and immunofluorescence. We analyzed GPA33 regulation by interference with oncogenic signaling in vitro and in vivo using inhibitors and conditional inducible regulators. Furthermore, we engineered anti-GPA33-CAR T cells and assessed their activity in vitro and in vivo. GPA33 expression showed consistent intratumoral heterogeneity in CRC with antigen loss at the infiltrative tumor edge. This pattern was preserved at metastatic sites. GPA33-positive cells had a differentiated phenotype and low WNT activity. Low GPA33 expression levels were linked to tumor progression in patients with CRC. Downregulation of WNT activity induced GPA33 expression in vitro and in GPA33-negative tumor cell subpopulations in xenografts. GPA33-CAR T cells were activated in response to GPA33 and reduced xenograft growth in mice after intratumoral application. GPA33-targeted therapy may be improved by simultaneous WNT inhibition to enhance GPA33 expression. Furthermore, GPA33 is a promising target for cellular immunotherapy in CRC.
Collapse
Affiliation(s)
- Teresa Börding
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tobias Janik
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philip Bischoff
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Markus Morkel
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christine Sers
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
5
|
Piccinno E, Scalavino V, Labarile N, Armentano R, Giannelli G, Serino G. miR-195-5p Inhibits Colon Cancer Progression via KRT23 Regulation. Pharmaceutics 2024; 16:1554. [PMID: 39771533 PMCID: PMC11680050 DOI: 10.3390/pharmaceutics16121554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES KRT23 was recently discovered as an epithelial-specific intermediate filament protein in the type I keratin family. Many studies have underlined keratin's involvement in several biological processes as well as in the pathogenesis of different diseases. Specifically, KRT23 was reported to affect the structural integrity of epithelial cells and to trigger cellular signaling leading to the onset of cancer. The aim of this study is to characterize a novel mechanism based on miR-195-5p/KRT23 in colorectal cancer. METHODS KRT23 mRNA and protein expression were characterized in FFPE sections from patients with CRC. The effects of miR-195-5p on KRT23 expression at the mRNA and protein levels were assessed by transient transfection experiments with mimic and inhibitor molecules. Cell attachment/detachment, migration, invasion, clone formation, and apoptosis were evaluated in human CRC cell lines after miR-195-5p mimic transfection. RESULTS We identified KRT23 as a putative target of miR-195-5p, a microRNA that we previously demonstrated to be reduced in CRC. We have proved the KRT23 expression deregulation in the tumoral section compared to adjacent normal mucosa in patients with CRC, according to the data derived from the public repository. We proved that the gain of miR-195-5p decreased the KRT23 expression. Conversely, we demonstrated that the inhibition of miR-195-5p led to an increase in KRT23 expression levels. We have demonstrated the in vitro effectiveness of miR-195-5p on CRC progression and that the in vivo intraperitoneal delivery of miR-195-5p mimic lowered colonic KRT23 mRNA and protein expression. CONCLUSIONS These findings highlight a new regulatory mechanism by miR-195-5p in CRC affecting the keratin intermediate filaments and underline the miR-195-5p potential clinical properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Grazia Serino
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy; (E.P.); (V.S.); (N.L.); (R.A.); (G.G.)
| |
Collapse
|
6
|
Shalannandia WA, Chou Y, Bashari MH, Khairani AF. Intermediate Filaments in Breast Cancer Progression, and Potential Biomarker for Cancer Therapy: A Narrative Review. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:689-704. [PMID: 39430570 PMCID: PMC11488350 DOI: 10.2147/bctt.s489953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Intermediate filaments are one of the three components of the cytoskeletons, along with actin and microtubules. The intermediate filaments consist of extensive variations of structurally related proteins with specific expression patterns in cell types. The expression pattern alteration of intermediate filaments is frequently correlated with cancer progression, specifically with the epithelial-to-mesenchymal transition process closely related to increasing cellular migration and invasion. This review will discuss the involvement of cytoplasmic intermediate filaments, specifically vimentin, nestin, and cytokeratin (CK5/CK6, CK7, CK8/CK18, CK17, CK19, CK20, CSK1), in breast cancer progression and as prognostic or diagnostic biomarkers. The potential for drug development targeting intermediate filaments in cancer will be reviewed.
Collapse
Affiliation(s)
- Widad Aghnia Shalannandia
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Yoan Chou
- Graduate School of Master Program in Anti Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Muhammad Hasan Bashari
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Astrid Feinisa Khairani
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| |
Collapse
|
7
|
Kordowitzki P, Graczyk S, Mechsner S, Sehouli J. Shedding Light on the Interaction Between Rif1 and Telomeres in Ovarian Cancer. Aging Dis 2024; 15:535-545. [PMID: 37548940 PMCID: PMC10917528 DOI: 10.14336/ad.2023.0716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/16/2023] [Indexed: 08/08/2023] Open
Abstract
Ovarian cancer, more precisely high-grade serous ovarian cancer, is one of the most lethal age-independent gynecologic malignancies in women worldwide, regardless of age. There is mounting evidence that there is a link between telomeres and the RIF1 protein and the proliferation of cancer cells. Telomeres are hexameric (TTAGGG) tandem repeats at the tip of chromosomes that shorten as somatic cells divide, limiting cell proliferation and serving as an important barrier in preventing cancer. RIF1 (Replication Time Regulation Factor 1) plays, among other factors, an important role in the regulation of telomere length. Interestingly, RIF1 appears to influence the DNA double-strand break (DSB) repair pathway. However, detailed knowledge regarding the interplay between RIF1 and telomeres and their degree of engagement in epithelial ovarian cancer (EOC) is still elusive, despite the fact that such knowledge could be of relevance in clinical practice to find novel biomarkers. In this review, we provide an update of recent literature to elucidate the relation between telomere biology and the RIF1 protein during the development of ovarian cancer in women.
Collapse
Affiliation(s)
- Paweł Kordowitzki
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland.
- Department of Gynecology including Center of oncological surgery (CVK) and Department of Gynaecology (CBF), European Competence Center for Ovarian Cancer, Charite, Berlin, Germany.
| | - Szymon Graczyk
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland.
| | - Sylvia Mechsner
- Department of Gynecology including Center of oncological surgery (CVK) and Department of Gynaecology (CBF), European Competence Center for Ovarian Cancer, Charite, Berlin, Germany.
| | - Jalid Sehouli
- Department of Gynecology including Center of oncological surgery (CVK) and Department of Gynaecology (CBF), European Competence Center for Ovarian Cancer, Charite, Berlin, Germany.
| |
Collapse
|
8
|
Li L, Lin M, Luo J, Sun H, Zhang Z, Lin D, Chen L, Feng S, Lin X, Zhou R, Song J. Loss of keratin 23 enhances growth inhibitory effect of melatonin in gastric cancer. Mol Med Rep 2024; 29:22. [PMID: 38099343 PMCID: PMC10784722 DOI: 10.3892/mmr.2023.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
To investigate the effect of keratin 23 (KRT23) on the anticancer activity of melatonin (MLT) against gastric cancer (GC) cells, microarray analysis was applied to screen differentially expressed genes in AGS GC cells following MLT treatment. Western blotting was used to detect the expression of KRT23 in GC cells and normal gastric epithelial cell line GES‑1. KRT23 knockout was achieved by CRISPR/Cas9. Assays of cell viability, colony formation, cell cycle, electric cell‑substrate impedance sensing and western blotting were conducted to reveal the biological functions of KRT23‑knockout cells without or with MLT treatment. Genes downregulated by MLT were enriched in purine metabolism, pyrimidine metabolism, genetic information processing and cell cycle pathway. Expression levels of KRT23 were downregulated by MLT treatment. Expression levels of KRT23 in AGS and SNU‑216 GC cell lines were significantly higher compared with normal gastric epithelial cell line GES‑1. KRT23 knockout led to reduced phosphorylation of ERK1/2 and p38, arrest of the cell cycle and inhibition of GC cell proliferation. Moreover, KRT23 knockout further enhanced the inhibitory activity of MLT on the tumor cell proliferation by inhibiting the phosphorylation of p38/ERK. KRT23 knockout contributes to the antitumor effects of MLT in GC via suppressing p38/ERK phosphorylation. In the future, KRT23 might be a potential prognostic biomarker and a novel molecular target for GC.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Meifang Lin
- Department of Pathology, Affiliated Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Jianhua Luo
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
| | - Huaqin Sun
- Center of Translational Hematology, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Zhiguang Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Dacen Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
| | - Lushan Chen
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Sisi Feng
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
| | - Xiuping Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
| | - Ruixiang Zhou
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
- Department of Histology and Embryology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Jun Song
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
9
|
Xu Y, Ren X, Jiang T, Lv S, Gao K, Liu Y, Yan Y. Circulating tumor cells (CTCs) and hTERT gene expression in CTCs for radiotherapy effect with lung cancer. BMC Cancer 2023; 23:475. [PMID: 37226235 DOI: 10.1186/s12885-023-10979-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/18/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) are important biological indicators of the lung cancer prognosis, and CTC counting and typing may provide helpful biological information for the diagnosis and treatment of lung cancer. METHODS The CTC count in blood before and after radiotherapy was detected by the CanPatrol™ CTC analysis system, and the CTC subtypes and the expression of hTERT before and after radiotherapy were detected by multiple in situ hybridization. The CTC count was calculated as the number of cells per 5 mL of blood. RESULTS The CTC positivity rate in patients with tumors before radiotherapy was 98.44%. Epithelial-mesenchymal CTCs (EMCTCs) were more common in patients with lung adenocarcinoma and squamous carcinoma than in patients with small cell lung cancer (P = 0.027). The total CTCs (TCTCs), EMCTCs, and mesenchymal CTCs (MCTCs) counts were significantly higher in patients with TNM stage III and IV tumors (P < 0.001, P = 0.005, and P < 0.001, respectively). The TCTCs and MCTCs counts were significantly higher in patients with an ECOG score of > 1 (P = 0.022 and P = 0.024, respectively). The TCTCs and EMCTCs counts before and after radiotherapy affected the overall response rate (ORR) (P < 0.05). TCTCs and ECTCs with positive hTERT expression were associated with the ORR of radiotherapy (P = 0.002 and P = 0.038, respectively), as were TCTCs with high hTERT expression (P = 0.012). ECOG score (P = 0.006) and post-radiation TCTCs count (P = 0.011) were independent factors for progression-free survival (PFS) and TNM stage (P = 0.054) and pre-radiation EMCTCs count (P = 0.009) were independent factors of overall survival (OS). CONCLUSION This study showed a high rate of positive CTC detection in patients with lung cancer, and the number, subtype, and hTERT-positive expression of CTCs were closely related to patients' ORR, PFS, and OS with radiotherapy. EMCTCs, hTERT-positive expression of CTCs are expected to be important biological indicators for predicting radiotherapy efficacy and the prognosis in patients with lung cancer. These results may be useful in improving disease stratification for future clinical trials and may help in clinical decision-making.
Collapse
Affiliation(s)
- Ying Xu
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, l10016, China
| | - Xue Ren
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, l10016, China
| | - Tong Jiang
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, l10016, China
| | - Shuang Lv
- Shandong Province Heze Municipal Hospital, Heze, 274000, China
| | - Kuanke Gao
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, l10016, China
| | - Yunen Liu
- Shenyang Medical College, No. 146 Road, Huanghe South Street, Huanggu District, Shenyang, 110034, China.
| | - Ying Yan
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, l10016, China.
| |
Collapse
|
10
|
He K, Wang T, Huang X, Yang Z, Wang Z, Zhang S, Sui X, Jiang J, Zhao L. PPP1R14B is a diagnostic prognostic marker in patients with uterine corpus endometrial carcinoma. J Cell Mol Med 2023; 27:846-863. [PMID: 36824011 PMCID: PMC10002989 DOI: 10.1111/jcmm.17697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is one of the most common malignancies of the female genital tract. A recently discovered protein-coding gene, PPP1R14B, can inhibit protein phosphatase 1 (PP1) as well as different PP1 holoenzymes, which are important proteins regulating cell growth, the cell cycle, and apoptosis. However, the association between PPP1R14B expression and UCEC remains undefined. The expression profiles of PPP1R14B in multiple cancers were analysed based on TCGA and GTE databases. Then, PPP1R14B expression in UCEC was investigated by gene differential analysis and single gene correlation analysis. In addition, we performed gene ontology term analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, gene set enrichment analysis, and Kaplan-Meier survival analysis to predict the potential function of PPP1R14B and its role in the prognosis of UCEC patients. Then, a tool for predicting the prognosis of UCEC, namely, a nomogram model, was constructed. PPP1R14B expression was higher in UCEC tumour tissues than in normal tissues. The results revealed that PPP1R14B expression was indeed closely associated with tumour development. The results of Kaplan-Meier plotter data indicated that patients with high PPP1R14b expression had poorer overall survival, disease-specific survival, and progression-free interval than those with low expression. A nomogram based on the results of multifactor Cox regression was generated. PPP1R14B is a key player in UCEC progression, is associated with a range of adverse outcomes, and can serve as a prognostic marker in the clinic.
Collapse
Affiliation(s)
- Kang He
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Taiwei Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xuemiao Huang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Zhaoyun Yang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Zeyu Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Shuang Zhang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xin Sui
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Junjie Jiang
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, China
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
11
|
He K, Li J, Huang X, Zhao W, Wang K, Wang T, Chen J, Wang Z, Yi J, Zhao S, Zhao L. KNL1 is a prognostic and diagnostic biomarker related to immune infiltration in patients with uterine corpus endometrial carcinoma. Front Oncol 2023; 13:1090779. [PMID: 36776306 PMCID: PMC9913269 DOI: 10.3389/fonc.2023.1090779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/11/2023] [Indexed: 01/29/2023] Open
Abstract
Background The incidence and mortality of uterine corpus endometrial carcinoma (UCEC) are increasing yearly. There is currently no screening test for UCEC, and progress in its treatment is limited. It is important to identify new biomarkers for screening, diagnosing and predicting the outcomes of UCEC. A large number of previous studies have proven that KNL1 is crucial in the development of lung cancer, colorectal cancer and cervical cancer, but there is a lack of studies about the role of KNL1 in the development of UCEC. Methods The mRNA and protein expression data of KNL1 in The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and UALCAN databases and related clinical data were used to analyze the expression differences and clinical correlations of KNL1 in UCEC. A total of 108 clinical samples were collected, and the results of bioinformatics analysis were verified by immunohistochemistry. KNL1 and its related differentially expressed genes were used to draw a volcano map, construct a PPI protein interaction network, and perform gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA) and immune infiltration analysis to predict the function of KNL1 during UCEC progression. The prognostic data of TCGA and 108 clinical patients were used to analyze the correlation of KNL1 expression with the survival of patients, and KM survival curves were drawn. The UCEC cell lines Ishikawa and Hec-1-A were used to verify the function of KNL1. Results KNL1 is significantly overexpressed in UCEC and is associated with a poor prognosis. KNL1 overexpression is closely related to cell mitosis, the cell cycle and other functions and is correlated with the International Federation of Gynecology and Obstetrics (FIGO) stage, histological grade and other characteristics of UCEC patients. Knockdown of KNL1 expression in UCEC cell lines can inhibit their proliferation, invasion, metastasis and other phenotypes. Conclusion KNL1 is a prognostic and diagnostic biomarker associated with immune evasion in patients with UCEC.
Collapse
Affiliation(s)
- Kang He
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Jingze Li
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xuemiao Huang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Weixin Zhao
- The Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Kai Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Taiwei Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Junyu Chen
- The Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zeyu Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Jiang Yi
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shuhua Zhao
- The Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China,*Correspondence: Lijing Zhao, ; Shuhua Zhao,
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China,*Correspondence: Lijing Zhao, ; Shuhua Zhao,
| |
Collapse
|
12
|
Bayrak T, Çetin Z, Saygılı Eİ, Ogul H. Identifying the tumor location-associated candidate genes in development of new drugs for colorectal cancer using machine-learning-based approach. Med Biol Eng Comput 2022; 60:2877-2897. [DOI: 10.1007/s11517-022-02641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/28/2022] [Indexed: 02/07/2023]
|
13
|
Zhou J, Qian W, Huang C, Mai C, Lai Y, Lin Z, Lai G. Combined targeting of KRT23 and NCCRP1 as a potential novel therapeutic approach for the treatment of triple-negative breast cancer. Gland Surg 2022; 11:1673-1682. [PMID: 36353580 PMCID: PMC9638800 DOI: 10.21037/gs-22-486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2023]
Abstract
BACKGROUND Breast cancers characterized by triple-negative status tend to be more malignant and have a poorer prognosis. A risk model for predicting breast cancer risk should be developed. METHODS We obtained gene expression and clinical characteristics data using the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and The Cancer Genome Atlas (TCGA) database. Differential gene screening between patients with triple-negative breast cancer (TNBC) and non-triple-negative breast cancers (NTNBC) was performed according to the "edgeR" filter criteria. Univariate and multivariate Cox regression analyses were used to construct a risk model and identify prognosis-related genes. XCELL, TIMER, EPIC, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, and CIBERSORT software programs were used to determine the extent of tumor immune cell infiltration. To evaluate the clinical responses to breast cancer treatment, the half maximal inhibitory concentration (IC50s) of common chemotherapeutics were calculated using "pRRophetic" and "ggplot2". Cell proliferation was assayed using cell counting kit-8 (CCK8) and 5-Ethynyl-2'-deoxyuridine (EdU) Cell Proliferation Kit. A dual-luciferase reporter assay confirmed the gene regulatory relationship of sex determining region Y-box 10 (SOX10). RESULTS An assessment model was established for Keratin23 (KRT23) and non-specific cytotoxic cell receptor 1 (NCCRP1) using the univariate and multivariate Cox regression analyses. In addition, high expression levels of KRT23 and NCCRP1 indicated high proliferation and poor prognosis. We also found that the gene expression patterns of multiple genes were significantly more predictive of risks and have a higher level of consistency when assessing risk. In vitro experiments showed that the expressions of KRT23 and NCCRP1 were increased in TNBCs and promoted cell proliferation. Mechanically, the dual-luciferase reporter assay confirmed that SOX10 regulated the expressions of KRT23 and NCCRP1. The risk score model revealed a close relationship between the expressions of KRT23 and NCCRP1, the tumor immune microenvironment, and chemotherapeutics. CONCLUSIONS In conclusion, we constructed a risk assessment model to predict the risk of TNBC patients, which acted as a potential predictor for chemosensitivity.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Qian
- Emergency Department, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Cuiliu Huang
- Department of Vascular and Breast Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Cunjun Mai
- Department of Vascular and Breast Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yimei Lai
- Department of Vascular and Breast Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhiqin Lin
- Department of Vascular and Breast Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guie Lai
- Department of Vascular and Breast Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
14
|
Yang F, Zhou LQ, Yang HW, Wang YJ. Nine-gene signature and nomogram for predicting survival in patients with head and neck squamous cell carcinoma. Front Genet 2022; 13:927614. [PMID: 36092911 PMCID: PMC9449318 DOI: 10.3389/fgene.2022.927614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Head and neck squamous cell carcinomas (HNSCCs) are derived from the mucosal linings of the upper aerodigestive tract, salivary glands, thyroid, oropharynx, larynx, and hypopharynx. The present study aimed to identify the novel genes and pathways underlying HNSCC. Despite the advances in HNSCC research, diagnosis, and treatment, its incidence continues to rise, and the mortality of advanced HNSCC is expected to increase by 50%. Therefore, there is an urgent need for effective biomarkers to predict HNSCC patients’ prognosis and provide guidance to the personalized treatment.Methods: Both HNSCC clinical and gene expression data were abstracted from The Cancer Genome Atlas (TCGA) database. Intersecting analysis was adopted between the gene expression matrix of HNSCC patients from TCGA database to extract TME-related genes. Differential gene expression analysis between HNSCC tissue samples and normal tissue samples was performed by R software. Then, HNSCC patients were categorized into clusters 1 and 2 via NMF. Next, TME-related prognosis genes (p < 0.05) were analyzed by univariate Cox regression analysis, LASSO Cox regression analysis, and multivariate Cox regression analysis. Finally, nine genes were selected to construct a prognostic risk model and a prognostic gene signature. We also established a nomogram using relevant clinical parameters and a risk score. The Kaplan–Meier curve, survival analysis, time-dependent receiver operating characteristic (ROC) analysis, decision curve analysis (DCA), and the concordance index (C-index) were carried out to assess the accuracy of the prognostic risk model and nomogram. Potential molecular mechanisms were revealed by gene set enrichment analysis (GSEA). Additionally, gene correlation analysis and immune cell correlation analysis were conducted for further enriching our results.Results: A novel HNSCC prognostic model was established based on the nine genes (GTSE1, LRRN4CL, CRYAB, SHOX2, ASNS, KRT23, ANGPT2, HOXA9, and CARD11). The value of area under the ROC curves (AUCs) (0.769, 0.841, and 0.816) in TCGA whole set showed that the model effectively predicted the 1-, 3-, and 5-year overall survival (OS). Results of the Cox regression assessment confirmed the nine-gene signature as a reliable independent prognostic factor in HNSCC patients. The prognostic nomogram developed using multivariate Cox regression analysis showed a superior C-index over other clinical signatures. Also, the calibration curve had a high level of concordance between estimated OS and the observed OS. This showed that its clinical net can precisely estimate the one-, three-, and five-year OS in HNSCC patients. The gene set enrichment analysis (GSEA) to some extent revealed the immune- and tumor-linked cascades.Conclusion: In conclusion, the TME-related nine-gene signature and nomogram can effectively improve the estimation of prognosis in patients with HNSCC.
Collapse
|
15
|
Li Y, Wu M, Xu S, Huang H, Yan L, Gu Y. Colorectal cancer stem cell-derived exosomal long intergenic noncoding RNA 01315 (LINC01315) promotes proliferation, migration, and stemness of colorectal cancer cells. Bioengineered 2022; 13:10827-10842. [PMID: 35470736 PMCID: PMC9161962 DOI: 10.1080/21655979.2022.2065800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The effect of long intergenic noncoding RNA 01315 (LINC01315) on colorectal cancer has widely been proved. Nevertheless, how LINC01315 functions in the stemness of colorectal cancer and whether LINC01315 exists in colorectal cancer stem-like cell-derived exosomes remain dim, which are thus investigated in this research. CD133+/CD44+ colorectal cancer stem cells were sorted and verified through flow cytometry. Exosomes derived from CD133+/CD44+ colorectal cancer stem cells were collected. The viability, proliferation, stemness and migration of CD133+/CD44+, CD133−/CD44−, and colorectal cancer cells after transfection or the co-culture with exosomes were detected by MTT, colony formation, spheroid, and wound healing assays, respectively. Expressions of LINC01315, BCL-2, Bax, cleaved caspase-3, MMP-9, E-cadherin, and vimentin in cells or exosomes were analyzed using western blot or qRT-PCR. Genes interacted with LINC01315 in colorectal cancer were predicted by bioinformatics analysis. The results showed that LINC01315 was high-expressed in CD133+/CD44+ colorectal cancer stem cells and exosomes. Compared with colorectal cancer cells, the viability, proliferation, stemness, and migration of CD133+/CD44+ cancer cells were stronger, while these of CD133−/CD44− cancer cells were weaker. Besides, LINC01315 silencing decreased the viability, proliferation, stemness, and migration of CD133+/CD44+ cancer cells, while sh-LINC01315 inhibited the promotive effects of CD133+/CD44+ cancer cell-derived exosomes on the viability, proliferation, stemness, and migration of colorectal cancer cells. LINC01315 was also found to be correlated with DPEP1, KRT23, ASCL2, AXIN2, and DUSP4 in colorectal cancer. In conclusion, colorectal cancer stem cell-derived exosomal LINC01315 promotes the proliferation, migration, and stemness of colorectal cancer cells.
Collapse
Affiliation(s)
- Youran Li
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Minna Wu
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shanshan Xu
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hua Huang
- Department of Anorectal, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Suzhou, Jiangsu, China
| | - Lei Yan
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yunfei Gu
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Khan AA, Ashraf MT, Aldakheel FM, Sayi Yazgan A, Zaidi R. Deciphering the involvement of iron targets in colorectal cancer: a network biology approach. Am J Transl Res 2022; 14:440-451. [PMID: 35173863 PMCID: PMC8829595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Several studies suggested the role of heme iron, but not non-heme iron in colorectal cancer. A network and system biology-based approach was used to understand the role of heme and non-heme iron on colorectal cancer etiology. Heme and non-heme iron targets were screened in addition to CRC targets. The protein-protein interaction map of both iron targets was prepared with CRC targets. Moreover, functional enrichment analysis was performed in order to understand their role in cancer etiology. The heme iron is predicted to modulate several cancer-associated pathways. Our results indicate several targets and pathways, including IL-4/IL-13, ACE, and HIF-1 signaling, that may have an important role in heme iron-mediated CRC and must be given consideration for understanding their role in colorectal cancer.
Collapse
Affiliation(s)
- Abdul Arif Khan
- Division of Microbiology, Indian Council of Medical Research-National AIDS Research InstitutePune, Maharashtra 411026, India
| | - Mohd Tashfeen Ashraf
- School of Biotechnology, Gautam Buddha UniversityGautam Budh Nagar, Greater Noida, Uttar Pradesh 201308, India
| | - Fahad M Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Ayca Sayi Yazgan
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical UniversityMaslak, Istanbul 34469, Turkey
| | - Rana Zaidi
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia HamdardNew Delhi 110062, India
| |
Collapse
|
17
|
Chen K, Zeng Z, Ma C, Dang Y, Zhang H. Commentary on: Screening of immunosuppressive cells from colorectal adenocarcinoma and identification of prognostic markers. Biosci Rep 2021; 41:BSR20211096. [PMID: 34850851 PMCID: PMC8685636 DOI: 10.1042/bsr20211096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 02/05/2023] Open
Abstract
Colorectal adenocarcinoma (COAD) is one subtype of colorectal carcinoma (CRC), whose development is associated with genetics, inappropriate immune response, and environmental factors. Although significant advances have been made in the treatment of COAD, the mortality rate remains high. It is a pressing need to explore novel therapeutic targets of COAD. Available evidence indicated that immune cell infiltration was correlated with cancer prognosis. To reveal the roles of immune cells in the COAD prognosis, a study published in Bioscience Reports by Li et al. (Bioscience Reports (2021) 41, https://doi.org/10.1042/BSR20203496) analyzed data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) dataset. It demonstrated a beneficial effect of Th17 cells in COAD prognosis. In addition, six hub genes (KRT23, ULBP2, ASRGL1, SERPINA1, SCIN, and SLC28A2) were identified to correlate with Th17 cells and COAD prognosis, suggesting one new therapy strategy and some predictive biomarkers of COAD. These findings reported by Li et al. may pave one way to explore the molecular mechanism of COAD further.
Collapse
Affiliation(s)
- Kexin Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Zeng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Chunxiang Ma
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Dang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Bruun J, Eide PW, Bergsland CH, Bruck O, Svindland A, Arjama M, Välimäki K, Bjørnslett M, Guren MG, Kallioniemi O, Nesbakken A, Lothe RA, Pellinen T. E-cadherin is a robust prognostic biomarker in colorectal cancer and low expression is associated with sensitivity to inhibitors of topoisomerase, aurora, and HSP90 in preclinical models. Mol Oncol 2021; 16:2312-2329. [PMID: 34890102 PMCID: PMC9208074 DOI: 10.1002/1878-0261.13159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022] Open
Abstract
Cell–cell and cell–matrix adhesion proteins that have been implicated in colorectal epithelial integrity and epithelial‐to‐mesenchymal transition could be robust prognostic and potential predictive biomarkers for standard and novel therapies. We analyzed in situ protein expression of E‐cadherin (ECAD), integrin β4 (ITGB4), zonula occludens 1 (ZO‐1), and cytokeratins in a single‐hospital series of Norwegian patients with colorectal cancer (CRC) stages I–IV (n = 922) using multiplex fluorescence‐based immunohistochemistry (mfIHC) on tissue microarrays. Pharmacoproteomic associations were explored in 35 CRC cell lines annotated with drug sensitivity data on > 400 approved and investigational drugs. ECAD, ITGB4, and ZO‐1 were positively associated with survival, while cytokeratins were negatively associated with survival. Only ECAD showed independent prognostic value in multivariable Cox models. Clinical and molecular associations for ECAD were technically validated on a different mfIHC platform, and the prognostic value was validated in another Norwegian series (n = 798). In preclinical models, low and high ECAD expression differentially associated with sensitivity to topoisomerase, aurora, and HSP90 inhibitors, and EGFR inhibitors. E‐cadherin protein expression is a robust prognostic biomarker with potential clinical utility in CRC.
Collapse
Affiliation(s)
- Jarle Bruun
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Norway
| | - Peter W Eide
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Norway
| | - Christian Holst Bergsland
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Norway
| | - Oscar Bruck
- Hematology Research Unit Helsinki, University of Helsinki and Comprehensive Cancer Center, Helsinki University Hospital, Finland
| | - Aud Svindland
- K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.,Department of Pathology, Oslo University Hospital, Norway
| | - Mariliina Arjama
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
| | - Katja Välimäki
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
| | - Merete Bjørnslett
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Norway
| | - Marianne G Guren
- K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Norway.,Department of Oncology, Oslo University Hospital, Norway
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland.,Science for Life Laboratory, Department of Oncology & Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Arild Nesbakken
- K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.,Department of Gastrointestinal Surgery, Oslo University Hospital, Norway
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Teijo Pellinen
- K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Norway.,Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
| |
Collapse
|
19
|
Identification of Key Genes Associated with Progression and Prognosis of Bladder Cancer through Integrated Bioinformatics Analysis. Cancers (Basel) 2021; 13:cancers13235931. [PMID: 34885040 PMCID: PMC8656554 DOI: 10.3390/cancers13235931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Bladder cancer is a heterogeneous disease with high recurrence rates. The current prognostication depends on tumor stage and grade and there is a need for predictive biomarkers that can distinguish between progressive versus non-progressive disease. We have identified a 3-gene signature panel having prognostic value in bladder cancer, which could aid in clinical decision making. Abstract Bladder cancer prognosis remains dismal due to lack of appropriate biomarkers that can predict its progression. The study aims to identify novel prognostic biomarkers associated with the progression of bladder cancer by utilizing three Gene Expression Omnibus (GEO) datasets to screen differentially expressed genes (DEGs). A total of 1516 DEGs were identified between non-muscle invasive and muscle invasive bladder cancer specimens. To identify genes of prognostic value, we performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. A total of seven genes, including CDKN2A, CDC20, CTSV, FOXM1, MAGEA6, KRT23, and S100A9 were confirmed with strong prognostic values in bladder cancer and validated by qRT-PCR conducted in various human bladder cancer cells representing stage-specific disease progression. ULCAN, human protein atlas and The Cancer Genome Atlas datasets were used to confirm the predictive value of these genes in bladder cancer progression. Moreover, Kaplan–Meier analysis and Cox hazard ratio analysis were performed to determine the prognostic role of these genes. Univariate analysis performed on a validation set identified a 3-panel gene set viz. CDKN2A, CTSV and FOXM1 with 95.5% sensitivity and 100% specificity in predicting bladder cancer progression. In summary, our study screened and confirmed a 3-panel biomarker that could accurately predict the progression and prognosis of bladder cancer.
Collapse
|
20
|
Qin Y, Chen L, Chen L. Identification and verification of key cancer genes associated with prognosis of colorectal cancer based on bioinformatics analysis. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:1063-1070. [PMID: 34911835 PMCID: PMC10930233 DOI: 10.11817/j.issn.1672-7347.2021.200952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVES The biomarkers targeting colorectal cancer (CRC) prognosis are short of high accuracy and sensitivity in clinic. Through bioinformatics analysis, we aim to identify and confirm a series of key genes referred to the diagnosis and prognosis of CRC. METHODS GSE31905, GSE35279, and GSE41657 were selected as complete RNA sequencing data sets of CRC and colorectal mucosa (CRM) tissues from the NCBI-GEO database, and the differentially expressed genes (DEGs) were analyzed. The common DEGs in these 3 data sets were obtained by Venn map, and enriched by STRING network system and Cytoscape software. The Kaplan-Meier plotter website was used to verify the correlation between the enriched genes and the prognosis of CRC. RESULTS For the whole RNA sequencing data sets of CRC and normal intestinal mucosa samples, the DEGs of CRC and CRM in the 3 data sets (|log2FC|>2 and P<0.05) were screened by GEO2R tool in NCBI-GEO database. By using Venn graph analysis software, the intersection of up-regulated/down-regulated genes in 3 GSE datasets was obtained, and a total 105 up-regulated genes and 140 down-regulated genes were found in the 3 samples. The up-regulated/down-regulated genes were introduced into the STRING network system to obtain the interacting genes. The interacting gene sets were introduced into Cytoscape software, and 61 up-regulated genes were found by Molecular Complex Detection (MCODE) plug-in. Through the Kaplan-Meier plotter website, we found that EPHB2, KLK8, DIAPH3, STC2, OXTR, MMP7, MET, KRT85, KRT6B, KRT23, and KLK10 genes were highly expressed in CRC, and were related to the prognosis. CONCLUSIONS The above 11 genes verified by bioinformatics retrieval and analysis can predict the poor prognosis of CRC to a certain extent, and they provide a possible target for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Yi Qin
- Xiangya School of Public Health, Central South University, Changsha 410078.
| | - Lu Chen
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lizhang Chen
- Xiangya School of Public Health, Central South University, Changsha 410078.
| |
Collapse
|
21
|
MC1R Is a Prognostic Marker and Its Expression Is Correlated with MSI in Colorectal Cancer. Curr Issues Mol Biol 2021; 43:1529-1547. [PMID: 34698109 PMCID: PMC8929037 DOI: 10.3390/cimb43030108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022] Open
Abstract
Melanocortin 1 receptor (MC1R) is thought to be a marker of poor prognosis and a potential target for the treatment of melanoma. Studies have found that MC1R promotes several tumor behaviors, including cell proliferation and differentiation, pigment formation, and genome damage repair. Some single-nucleotide polymorphisms (SNPs) of MC1R are involved in the occurrence and development of melanoma. A few studies have reported a relationship between MC1R and colorectal cancer (CRC). In this research, our objective was to examine MC1R expression and MC1R SNPs and investigate their correlation with the clinicopathological features of human CRC tissues. We evaluated MC1R mRNA expression by performing bioinformatic analyses on human CRC expression datasets. We used Western blotting and RT-qPCR to compare MC1R expression in CRC tissues with that in normal tissues, and MC1R SNPs in CRC tissues were detected by PCR-direct sequencing (DS). The expression of MC1R was significantly decreased in CRC tissues compared with normal tissue, and its expression was negatively associated with P53 expression, MLH1 expression, and PMS2 expression, and high MC1R expression was significantly associated with microsatellite instability (MSI). MC1R SNPs were also associated with the clinicopathological characteristics of CRC; for example, the rs2228479 locus genotype was correlated with Ki67 status, and the rs885479 locus genotype was correlated with age and T stage. In conclusion, MC1R plays a crucial role in the progression of CRC and may be a marker of poor prognosis in CRC.
Collapse
|
22
|
Ali D, Alhattab D, Jafar H, Alzubide M, Sharar N, Bdour S, Awidi A. Differential Marker Expression between Keratinocyte Stem Cells and Their Progeny Generated from a Single Colony. Int J Mol Sci 2021; 22:ijms221910810. [PMID: 34639148 PMCID: PMC8509450 DOI: 10.3390/ijms221910810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/31/2023] Open
Abstract
The stemness in keratinocyte stem cells (KSCs) is determined by their gene expression patterns. KSCs are crucial in maintaining epidermal homeostasis and wound repair and are widely used candidates for therapeutic applications. Although several studies have reported their positive identifiers, unique biomarkers for KSCs remain elusive. Here, we aim to identify potential candidate stem cell markers. Human epidermal keratinocytes (HEKs) from neonatal foreskin tissues were isolated and cultured. Single-cell clonal analysis identified and characterized three types of cells: KSCs (holoclones), transient amplifying cells (TACs; meroclones), and differentiated cells (DSCs; paraclones). The clonogenic potential of KSCs demonstrated the highest proliferation potential of KSCs, followed by TACs and DSCs, respectively. Whole-transcriptome analysis using microarray technology unraveled the molecular signatures of these cells. These results were validated by quantitative real-time polymerase chain reaction and flow cytometry analysis. A total of 301 signature upregulated and 149 downregulated differentially expressed genes (DEGs) were identified in the KSCs, compared to TACs and DSCs. Furthermore, DEG analyses revealed new sets of genes related to cell proliferation, cell adhesion, surface makers, and regulatory factors. In conclusion, this study provides a useful source of information for the identification of potential SC-specific candidate markers.
Collapse
Affiliation(s)
- Dema Ali
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (D.A.); (D.A.); (H.J.); (M.A.); (N.S.)
- Department of Biological Sciences, Faculty of Science, The University of Jordan, Amman 11942, Jordan
| | - Dana Alhattab
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (D.A.); (D.A.); (H.J.); (M.A.); (N.S.)
- Laboratory for Nanomedicine, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (D.A.); (D.A.); (H.J.); (M.A.); (N.S.)
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Malak Alzubide
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (D.A.); (D.A.); (H.J.); (M.A.); (N.S.)
| | - Nour Sharar
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (D.A.); (D.A.); (H.J.); (M.A.); (N.S.)
| | - Salwa Bdour
- Department of Clinical Laboratory Sciences, Faculty of Science, The University of Jordan, Amman 11942, Jordan
- Correspondence: (S.B.); (A.A.)
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (D.A.); (D.A.); (H.J.); (M.A.); (N.S.)
- Department of Hematology and Oncology, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
- Correspondence: (S.B.); (A.A.)
| |
Collapse
|
23
|
Wang K, Li Y, Wang J, Chen R, Li J. A novel 12-gene signature as independent prognostic model in stage IA and IB lung squamous cell carcinoma patients. Clin Transl Oncol 2021; 23:2368-2381. [PMID: 34028782 DOI: 10.1007/s12094-021-02638-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/06/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND There is currently no formal consensus on the administration of adjuvant chemotherapy to stage I lung squamous cell carcinoma (LUSC) patients despite the poor prognosis. The side effects of adjuvant chemotherapy need to be balanced against the risk of tumour recurrence. Prognostic markers are thus needed to identify those at higher risks and recommend individualised treatment regimens. METHODS Clinical and sequencing data of stage I patients were retrieved from the Lung Squamous Cell Carcinoma project of the Cancer Genome Atlas (TCGA) and three tissue microarray datasets. In a novel K-resample gene selection algorithm, gene-wise Cox proportional hazard regressions were repeated for 50 iterations with random resamples from the TCGA training dataset. The top 200 genes with the best predictive power for survival were chosen to undergo an L1-penalised Cox regression for further gene selection. RESULTS A total of 602 samples of LUSC were included, of which 42.2% came from female patients, 45.3% were stage IA cancer. From an initial pool of 11,212 genes in the TCGA training dataset, a final set of 12 genes were selected to construct the multivariate Cox prognostic model. Among the 12 selected genes, 5 genes, STAU1, ADGRF1, ATF7IP2, MALL and KRT23, were adverse prognostic factors for patients, while seven genes, NDUFB1, CNPY2, ZNF394, PIN4, FZD8, NBPF26 and EPYC, were positive prognostic factors. An equation for risk score was thus constructed from the final multivariate Cox model. The model performance was tested in the sequestered TCGA testing dataset and validated in external tissue microarray datasets (GSE4573, GSE31210 and GSE50081), demonstrating its efficacy in stratifying patients into high- and low-risk groups with significant survival difference both in the whole set (including stage IA and IB) and in the stage IA only subgroup of each set. The prognostic power remains significant after adjusting for standard clinical factors. When benchmarked against other prominent gene-signature based prognostic models, the model outperformed the rest in the TCGA testing dataset and in predicting long-term risk at eight years in all three validation datasets. CONCLUSION The 12-gene prognostic model may serve as a useful complementary clinical risk-stratification tool for stage I and especially stage IA lung squamous cell carcinoma patients to guide clinical decision making.
Collapse
Affiliation(s)
- K Wang
- School of Clinical Medicine, The University of Cambridge, Cambridge, UK.,School of Medicine, The University of Leeds, Leeds, UK
| | - Y Li
- School of Medicine, The University of Manchester, Manchester, UK
| | - J Wang
- School of Public Health, Medical College of Soochow University, 199 Renai Rd., Suzhou, 215123, Jiangsu, China
| | - R Chen
- Respiratory Department, The Second Affiliated Hospital of the Soochow University, Suzhou, 215004, China.
| | - J Li
- School of Public Health, Medical College of Soochow University, 199 Renai Rd., Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
24
|
Gong C, Yang H, Wang S, Liu J, Li Z, Hu Y, Chen Y, Huang Y, Luo Q, Wu Y, Liu E, Xiao Y. hTERT Promotes CRC Proliferation and Migration by Recruiting YBX1 to Increase NRF2 Expression. Front Cell Dev Biol 2021; 9:658101. [PMID: 34079797 PMCID: PMC8165255 DOI: 10.3389/fcell.2021.658101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
High human telomerase reverse transcriptase (hTERT) expression is related to severe Colorectal Cancer (CRC) progression and negatively related to CRC patient survival. Previous studies have revealed that hTERT can reduce cancer cellular reactive oxygen species (ROS) levels and accelerate cancer progression; however, the mechanism remains poorly understood. NFE2-related factor 2 (NRF2) is a molecule that plays a significant role in regulating cellular ROS homeostasis, but whether there is a correlation between hTERT and NRF2 remains unclear. Here, we showed that hTERT increases CRC proliferation and migration by inducing NRF2 upregulation. We further found that hTERT increases NRF2 expression at both the mRNA and protein levels. Our data also revealed that hTERT primarily upregulates NRF2 by increasing NRF2 promoter activity rather than by regulating NRF2 mRNA or protein stability. Using DNA pull-down/MS analysis, we found that hTERT can recruit YBX1 to upregulate NRF2 promoter activity. We also found that hTERT/YBX1 may localize to the P2 region of the NRF2 promoter. Taken together, our results demonstrate that hTERT facilitates CRC proliferation and migration by upregulating NRF2 expression through the recruitment of the transcription factor YBX1 to activate the NRF2 promoter. These results provide a new theoretical basis for CRC treatment.
Collapse
Affiliation(s)
- Chunli Gong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Huan Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jiao Liu
- Department of Endoscope, General Hospital of Shenyang Military Region, Shenyang, China
| | - Zhibin Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yiyang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yang Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiang Luo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yuyun Wu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - En Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
25
|
Murugan B, Krishnan UM. Differently sized drug-loaded mesoporous silica nanoparticles elicit differential gene expression in MCF-7 cancer cells. Nanomedicine (Lond) 2021; 16:1017-1034. [PMID: 33970678 DOI: 10.2217/nnm-2020-0375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study investigates the effects of different sized unmodified and chemo-responsive mesoporous silica nanocarriers on MCF-7 cancer cells. Materials & methods: Unmodified and thiol-functionalized large and small-sized mesoporous MCM-41 silica nanoparticles prepared using templated sol-gel process were characterized for their physicochemical properties and in vitro and in vivo anticancer efficacy. Microarray analysis was carried out to assess their differential effect on gene expression. Results: Thiol-functionalized nanoparticles displayed chemo responsive release and greater cytotoxicity to cancer cells when compared with unmodified carriers. Microarray studies showed distinct differences in genes differentially regulated by sMCM-41and lMCM-41 carriers when compared with the free drug. Conclusion: The small chemo-responsive carrier was more effective in suppressing oncogenes and genes involved in proliferation, invasion and survival while the large carrier mainly altered membrane-associated pathways.
Collapse
Affiliation(s)
- Baranya Murugan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed-to-be University, Thanjavur, 613401, India.,School of Chemical & Biotechnology, SASTRA Deemed-to-be University, Thanjavur, 613401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed-to-be University, Thanjavur, 613401, India.,School of Chemical & Biotechnology, SASTRA Deemed-to-be University, Thanjavur, 613401, India.,School of Arts, Science & Humanities, SASTRA Deemed-to-be University, Thanjavur, 613401, India
| |
Collapse
|
26
|
Hachey SJ, Movsesyan S, Nguyen QH, Burton-Sojo G, Tankazyan A, Wu J, Hoang T, Zhao D, Wang S, Hatch MM, Celaya E, Gomez S, Chen GT, Davis RT, Nee K, Pervolarakis N, Lawson DA, Kessenbrock K, Lee AP, Lowengrub J, Waterman ML, Hughes CCW. An in vitro vascularized micro-tumor model of human colorectal cancer recapitulates in vivo responses to standard-of-care therapy. LAB ON A CHIP 2021; 21:1333-1351. [PMID: 33605955 PMCID: PMC8525497 DOI: 10.1039/d0lc01216e] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/02/2021] [Indexed: 05/23/2023]
Abstract
Around 95% of anti-cancer drugs that show promise during preclinical study fail to gain FDA-approval for clinical use. This failure of the preclinical pipeline highlights the need for improved, physiologically-relevant in vitro models that can better serve as reliable drug-screening and disease modeling tools. The vascularized micro-tumor (VMT) is a novel three-dimensional model system (tumor-on-a-chip) that recapitulates the complex human tumor microenvironment, including perfused vasculature, within a transparent microfluidic device, allowing real-time study of drug responses and tumor-stromal interactions. Here we have validated this microphysiological system (MPS) platform for the study of colorectal cancer (CRC), the second leading cause of cancer-related deaths, by showing that gene expression, tumor heterogeneity, and treatment responses in the VMT more closely model CRC tumor clinicopathology than current standard drug screening modalities, including 2-dimensional monolayer culture and 3-dimensional spheroids.
Collapse
Affiliation(s)
- Stephanie J. Hachey
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Silva Movsesyan
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Quy H. Nguyen
- Department of Biological Chemistry, University of California, IrvineIrvineCA92697USA
| | - Giselle Burton-Sojo
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Ani Tankazyan
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, IrvineIrvineCA92697USA
| | - Tuyen Hoang
- Department of Biostatistics, University of California, IrvineIrvineCA92697USA
| | - Da Zhao
- Department of Biomedical Engineering, University of California, IrvineIrvineCA92697USA
| | - Shuxiong Wang
- Department of Mathematics, University of California, IrvineIrvineCA92697USA
| | - Michaela M. Hatch
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Elizabeth Celaya
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - Samantha Gomez
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
| | - George T. Chen
- Department of Microbiology and Molecular Genetics, University of California, IrvineIrvineCA92697USA
| | - Ryan T. Davis
- Department of Physiology and Biophysics, University of California, IrvineIrvineCA92697USA
| | - Kevin Nee
- Department of Biological Chemistry, University of California, IrvineIrvineCA92697USA
| | - Nicholas Pervolarakis
- Center for Complex Biological Systems, University of California, IrvineIrvineCA92697USA
| | - Devon A. Lawson
- Department of Physiology and Biophysics, University of California, IrvineIrvineCA92697USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California, IrvineIrvineCA92697USA
| | - Abraham P. Lee
- Department of Biomedical Engineering, University of California, IrvineIrvineCA92697USA
| | - John Lowengrub
- Department of Biomedical Engineering, University of California, IrvineIrvineCA92697USA
- Department of Mathematics, University of California, IrvineIrvineCA92697USA
- Center for Complex Biological Systems, University of California, IrvineIrvineCA92697USA
| | - Marian L. Waterman
- Department of Microbiology and Molecular Genetics, University of California, IrvineIrvineCA92697USA
| | - Christopher C. W. Hughes
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineCA92697USA
- Department of Biomedical Engineering, University of California, IrvineIrvineCA92697USA
| |
Collapse
|
27
|
Chen H, Li L, Qin P, Xiong H, Chen R, Zhang M, Jiang Q. A 4-gene signature predicts prognosis of uterine serous carcinoma. BMC Cancer 2021; 21:154. [PMID: 33579221 PMCID: PMC7881619 DOI: 10.1186/s12885-021-07834-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/19/2020] [Indexed: 12/29/2022] Open
Abstract
Background Uterine serous carcinoma (USC) is an aggressive type of endometrial cancer that accounts for up to 40% of endometrial cancer deaths, creating an urgent need for prognostic biomarkers. Methods USC RNA-Seq data and corresponding patients’ clinical records were obtained from The Cancer Genome Atlas and Genotype-Tissue Expression datasets. Univariate cox, Lasso, and Multivariate cox regression analyses were conducted to forge a prognostic signature. Multivariable and univariable cox regression analysis and ROC curve evaluated the prediction efficiency both in the training and testing sets. Results We uncovered 1385 genes dysregulated in 110 cases of USC tissue relative to 113 cases of normal uterine tissue. Functional enrichment analysis of these genes revealed the involvement of various cancer-related pathways in USC. A novel 4-gene signature (KRT23, CXCL1, SOX9 and ABCA10) of USC prognosis was finally forged by serial regression analyses. Overall patient survival (OS) and recurrence-free survival (RFS) were significantly lower in the high-risk group relative to the low-risk group in both the training and testing sets. The area under the ROC curve of the 4-gene signature was highest among clinicopathological features in predicting OS and RFS. The 4-gene signature was found to be an independent prognostic indicator in USC and was a superior predictor of OS in early stage of USC. Conclusions Our findings highlight the potential of the 4-gene signature as a guide for personalized USC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07834-4.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.,Department of Pathology, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lingjun Li
- Department of Pathology, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ping Qin
- Department of Pathology, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hanzhen Xiong
- Department of Pathology, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ruichao Chen
- Department of Pathology, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Minfen Zhang
- Department of Pathology, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qingping Jiang
- Department of Pathology, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
28
|
Keratin intermediate filaments in the colon: guardians of epithelial homeostasis. Int J Biochem Cell Biol 2020; 129:105878. [PMID: 33152513 DOI: 10.1016/j.biocel.2020.105878] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Keratin intermediate filament proteins are major cytoskeletal components of the mammalian simple layered columnar epithelium in the gastrointestinal tract. Human colon crypt epithelial cells express keratins 18, 19 and 20 as the major type I keratins, and keratin 8 as the type II keratin. Keratin expression patterns vary between species, and mouse colonocytes express keratin 7 as a second type II keratin. Colonic keratin patterns change during cell differentiation, such that K20 increases in the more differentiated crypt cells closer to the central lumen. Keratins provide a structural and mechanical scaffold to support cellular stability, integrity and stress protection in this rapidly regenerating tissue. They participate in central colonocyte processes including barrier function, ion transport, differentiation, proliferation and inflammatory signaling. The cell-specific keratin compositions in different epithelial tissues has allowed for the utilization of keratin-based diagnostic methods. Since the keratin expression pattern in tumors often resembles that in the primary tissue, it can be used to recognize metastases of colonic origin. This review focuses on recent findings on the biological functions of mammalian colon epithelial keratins obtained from pivotal in vivo models. We also discuss the diagnostic value of keratins in chronic colonic disease and known keratin alterations in colon pathologies. This review describes the biochemical properties of keratins and their molecular actions in colonic epithelial cells and highlights diagnostic data in colorectal cancer and inflammatory bowel disease patients, which may facilitate the recognition of disease subtypes and the establishment of personal therapies in the future.
Collapse
|
29
|
The Overexpression of Keratin 23 Promotes Migration of Ovarian Cancer via Epithelial-Mesenchymal Transition. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8218735. [PMID: 33204716 PMCID: PMC7652601 DOI: 10.1155/2020/8218735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 01/13/2023]
Abstract
Background Keratin 23 (KRT23) is a new member of the KRT gene family and known to be involved in the development and migration of various types of tumors. However, the role of KRT23 in ovarian cancer (OC) remains unclear. This study is aimed at investigating the function of KRT23 in OC. Methods The expression of KRT23 in normal ovarian and OC tissues was determined using the Oncomine database and immunohistochemical staining. Reverse transcription quantitative polymerase chain reaction assay was used to analyze the expression of KRT23 in normal ovarian epithelial cell lines and OC cell lines. Small interfering RNA (siRNA), wound healing assay, and transwell assay were conducted to detect the effects of KRT23 on OC cell migration and invasion. Further mechanistic studies were verified by the Gene Expression Profiling Interactive Analysis platform, Western blotting, and immunofluorescence staining. Results KRT23 was highly expressed in OC tissues and cell lines. High KRT23 expression could regulate OC cell migration and invasion, and the reduction of KRT23 by siRNA inhibited the migration and invasion of OC cells in vitro. Furthermore, KRT23 mediated epithelial-mesenchymal transition (EMT) by regulating p-Smad2/3 levels in the TGF-β/Smad signaling pathway. Conclusions These results demonstrate that KRT23 plays an important role in OC migration via EMT by regulating the TGF-β/Smad signaling pathway.
Collapse
|
30
|
Alibardi L. Immunostaining of telomerase in embryonic and juvenile feather follicle of the chick labels proliferating cells for feather formation. ZOOLOGY 2020; 146:125846. [PMID: 33813250 DOI: 10.1016/j.zool.2020.125846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/05/2020] [Accepted: 09/16/2020] [Indexed: 11/26/2022]
Abstract
Feathers regenerate through proliferation of cells derived from follicle stem cells. Immunoloblotting for telomerase in chick embryonic and juvenile feathers shows immunopositive bands around 100 kDa, 75 and 60 kDa only in embryonic feathers, indicating fragmentation of the protein due to physiological processing or artifacts derived from protein extraction. Immunolabeling for telomerase is present in the cytoplasm and nuclei of cells of the collar epithelium and bulge located in the follicle, and in sparse cells of the dermal papilla. PCNA-immunolabeling indicates that the collar and dermal papilla contain numerous proliferating cells, including the ramogenic zone where barb ridges are formed. Ultrastructural labeling indicates that a telomerase-like protein or its fragment is localized in nucleoli and in sparse nuclear clumps, likely representing Cajal bodies. The cytoplasm shows sparse immune-gold particles, also associated to mitochondria and sparse keratin filaments. An intense labeling is present in some areas of condensing chromosomes in dividing cells. Since telomerase positive cells are also seen in suprabasal layers of the collar epithelium and in the ramogenic zone, it is suggested that they represent dividing cells, most likely transit amplifying cells that give rise to the corneocytes of feathers. The significance of telomerase localization in chromatin is unknown.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Bologna, Italy.
| |
Collapse
|
31
|
Comparative Analysis of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells between Preeclampsia and Normal Pregnant Women. Stem Cells Int 2020; 2020:8403192. [PMID: 32587622 PMCID: PMC7298345 DOI: 10.1155/2020/8403192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/03/2020] [Accepted: 03/26/2020] [Indexed: 12/26/2022] Open
Abstract
Preeclampsia is a syndrome characterized by deterioration of either the maternal condition or the fetal condition. The adverse intrauterine environment made by preeclampsia results into intrauterine growth restriction and increased risk of a variety of diseases in future life. Given the adverse environment of fetal circulation made in the preeclamptic condition, and the role of mesenchymal stem cell (MSC) as a multipotent progenitor cell, we hypothesized that MSCs derived from human umbilical cord blood (hUCB-MSCs) obtained from preeclampsia are adversely altered or affected compared with normal pregnancy. The aim of this study was to analyze the biological characteristics and compare the functional abilities and gene expression patterns of hUCB-MSCs originating from pregnant women with and without severe preeclampsia. hUCB-MSCs were isolated and cultured from 28 pregnant women with severe preeclampsia and 30 normal pregnant women. hUCB-MSCs obtained from women with preeclampsia were less proliferative and more senescent and had lower telomerase activity and higher ROS activity than cells from women with normal pregnancy. In addition, many senescence-related differentially expressed genes (DEGs) were identified by analysis of microarray gene expression profiles and significantly associated with the Gene Ontology term cell aging. In conclusion, hUCB-MSCs obtained from women with preeclampsia showed the poorly proliferative, more senescent, and decreased telomerase activity, and these characters may be related with functional impairment of MSC from preeclampsia compared with cells from normal pregnancy.
Collapse
|
32
|
Gao X, Yang J. Identification of Genes Related to Clinicopathological Characteristics and Prognosis of Patients with Colorectal Cancer. DNA Cell Biol 2020; 39:690-699. [PMID: 32027181 DOI: 10.1089/dna.2019.5088] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to identify genes with clinical significance in colorectal cancer (CRC). Gene expression profiles of 585 CRC tissues and 61 normal colorectal tissues from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were used to identify differentially expressed genes (DEGs) between CRC and normal colorectal tissues. DAVID and KOBAS tools were used to explore Gene Ontology (GO) and KEGG pathways enriched by DEGs, respectively. In addition, TCGA data sets were also used to identify prognostic factors and develop a prognostic prediction model for CRC. A total of 353 DEGs including 117 upregulated and 236 downregulated genes in CRC were identified based on GSE32323 data set. These DEGs were significantly enriched in the biological process related to the regulation of cell proliferation and 50 signaling pathways, such as "TGF-beta signaling pathway," "Wnt signaling pathway," and "Jak-STAT signaling pathway." GCG, ADH1B, SLC4A4, ZG16, and CLCA4 were the top five downregulated in CRC. FOXQ1, LGR5, CLDN1, KRT23, and DPEP1 were the top five upregulated in CRC. KRT23 expression could affect tumor stage and regional lymph node metastasis in CRC patients. FOXQ1 expression could affect tumor distant metastasis in CRC patients. Survival analysis indicated that SLC4A4 expression was associated with the prognosis of CRC patients. Prognostic prediction model developed based on age, tumor stage, and SLC4A4 expression exhibited an efficient performance in predicting 1-, 3-, and 5-year overall survival of CRC patients. In conclusion, the current study identified several genes and pathways related to CRC, which provided new insight in understanding molecular mechanism of tumorigenesis and development of CRC.
Collapse
Affiliation(s)
- Xueren Gao
- School of Pharmacy, Yancheng Teachers' University, Yancheng, China
| | - Jiaojiao Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Tai yuan, China
| |
Collapse
|
33
|
Xie R, Tuo B, Yang S, Chen XQ, Xu J. Calcium-sensing receptor bridges calcium and telomerase reverse transcriptase in gastric cancers via Akt. Clin Transl Oncol 2019; 22:1023-1032. [PMID: 31650467 DOI: 10.1007/s12094-019-02226-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/03/2019] [Indexed: 01/27/2023]
Abstract
PURPOSE Human telomerase reverse transcriptase (hTERT) and calcium-sensing receptor (CaSR) act as an oncogene in gastric cancers, however, their relationship in the progression of gastric cancers is yet to be elucidated. Herein, we aimed to access the potential interaction between hTERT and CaSR in the development of gastric cancers. METHODS The clinical data of 41 patients with gastric cancers were analyzed regarding the expressions of hTERT and CaSR by immunohistochemistry. Among them, five patients' specimens were also analyzed by Western blotting. The regulation of calcium on the expression level of hTERT and the possible underlying mechanism via CaSR were explored in gastric cancer cell lines MKN45 and SGC-7901. RESULTS Both hTERT and CaSR were increased and positively correlated in human gastric cancers, which also occurs in gastric cancer cells MKN45 and SGC-7901. Calcium induced hTERT expression at the transcriptional level in a CaSR-dependent manner followed by an increase in telomerase activity, as either a CaSR shRNA or the CaSR antagonist NPS2143 abolished the calcium-mediated regulation of hTERT and telomerase activity. Further studies showed that CaSR-mediated cytosolic calcium rise followed by Akt activation was involved in the regulation of hTERT by extracellular calcium. Finally, neither CaSR overexpression nor shRNA-mediated CaSR downregulation had an effect on the expression level of hTERT. CONCLUSIONS Our findings established a functional linkage between CaSR and hTERT in the development of gastric cancers and CaSR-hTERT coupling might serve as a novel target for therapeutic strategy against human gastric cancers.
Collapse
Affiliation(s)
- R Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - B Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - S Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - X-Q Chen
- Department of Neurosciences, School of Medicine, University of California, San Diego, CA, 92093, USA.
| | - J Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
34
|
Tissue-Specific Gene Expression during Productive Human Papillomavirus 16 Infection of Cervical, Foreskin, and Tonsil Epithelium. J Virol 2019; 93:JVI.00915-19. [PMID: 31189705 DOI: 10.1128/jvi.00915-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Epidemiological data confirm a much higher incidence of high-risk human papillomavirus 16 (HPV16)-mediated carcinogenesis of the cervical epithelium than for other target sites. In order to elucidate tissue-specific responses to virus infection, we compared gene expression changes induced by productive HPV16 infection of cervical, foreskin, and tonsil organotypic rafts. These rafts closely mimic persistent HPV16 infection, long before carcinogenesis sets in. The total number of gene expression changes varied considerably across the tissue types, with only 32 genes being regulated in common. Among them, we confirmed the Kelch-like family protein KLHL35 and the laminin-5 complex to be upregulated and downregulated, respectively, in all the three tissues. HPV16 infection induces upregulation of genes involved in cell cycle control, cell division, mitosis, DNA replication, and DNA damage repair in all the three tissues, indicative of a hyperproliferative environment. In the cervical and tonsil epithelium, we observe significant downregulation of genes involved in epidermis development, keratinocyte differentiation, and extracellular matrix organization. On the other hand, in HPV16-positive foreskin (HPV16 foreskin) tissue, several genes involved in interferon-mediated innate immunity, cytokine signaling, and cellular defenses were downregulated. Furthermore, pathway analysis and experimental validations identified important cellular pathways like STAT1 and transforming growth factor β (TGF-β) to be differentially regulated among the three tissue types. The differential modulation of important cellular pathways like TGF-β1 and STAT1 can explain the sensitivity of tissues to HPV cancer progression.IMPORTANCE Although the high-risk human papillomavirus 16 infects anogenital and oropharyngeal sites, the cervical epithelium has a unique vulnerability to progression of cancer. Host responses during persistent infection and preneoplastic stages can shape the outcome of cancer progression in a tissue-dependent manner. Our study for the first time reports differential regulation of critical cellular functions and signaling pathways during productive HPV16 infection of cervical, foreskin, and tonsil tissues. While the virus induces hyperproliferation in infected cells, it downregulates epithelial differentiation, epidermal development, and innate immune responses, according to the tissue type. Modulation of these biological functions can determine virus fitness and pathogenesis and illuminate key cellular mechanisms that the virus employs to establish persistence and finally initiate disease progression.
Collapse
|
35
|
Identification of Keratin 23 as a Hepatitis C Virus-Induced Host Factor in the Human Liver. Cells 2019; 8:cells8060610. [PMID: 31216713 PMCID: PMC6628310 DOI: 10.3390/cells8060610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 02/06/2023] Open
Abstract
Keratin proteins form intermediate filaments, which provide structural support for many tissues. Multiple keratin family members are reported to be associated with the progression of liver disease of multiple etiologies. For example, keratin 23 (KRT23) was reported as a stress-inducible protein, whose expression levels correlate with the severity of liver disease. Hepatitis C virus (HCV) is a human pathogen that causes chronic liver diseases including fibrosis, cirrhosis, and hepatocellular carcinoma. However, a link between KRT23 and hepatitis C virus (HCV) infection has not been reported previously. In this study, we investigated KRT23 mRNA levels in datasets from liver biopsies of chronic hepatitis C (CHC) patients and in primary human hepatocytes experimentally infected with HCV, in addition to hepatoma cells. Interestingly, in each of these specimens, we observed an HCV-dependent increase of mRNA levels. Importantly, the KRT23 protein levels in patient plasma decreased upon viral clearance. Ectopic expression of KRT23 enhanced HCV infection; however, CRIPSPR/Cas9-mediated knockout did not show altered replication efficiency. Taken together, our study identifies KRT23 as a novel, virus-induced host-factor for hepatitis C virus.
Collapse
|
36
|
Dmello C, Srivastava SS, Tiwari R, Chaudhari PR, Sawant S, Vaidya MM. Multifaceted role of keratins in epithelial cell differentiation and transformation. J Biosci 2019; 44:33. [PMID: 31180046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Keratins, the epithelial-predominant members of the intermediate filament superfamily, are expressed in a pairwise, tissuespecific and differentiation-dependent manner. There are 28 type I and 26 type II keratins, which share a common structure comprising a central coiled coil α-helical rod domain flanked by two nonhelical head and tail domains. These domains harbor sites for major posttranslational modifications like phosphorylation and glycosylation, which govern keratin function and dynamics. Apart from providing structural support, keratins regulate various signaling machinery involved in cell growth, motility, apoptosis etc. However, tissue-specific functions of keratins in relation to cell proliferation and differentiation are still emerging. Altered keratin expression pattern during and after malignant transformation is reported to modulate different signaling pathways involved in tumor progression in a context-dependent fashion. The current review focuses on the literature related to the role of keratins in the regulation of cell proliferation, differentiation and transformation in different types of epithelia.
Collapse
Affiliation(s)
- Crismita Dmello
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | | | | | | | | | | |
Collapse
|
37
|
Intermediate Filaments as Effectors of Cancer Development and Metastasis: A Focus on Keratins, Vimentin, and Nestin. Cells 2019; 8:cells8050497. [PMID: 31126068 PMCID: PMC6562751 DOI: 10.3390/cells8050497] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 02/08/2023] Open
Abstract
Intermediate filament (IF) proteins make up the largest family of cytoskeletal proteins in metazoans, and are traditionally known for their roles in fostering structural integrity in cells and tissues. Remarkably, individual IF genes are tightly regulated in a fashion that reflects the type of tissue, its developmental and differentiation stages, and biological context. In cancer, IF proteins serve as diagnostic markers, as tumor cells partially retain their original signature expression of IF proteins. However, there are also characteristic alterations in IF gene expression and protein regulation. The use of high throughput analytics suggests that tumor-associated alterations in IF gene expression have prognostic value. Parallel research is also showing that IF proteins directly and significantly impact several key cellular properties, including proliferation, death, migration, and invasiveness, with a demonstrated impact on the development, progression, and characteristics of various tumors. In this review, we draw from recent studies focused on three IF proteins most associated with cancer (keratins, vimentin, and nestin) to highlight how several “hallmarks of cancer” described by Hanahan and Weinberg are impacted by IF proteins. The evidence already in hand establishes that IF proteins function beyond their classical roles as markers and serve as effectors of tumorigenesis.
Collapse
|
38
|
Dmello C, Srivastava SS, Tiwari R, Chaudhari PR, Sawant S, Vaidya MM. Multifaceted role of keratins in epithelial cell differentiation and transformation. J Biosci 2019. [DOI: 10.1007/s12038-019-9864-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Jiang T, Zhao J, Yu S, Mao Z, Gao C, Zhu Y, Mao C, Zheng L. Untangling the response of bone tumor cells and bone forming cells to matrix stiffness and adhesion ligand density by means of hydrogels. Biomaterials 2019; 188:130-143. [PMID: 30343256 PMCID: PMC6279509 DOI: 10.1016/j.biomaterials.2018.10.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/14/2018] [Accepted: 10/14/2018] [Indexed: 12/22/2022]
Abstract
How cancer cells and their anchorage-dependent normal counterparts respond to the adhesion ligand density and stiffness of the same extracellular matrix (ECM) is still not very clear. Here we investigated the effects of ECM adhesion ligand density and stiffness on bone tumor cells (osteosarcoma cells) and bone forming cells (osteoblasts) by using poly (ethylene glycol) diacrylate (PEGDA) and methacrylated gelatin (GelMA) hydrogels. By independently changing the PEGDA and GelMA content in the hydrogels, we achieved crosslinked hydrogel matrix with independently tunable stiffness (1.6, 6 and 25 kPa for 5%, 10%, 15% PEDGA, respectively) and adhesion ligand density (low, medium and high for 0.05%, 0.2%, 0.5% GelMA respectively). By using a series of biochemical and cell biological characterizations as well as in vivo studies, we confirmed that osteosarcoma and osteoblastic cells responded differently to the stiffness and adhesion ligand density within 3D ECM. When cultured within the 3D PEGDA/GelMA hydrogel matrix, osteosarcoma cells are highly dependent on the matrix stiffness via regulating the integrin-mediated focal adhesion (FA) pathway, whereas osteoblasts are highly sensitive to the matrix adhesion ligand density through regulating the integrin-mediated adherens junction (AJ) pathway. However, when seeded on the 2D surface of the hydrogels, osteosarcoma cells behaved differently and became sensitive to the matrix adhesion ligand density because they were "forced" to attach to the substrate, similar to anchorage-dependent osteoblasts. This study might provide new insights into rational design of scaffolds for generating in vitro tumor models to test anticancer therapeutics and for regenerating tissue to repair defects.
Collapse
Affiliation(s)
- Tongmeng Jiang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Shan Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38# Zheda Road, Hangzhou, 310027, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38# Zheda Road, Hangzhou, 310027, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38# Zheda Road, Hangzhou, 310027, China
| | - Ye Zhu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Sience and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5300, USA
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Sience and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5300, USA; School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
40
|
Zhao C, Lou Y, Wang Y, Wang D, Tang L, Gao X, Zhang K, Xu W, Liu T, Xiao J. A gene expression signature-based nomogram model in prediction of breast cancer bone metastases. Cancer Med 2018; 8:200-208. [PMID: 30575323 PMCID: PMC6346244 DOI: 10.1002/cam4.1932] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is prone to form bone metastases and subsequent skeletal‐related events (SREs) dramatically decrease patients’ quality of life and survival. Prediction and early management of bone lesions are valuable; however, proper prognostic models are inadequate. In the current study, we reviewed a total of 572 breast cancer patients in three microarray data sets including 191 bone metastases and 381 metastases‐free. Gene set enrichment analysis (GSEA) indicated less aggressive and low‐grade features of patients with bone metastases compared with metastases‐free ones, while luminal subtypes are more prone to form bone metastases. Five bone metastases‐related genes (KRT23, REEP1, SPIB, ALDH3B2, and GLDC) were identified and subjected to construct a gene expression signature‐based nomogram (GESBN) model. The model performed well in both training and testing sets for evaluation of breast cancer bone metastases (BCBM). Clinically, the model may help in prediction of early bone metastases, prevention and management of SREs, and even help to prolong survivals for patients with BCBM. The five‐gene GESBN model showed some implications as molecular diagnostic markers and therapeutic targets. Furthermore, our study also provided a way for analysis of tumor organ‐specific metastases. To the best of our knowledge, this is the first published model focused on tumor organ‐specific metastases.
Collapse
Affiliation(s)
- Chenglong Zhao
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yan Lou
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yao Wang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Dongsheng Wang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Liang Tang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xin Gao
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Kun Zhang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Xu
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tielong Liu
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jianru Xiao
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
41
|
Wang G, Wang Q, Huang Q, Chen Y, Sun X, He L, Zhan L, Guo X, Yin C, Fang Y, He X, Xing J. Upregulation of mtSSB by interleukin-6 promotes cell growth through mitochondrial biogenesis-mediated telomerase activation in colorectal cancer. Int J Cancer 2018; 144:2516-2528. [PMID: 30415472 DOI: 10.1002/ijc.31978] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/08/2018] [Accepted: 10/30/2018] [Indexed: 12/17/2022]
Abstract
It is now widely accepted that mitochondrial biogenesis is inhibited in most cancer cells. Interestingly, one of the possible exceptions is colorectal cancer (CRC), in which the content of mitochondria has been found to be higher than in normal colon mucosa. However, to date, the causes and effects of this phenomenon are still unclear. In the present study, we systematically investigated the functional role of mitochondrial single-strand DNA binding protein (mtSSB), a key molecule in the regulation of mitochondrial DNA (mtDNA) replication, in the mitochondrial biogenesis and CRC cell growth. Our results demonstrated that mtSSB was frequently upregulated in CRC tissues and that upregulated mtSSB was associated with poor prognosis in CRC patients. Furthermore, overexpression of mtSSB promoted CRC cell growth in vitro by regulating cell proliferation. The in vivo assay confirmed these results, indicating that the forced expression of mtSSB significantly increases the growth capacity of xenograft tumors. Mechanistically, the survival advantage conferred by mtSSB was primarily caused by increased mitochondrial biogenesis and subsequent ROS production, which induced telomerase reverse transcriptase (TERT) expression and telomere elongation via Akt/mTOR pathway in CRC cells. In addition, FOXP1, a member of the forkhead box family, was identified as a new transcription factor for mtSSB. Moreover, our results also demonstrate that proinflammatory IL-6/STAT3 signaling facilitates mtSSB expression and CRC cell proliferation via inducing FOXP1 expression. Collectively, our findings demonstrate that mtSSB induced by inflammation plays a critical role in the regulation of mitochondrial biogenesis, telomerase activation, and subsequent CRC proliferation, providing a strong evidence for mtSSB as drug target in CRC treatment.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China.,Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qian Wang
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China.,Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qichao Huang
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yibing Chen
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China.,Center of Genetic & Prenatal Diagnosis, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiacheng Sun
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Linjie He
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Lei Zhan
- Department of Gastroenterology, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xu Guo
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Chun Yin
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
42
|
Liu YB, Mei Y, Long J, Zhang Y, Hu DL, Zhou HH. RIF1 promotes human epithelial ovarian cancer growth and progression via activating human telomerase reverse transcriptase expression. J Exp Clin Cancer Res 2018; 37:182. [PMID: 30075819 PMCID: PMC6091081 DOI: 10.1186/s13046-018-0854-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/22/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human telomerase reverse transcriptase (hTERT) is highly expressed in over 80% of tumors, including human epithelial ovarian cancer (EOC). However, the mechanisms through which hTERT is up-regulated in EOC and promotes tumor progression remain unclear. The aim of this study is to identify RIF1 as a novel molecular target that modulate hTERT signaling and EOC growth. METHODS RIF1 expression in ovarian cancer, benign and normal ovarian tissues was examined by immunohistochemistry. The biological role of RIF1 was revealed by MTS, colony formation and sphere formation assays. Luciferase reporter assay and chromatin immunoprecipitation (CHIP) assay were used to verify RIF1 as a novel hTERT promoter-binding protein in EOC cells. The role of RIF1 on tumorigenesis in vivo was detected by the xenograft model. RESULTS RIF1 expression is upregulated in EOC tissues and is closely correlated with FIGO stage and prognosis of EOC patients. Functionally, RIF1 knockdown suppressed the expression and promoter activity of hTERT and consequently inhibited the growth and CSC-like traits of EOC cells. RIF1 knockdown also inhibited tumorigenesis in xenograft model. RIF1 overexpression had the opposite effect. Luciferase reporter assay and ChIP assay verified RIF1 directly bound to hTERT promoter to upregulate its expression. The rescue experiments suggested hTERT overexpression rescued the inhibition of EOC cell growth and CSC-like traits mediated by RIF1 knockdown. Consistently, hTERT knockdown abrogated the RIF1-induced promotion of EOC cell growth and CSC-like traits. CONCLUSIONS RIF1 promotes EOC progression by activating hTERT and the RIF1/hTERT pathway may be a potential therapeutic target for EOC patients.
Collapse
Affiliation(s)
- Yong-Bin Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 110 Xiang Ya Road, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
| | - Ying Mei
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 110 Xiang Ya Road, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
| | - Jing Long
- Department of Obstetrics & Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yu Zhang
- Department of Obstetrics & Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Dong-Li Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 110 Xiang Ya Road, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 110 Xiang Ya Road, Changsha, 410008, People's Republic of China. .,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.
| |
Collapse
|