1
|
Liu X, Wang Q, Liu H, Zhang Y, Yang M, Huo D, Hou C. Signal-amplifying biosensors for miRNA detection and their extension in portable glucometer. Talanta 2025; 288:127714. [PMID: 39951991 DOI: 10.1016/j.talanta.2025.127714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Timely detection of breast cancer not only positively influences patient treatment and life quality, but also possesses far-reaching implications for public health and medical research. And miRNAs, as emerging breast cancer-related biomarkers, demonstrate heightened sensitivity to disease progression. In this study, the same precursor was utilized to prepare micromaterials with large and small cavities, this was the safeguard for sensing probes and signals. And the signal amplification process was accomplished with strand displacement assistance by target excitation. Encouragingly, it was successfully and accurately detected miRNA-21 and miRNA-155 within 10 fmol/L - 10 nmol/L. Due to the unique sensing design, the signal can be read out not only by small fluorescent devices, but also by portable glucometers. The biosensor features several excellent working performances and illuminates resource-poor areas by equipping the most common glucometers. So, it is a sensitive, portable and promising biosensor.
Collapse
Affiliation(s)
- Xiaofang Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Qun Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Huan Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, PR China
| | - Yong Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
2
|
Richard V, Lee K, Kerin MJ. MicroRNAs as Endocrine Modulators of Breast Cancer. Int J Mol Sci 2025; 26:3449. [PMID: 40244378 PMCID: PMC11989600 DOI: 10.3390/ijms26073449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Breast cancer is an aggressive disease of multiple subtypes with varying phenotypic, hormonal, and clinicopathological features, offering enhanced resistance to conventional therapeutic regimens. There is an unmet need for reliable molecular biomarkers capable of detecting the malignant transformation from the early stages of the disease to enhance diagnosis and treatment outcomes. A subset of small non-coding nucleic acid molecules, micro ribonucleic acids (microRNAs/miRNAs), have emerged as promising biomarkers due to their role in gene regulation and cancer pathogenesis. This review discusses, in detail, the different origins and hormone-like regulatory functionalities of miRNAs localized in tumor tissue and in the circulation, as well as their inherent stability and turnover that determines the utility of miRNAs as biomarkers for disease detection, monitoring, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Vinitha Richard
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, H91 V4AY Galway, Ireland
| | - Kevin Lee
- School of Medicine, University of Galway, H91 V4AY Galway, Ireland;
| | - Michael Joseph Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, H91 V4AY Galway, Ireland
- School of Medicine, University of Galway, H91 V4AY Galway, Ireland;
| |
Collapse
|
3
|
Xinyi L, Jinlong L, Bin Z. Low-Invasive Biomarkers of Canine Mammary Tumours. Vet Med Sci 2025; 11:e70280. [PMID: 40095734 DOI: 10.1002/vms3.70280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Canine mammary tumours (CMTs) are the most common type of tumours in older bitches. An early, precise and low-invasive diagnosis is essential, due to some CMTs being malignant and having a poor prognosis. Fine needle aspiration cytology (FNAC) and blood tests are both low-invasive diagnostic methods that have been used in veterinary medicine. However, the perfect biomarkers should be identified to diagnose and evaluate the prognosis of CMTs. This review focuses on biomarkers that can be tested by FNA or blood samples based on current literature. Until now, the most studied biomarkers of FNAC, such as Ki-67, human epidermal growth factor receptor 2 (HER-2), oestrogen receptor (ER), progesterone receptor (PR), P53, E-cadherin and cyclooxygenase-2 (COX-2). Some common blood biomarkers that have been widely studied include lactate dehydrogenase (LDH), C-reactive protein (CRP), carbohydrate antigen 15-3 (CA15-3) and carcinoembryonic antigen (CEA). The novel biomarkers will also be mentioned: cancer stem cells (CSCs), circulating tumour cells (CTCs), miRNAs and circulating cell-free DNA (cfDNA); they are all useful markers. Copper ion and serum ferritin (SF) are good markers of human breast cancer; they may be candidates of CMTs biomarkers, too. In conclusion, many biomarkers are suitable for diagnosing and/or prognosing CMTs; combining a couple of them can increase the specificity; more detailed research should be done.
Collapse
Affiliation(s)
- Luo Xinyi
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P. R. China
| | - Liu Jinlong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P. R. China
| | - Zhou Bin
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P. R. China
| |
Collapse
|
4
|
van Gelderen TA, Debnath P, Joly S, Bertomeu E, Duncan N, Furones D, Ribas L. Gonadal miRNomes and transcriptomes in infected fish reveal sexually dimorphic patterns of the immune response. Funct Integr Genomics 2025; 25:29. [PMID: 39883212 PMCID: PMC11782434 DOI: 10.1007/s10142-025-01537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Fish disease outbreaks caused by bacterial burdens are responsible for decreasing productivity in aquaculture. Unraveling the molecular mechanisms activated in the gonads after infections is pivotal for enhancing husbandry techniques in fish farms, ensuring disease management, and selecting the most resilience phenotype. The present study, with an important commercial species the European sea bass (Dicentrarchus labrax), an important commercial species in Europe, examined changes in the miRNome and transcriptome 48 h after an intraperitoneal infection with Vibrio anguillarum. The findings indicate that following infection, testes exhibited more pronounced alterations in both the miRNome and transcriptome. Specifically, males showed approximately 26% more differentially expressed genes in testicular genes compared to females (2,624 vs. 101 DEGs). Additionally, four miRNAs (miR-183-5p, miR-191-3p, miR-451-5p, and miR-724-5p) were significantly expressed post-infection in males, while none were identified in females. Interestingly, upon deep analysis of sexual dimorphic gene modules, a larger number of miRNAs were identified in infected females targeting genes related to the immune system compared to infected males. These results suggest that fish ovaries demonstrate greater resilience in response to infections by suppressing genes related to the immune system through a post-transcriptional mechanism performed by miRNAs. In contrast, testes activate genes related to the immune system and repress genes related to cellular processes to cope with the infection. In particular, the crosstalk between the miRNome and transcriptome in infected males revealed a pivotal gene, namely, insulin-like growth factor binding protein (igfbp), acting as a gene network hub in which miR-192-3p was connected. The current study elucidated the need to comprehend the basic immune regulatory responses associated with miRNAs and gene regulation networks that depend on fish sex. The data reveal the importance of considering sex as a factor in interpreting the immune system in fish to generate efficient protocols to prevent outbreaks in fish farms.
Collapse
Affiliation(s)
- Tosca A van Gelderen
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain
| | - Pinky Debnath
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Silvia Joly
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain
| | - Edgar Bertomeu
- Institut de Recerca i Tecnologia Agroalimentaries (IRTA), La Ràpita, Aquaculture, Spain
| | - Neil Duncan
- Institut de Recerca i Tecnologia Agroalimentaries (IRTA), La Ràpita, Aquaculture, Spain
| | - Dolors Furones
- Institut de Recerca i Tecnologia Agroalimentaries (IRTA), La Ràpita, Aquaculture, Spain
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain.
| |
Collapse
|
5
|
Liu W, Wang Y, Peng W, Zeng X, Jiang P, Xiao W, Chen J, Chen P. Cu 2+-encapsulated DNA nanosphere and filter enable sensitive and rapid analysis of miRNA-155. Biosens Bioelectron 2025; 274:117203. [PMID: 39889434 DOI: 10.1016/j.bios.2025.117203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
MicroRNAs (miRNAs) are critical regulators of gene expression, with aberrant levels linked to diseases such as breast cancer. Notably, they are challenging to detect due to their low abundance in complex sample matrices. In this study, a Cu2⁺-encapsulated DNA nanosphere system capable of homogeneous, enzyme-free, one-pot detection of microRNA-155 (miRNA-155) in human plasma was developed. The system employed self-assembled DNA nanospheres loaded with copper ions as specific recognizers, coupled with a filter membrane-assisted reaction to separate free-Cu2+ from residual components. Moreover, dual quantum dots (QDs) were utilized for signal output, using competitive binding to enhance sensitivity for detecting ultra-low and subtle changes in miRNA levels in complex samples. The method achieved an excellent detection performance, with a limit of detection (LOD) at the low-aM level. Additionally, it demonstrated high specificity in distinguishing between different miRNAs and single nucleotide polymorphisms (SNPs). Validation using 38 clinical plasma samples achieved over 95% accuracy in identifying breast cancer patients, demonstrating 100% sensitivity and approximately 90% clinical consistency compared to imaging, pathology, and quantitative real-time polymerase chain reaction (qRT-PCR). The method required minimal sample pre-treatment and was completed within 1 h. Overall, the developed method offers a reliable tool for breast cancer diagnosis and establishes a mode for extending its application to other biomarkers in the clinical setting.
Collapse
Affiliation(s)
- Weijing Liu
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of General Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Breast Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yue Wang
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of General Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wu Peng
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of General Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xianghu Zeng
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of General Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Pengjun Jiang
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of General Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wei Xiao
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510632, China.
| | - Jie Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of General Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Breast Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Piaopiao Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of General Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
6
|
Danesh Yazdi M, Sonntag A, Kosheleva A, Nassan FL, Wang C, Xu Z, Wu H, Laurent LC, DeHoff P, Comfort NT, Vokonas P, Wright R, Weisskopf M, Baccarelli AA, Schwartz JD. The association between toenail metals and extracellular MicroRNAs (ex-miRNAs) among the participants of the Normative Aging study (NAS). ENVIRONMENTAL RESEARCH 2024; 261:119761. [PMID: 39122161 PMCID: PMC11578093 DOI: 10.1016/j.envres.2024.119761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Mechanistic studies of the effects of environmental risk factors have been exploring the potential role of microRNA(miRNAs) as a possible pathway to clinical disease. In this study we examine whether levels of toenail metals are associated with changes in extracellular miRNA(ex-miRNA) expression. METHODS We used data derived from the Normative Aging Study from 1996 to 2014 to conduct our analyses. We looked at associations between measured toenail metals: arsenic, cadmium, lead, manganese, and mercury and 282 ex-miRNAs in this population using canonical correlation analyses (CCAs) and longitudinal median regression. We adjusted for covariates such as age, education, body mass index, drinking and smoking behaviors, diabetes, and where available, seafood consumption. The p-values obtained from regression analyses were corrected for multiple comparisons. Ex-miRNAs identified to be associated with toenail metal levels were further examined using pathway analyses. RESULTS Our dataset included 937 observations from 589 men with an average age of 72.9 years at baseline. Both our correlation and regression analyses identified lead and cadmium as exposures most strongly associated with ex-miRNA expression. Numerous ex-miRNAs were identified as being associated with toenail metal levels. miR-27b-3p, in particular, was found to have high correlation with the first canonical dimension in the CCA and was significantly associated with cadmium in the regression analysis. Pathway analyses revealed messenger RNA (mRNA) targets for the ex-miRNAs that were associated with a number of clinical disorders including cancer, cardiovascular disease, and neurological disorders, etc. CONCLUSION: Toenail metals were associated with changes in ex-miRNA levels in both correlational and regression analyses. The ex-miRNAs identified can be linked to a variety of clinical disorders. Further studies are required to validate these findings.
Collapse
Affiliation(s)
- Mahdieh Danesh Yazdi
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
| | - Allison Sonntag
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Feiby L Nassan
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zongli Xu
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Peter DeHoff
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Nicole T Comfort
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Pantel Vokonas
- VA Normative Aging Study, Department of Veterans Affairs, Boston, MA, USA; Department of Medicine, Chobanian and Avidisian School of Medicine, Boston University, Boston, MA, USA
| | - Robert Wright
- Institute for Exposomic Research, Mount Sinai School of Medicine, New York, NY, USA
| | - Marc Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
7
|
Alshamrani AA, Bin Salman SB, Alsaleh NB, Assiri MA, Almutairi MM, Almudimeegh S, Alwhaibi A, As Sobeai HM. miRNA-driven sensitization of breast cancer cells to Doxorubicin treatment following exposure to low dose of Zinc Oxide nanoparticles. Saudi Pharm J 2024; 32:102169. [PMID: 39318640 PMCID: PMC11421238 DOI: 10.1016/j.jsps.2024.102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
The impact of Engineered nanomaterials (ENMs) (i.e., Zinc Oxide nanoparticles (ZnO NPs)) on human health has been investigated at high and unrealistic exposure levels, overlooking the potential indirect harm of subtoxic and long exposures. Therefore, this study aimed to investigate the impacts of subtoxic concentrations of zinc oxide (ZnO NPs) on breast cancer cells' response to Doxorubicin. Zinc oxide nanoparticles caused a concentration-dependent reduction of cell viability in multiple breast cancer cell lines. A subtoxic concentration of 1.56 µg/mL (i.e., no observed adverse effect level) was used in subsequent mechanistic studies. Molecularly, miRNA profiling revealed significant downregulation of 13 oncogenic miRNAs (OncomiRs) in cells exposed to the sub-toxic dose of ZnO NPs followed by doxorubicin treatment. Our comprehensive bioinformatic analysis has identified 617 target genes enriched in ten pathways, mainly regulating gene expression and transcription, cell cycle, and apoptotic cell death. Several tumor suppressor genes emerged as validated direct targets of the 13 OncomiRs, including TFDP2, YWHAG, SMAD2, SMAD4, CDKN1A, CDKN1B, BCL2L11, and TGIF2. This study insinuates the importance of miRNAs in regulating the responsiveness of cancer cells to chemotherapy. Our findings further indicate that being exposed to environmental ENMs, even at levels below toxicity, might still modulate cancer cells' response to chemotherapy, which highlights the need to reestablish endpoints of ENM exposure and toxicity in cancer patients receiving chemotherapeutics.
Collapse
Affiliation(s)
- Ali A. Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sami B. Bin Salman
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nasser B. Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sultan Almudimeegh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alwhaibi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Homood M. As Sobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Kim Y, Kim JY, Moon S, Lee H, Lee S, Kim JY, Kim MW, Kim SI. Tumor-derived EV miRNA signatures surpass total EV miRNA in supplementing mammography for precision breast cancer diagnosis. Theranostics 2024; 14:6587-6604. [PMID: 39479442 PMCID: PMC11519808 DOI: 10.7150/thno.99245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/14/2024] [Indexed: 11/02/2024] Open
Abstract
Background: With the rising global incidence and mortality rates of breast cancer, early diagnosis is becoming increasingly crucial. The World Health Organization (WHO) recommends mammography as a primary screening tool. However, despite its clinical benefits, mammography has potential risks including radiation exposure, unnecessary follow-up, and overdiagnosis due to false positives, particularly in cases of early cancer or dense breast tissue. In this study, we aimed to address these concerns by introducing an innovative diagnostic method that employs circulating biomarkers to enhance the existing screening techniques Methods: Breast cancer-derived extracellular vesicles (BEVs) were isolated from the bloodstream using advanced immunoaffinity capture techniques. Subsequently, we analyzed the microRNA (miRNA) profiles of BEVs in plasma samples from 120 patients with breast cancer, 46 with benign tumors, and 45 healthy controls. Results: This retrospective study identified a distinct signature of five EV miRNAs (miR-21, miR-106b, miR-181a, miR-484, and miR-1260b) that effectively differentiated patients with breast cancer from healthy controls. This signature provides essential insights into tumor progression, metastasis, and the risk of recurrence. Notably, overexpression of this signature correlated with poorer survival outcomes. Conclusions: Our novel gene signature-based approach not only complements existing diagnostic methods with high accuracy but also provides a deeper understanding of the molecular aspects of breast cancer, heralding a significant advancement in precision medicine and personalized cancer care.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Woo Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seung Il Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
9
|
Zhang J, Liu L, Wei X, Zhao C, Luo Y, Li J, Le TD. Scanning sample-specific miRNA regulation from bulk and single-cell RNA-sequencing data. BMC Biol 2024; 22:218. [PMID: 39334271 PMCID: PMC11438147 DOI: 10.1186/s12915-024-02020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND RNA-sequencing technology provides an effective tool for understanding miRNA regulation in complex human diseases, including cancers. A large number of computational methods have been developed to make use of bulk and single-cell RNA-sequencing data to identify miRNA regulations at the resolution of multiple samples (i.e. group of cells or tissues). However, due to the heterogeneity of individual samples, there is a strong need to infer miRNA regulation specific to individual samples to uncover miRNA regulation at the single-sample resolution level. RESULTS Here, we develop a framework, Scan, for scanning sample-specific miRNA regulation. Since a single network inference method or strategy cannot perform well for all types of new data, Scan incorporates 27 network inference methods and two strategies to infer tissue-specific or cell-specific miRNA regulation from bulk or single-cell RNA-sequencing data. Results on bulk and single-cell RNA-sequencing data demonstrate the effectiveness of Scan in inferring sample-specific miRNA regulation. Moreover, we have found that incorporating the prior information of miRNA targets can generally improve the accuracy of miRNA target prediction. In addition, Scan can contribute to construct cell/tissue correlation networks and recover aggregate miRNA regulatory networks. Finally, the comparison results have shown that the performance of network inference methods is likely to be data-specific, and selecting optimal network inference methods is required for more accurate prediction of miRNA targets. CONCLUSIONS Scan provides a useful method to help infer sample-specific miRNA regulation for new data, benchmark new network inference methods and deepen the understanding of miRNA regulation at the resolution of individual samples.
Collapse
Affiliation(s)
- Junpeng Zhang
- School of Engineering, Dali University, Dali, 671003, Yunnan, China.
| | - Lin Liu
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Xuemei Wei
- School of Engineering, Dali University, Dali, 671003, Yunnan, China
| | - Chunwen Zhao
- School of Engineering, Dali University, Dali, 671003, Yunnan, China
| | - Yanbi Luo
- School of Engineering, Dali University, Dali, 671003, Yunnan, China
| | - Jiuyong Li
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Thuc Duy Le
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| |
Collapse
|
10
|
Park C, Chung S, Kim H, Kim N, Son HY, Kim R, Lee S, Park G, Rho HW, Park M, Han J, Song Y, Lee J, Jun SH, Huh YM, Jeong HH, Lim EK, Kim E, Haam S. All-in-One Fusogenic Nanoreactor for the Rapid Detection of Exosomal MicroRNAs for Breast Cancer Diagnosis. ACS NANO 2024. [PMID: 39248519 DOI: 10.1021/acsnano.4c08339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Molecular-profiling-based cancer diagnosis has significant implications for predicting disease prognosis and selecting targeted therapeutic interventions. The analysis of cancer-derived extracellular vesicles (EVs) provides a noninvasive and sequential method to assess the molecular landscape of cancer. Here, we developed an all-in-one fusogenic nanoreactor (FNR) encapsulating DNA-fueled molecular machines (DMMs) for the rapid and direct detection of EV-associated microRNAs (EV miRNAs) in a single step. This platform was strategically designed to interact selectively with EVs and induce membrane fusion under a specific trigger. After fusion, the DMMs recognized the target miRNA and initiated nonenzymatic signal amplification within a well-defined reaction volume, thus producing an amplified fluorescent signal within 30 min. We used the FNRs to analyze the unique expression levels of three EV miRNAs in various biofluids, including cell culture, urine, and plasma, and obtained an accuracy of 86.7% in the classification of three major breast cancer (BC) cell lines and a diagnostic accuracy of 86.4% in the distinction between patients with cancer and healthy donors. Notably, a linear discriminant analysis revealed that increasing the number of miRNAs from one to three improved the accuracy of BC patient discrimination from 78.8 to 95.4%. Therefore, this all-in-one diagnostic platform performs nondestructive EV processing and signal amplification in one step, providing a straightforward, accurate, and effective individual EV miRNA analysis strategy for personalized BC treatment.
Collapse
Affiliation(s)
- Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Soohyun Chung
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hansol Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Nayoung Kim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
- Institute for Medical Engineering and Science, MIT, Cambridge, Massachusetts 02139, United States
| | - Hye Young Son
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul 03722, Republic of Korea
| | - Ryunhyung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sojeong Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyun Wook Rho
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Mirae Park
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Jueun Han
- Department of Bioengineering and Nano-Bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea
| | - Yejin Song
- Department of Bioengineering and Nano-Bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea
| | - Jihee Lee
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Sung-Hoon Jun
- Electron Microscopy & Spectroscopy Team, Korea Basic Science Institute, Chungbuk 28119, Republic of Korea
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul 03722, Republic of Korea
| | | | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB), Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eunjung Kim
- Department of Bioengineering and Nano-Bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Causin RL, Polezi MR, Freitas AJAD, Calfa S, Altei WF, Dias JO, Laus AC, Pessôa-Pereira D, Komoto TT, Evangelista AF, Souza CDP, Reis RM, Marques MMC. EV-miRNAs from breast cancer patients of plasma as potential prognostic biomarkers of disease recurrence. Heliyon 2024; 10:e33933. [PMID: 39104474 PMCID: PMC11298852 DOI: 10.1016/j.heliyon.2024.e33933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Background Extracellular vesicles (EVs), ubiquitously released by blood cells, facilitate intercellular communication. In cancer, tumor-derived EVs profoundly affect the microenvironment, promoting tumor progression and raising the risk of recurrence. These EVs contain miRNAs (EV-miRNAs), promising cancer biomarkers. Characterizing plasma EVs and identifying EV-miRNAs associated with breast cancer recurrence are crucial aspects of cancer research since they allow us to discover new biomarkers that are effective for understanding tumor biology and for being used for early detection, disease monitoring, or approaches to personalized medicine. This study aimed to characterize plasma EVs in breast cancer (BC) patients and identify EV-miRNAs associated with BC recurrence. Methods This retrospective observational study included 24 BC patients divided into recurrence (n= 11) and non-recurrence (n= 13) groups. Plasma EVs were isolated and characterized. Total RNA from EVs was analyzed for miRNA expression using NanoString's nCounter® miRNA Expression Assays panel. MicroRNA target prediction used mirDIP, and pathway interactions were assessed via Reactome. Results A stronger presence of circulating EVs was found to be linked with a less favorable prognosis (p = 0.0062). We discovered a distinct signature of EV-miRNAs, notably including miR-19a-3p and miR-130b-3p, which are significantly associated with breast cancer recurrence. Furthermore, miR-19a-3p and miR-130b-3p were implicated in the regulation of PTEN and MDM4, potentially contributing to breast cancer progression.A notable association emerged, indicating a high concentration of circulating EVs predicts poor prognosis (p = 0.0062). Our study found a distinct EV-miRNA signature involving miR-19a-3p and miR-130b-3p, strongly associated with disease recurrence. We also presented compelling evidence for their regulatory roles in PTEN and MDM4 genes, contributing to BC development. Conclusion This study revealed that increased plasma EV concentration is associated with BC recurrence. The prognostic significance of EVs is closely tied to the unique expression profiles of miR-19a-3p and miR-130b-3p. These findings underscore the potential of EV-associated miRNAs as valuable indicators for BC recurrence, opening new avenues for diagnosis and treatment exploration.
Collapse
Affiliation(s)
- Rhafaela Lima Causin
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Mariana Regatieri Polezi
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | | | - Stéphanie Calfa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Wanessa Fernanda Altei
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
- Radiation Oncology Department, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Júlia Oliveira Dias
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Ana Carolina Laus
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Danielle Pessôa-Pereira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Tatiana Takahasi Komoto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Adriane Feijó Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
- Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Manguinhos, Rio de Janeiro, 21040-361, Brazil
| | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, 4710-057, Portugal
| | | |
Collapse
|
12
|
Peng J, Lin Y, Sheng X, Yuan C, Wang Y, Yin W, Zhou L, Lu J. Serum miRNA-1 may serve as a promising noninvasive biomarker for predicting treatment response in breast cancer patients receiving neoadjuvant chemotherapy. BMC Cancer 2024; 24:789. [PMID: 38956544 PMCID: PMC11221026 DOI: 10.1186/s12885-024-12500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND MicroRNA-1 (miR-1) is a tumour suppressor that can inhibit cell proliferation and invasion in several cancer types. In addition, miR-1 was found to be associated with drug sensitivity. Circulating miRNAs have been proven to be potential biomarkers with predictive and prognostic value. However, studies of miR-1 expression in the serum of breast cancer (BC) patients are relatively scarce, especially in patients receiving neoadjuvant chemotherapy (NAC). METHODS Serum samples from 80 patients were collected before chemotherapy, and RT-PCR was performed to detect the serum expression of miR-1. The correlation between miR-1 expression in serum and clinicopathological factors, including pathological complete response (pCR), was analyzed by the chi-squared test and logistic regression. KEGG and GSEA analysis were also performed to determine the biological processes and signalling pathways involved. RESULTS The miR-1 high group included more patients who achieved a pCR than did the miR-1 low group (p < 0.001). Higher serum miR-1 levels showed a strong correlation with decreased ER (R = 0.368, p < 0.001) and PR (R = 0.238, p = 0.033) levels. The univariate model of miR-1 for predicting pCR achieved an AUC of 0.705 according to the ROC curve. According to the interaction analysis, miR-1 interacted with Ki67 to predict the NAC response. According to the Kaplan-Meier plot, a high serum miR-1 level was related to better disease-free survival (DFS) in the NAC cohort. KEGG analysis and GSEA results indicated that miR-1 may be related to the PPAR signalling pathway and glycolysis. CONCLUSIONS In summary, our data suggested that miR-1 could be a potential biomarker for pCR and survival outcomes in patients with BC treated with NAC.
Collapse
Affiliation(s)
- Jing Peng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Yanping Lin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Xiaonan Sheng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Chenwei Yuan
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Yan Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China.
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
13
|
Peng J, Liu T, Guan L, Xu Z, Xiong T, Zhang Y, Song J, Liu X, Yang Y, Hao X. A highly sensitive Lock-Cas12a biosensor for detection and imaging of miRNA-21 in breast cancer cells. Talanta 2024; 273:125938. [PMID: 38503125 DOI: 10.1016/j.talanta.2024.125938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
The expression levels of microRNA (miRNA) vary significantly in correlation with the occurrence and progression of cancer, making them valuable biomarkers for cancer diagnosis. However, their quantitative detection faces challenges due to the high sequence homology, low abundance and small size. In this work, we established a strand displacement amplification (SDA) approach based on miRNA-triggered structural "Lock" nucleic acid ("Lock" DNA), coupled with the CRISPR/Cas12a system, for detecting miRNA-21 in breast cancer cells. The "Lock" DNA freed the CRISPR-derived RNA (crRNA) from the dependence on the target sequence and greatly facilitated the extended detection of different miRNAs. Moreover, the CRISPR/Cas12a system provided excellent amplification ability and specificity. The designed biosensor achieved high sensitivity detection of miRNA-21 with a limit of detection (LOD) of 28.8 aM. In particular, the biosensor could distinguish breast cancer cells from other cancer cells through intracellular imaging. With its straightforward sequence design and ease of use, the Lock-Cas12a biosensor offers significant advantages for cell imaging and early clinical diagnosis.
Collapse
Affiliation(s)
- Jiawei Peng
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Ting Liu
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Liwen Guan
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Ziyue Xu
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Ting Xiong
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Yu Zhang
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Jiaxin Song
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Xuexia Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330088, PR China; School of Forensic Medicine, Wannan Medical College, Wuhu Anhui, 241002, PR China.
| | - Yifei Yang
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China.
| | - Xian Hao
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
14
|
Gao L, Medford A, Spring L, Bar Y, Hu B, Jimenez R, Isakoff SJ, Bardia A, Peppercorn J. Searching for the "Holy Grail" of breast cancer recurrence risk: a narrative review of the hunt for a better biomarker and the promise of circulating tumor DNA (ctDNA). Breast Cancer Res Treat 2024; 205:211-226. [PMID: 38355821 DOI: 10.1007/s10549-024-07253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND This paper is a narrative review of a major clinical challenge at the heart of breast cancer care: determining which patients are at risk of recurrence, which require systemic therapy, and which remain at risk in the survivorship phase of care despite initial therapy. METHODS We review the literature on prognostic and predictive biomarkers in breast cancer with a focus on detection of minimal residual disease. RESULTS While we have many tools to estimate and refine risk that are used to individualize local and systemic therapy, we know that we continue to over treat many patients and undertreat others. Many patients also experience what is, at least in hindsight, needless fear of recurrence. In this review, we frame this dilemma for the practicing breast oncologist and discuss the search for what we term the "holy grail" of breast cancer evaluation: the ideal biomarker of residual distant disease. We review the history of attempts to address this problem and the up-to-date science on biomarkers, circulating tumor cells and circulating tumor DNA (ctDNA). CONCLUSION This review suggests that the emerging promise of ctDNA may help resolve a crticical dilemma at the heart of breast cancer care, and improve prognostication, treatment selection, and outcomes for patients with breast cancer.
Collapse
Affiliation(s)
- Lucy Gao
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Arielle Medford
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Laura Spring
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yael Bar
- Massachusetts General Hospital, Boston, MA, USA
| | - Bonnie Hu
- Massachusetts General Hospital, Boston, MA, USA
| | - Rachel Jimenez
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Steven J Isakoff
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aditya Bardia
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jeffrey Peppercorn
- Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Mohan Lal P, Hamza Siddiqui M, Soulat A, Mohan A, Tanush D, Tirath K, Raja S, Khuzzaim Khan M, Raja A, Chaulagain A, Tejwaney U. MicroRNAs as promising biomarkers and potential therapeutic agents in breast cancer management: a comprehensive review. Ann Med Surg (Lond) 2024; 86:3543-3550. [PMID: 38846828 PMCID: PMC11152842 DOI: 10.1097/ms9.0000000000002075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/08/2024] [Indexed: 06/09/2024] Open
Abstract
Breast cancer (BC), a complex and varied ailment, poses a significant global health burden. MicroRNAs (miRNAs) have emerged as vital regulators in BC progression, with potential implications for diagnosis and treatment. This review aims to synthesize current insights into miRNA dysregulation in BC. MiRNAs, small RNA molecules, govern gene expression post-transcriptionally and are implicated in BC initiation, metastasis, and therapy resistance. Differential expression of specific miRNAs in BC tissues versus normal breast tissue sheds light on underlying molecular mechanisms. MiRNAs also offer promise as diagnostic biomarkers due to their stable nature, accessibility in bodily fluids, and altered expression patterns in early-stage disease, augmenting conventional diagnostic methods. Beyond diagnosis, miRNAs also hold promise as therapeutic targets in BC. By modulating the expression of specific dysregulated miRNAs, it may be possible to restore normal cellular functions and overcome treatment resistance. However, several challenges need to be addressed before miRNA-based therapies can be translated into clinical practice, including the development of efficient delivery systems and rigorous evaluation through preclinical and clinical trials. MiRNAs represent a promising avenue in BC research, offering potential applications in diagnosis, prognosis, and therapeutic interventions. As our understanding of miRNA biology deepens and technology advances, further research and collaborative efforts are needed to fully exploit the diagnostic and therapeutic potential of miRNAs in BC management. Ultimately, the integration of miRNA-based approaches into clinical practice may lead to more personalized and effective strategies for combating this devastating disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandesh Raja
- Dow Medical College, Dow University of Health Sciences
| | | | - Adarsh Raja
- Shaheed Mohtarma Benazir Bhutto Medical College Lyari, Karachi, Pakistan
| | - Aayush Chaulagain
- Shaheed Ziaur Rahman Medical College and Hospital, Bogra, Bangladesh
| | | |
Collapse
|
16
|
Mares-Quiñones MD, Galán-Vásquez E, Pérez-Rueda E, Pérez-Ishiwara DG, Medel-Flores MO, Gómez-García MDC. Identification of modules and key genes associated with breast cancer subtypes through network analysis. Sci Rep 2024; 14:12350. [PMID: 38811600 PMCID: PMC11137066 DOI: 10.1038/s41598-024-61908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
Breast cancer is the most common malignancy in women around the world. Intratumor and intertumoral heterogeneity persist in mammary tumors. Therefore, the identification of biomarkers is essential for the treatment of this malignancy. This study analyzed 28,143 genes expressed in 49 breast cancer cell lines using a Weighted Gene Co-expression Network Analysis to determine specific target proteins for Basal A, Basal B, Luminal A, Luminal B, and HER2 ampl breast cancer subtypes. Sixty-five modules were identified, of which five were characterized as having a high correlation with breast cancer subtypes. Genes overexpressed in the tumor were found to participate in the following mechanisms: regulation of the apoptotic process, transcriptional regulation, angiogenesis, signaling, and cellular survival. In particular, we identified the following genes, considered as hubs: IFIT3, an inhibitor of viral and cellular processes; ETS1, a transcription factor involved in cell death and tumorigenesis; ENSG00000259723 lncRNA, expressed in cancers; AL033519.3, a hypothetical gene; and TMEM86A, important for regulating keratinocyte membrane properties, considered as a key in Basal A, Basal B, Luminal A, Luminal B, and HER2 ampl breast cancer subtypes, respectively. The modules and genes identified in this work can be used to identify possible biomarkers or therapeutic targets in different breast cancer subtypes.
Collapse
Affiliation(s)
- María Daniela Mares-Quiñones
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Mérida, Mexico
| | - D Guillermo Pérez-Ishiwara
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María Olivia Medel-Flores
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María Del Consuelo Gómez-García
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| |
Collapse
|
17
|
Zalieckas J, Greve MM, Bellucci L, Sacco G, Håkonsen V, Tozzini V, Nifosì R. Quantum sensing of microRNAs with nitrogen-vacancy centers in diamond. Commun Chem 2024; 7:101. [PMID: 38710926 DOI: 10.1038/s42004-024-01182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Label-free detection of nucleic acids such as microRNAs holds great potential for early diagnostics of various types of cancers. Measuring intrinsic biomolecular charge using methods based on field effect has been a promising way to accomplish label-free detection. However, the charges of biomolecules are screened by counter ions in solutions over a short distance (Debye length), thereby limiting the sensitivity of these methods. Here, we measure the intrinsic magnetic noise of paramagnetic counter ions, such as Mn2+, interacting with microRNAs using nitrogen-vacancy (NV) centers in diamond. All-atom molecular dynamics simulations show that microRNA interacts with the diamond surface resulting in excess accumulation of Mn ions and stronger magnetic noise. We confirm this prediction by observing an increase in spin relaxation contrast of the NV centers, indicating higher Mn2+ local concentration. This opens new possibilities for next-generation quantum sensing of charged biomolecules, overcoming limitations due to the Debye screening.
Collapse
Affiliation(s)
- Justas Zalieckas
- Department of Physics and Technology, University of Bergen, Bergen, Norway.
| | - Martin M Greve
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Luca Bellucci
- Istituto Nanoscienze - CNR, Pisa, Italy
- Lab NEST Scuola Normale Superiore, Pisa, Italy
| | - Giuseppe Sacco
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Verner Håkonsen
- NTNU NanoLab, Norwegian University of Science and Technology, Trondheim, Norway
| | - Valentina Tozzini
- Istituto Nanoscienze - CNR, Pisa, Italy
- Lab NEST Scuola Normale Superiore, Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), sezione Pisa, Pisa, Italy
| | - Riccardo Nifosì
- Istituto Nanoscienze - CNR, Pisa, Italy.
- Lab NEST Scuola Normale Superiore, Pisa, Italy.
| |
Collapse
|
18
|
Zhang Q, Lu R, Wu Y, Hong Y, Wang N, Wang C. Use of ultra-high performance liquid chromatography-high-resolution mass spectroscopy to profile the metabolites from the serum of patients with breast cancer. Oncol Lett 2024; 27:209. [PMID: 38549802 PMCID: PMC10973928 DOI: 10.3892/ol.2024.14342] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/07/2024] [Indexed: 01/12/2025] Open
Abstract
Breast cancer (BC) is the most common type of malignancy and the leading cause of cancer-associated mortality in women worldwide. As such, assessing the metabolic changes during human breast carcinogenesis is key for developing disease prevention methods and treatment. In the present study, non-targeted metabolomics with chemometrics based on ultra-high performance liquid chromatography-high-resolution mass spectrometry were performed to assess differences in serum metabolite patterns between patients with BC and healthy individuals. A total of 3,246 metabolites in the sera of healthy controls and patients with BC were found. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that arginine, proline, nicotinate, nicotinamide, caffeine and arachidonic acid metabolism, as well as fatty acid biosynthesis were significantly altered in patients with BC in comparison with controls. These results suggested that serum metabolic profiling has potential for discovering molecular biomarkers for the detection of BC. It may also further the understanding of the underlying mechanisms associated with this disease.
Collapse
Affiliation(s)
- Qinqin Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
- Department of Thyroid and Breast Surgery, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang Autonomous Region 541002, P.R. China
| | - Rongzhao Lu
- Department of Breast Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Ying Wu
- School of Clinical Medicine, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Yong Hong
- Department of Thyroid and Breast Surgery, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang Autonomous Region 541002, P.R. China
| | - Ningxia Wang
- Department of Breast Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Cunchuan Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
19
|
Abdul Manap AS, Wisham AA, Wong FW, Ahmad Najmi HR, Ng ZF, Diba RS. Mapping the function of MicroRNAs as a critical regulator of tumor-immune cell communication in breast cancer and potential treatment strategies. Front Cell Dev Biol 2024; 12:1390704. [PMID: 38726321 PMCID: PMC11079208 DOI: 10.3389/fcell.2024.1390704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Among women, breast cancer ranks as the most prevalent form of cancer, and the presence of metastases significantly reduces prognosis and diminishes overall survival rates. Gaining insights into the biological mechanisms governing the conversion of cancer cells, their subsequent spread to other areas of the body, and the immune system's monitoring of tumor growth will contribute to the advancement of more efficient and targeted therapies. MicroRNAs (miRNAs) play a critical role in the interaction between tumor cells and immune cells, facilitating tumor cells' evasion of the immune system and promoting cancer progression. Additionally, miRNAs also influence metastasis formation, including the establishment of metastatic sites and the transformation of tumor cells into migratory phenotypes. Specifically, dysregulated expression of these genes has been associated with abnormal expression of oncogenes and tumor suppressor genes, thereby facilitating tumor development. This study aims to provide a concise overview of the significance and function of miRNAs in breast cancer, focusing on their involvement as tumor suppressors in the antitumor immune response and as oncogenes in metastasis formation. Furthermore, miRNAs hold tremendous potential as targets for gene therapy due to their ability to modulate specific pathways that can either promote or suppress carcinogenesis. This perspective highlights the latest strategies developed for miRNA-based therapies.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Fei Wen Wong
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | | - Zhi Fei Ng
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | |
Collapse
|
20
|
Rama K, Bitla AR, Hulikal N, Yootla M, Yadagiri LA, Asha T, Manickavasagam M, Srinivasa Rao P. Assessment of serum microRNA-21 and miRNA-205 as diagnostic markers for stage I and II breast cancer in Indian population. Indian J Cancer 2024; 61:290-298. [PMID: 38090957 DOI: 10.4103/ijc.ijc_187_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 10/23/2020] [Indexed: 09/12/2024]
Abstract
BACKGROUND Current markers (carcinoembryonic antigen [CEA] and carbohydrate antigen 15-3 [CA15-3]) lack sensitivity in diagnosis of breast cancer. The aberrantly expressed circulating miRNAs were shown as diagnostic markers in breast cancer. However, there are very few studies from the Indian population. We studied the diagnostic utility of miRNA-21, miRNA-155 and miRNA-205 compared to CEA and CA15-3 in stage I and II breast cancer patients. MATERIALS AND METHODS Sixty newly diagnosed women with stage I/II breast cancer and 20 healthy controls were recruited. Expression of circulating miRNAs was studied using reverse transcription-polymerase chain reaction, whereas CEA and CA 15-3 were analyzed by enzyme-linked immunosorbent assay. RESULTS miRNA-21 and miRNA-155 were upregulated, miRNA-205 down-regulated ( P < 0.05) and serum CEA and CA15-3 levels increased in breast cancer patients ( P < 0.001). Receiver operating characteristic curve analysis showed significant area under curve (AUC) for all markers (0.656 to 0.993; P = 0.015 to <0.001) validating their diagnostic potential. Unlike CEA and CA15-3, miRNAs retained their sensitivity even at higher cut-offs (95% CI of mean). Logistic regression analysis showed significant association between disease and marker positivity for miRNA-21 and miRNA-205 but not for miRNA-155. Combining CA15-3 with miRNAs did not improve their diagnostic performance. However, combining CEA with either miRNA-21 (AUC = 0.742; P < 0.001 versus AUC = 0.656; P = 0.018) or miRNA-205 (AUC = 0.733; P < 0.001 versus AUC = 0.700; P < 0.001) increased its diagnostic performance. CONCLUSION Our study shows miRNA-21 and miRNA-205, are useful as diagnostic markers for breast cancer in the Indian population and combination of these miRNAs with CEA but not with CA 15-3 improved their diagnostic performance.
Collapse
Affiliation(s)
- Kanchi Rama
- Department of Biochemistry, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - Aparna R Bitla
- Department of Biochemistry, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - Narendra Hulikal
- Department of Surgical Oncology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - Mutheeswaraiah Yootla
- Department of Surgery, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | | | - T Asha
- Department of Pathology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - M Manickavasagam
- Department of Medical Oncology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - Pvln Srinivasa Rao
- Department of Biochemistry, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| |
Collapse
|
21
|
Çelik B, Peker Eyüboğlu İ, Koca S, Uğurlu MÜ, Alan Ö, Güllü Amuran G, Akin Telli T, Yumuk F, Akkiprik M. Correlation between plasma ccfDNA, mtDNA changes, CTCs, and epithelial-mesenchymal transition in breast cancer patients undergoing NACT. Turk J Med Sci 2024; 54:652-665. [PMID: 39295614 PMCID: PMC11407343 DOI: 10.55730/1300-0144.5834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/23/2024] [Accepted: 03/11/2024] [Indexed: 09/21/2024] Open
Abstract
Background/aim Breast cancer is the most prevalent cancer in women, emphasizing need for noninvasive blood biomarkers to aid in treatment selection. Previous studies have demonstrated elevated levels of plasma circulating cell-free DNA (ccfDNA) in breast cancer patients. Both ccfDNA and mitochondrial DNA (mtDNA) are fragments released into the bloodstream. In this study, we investigated effectiveness of ccfDNA and mtDNA as indicators of treatment response and explored their potential as monitoring biomarkers. Additionally, we compared these markers with circulating tumor cell (CTC) data and assessed their relationship with epithelial-mesenchymal transition (EMT). Materials and methods Thirty-six female breast cancer patients and 21 healthy females were included in the study. Quantitative polymerase chain reaction (qPCR) was performed on plasma samples to measure levels of ND1, ND4, ALU115, ALU247, and GAPDH, and DNA integrity was determined by calculating ratios of ALU247/ALU115 and ND4/ND1. Results After treatment, patients had a significant decrease in ccfDNA levels and a significant increase in mtDNA copy number (mtDNAcn). However, there was no significant change in ccfDNA and mtDNA integrity. When comparing all groups, patients exhibited higher levels of ALU115 and ALU247 compared to controls. Moreover, patients demonstrated significantly lower ccfDNA integrity than controls. Conclusion This study represents the first comprehensive investigation of plasma ccfDNA levels, mtDNAcn, and integrities collectively. Furthermore, it is the first study to explore the relationship between these markers and CTCs, cancer stem cell markers, treatment response, and metastatic status. Our findings suggest that plasma ccfDNA and mtDNA may serve as potential biomarkers for assessing chemotherapy response and can be employed alone or in combination with other biomarkers to monitor treatment efficacy in breast cancer patients.
Collapse
Affiliation(s)
- Betül Çelik
- Department of Medical Biology and Genetics, Health Sciences Institute, Marmara University, İstanbul, Turkiye
| | - İrem Peker Eyüboğlu
- Department of Medical Biology, School of Medicine, Marmara University, İstanbul, Turkiye
| | - Sinan Koca
- Department of Medical Oncology, Ümraniye Education Research Hospital, İstanbul, Turkiye
| | - M Ümit Uğurlu
- Department of General Surgery, School of Medicine, Marmara University, İstanbul, Turkiye
| | - Özkan Alan
- Department of Medical Oncology, School of Medicine, Marmara University, İstanbul, Turkiye
| | - Gökçe Güllü Amuran
- Department of Medical Biology, School of Medicine, Marmara University, İstanbul, Turkiye
| | - Tuğba Akin Telli
- Department of Medical Oncology, School of Medicine, Marmara University, İstanbul, Turkiye
| | - Fulden Yumuk
- Department of Medical Oncology, School of Medicine, Marmara University, İstanbul, Turkiye
| | - Mustafa Akkiprik
- Department of Medical Biology, School of Medicine, Marmara University, İstanbul, Turkiye
| |
Collapse
|
22
|
Sathipati SY, Tsai MJ, Aimalla N, Moat L, Shukla S, Allaire P, Hebbring S, Beheshti A, Sharma R, Ho SY. An evolutionary learning-based method for identifying a circulating miRNA signature for breast cancer diagnosis prediction. NAR Genom Bioinform 2024; 6:lqae022. [PMID: 38406797 PMCID: PMC10894035 DOI: 10.1093/nargab/lqae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/11/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
Breast cancer (BC) is one of the most commonly diagnosed cancers worldwide. As key regulatory molecules in several biological processes, microRNAs (miRNAs) are potential biomarkers for cancer. Understanding the miRNA markers that can detect BC may improve survival rates and develop new targeted therapeutic strategies. To identify a circulating miRNA signature for diagnostic prediction in patients with BC, we developed an evolutionary learning-based method called BSig. BSig established a compact set of miRNAs as potential markers from 1280 patients with BC and 2686 healthy controls retrieved from the serum miRNA expression profiles for the diagnostic prediction. BSig demonstrated outstanding prediction performance, with an independent test accuracy and area under the receiver operating characteristic curve were 99.90% and 0.99, respectively. We identified 12 miRNAs, including hsa-miR-3185, hsa-miR-3648, hsa-miR-4530, hsa-miR-4763-5p, hsa-miR-5100, hsa-miR-5698, hsa-miR-6124, hsa-miR-6768-5p, hsa-miR-6800-5p, hsa-miR-6807-5p, hsa-miR-642a-3p, and hsa-miR-6836-3p, which significantly contributed towards diagnostic prediction in BC. Moreover, through bioinformatics analysis, this study identified 65 miRNA-target genes specific to BC cell lines. A comprehensive gene-set enrichment analysis was also performed to understand the underlying mechanisms of these target genes. BSig, a tool capable of BC detection and facilitating therapeutic selection, is publicly available at https://github.com/mingjutsai/BSig.
Collapse
Affiliation(s)
| | - Ming-Ju Tsai
- Hinda and Arthur Marcus Institute for Aging Research at Hebrew Senior Life, Boston, MA 02131, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02131, USA
| | - Nikhila Aimalla
- Department of Internal Medicine-Pediatrics, Marshfield Clinic Health System, Marshfield, WI 54449, USA
| | - Luke Moat
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Patrick Allaire
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Scott Hebbring
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Afshin Beheshti
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA94035, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rohit Sharma
- Department of Surgical Oncology, Marshfield Clinic Health System, Marshfield, WI 54449, USA
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
23
|
Verma VK, Beevi SS, Nair RA, Kumar A, Kiran R, Alexander LE, Dinesh Kumar L. MicroRNA signatures differentiate types, grades, and stages of breast invasive ductal carcinoma (IDC): miRNA-target interacting signaling pathways. Cell Commun Signal 2024; 22:100. [PMID: 38326829 PMCID: PMC10851529 DOI: 10.1186/s12964-023-01452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Invasive ductal carcinoma (IDC) is the most common form of breast cancer which accounts for 85% of all breast cancer diagnoses. Non-invasive and early stages have a better prognosis than late-stage invasive cancer that has spread to lymph nodes. The involvement of microRNAs (miRNAs) in the initiation and progression of breast cancer holds great promise for the development of molecular tools for early diagnosis and prognosis. Therefore, developing a cost effective, quick and robust early detection protocol using miRNAs for breast cancer diagnosis is an imminent need that could strengthen the health care system to tackle this disease around the world. METHODS We have analyzed putative miRNAs signatures in 100 breast cancer samples using two independent high fidelity array systems. Unique and common miRNA signatures from both array systems were validated using stringent double-blind individual TaqMan assays and their expression pattern was confirmed with tissue microarrays and northern analysis. In silico analysis were carried out to find miRNA targets and were validated with q-PCR and immunoblotting. In addition, functional validation using antibody arrays was also carried out to confirm the oncotargets and their networking in different pathways. Similar profiling was carried out in Brca2/p53 double knock out mice models using rodent miRNA microarrays that revealed common signatures with human arrays which could be used for future in vivo functional validation. RESULTS Expression profile revealed 85% downregulated and 15% upregulated microRNAs in the patient samples of IDC. Among them, 439 miRNAs were associated with breast cancer, out of which 107 miRNAs qualified to be potential biomarkers for the stratification of different types, grades and stages of IDC after stringent validation. Functional validation of their putative targets revealed extensive miRNA network in different oncogenic pathways thus contributing to epithelial-mesenchymal transition (EMT) and cellular plasticity. CONCLUSION This study revealed potential biomarkers for the robust classification as well as rapid, cost effective and early detection of IDC of breast cancer. It not only confirmed the role of these miRNAs in cancer development but also revealed the oncogenic pathways involved in different progressive grades and stages thus suggesting a role in EMT and cellular plasticity during breast tumorigenesis per se and IDC in particular. Thus, our findings have provided newer insights into the miRNA signatures for the classification and early detection of IDC.
Collapse
Affiliation(s)
- Vinod Kumar Verma
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Syed Sultan Beevi
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Rekha A Nair
- Department of Pathology, Regional Cancer Centre (RCC), Medical College Campus, Trivandrum, 695011, India
| | - Aviral Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Ravi Kiran
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Liza Esther Alexander
- Department of Pathology, Regional Cancer Centre (RCC), Medical College Campus, Trivandrum, 695011, India
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
24
|
Ma W, Wu H, Chen Y, Xu H, Jiang J, Du B, Wan M, Ma X, Chen X, Lin L, Su X, Bao X, Shen Y, Xu N, Ruan J, Jiang H, Ding Y. New techniques to identify the tissue of origin for cancer of unknown primary in the era of precision medicine: progress and challenges. Brief Bioinform 2024; 25:bbae028. [PMID: 38343328 PMCID: PMC10859692 DOI: 10.1093/bib/bbae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/10/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Despite a standardized diagnostic examination, cancer of unknown primary (CUP) is a rare metastatic malignancy with an unidentified tissue of origin (TOO). Patients diagnosed with CUP are typically treated with empiric chemotherapy, although their prognosis is worse than those with metastatic cancer of a known origin. TOO identification of CUP has been employed in precision medicine, and subsequent site-specific therapy is clinically helpful. For example, molecular profiling, including genomic profiling, gene expression profiling, epigenetics and proteins, has facilitated TOO identification. Moreover, machine learning has improved identification accuracy, and non-invasive methods, such as liquid biopsy and image omics, are gaining momentum. However, the heterogeneity in prediction accuracy, sample requirements and technical fundamentals among the various techniques is noteworthy. Accordingly, we systematically reviewed the development and limitations of novel TOO identification methods, compared their pros and cons and assessed their potential clinical usefulness. Our study may help patients shift from empirical to customized care and improve their prognoses.
Collapse
Affiliation(s)
- Wenyuan Ma
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Wu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongxia Xu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Junjie Jiang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bang Du
- Real Doctor AI Research Centre, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mingyu Wan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolu Ma
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Lin
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinhui Su
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifei Shen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nong Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiping Jiang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
Abdullaev B, Rasyid SA, Ali E, Al-Dhalimy AMB, Mustafa YF, Fenjan MN, Misra N, Al-Musawi SG, Alawadi A, Alsalamy A. Effective exosomes in breast cancer: focusing on diagnosis and treatment of cancer progression. Pathol Res Pract 2024; 253:154995. [PMID: 38113765 DOI: 10.1016/j.prp.2023.154995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
Breast cancer (BC) is the most prevalent aggressive malignant tumor in women worldwide and develops from breast tissue. Although cutting-edge treatment methods have been used and current mortality rates have decreased, BC control is still not satisfactory. Clarifying the underlying molecular mechanisms will help clinical options. Extracellular vesicles known as exosomes mediate cellular communication by delivering a variety of biomolecules, including proteins, oncogenes, oncomiRs, and even pharmacological substances. These transferable bioactive molecules can alter the transcriptome of target cells and affect signaling pathways that are related to tumors. Numerous studies have linked exosomes to BC biology, including therapeutic resistance and the local microenvironment. Exosomes' roles in tumor treatment resistance, invasion, and BC metastasis are the main topics of discussion in this review.
Collapse
Affiliation(s)
- Bekhzod Abdullaev
- Research Department of Biotechnology, New Uzbekistan University, Tashkent, Uzbekistan; Department of Oncology, School of Medicine, Central Asian University, Tashkent, Uzbekistan.
| | - Sri Anggarini Rasyid
- Faculty of Science and Technology, Mandala Waluya University, Kendari, South East Sulawesi, Indonesia.
| | - Eyhab Ali
- college of chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Iraq
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Neeti Misra
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, India
| | | | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Iraq
| |
Collapse
|
26
|
Zhu Y. Plasma/Serum Proteomics based on Mass Spectrometry. Protein Pept Lett 2024; 31:192-208. [PMID: 38869039 PMCID: PMC11165715 DOI: 10.2174/0109298665286952240212053723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 06/14/2024]
Abstract
Human blood is a window of physiology and disease. Examination of biomarkers in blood is a common clinical procedure, which can be informative in diagnosis and prognosis of diseases, and in evaluating treatment effectiveness. There is still a huge demand on new blood biomarkers and assays for precision medicine nowadays, therefore plasma/serum proteomics has attracted increasing attention in recent years. How to effectively proceed with the biomarker discovery and clinical diagnostic assay development is a question raised to researchers who are interested in this area. In this review, we comprehensively introduce the background and advancement of technologies for blood proteomics, with a focus on mass spectrometry (MS). Analyzing existing blood biomarkers and newly-built diagnostic assays based on MS can shed light on developing new biomarkers and analytical methods. We summarize various protein analytes in plasma/serum which include total proteome, protein post-translational modifications, and extracellular vesicles, focusing on their corresponding sample preparation methods for MS analysis. We propose screening multiple protein analytes in the same set of blood samples in order to increase success rate for biomarker discovery. We also review the trends of MS techniques for blood tests including sample preparation automation, and further provide our perspectives on their future directions.
Collapse
Affiliation(s)
- Yiying Zhu
- Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
27
|
Chen H. microRNA-Based Cancer Diagnosis and Therapy. Int J Mol Sci 2023; 25:230. [PMID: 38203401 PMCID: PMC10778828 DOI: 10.3390/ijms25010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression post-transcriptionally by impeding mRNA translation or stability [...].
Collapse
Affiliation(s)
- Hexin Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
28
|
Huang X, Li Z, Shi Y, Zhang Y, Shen T, Chen M, Huang Z, Tong Y, Liu SY, Guo J, Zou X, Dai Z. A DNAzyme dual-feedback autocatalytic exponential amplification biocircuit for microRNA imaging in living cells. Biosens Bioelectron 2023; 241:115669. [PMID: 37688849 DOI: 10.1016/j.bios.2023.115669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/21/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Autocatalytic biocircuit are powerful tools for analysing intracellular biomarkers, but these tools are constrained by limitations in amplification capacity and intracellular delivery efficiency. In this work, we developed a DNAzyme-based dual-feedback autocatalytic exponential amplification biocircuit sustained by a honeycomb MnO2 nanosponge (EDA2@hMNS) for live-cell imaging of intracellular low-abundance microRNAs (miRNA). The EDA2 biocircuit comprises a blocked DNAzyme (b-DNAzyme), a Fuel strand and a Substrate strand. In the EDA2 biocircuit, target miRNAs are recycled and feedback for rounds of DNAzymatic amplification, and the DNAzymatic reactions continuously generate target miRNA analogues for dual-feedback to achieve multiple parallel cascade DNAzymatic reactions that improve amplification capacity substantially. In addition, the hMNS ensures high loading and delivery efficiency of biocircuit probes into living cells and also provides sufficient Mn2+ DNAzyme cofactor from in situ decomposition by intracellular glutathione (GSH). The EDA2@hMNS realized a detection limit of 17 pM, which is 288-fold lower than the b-DNAzyme lacking the DNAzymatic amplification. These results demonstrate the great promise for this critical tool in analysing low-abundance biomarkers and cancer diagnostics.
Collapse
Affiliation(s)
- Xing Huang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zihao Li
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yakun Shi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yanfei Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Taorong Shen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Meng Chen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhan Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yanli Tong
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jianhe Guo
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
29
|
Hussen BM, Abdullah KH, Abdullah SR, Majeed NM, Mohamadtahr S, Rasul MF, Dong P, Taheri M, Samsami M. New insights of miRNA molecular mechanisms in breast cancer brain metastasis and therapeutic targets. Noncoding RNA Res 2023; 8:645-660. [PMID: 37818447 PMCID: PMC10560790 DOI: 10.1016/j.ncrna.2023.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/17/2023] [Accepted: 09/17/2023] [Indexed: 10/12/2023] Open
Abstract
Brain metastases in breast cancer (BC) patients are often associated with a poor prognosis. Recent studies have uncovered the critical roles of miRNAs in the initiation and progression of BC brain metastasis, highlighting the disease's underlying molecular pathways. miRNA-181c, miRNA-10b, and miRNA-21, for example, are all overexpressed in BC patients. It has been shown that these three miRNAs help tumors grow and metastasize by targeting genes that control how cells work. On the other hand, miRNA-26b5p, miRNA-7, and miRNA-1013p are all downregulated in BC brain metastasis patients. They act as tumor suppressors by controlling the expression of genes related to cell adhesion, angiogenesis, and invasion. Therapeutic miRNA targeting has considerable promise in treating BC brain metastases. Several strategies have been proposed to modulate miRNA expression, including miRNA-Mimics, antagomirs, and small molecule inhibitors of miRNA biogenesis. This review discusses the aberrant expression of miRNAs and metastatic pathways that lead to the spread of BC cells to the brain. It also explores miRNA therapeutic target molecular mechanisms and BC brain metastasis challenges with advanced strategies. The targeting of certain miRNAs opens a new door for the development of novel therapeutic approaches for this devastating disease.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Khozga Hazhar Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | | | - Sayran Mohamadtahr
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Samsami
- Cancer Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Dziechciowska I, Dąbrowska M, Mizielska A, Pyra N, Lisiak N, Kopczyński P, Jankowska-Wajda M, Rubiś B. miRNA Expression Profiling in Human Breast Cancer Diagnostics and Therapy. Curr Issues Mol Biol 2023; 45:9500-9525. [PMID: 38132441 PMCID: PMC10742292 DOI: 10.3390/cimb45120595] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Breast cancer is one of the most commonly diagnosed cancer types worldwide. Regarding molecular characteristics and classification, it is a heterogeneous disease, which makes it more challenging to diagnose. As is commonly known, early detection plays a pivotal role in decreasing mortality and providing a better prognosis for all patients. Different treatment strategies can be adjusted based on tumor progression and molecular characteristics, including personalized therapies. However, dealing with resistance to drugs and recurrence is a challenge. The therapeutic options are limited and can still lead to poor clinical outcomes. This review aims to shed light on the current perspective on the role of miRNAs in breast cancer diagnostics, characteristics, and prognosis. We discuss the potential role of selected non-coding RNAs most commonly associated with breast cancer. These include miR-21, miR-106a, miR-155, miR-141, let-7c, miR-335, miR-126, miR-199a, miR-101, and miR-9, which are perceived as potential biomarkers in breast cancer prognosis, diagnostics, and treatment response monitoring. As miRNAs differ in expression levels in different types of cancer, they may provide novel cancer therapy strategies. However, some limitations regarding dynamic alterations, tissue-specific profiles, and detection methods must also be raised.
Collapse
Affiliation(s)
- Iga Dziechciowska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Małgorzata Dąbrowska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Anna Mizielska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Natalia Pyra
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Przemysław Kopczyński
- Centre for Orthodontic Mini-Implants, Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Bukowska 70 Str., 60-812 Poznan, Poland
| | - Magdalena Jankowska-Wajda
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8 Str., 61-614 Poznan, Poland;
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| |
Collapse
|
31
|
Tariq M, Richard V, Kerin MJ. MicroRNAs as Molecular Biomarkers for the Characterization of Basal-like Breast Tumor Subtype. Biomedicines 2023; 11:3007. [PMID: 38002007 PMCID: PMC10669494 DOI: 10.3390/biomedicines11113007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer is a heterogeneous disease highlighted by the presence of multiple tumor variants and the basal-like breast cancer (BLBC) is considered to be the most aggressive variant with limited therapeutics and a poor prognosis. Though the absence of detectable protein and hormonal receptors as biomarkers hinders early detection, the integration of genomic and transcriptomic profiling led to the identification of additional variants in BLBC. The high-throughput analysis of tissue-specific micro-ribonucleic acids (microRNAs/miRNAs) that are deemed to have a significant role in the development of breast cancer also displayed distinct expression profiles in each subtype of breast cancer and thus emerged to be a robust approach for the precise characterization of the BLBC subtypes. The classification schematic of breast cancer is still a fluid entity that continues to evolve alongside technological advancement, and the transcriptomic profiling of tissue-specific microRNAs is projected to aid in the substratification and diagnosis of the BLBC tumor subtype. In this review, we summarize the current knowledge on breast tumor classification, aim to collect comprehensive evidence based on the microRNA expression profiles, and explore their potential as prospective biomarkers of BLBC.
Collapse
Affiliation(s)
| | - Vinitha Richard
- Discipline of Surgery, Lambe Institute for Translational Research, H91 TK33 Galway, Ireland;
| | - Michael J. Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, H91 TK33 Galway, Ireland;
| |
Collapse
|
32
|
Yao C, Dai S, Wang C, Fu K, Wu R, Zhao X, Yao Y, Li Y. Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategies. Biomed Pharmacother 2023; 167:115464. [PMID: 37713990 DOI: 10.1016/j.biopha.2023.115464] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Luteolin is a flavonoid widely present in various traditional Chinese medicines. In recent years, luteolin has received more attention due to its impressive liver protective effect, such as metabolic associated fatty liver disease, hepatic fibrosis and hepatoma. This article summarizes the pharmacological effects, pharmacokinetic characteristics, and toxicity of luteolin against liver diseases, and provides prospect. The results indicate that luteolin improves liver lesions through various mechanisms, including inhibiting inflammatory factors, reducing oxidative stress, regulating lipid balance, slowing down excessive aggregation of extracellular matrix, inducing apoptosis and autophagy of liver cancer cells. Pharmacokinetics research manifested that due to metabolic effects, the bioavailability of luteolin is relatively low. It is worth noting that appropriate modification, new delivery systems, and derivatives can enhance its bioavailability. Although many studies have shown that the toxicity of luteolin is minimal, strict toxicity experiments are still needed to evaluate its safety and promote its reasonable development. In addition, this study also discussed the clinical applications related to luteolin, indicating that it is a key component of commonly used liver protective drugs in clinical practice. In view of its excellent pharmacological effects, luteolin is expected to become a potential drug for the treatment of various liver diseases.
Collapse
Affiliation(s)
- Chenhao Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuxin Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
33
|
Mirabbasi R, Ebrahimi SO, Tavakoli F, Reiisi S. Novel polymorphism rs12402181 in the mature sequence of hsa-miR-3117-3p has a protective effect against breast cancer development by affecting miRNA processing and function. 3 Biotech 2023; 13:349. [PMID: 37780804 PMCID: PMC10541378 DOI: 10.1007/s13205-023-03765-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
The current study aimed to investigate how the rs12402181 variant in the miR-3117-3p seed region affects miRNA processing and binding ability to the target sequences and breast cancer susceptibility. To study the role of rs12402181 polymorphism in breast cancer, blood samples were examined to investigate the possible association between the genetic variant in the miR-3117 and breast cancer susceptibility. The miR-3117 gene variant was genotyped using PCR-RFLP. The pre-miR-3117 and parts of the flanking region with GG or AA genotype were inserted into a pEGFPN1 expression vector and followed by qPCR to evaluate the effect of SNP on miR-3117-3p expression levels and function. Cell proliferation and migration properties investigated by MTT and wound healing assay. Web server databases were used for further investigation of potential changes in miRNA function. Genotype frequency study in breast cancer patients and healthy controls showed that rs12402181 polymorphism (G > A) is inversely associated with susceptibility to breast cancer (P = 0.03, OR 0.551). The variant allele led to increased production of mature miR-3117 and reduced cell proliferation and migration in MCF7 and T47D cells. These findings suggest that A allele in miR-3117-3p affects the processing of miRNA, causing an increase in the miRNA mature form which can negatively regulate tumor development and migration. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03765-y.
Collapse
Affiliation(s)
- Razieh Mirabbasi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Fatemeh Tavakoli
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
34
|
Qiu J, Qian D, Jiang Y, Meng L, Huang L. Circulating tumor biomarkers in early-stage breast cancer: characteristics, detection, and clinical developments. Front Oncol 2023; 13:1288077. [PMID: 37941557 PMCID: PMC10628786 DOI: 10.3389/fonc.2023.1288077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Breast cancer is the most common form of cancer in women, contributing to high rates of morbidity and mortality owing to the ability of these tumors to metastasize via the vascular system even in the early stages of progression. While ultrasonography and mammography have enabled the more reliable detection of early-stage breast cancer, these approaches entail high rates of false positive and false negative results Mammograms also expose patients to radiation, raising clinical concerns. As such, there is substantial interest in the development of more accurate and efficacious approaches to diagnosing breast cancer in its early stages when patients are more likely to benefit from curative treatment efforts. Blood-based biomarkers derived from the tumor microenvironment (TME) have frequently been studied as candidate targets that can enable tumor detection when used for patient screening. Through these efforts, many promising biomarkers including tumor antigens, circulating tumor cell clusters, microRNAs, extracellular vesicles, circulating tumor DNA, metabolites, and lipids have emerged as targets that may enable the detection of breast tumors at various stages of progression. This review provides a systematic overview of the TME characteristics of early breast cancer, together with details on current approaches to detecting blood-based biomarkers in affected patients. The limitations, challenges, and prospects associated with different experimental and clinical platforms employed in this context are also discussed at length.
Collapse
Affiliation(s)
- Jie Qiu
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People’s Hospital, Changshu, Jiangsu, China
| | - Yuancong Jiang
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Liwei Meng
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Liming Huang
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
35
|
Padroni L, De Marco L, Fiano V, Milani L, Marmiroli G, Giraudo MT, Macciotta A, Ricceri F, Sacerdote C. Identifying MicroRNAs Suitable for Detection of Breast Cancer: A Systematic Review of Discovery Phases Studies on MicroRNA Expression Profiles. Int J Mol Sci 2023; 24:15114. [PMID: 37894794 PMCID: PMC10607026 DOI: 10.3390/ijms242015114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The analysis of circulating tumor cells and tumor-derived materials, such as circulating tumor DNA, circulating miRNAs (cfmiRNAs), and extracellular vehicles provides crucial information in cancer research. CfmiRNAs, a group of short noncoding regulatory RNAs, have gained attention as diagnostic and prognostic biomarkers. This review focuses on the discovery phases of cfmiRNA studies in breast cancer patients, aiming to identify altered cfmiRNA levels compared to healthy controls. A systematic literature search was conducted, resulting in 16 eligible publications. The studies included a total of 585 breast cancer cases and 496 healthy controls, with diverse sample types and different cfmiRNA assay panels. Several cfmiRNAs, including MIR16, MIR191, MIR484, MIR106a, and MIR193b, showed differential expressions between breast cancer cases and healthy controls. However, the studies had a high risk of bias and lacked standardized protocols. The findings highlight the need for robust study designs, standardized procedures, and larger sample sizes in discovery phase studies. Furthermore, the identified cfmiRNAs can serve as potential candidates for further validation studies in different populations. Improving the design and implementation of cfmiRNA research in liquid biopsies may enhance their clinical diagnostic utility in breast cancer patients.
Collapse
Affiliation(s)
- Lisa Padroni
- Unit of Cancer Epidemiology, Città Della Salute e Della Scienza University-Hospital and Center for Cancer Prevention (CPO), Via Santena 7, 10126 Turin, Italy; (L.P.); (L.D.M.); (G.M.)
| | - Laura De Marco
- Unit of Cancer Epidemiology, Città Della Salute e Della Scienza University-Hospital and Center for Cancer Prevention (CPO), Via Santena 7, 10126 Turin, Italy; (L.P.); (L.D.M.); (G.M.)
| | - Valentina Fiano
- Unit of Cancer Epidemiology, Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
| | - Lorenzo Milani
- Centre for Biostatistics, Epidemiology and Public Health (C-BEPH), Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (L.M.); (M.T.G.); (A.M.); (F.R.)
| | - Giorgia Marmiroli
- Unit of Cancer Epidemiology, Città Della Salute e Della Scienza University-Hospital and Center for Cancer Prevention (CPO), Via Santena 7, 10126 Turin, Italy; (L.P.); (L.D.M.); (G.M.)
| | - Maria Teresa Giraudo
- Centre for Biostatistics, Epidemiology and Public Health (C-BEPH), Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (L.M.); (M.T.G.); (A.M.); (F.R.)
| | - Alessandra Macciotta
- Centre for Biostatistics, Epidemiology and Public Health (C-BEPH), Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (L.M.); (M.T.G.); (A.M.); (F.R.)
| | - Fulvio Ricceri
- Centre for Biostatistics, Epidemiology and Public Health (C-BEPH), Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (L.M.); (M.T.G.); (A.M.); (F.R.)
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città Della Salute e Della Scienza University-Hospital and Center for Cancer Prevention (CPO), Via Santena 7, 10126 Turin, Italy; (L.P.); (L.D.M.); (G.M.)
| |
Collapse
|
36
|
Hertenstein T, Tang Y, Day AS, Reynolds J, Viboolmate PV, Yoon JY. Rapid and sensitive detection of miRNA via light scatter-aided emulsion-based isothermal amplification using a custom low-cost device. Biosens Bioelectron 2023; 237:115444. [PMID: 37329805 DOI: 10.1016/j.bios.2023.115444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
MicroRNAs are likely to be a next-generation clinical biomarker for many diseases. While gold-standard technologies, e.g., reverse transcription-quantitative polymerase chain reaction (RT-qPCR), exist for microRNA detection, there is a need for rapid and low-cost testing. Here, an emulsion loop-mediated isothermal amplification (eLAMP) assay was developed for miRNA that compartmentalizes a LAMP reaction and shortens the time-to-detection. The miRNA was a primer to facilitate the overall amplification rate of template DNA. Light scatter intensity decreased when the emulsion droplet got smaller during the ongoing amplification, which was utilized to moitor the amplification non-invasively. A custom low-cost device was designed and fabricated using a computer cooling fan, a Peltier heater, an LED, a photoresistor, and a temperature controller. It allowed more stable vortexing and accurate light scatter detection. Three miRNAs, miR-21, miR-16, and miR-192, were successfully detected using the custom device. Specifically, new template and primer sequences were developed for miR-16 and miR-192. Zeta potential measurements and microscopic observations confirmed emulsion size reduction and amplicon adsorption. The detection limit was 0.01 fM, corresponding to 2.4 copies per reaction, and the detection could be made in 5 min. Since the assays were rapid and both template and miRNA + template could eventually be amplified, we introduced the success rate (compared to the 95% confidence interval of the template result) as a new measure, which worked well with lower concentrations and inefficient amplifications. This assay brings us one step closer to allowing circulating miRNA biomarker detection to become commonplace in the clinical world.
Collapse
Affiliation(s)
- Tyler Hertenstein
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Yisha Tang
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Alexander S Day
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Jocelyn Reynolds
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Patrick V Viboolmate
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
37
|
Zhang M, Wang M, Jiang Z, Fu Z, Ma J, Gao S. Candidate Oligo Therapeutic Target, miR-330-3p, Induces Tamoxifen Resistance in Estrogen Receptor-Positive Breast Cancer Cells via HDAC4. Breast J 2023; 2023:2875972. [PMID: 37711168 PMCID: PMC10499526 DOI: 10.1155/2023/2875972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/04/2023] [Accepted: 08/19/2023] [Indexed: 09/16/2023]
Abstract
Tamoxifen is a drug used for treating breast cancer (BC), especially for individuals diagnosed with estrogen receptor-positive (ER+) BC. Its prolonged use could reduce the risk of recurrence and significantly lengthen the survival rate of BC patients. However, an increasing number of patients developed resistance to tamoxifen treatment, which reduced therapeutic efficiency and caused substandard prognosis. Therefore, the exploration of the molecular processes involved in tamoxifen resistance (TR) is urgently required. This investigation aimed to elucidate the relationship of microRNA-330 (miR-330-3p) with the TR of BC. There is little information on miR-330-3p's link with drug-resistant BC, although it is well known to regulate cell proliferation and apoptosis. Primarily, miR-330-3p expression in parental BC (MCF7/T47D), TR (MCF7-TR), and T47D/TR cell lines was detected by qRT-PCR. Then, the impact of miR-330-3p on the TR of BC cells was assessed by a cell proliferation assay. Lastly, dual-luciferase reporter, qRT-PCR, and western blot assessments were carried out to identify histone deacetylase 4 (HDAC4) as the potential miR-330-3p target gene. The data indicated that miRNA-330 was overexpressed in TR ER+ BC cells and its overexpression could induce TR. Furthermore, miRNA-330 could also reduce the expression of HDAC4, which is closely linked to TR, and overexpression of HDAC4 could reverse miRNA-330-induced drug resistance. In summary, miR-330-3p could induce TR of ER+ BC cells by downregulating HDAC4 expression, which might be a novel marker of TR and a possible treatment target against BC patients who are tamoxifen-resistant.
Collapse
Affiliation(s)
- Meng Zhang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Mei Wang
- Department of Pathology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Zhiming Jiang
- Department of Ultrasound Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ziyi Fu
- Department of Breast Disease Research Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jingjing Ma
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Sheng Gao
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| |
Collapse
|
38
|
Huang X, Li Z, Tong Y, Zhang Y, Shen T, Chen M, Huang Z, Shi Y, Wen S, Liu SY, Guo J, Zou X, Dai Z. DNAzyme-Amplified Cascade Catalytic Hairpin Assembly Nanosystem for Sensitive MicroRNA Imaging in Living Cells. Anal Chem 2023; 95:11793-11799. [PMID: 37402285 DOI: 10.1021/acs.analchem.3c02071] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Sensitive imaging of microRNAs (miRNAs) in living cells is significant for accurate cancer clinical diagnosis and prognosis research studies, but it is challenged by inefficient intracellular delivery, instability of nucleic acid probes, and limited amplification efficiency. Herein, we engineered a DNAzyme-amplified cascade catalytic hairpin assembly (CHA)-based nanosystem (DCC) that overcomes these challenges and improves the imaging sensitivity. This enzyme-free amplification nanosystem is based on the sequential activation of DNAzyme amplification and CHA. MnO2 nanosheets were used as nanocarriers for the delivery of nucleic acid probes, which can resist the degradation by nucleases and supply Mn2+ for the DNAzyme reaction. After entering into living cells, the MnO2 nanosheets can be decomposed by intracellular glutathione (GSH) and release the loaded nucleic acid probes. In the presence of target miRNA, the locking strand (L) was hybridized with target miRNA, and the DNAzyme was released, which then cleaved the substrate hairpin (H1). This cleavage reaction resulted in the formation of a trigger sequence (TS) that can activate CHA and recover the fluorescence readout. Meanwhile, the DNAzyme was released from the cleaved H1 and bound to other H1 for new rounds of DNAzyme-based amplification. The TS was also released from CHA and involved in the new cycle of CHA. By this DCC nanosystem, low-abundance target miRNA can activate many DNAzyme and generate numerous TS for CHA, resulting in sensitive and selective analysis of miRNAs with a limit of detection of 5.4 pM, which is 18-fold lower than that of the traditional CHA system. This stable, sensitive, and selective nanosystem holds great potential for miRNA analysis, clinical diagnosis, and other related biomedical applications.
Collapse
Affiliation(s)
- Xing Huang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zihao Li
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yanli Tong
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yanfei Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Taorong Shen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Meng Chen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhan Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yakun Shi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Shaoqiang Wen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jianhe Guo
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
39
|
Chen Z, Li C, Zhou Y, Yao Y, Liu J, Wu M, Su J. Liquid biopsies for cancer: From bench to clinic. MedComm (Beijing) 2023; 4:e329. [PMID: 37492785 PMCID: PMC10363811 DOI: 10.1002/mco2.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023] Open
Abstract
Over the past two decades, liquid biopsy has been increasingly used as a supplement, or even, a replacement to the traditional biopsy in clinical oncological practice, due to its noninvasive and early detectable properties. The detections can be based on a variety of features extracted from tumor‑derived entities, such as quantitative alterations, genetic changes, and epigenetic aberrations, and so on. So far, the clinical applications of cancer liquid biopsy mainly aimed at two aspects, prediction (early diagnosis, prognosis and recurrent evaluation, therapeutic response monitoring, etc.) and intervention. In spite of the rapid development and great contributions achieved, cancer liquid biopsy is still a field under investigation and deserves more clinical practice. To better open up future work, here we systematically reviewed and compared the latest progress of the most widely recognized circulating components, including circulating tumor cells, cell-free circulating DNA, noncoding RNA, and nucleosomes, from their discovery histories to clinical values. According to the features applied, we particularly divided the contents into two parts, beyond epigenetics and epigenetic-based. The latter was considered as the highlight along with a brief overview of the advances in both experimental and bioinformatic approaches, due to its unique advantages and relatively lack of documentation.
Collapse
Affiliation(s)
- Zhenhui Chen
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Chenghao Li
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yue Zhou
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Yinghao Yao
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Jiaqi Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Min Wu
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Jianzhong Su
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| |
Collapse
|
40
|
Höller A, Nguyen-Sträuli BD, Frauchiger-Heuer H, Ring A. "Diagnostic and Prognostic Biomarkers of Luminal Breast Cancer: Where are We Now?". BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:525-540. [PMID: 37533589 PMCID: PMC10392911 DOI: 10.2147/bctt.s340741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023]
Abstract
Luminal breast cancers are hormone receptor (estrogen and/or progesterone) positive that are further divided into HER2-negative luminal A and HER2-positive luminal B subtypes. According to currently accepted convention, they represent the most common subtypes of breast cancer, accounting for approximately 70% of cases. Biomarkers play a critical role in the functional characterization, prognostication, and therapeutic prediction, rendering them indispensable for the clinical management of invasive breast cancer. Traditional biomarkers include clinicopathological parameters, which are increasingly extended by genetic and other molecular markers, enabling the comprehensive characterization of patients with luminal breast cancer. Liquid biopsies capturing and analyzing circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are emerging technologies that envision personalized management through precision oncology. This article reviews key biomarkers in luminal breast cancer and ongoing developments.
Collapse
Affiliation(s)
- Anna Höller
- Department of Gynecology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bich Doan Nguyen-Sträuli
- Department of Gynecology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Heike Frauchiger-Heuer
- Department of Gynecology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alexander Ring
- Department of Gynecology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Ruiz-Manriquez LM, Villarreal-Garza C, Benavides-Aguilar JA, Torres-Copado A, Isidoro-Sánchez J, Estrada-Meza C, Arvizu-Espinosa MG, Paul S, Cuevas-Diaz Duran R. Exploring the Potential Role of Circulating microRNAs as Biomarkers for Predicting Clinical Response to Neoadjuvant Therapy in Breast Cancer. Int J Mol Sci 2023; 24:9984. [PMID: 37373139 PMCID: PMC10297903 DOI: 10.3390/ijms24129984] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer (BC) is a leading cause of cancer-related deaths among women worldwide. Neoadjuvant therapy (NAT) is increasingly being used to reduce tumor burden prior to surgical resection. However, current techniques for assessing tumor response have significant limitations. Additionally, drug resistance is commonly observed, raising a need to identify biomarkers that can predict treatment sensitivity and survival outcomes. Circulating microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and have been shown to play a significant role in cancer progression as tumor inducers or suppressors. The expression of circulating miRNAs has been found to be significantly altered in breast cancer patients. Moreover, recent studies have suggested that circulating miRNAs can serve as non-invasive biomarkers for predicting response to NAT. Therefore, this review provides a brief overview of recent studies that have demonstrated the potential of circulating miRNAs as biomarkers for predicting the clinical response to NAT in BC patients. The findings of this review will strengthen future research on developing miRNA-based biomarkers and their translation into medical practice, which could significantly improve the clinical management of BC patients undergoing NAT.
Collapse
Affiliation(s)
- Luis M. Ruiz-Manriquez
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey 64700, Mexico;
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Cynthia Villarreal-Garza
- Breast Cancer Center, Hospital Zambrano Hellion TecSalud, Tecnologico de Monterrey, Monterrey 64700, Mexico;
| | | | - Andrea Torres-Copado
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - José Isidoro-Sánchez
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Carolina Estrada-Meza
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | | | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | | |
Collapse
|
42
|
Lawrence R, Watters M, Davies CR, Pantel K, Lu YJ. Circulating tumour cells for early detection of clinically relevant cancer. Nat Rev Clin Oncol 2023:10.1038/s41571-023-00781-y. [PMID: 37268719 DOI: 10.1038/s41571-023-00781-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/04/2023]
Abstract
Given that cancer mortality is usually a result of late diagnosis, efforts in the field of early detection are paramount to reducing cancer-related deaths and improving patient outcomes. Increasing evidence indicates that metastasis is an early event in patients with aggressive cancers, often occurring even before primary lesions are clinically detectable. Metastases are usually formed from cancer cells that spread to distant non-malignant tissues via the blood circulation, termed circulating tumour cells (CTCs). CTCs have been detected in patients with early stage cancers and, owing to their association with metastasis, might indicate the presence of aggressive disease, thus providing a possible means to expedite diagnosis and treatment initiation for such patients while avoiding overdiagnosis and overtreatment of those with slow-growing, indolent tumours. The utility of CTCs as an early diagnostic tool has been investigated, although further improvements in the efficiency of CTC detection are required. In this Perspective, we discuss the clinical significance of early haematogenous dissemination of cancer cells, the potential of CTCs to facilitate early detection of clinically relevant cancers, and the technological advances that might improve CTC capture and, thus, diagnostic performance in this setting.
Collapse
Affiliation(s)
- Rachel Lawrence
- Centre for Biomarkers and Therapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Melissa Watters
- Barts and London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Caitlin R Davies
- Centre for Biomarkers and Therapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Klaus Pantel
- Department of Tumour Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Yong-Jie Lu
- Centre for Biomarkers and Therapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
43
|
Loric S, Denis JA, Desbene C, Sabbah M, Conti M. Extracellular Vesicles in Breast Cancer: From Biology and Function to Clinical Diagnosis and Therapeutic Management. Int J Mol Sci 2023; 24:7208. [PMID: 37108371 PMCID: PMC10139222 DOI: 10.3390/ijms24087208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer (BC) is the first worldwide most frequent cancer in both sexes and the most commonly diagnosed in females. Although BC mortality has been thoroughly declining over the past decades, there are still considerable differences between women diagnosed with early BC and when metastatic BC is diagnosed. BC treatment choice is widely dependent on precise histological and molecular characterization. However, recurrence or distant metastasis still occurs even with the most recent efficient therapies. Thus, a better understanding of the different factors underlying tumor escape is mainly mandatory. Among the leading candidates is the continuous interplay between tumor cells and their microenvironment, where extracellular vesicles play a significant role. Among extracellular vesicles, smaller ones, also called exosomes, can carry biomolecules, such as lipids, proteins, and nucleic acids, and generate signal transmission through an intercellular transfer of their content. This mechanism allows tumor cells to recruit and modify the adjacent and systemic microenvironment to support further invasion and dissemination. By reciprocity, stromal cells can also use exosomes to profoundly modify tumor cell behavior. This review intends to cover the most recent literature on the role of extracellular vesicle production in normal and cancerous breast tissues. Specific attention is paid to the use of extracellular vesicles for early BC diagnosis, follow-up, and prognosis because exosomes are actually under the spotlight of researchers as a high-potential source of liquid biopsies. Extracellular vesicles in BC treatment as new targets for therapy or efficient nanovectors to drive drug delivery are also summarized.
Collapse
Affiliation(s)
- Sylvain Loric
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | | | - Cédric Desbene
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Michèle Sabbah
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Marc Conti
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
- INTEGRACELL SAS, 91160 Longjumeau, France
| |
Collapse
|
44
|
Wnuk J, Strzelczyk JK, Gisterek I. Clinical Value of Circulating miRNA in Diagnosis, Prognosis, Screening and Monitoring Therapy of Pancreatic Ductal Adenocarcinoma-A Review of the Literature. Int J Mol Sci 2023; 24:ijms24065113. [PMID: 36982210 PMCID: PMC10049684 DOI: 10.3390/ijms24065113] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Pancreatic cancer (PC) is considered to be the seventh most common cause of cancer-related deaths. The number of deaths caused by PC is estimated to increase in the future. An early diagnosis of PC is crucial for improving treatment outcomes. The most common histopathological subtype of PC is pancreatic ductal adenocarcinoma (PDAC). MicroRNAs (miRNAs)-which are endogenous non-coding RNAs involved in the posttranscriptional regulation of multiple gene expression-constitute useful diagnostic and prognostic biomarkers in various neoplasms, including PDAC. Circulating miRNAs detected in a patient's serum or plasma are drawing more and more attention. Hence, this review aims at evaluating the clinical value of circulating miRNA in the screening, diagnosis, prognosis and monitoring of pancreatic ductal adenocarcinoma therapy.
Collapse
Affiliation(s)
- Jakub Wnuk
- Department of Oncology and Radiotherapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 35 Ceglana St., 40-515 Katowice, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Iwona Gisterek
- Department of Oncology and Radiotherapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 35 Ceglana St., 40-515 Katowice, Poland
| |
Collapse
|
45
|
Padroni L, De Marco L, Dansero L, Fiano V, Milani L, Vasapolli P, Manfredi L, Caini S, Agnoli C, Ricceri F, Sacerdote C. An Epidemiological Systematic Review with Meta-Analysis on Biomarker Role of Circulating MicroRNAs in Breast Cancer Incidence. Int J Mol Sci 2023; 24:3910. [PMID: 36835336 PMCID: PMC9967215 DOI: 10.3390/ijms24043910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Breast cancer (BC) is a multifactorial disease caused by an interaction between genetic predisposition and environmental exposures. MicroRNAs are a group of small non-coding RNA molecules, which seem to have a role either as tumor suppressor genes or oncogenes and seem to be related to cancer risk factors. We conducted a systematic review and meta-analysis to identify circulating microRNAs related to BC diagnosis, paying special attention to methodological problems in this research field. A meta-analysis was performed for microRNAs analyzed in at least three independent studies where sufficient data to make analysis were presented. Seventy-five studies were included in the systematic review. A meta-analysis was performed for microRNAs analyzed in at least three independent studies where sufficient data to make analysis were presented. Seven studies were included in the MIR21 and MIR155 meta-analysis, while four studies were included in the MIR10b metanalysis. The pooled sensitivity and specificity of MIR21 for BC diagnosis were 0.86 (95%CI 0.76-0.93) and 0.84 (95%CI 0.71-0.92), 0.83 (95%CI 0.72-0.91) and 0.90 (95%CI 0.69-0.97) for MIR155, and 0.56 (95%CI 0.32-0.71) and 0.95 (95%CI 0.88-0.98) for MIR10b, respectively. Several other microRNAs were found to be dysregulated, distinguishing BC patients from healthy controls. However, there was little consistency between included studies, making it difficult to identify specific microRNAs useful for diagnosis.
Collapse
Affiliation(s)
- Lisa Padroni
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Via Santena 7, 10126 Turin, Italy
| | - Laura De Marco
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Via Santena 7, 10126 Turin, Italy
| | - Lucia Dansero
- Centre for Biostatistics, Epidemiology and Public Health (C-BEPH), Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Valentina Fiano
- Unit of Cancer Epidemiology, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Lorenzo Milani
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Via Santena 7, 10126 Turin, Italy
| | - Paolo Vasapolli
- Unit of Cancer Epidemiology, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Luca Manfredi
- Centre for Biostatistics, Epidemiology and Public Health (C-BEPH), Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Saverio Caini
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy
| | - Claudia Agnoli
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Fulvio Ricceri
- Centre for Biostatistics, Epidemiology and Public Health (C-BEPH), Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
- Unit of Epidemiology, Regional Health Service ASL TO3, 10095 Grugliasco, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Via Santena 7, 10126 Turin, Italy
| |
Collapse
|
46
|
Xu H, Zheng Y, Chen D, Cheng Y, Fang X, Zhong C, Huang X, Huang Q, Xu J, Xu J, Xue C. Branch-Shaped Trapping Device Regulates Accelerated Catalyzed Hairpin Assembly and Its Application for MicroRNA In Situ Imaging. Anal Chem 2023; 95:1210-1218. [PMID: 36583970 DOI: 10.1021/acs.analchem.2c03956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enzyme-free DNA strand displacement process is often practical when detecting miRNAs expressed at low levels in living cells. However, the poor kinetics, tedious reaction period, and multicomponent system hamper its in vivo applications to a great extent. Herein, we design a branch-shaped trapping device (BTD)-based spatial confinement reactor and applied it for accelerated miRNA in situ imaging. The reactor consists of a pair of trapped probe-based catalyzed hairpin assembly (T-CHA) reactions attached around the BTD. The trapping device naturally offered CHA reactions a good spatial-confinement effect by integrating the metastable probes (MHPa and MHPb) of the traditional CHA with the four-branched arm of BTD, which greatly improved the localized concentration of probes and shortened their physical distance. The autonomous and progressive walk of miRNA on the four-arm nanoprobes via T-CHA can rapidly tie numerous four-arm nanoprobes into figure-of-eight nanoknots (FENs), yielding strong fluorescence that is proportional to the miRNA expression level. The unique nanoarchitecture of the FEN also benefits the restricted freedom of movement (FOM) in a confined cellular environment, which makes the system ideally suitable for in situ imaging of intracellular miRNAs. In vitro and in situ analyses also demonstrated that the T-CHA overall outperformed the dissociative probe-based CHA (D-CHA) in stability, reaction speed, and amplification sensitivity. The final application of the T-CHA-based four-arm nanoprobe for imagings of both cancer cells and normal cells shows the potential of the platform for accurately and timely revealing miRNA in biological systems.
Collapse
Affiliation(s)
- Huo Xu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Yanhui Zheng
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Danlong Chen
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Yinghao Cheng
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaojun Fang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Chunlian Zhong
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Xinmei Huang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Qi Huang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Jiawei Xu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chang Xue
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
47
|
Jusoh AR, Al-Astani Bin Tengku Din TAD, Abdullah-Zawawi MR, Abdul Rahman WFW, Nafi SNM, Romli RC, Hashim EKM, Ab Patar MNA, Yahya MM. Unraveling Roles of miR-27b-3p as a Potential Biomarker for Breast Cancer in Malay Women via Bioinformatics Analysis. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2023; 12:257-274. [PMID: 38751652 PMCID: PMC11092903 DOI: 10.22088/ijmcm.bums.12.3.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 05/18/2024]
Abstract
Abnormal miRNA expression has been associated with breast cancer. Knowing miRNA and its target genes gives a better understanding of the biological mechanism behind the development of breast cancer. Here, we evaluated the potential prognostic and predictive values of miRNAs in breast cancer development by analyzing Malay women with breast cancer expression profiles. Seven differentially expressed miRNAs (DEMs) were subjected to miRNA‒target interaction network analysis (MTIN). A comprehensive MTIN was developed by integrating the information on miRNA and target gene interactions from five independent databases, including DIANA-TarBase, miRTarBase, miRNet, miRDB, and DIANA-microT. To understand the role of miRNAs in the progress of breast cancer, functional enrichment analysis of the miRNA target genes was conducted, followed by survival analysis to assess the prognostic values of the miRNAs and their target genes. In total, 1416 interactions were discovered among seven DEMs and 1274 target genes with a confidence score (CS) > 0.8. The overall survival analysis of the three most DEMs revealed a significant association of miR-27b-3p with poor prognosis in the TCGA breast cancer patient cohort. Further functional analysis of 606 miR-27b-3p target genes revealed their involvement in cancer-related processes and pathways, including the progesterone receptor signaling pathway, PI3K-Akt pathway, and EGFR transactivation. Notably, six high-confidence target genes (BTG2, DNAJC13, GRB2, GSK3B, KRAS, and UBR5) were discovered to be associated with worse overall survival in breast cancer patients, underscoring their essential roles in breast cancer development. Thus, we suggest that miR-27b-3p has significant potential as a biomarker for detecting breast cancer and can provide valuable understanding regarding the molecular mechanisms of the disease.
Collapse
Affiliation(s)
- Ab. Rashid Jusoh
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
- Department of Biomedicine, School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia.
| | - Tengku Ahmad Damitri Al-Astani Bin Tengku Din
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
- Breast Cancer Awareness and Research Unit (BestARi), Hospital Universiti Sains Malaysia, Kelantan, Malaysia.
| | | | - Wan Faiziah Wan Abdul Rahman
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia.
- Breast Cancer Awareness and Research Unit (BestARi), Hospital Universiti Sains Malaysia, Kelantan, Malaysia.
| | - Siti Norasikin Mohd Nafi
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia.
| | - Roslaini Che Romli
- Breast Cancer Awareness and Research Unit (BestARi), Hospital Universiti Sains Malaysia, Kelantan, Malaysia.
| | | | - Mohd Nor Azim Ab Patar
- 6 Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Health Campus, Kelantan, Malaysia.
| | - Maya Mazuwin Yahya
- Breast Cancer Awareness and Research Unit (BestARi), Hospital Universiti Sains Malaysia, Kelantan, Malaysia.
- Department of Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia.
| |
Collapse
|
48
|
Fu Y, Yang Q, Yang H, Zhang X. New progress in the role of microRNAs in the diagnosis and prognosis of triple negative breast cancer. Front Mol Biosci 2023; 10:1162463. [PMID: 37122564 PMCID: PMC10134903 DOI: 10.3389/fmolb.2023.1162463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Triple negative breast cancer is distinguished by its high malignancy, aggressive invasion, rapid progression, easy recurrence, and distant metastases. Additionally, it has a poor prognosis, a high mortality, and is unresponsive to conventional endocrine and targeted therapy, making it a challenging problem for breast cancer treatment and a hotspot for scientific research. Recent research has revealed that certain miRNA can directly or indirectly affect the occurrence, progress and recurrence of TNBC. Their expression levels have a significant impact on TNBC diagnosis, treatment and prognosis. Some miRNAs can serve as biomarkers for TNBC diagnosis and prognosis. This article summarizes the progress of miRNA research in TNBC, discusses their roles in the occurrence, invasion, metastasis, prognosis, and chemotherapy of TNBC, and proposes a treatment strategy for TNBC by interfering with miRNA expression levels.
Collapse
Affiliation(s)
- Yeqin Fu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiuhui Yang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongjian Yang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Hongjian Yang, ; Xiping Zhang,
| | - Xiping Zhang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Hongjian Yang, ; Xiping Zhang,
| |
Collapse
|
49
|
Saha S, Pradhan N, B N, Mahadevappa R, Minocha S, Kumar S. Cancer plasticity: Investigating the causes for this agility. Semin Cancer Biol 2023; 88:138-156. [PMID: 36584960 DOI: 10.1016/j.semcancer.2022.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022]
Abstract
Cancer is not a hard-wired phenomenon but an evolutionary disease. From the onset of carcinogenesis, cancer cells continuously adapt and evolve to satiate their ever-growing proliferation demands. This results in the formation of multiple subtypes of cancer cells with different phenotypes, cellular compositions, and consequently displaying varying degrees of tumorigenic identity and function. This phenomenon is referred to as cancer plasticity, during which the cancer cells exist in a plethora of cellular states having distinct phenotypes. With the advent of modern technologies equipped with enhanced resolution and depth, for example, single-cell RNA-sequencing and advanced computational tools, unbiased cancer profiling at a single-cell resolution are leading the way in understanding cancer cell rewiring both spatially and temporally. In this review, the processes and mechanisms that give rise to cancer plasticity include both intrinsic genetic factors such as epigenetic changes, differential expression due to changes in DNA, RNA, or protein content within the cancer cell, as well as extrinsic environmental factors such as tissue perfusion, extracellular milieu are detailed and their influence on key cancer plasticity hallmarks such as epithelial-mesenchymal transition (EMT) and cancer cell stemness (CSCs) are discussed. Due to therapy evasion and drug resistance, tumor heterogeneity caused by cancer plasticity has major therapeutic ramifications. Hence, it is crucial to comprehend all the cellular and molecular mechanisms that control cellular plasticity. How this process evades therapy, and the therapeutic avenue of targeting cancer plasticity must be diligently investigated.
Collapse
Affiliation(s)
- Shubhraneel Saha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nikita Pradhan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neha B
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ravikiran Mahadevappa
- Department of Biotechnology, School of Science, Gandhi Institute of Technology and Management, Deemed to be University, Bengaluru, Karnataka 562163, India
| | - Shilpi Minocha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Saran Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
50
|
Chao TY, Kordaß T, Osen W, Eichmüller SB. SOX9 is a target of miR-134-3p and miR-224-3p in breast cancer cell lines. Mol Cell Biochem 2023; 478:305-315. [PMID: 35779228 PMCID: PMC9886654 DOI: 10.1007/s11010-022-04507-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/16/2022] [Indexed: 02/03/2023]
Abstract
The transcription factor SOX9 represents an important mediator of breast cancer progression. miRNAs are small non-coding RNAs inhibiting translation of target genes upon interaction with the 3'-UTR region of respective mRNA molecules. Deregulated miRNA expression is involved in hallmarks of cancer like sustained proliferation and inhibition of apoptosis. Here, we investigated the miRNA-mediated regulation of SOX9 expression in two breast cancer cell lines, thereby providing further insights into cellular mechanisms driving breast cancer progression. The modulating effects of miR-134-3p, miR-224-3p, and miR-6859-3p on SOX9 expression were analyzed by qPCR and Western blot in human MDA-MB-231 breast cancer cells. Direct binding of the above-mentioned miRNAs to the SOX9 3'-UTR was assessed by luciferase reporter assays and site-directed mutagenesis. Expression levels of the investigated miRNAs in tumor samples versus healthy tissues were analyzed in silico using publicly available databases. Transfection of miR-134-3p, miR-224-3p, or miR-6859-3p reduced SOX9 expression on mRNA and protein level. Reporter assays proved direct binding of miR-134-3p and miR-224-3p to the SOX9 3'-UTR in MDA-MB-231 and MCF-7 cells. Expression analysis performed in silico revealed reduced expression of both miRNAs in breast cancer tissues. We describe three novel miRNAs targeting SOX9 in human breast cancer cell lines. Among them miR-134-2p and miR-224-3p might act as tumor suppressors, whose down-regulation induces elevated SOX9 levels thereby promoting breast cancer progression.
Collapse
Affiliation(s)
- Tsu-Yang Chao
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), 210, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | - Theresa Kordaß
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), 210, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany ,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Wolfram Osen
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), 210, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | - Stefan B. Eichmüller
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), 210, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| |
Collapse
|