1
|
Badla O, Badla BA, Almobayed A, Mendoza C, Kishor K, Bhattacharya SK. Ischemic Optic Neuropathy: A Review of Current and Potential Future Pharmacotherapies. Pharmaceuticals (Basel) 2024; 17:1281. [PMID: 39458922 PMCID: PMC11510045 DOI: 10.3390/ph17101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
The treatment of arteritic anterior ischemic optic neuropathy (AAION), non-arteritic ischemic optic neuropathy (NAAION), and posterior ischemic optic neuropathy (PION) is a topic of ongoing research with mixed evidence on some pharmacotherapies and a need for more consensus. This manuscript provides an overview of these conditions' current, potential future, and attempted pharmacotherapies. AAION's current treatment regimen consists of high-dose steroids, with methotrexate, tocilizumab, and abatacept, being the most viable steroid-sparing therapy candidates. As for NAAION, the treatments being tried are vast, with mixed evidence supporting each modality. Similarly, despite the various treatment options explored, there still needs to be a universally effective therapy for PION. More research is needed to formulate an agreed-upon treatment regimen for these conditions.
Collapse
Affiliation(s)
- Omar Badla
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School Medicine, Miami, FL 33136, USA (A.A.)
- Miami Integrative Metabolomics Research Center, Miami, FL 33136, USA
| | - Beshr Abdulaziz Badla
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates;
| | - Amr Almobayed
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School Medicine, Miami, FL 33136, USA (A.A.)
- Miami Integrative Metabolomics Research Center, Miami, FL 33136, USA
| | - Carlos Mendoza
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School Medicine, Miami, FL 33136, USA (A.A.)
| | - Krishna Kishor
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School Medicine, Miami, FL 33136, USA (A.A.)
- Miami Integrative Metabolomics Research Center, Miami, FL 33136, USA
| | - Sanjoy K. Bhattacharya
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School Medicine, Miami, FL 33136, USA (A.A.)
- Miami Integrative Metabolomics Research Center, Miami, FL 33136, USA
- Graduate Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
2
|
Chien JY, Ciou JW, Yen Y, Huang SP. Protective effects of compound M01 on retinal ganglion cells in experimental anterior ischemic optic neuropathy by inhibiting TXNIP/NLRP3 inflammasome pathway. Biomed Pharmacother 2023; 169:115861. [PMID: 37972470 DOI: 10.1016/j.biopha.2023.115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023] Open
Abstract
Apoptotic death of retinal ganglion cells (RGCs) is a common pathologic feature in different types of optic neuropathy, including ischemic optic neuropathy and glaucoma, ultimately leading to irreversible visual function loss. Potent and effective protection against RGC death is determinative in developing a successful treatment for these optic neuropathies. This study evaluated the neuroprotective effect of a HECT domain-E3 ubiquitin ligase inhibitor, M01, on retinal ganglion cells after ischemic injury. Experimental anterior ischemic optic neuropathy (AION) was induced by photothrombotic occlusion of microvessels supplying optic nerve in rats. M01 was administered (100 mg/Kg and 200 mg/Kg) subcutaneously for three consecutive days after AION induction. Administration of M01 (100 mg/Kg) significantly increased RGC survival and preserved visual function after AION induction. The number of TUNEL-positive cells and ED1-positive cells was significantly decreased, and optic disc edema was reduced considerably after ischemic infarction with M01 treatment. Moreover, M01 effectively ameliorated optic nerve demyelination and enhanced M2 microglial polarization after AION induction. M01 enhanced the expression of nuclear factor erythroid 2-related factor (Nrf2); subsequently, downregulated Thioredoxin interacting protein (TXNIP) expression, inhibited NLR family pyrin domain containing 3 (NLRP3) activation, and further decreased inflammatory factors, interleukin (IL)-1β and IL-6 in the retina after ischemic injury. These findings suggested that M01 has therapeutic potential by modulating Nrf2 and TXNIP/NLRP3 inflammasome pathways in the retina and optic nerve ischemic damage-related diseases.
Collapse
Affiliation(s)
- Jia-Ying Chien
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Jhih-Wei Ciou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Yun Yen
- The Translational Research Program of Tzu Chi University, Hualien, Taiwan; College of Medical Technology, Taipei Medical University, Taipei, Taiwan
| | - Shun-Ping Huang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan; Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung, Taiwan.
| |
Collapse
|
3
|
Lv W, Wu X, Dou Y, Yan Y, Chen L, Fei Z, Fei F. Homer1 Protects against Retinal Ganglion Cell Pyroptosis by Inhibiting Endoplasmic Reticulum Stress-Associated TXNIP/NLRP3 Inflammasome Activation after Middle Cerebral Artery Occlusion-Induced Retinal Ischemia. Int J Mol Sci 2023; 24:16811. [PMID: 38069134 PMCID: PMC10706256 DOI: 10.3390/ijms242316811] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Retinal ischemia, after cerebral ischemia, is an easily overlooked pathophysiological problem in which inflammation is considered to play an important role. Pyroptosis is a kind of cell death pattern accompanied by inflammation. Homer scaffold protein 1 (Homer1) has anti-inflammation properties and protects against ischemic injury. However, little is known about pyroptosis following middle cerebral artery occlusion (MCAO)-induced retinal ischemia and the regulatory mechanisms involved by Homer1 for the development of pyroptosis. In the present study, retinal ischemic injury was induced in mice by permanent MCAO in vivo, and retinal ganglion cells (RGCs) were subjected to Oxygen and Glucose Deprivation (OGD) to establish an in vitro model. It was shown that TXNIP/NLRP3-mediated pyroptosis was located predominantly in RGCs, which gradually increased after retinal ischemia and peaked at 24 h after retinal ischemia. Interestingly, the RGCs pyroptosis occurred not only in the cell body but also in the axon. Notably, the occurrence of pyroptosis coincided with the change of Homer1 expression in the retina after retinal ischemia and Homer1 also co-localized with RGCs. It was demonstrated that overexpression of Homer1 not only alleviated RGCs pyroptosis and inhibited the release of pro-inflammatory factors but also led to the increase in phosphorylation of AMPK, inhibition of ER stress, and preservation of visual function after retinal ischemia. In conclusion, it was suggested that Homer1 may protect against MCAO-induced retinal ischemia and RGCs pyroptosis by inhibiting endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation after MCAO-induced retinal ischemia.
Collapse
Affiliation(s)
- Weihao Lv
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xincheng District, Xi’an 710032, China; (W.L.); (X.W.); (Y.D.); (Y.Y.)
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xincheng District, Xi’an 710032, China; (W.L.); (X.W.); (Y.D.); (Y.Y.)
| | - Yanan Dou
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xincheng District, Xi’an 710032, China; (W.L.); (X.W.); (Y.D.); (Y.Y.)
| | - Yiwen Yan
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xincheng District, Xi’an 710032, China; (W.L.); (X.W.); (Y.D.); (Y.Y.)
| | - Leiying Chen
- Department of Ophthalmology, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xincheng District, Xi’an 710032, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xincheng District, Xi’an 710032, China; (W.L.); (X.W.); (Y.D.); (Y.Y.)
| | - Fei Fei
- Department of Ophthalmology, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xincheng District, Xi’an 710032, China
| |
Collapse
|
4
|
Wang TF, Liou YS, Yang SH, Lin GL, Chiang YW, Lien TS, Li CC, Wang JH, Chang HH, Sun DS. Platelet-derived circulating soluble P-selectin is sufficient to induce hematopoietic stem cell mobilization. Stem Cell Res Ther 2023; 14:300. [PMID: 37864264 PMCID: PMC10589967 DOI: 10.1186/s13287-023-03527-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Granulocyte colony-stimulating factor (G-CSF)-mediated mobilization of hematopoietic stem cells (HSCs) is a well-established method to prepare HSCs for transplantation nowadays. A sufficient number of HSCs is critical for successful HSC transplantation. However, approximately 2-6% of healthy stem cell donors are G-CSF-poor mobilizers for unknown reasons; thus increasing the uncertainties of HSC transplantation. The mechanism underlining G-CSF-mediated HSC mobilization remains elusive, so detailed mechanisms and an enhanced HSC mobilization strategy are urgently needed. Evidence suggests that P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) are one of the cell-cell adhesion ligand-receptor pairs for HSCs to keep contacting bone marrow (BM) stromal cells before being mobilized into circulation. This study hypothesized that blockage of PSGL-1 and P-selectin may disrupt HSC-stromal cell interaction and facilitate HSC mobilization. METHODS The plasma levels of soluble P-selectin (sP-sel) before and after G-CSF administration in humans and male C57BL/6J mice were analyzed using enzyme-linked immunosorbent assay. Male mice with P-selectin deficiency (Selp-/-) were further employed to investigate whether P-selectin is essential for G-CSF-induced HSC mobilization and determine which cell lineage is sP-sel derived from. Finally, wild-type mice were injected with either G-CSF or recombinant sP-sel to investigate whether sP-sel alone is sufficient for inducing HSC mobilization and whether it accomplishes this by binding to HSCs and disrupting their interaction with stromal cells in the BM. RESULTS A significant increase in plasma sP-sel levels was observed in humans and mice following G-CSF administration. Treatments of G-CSF induced a decrease in the level of HSC mobilization in Selp-/- mice compared with the wild-type (Selp+/+) controls. Additionally, the transfer of platelets derived from wild-type mice can ameliorate the defected HSC mobilization in the Selp-/- recipients. G-CSF induces the release of sP-sel from platelets, which is sufficient to mobilize BM HSCs into the circulation of mice by disrupting the PSGL-1 and P-selectin interaction between HSCs and stromal cells. These results collectively suggested that P-selectin is a critical factor for G-CSF-induced HSC mobilization. CONCLUSIONS sP-sel was identified as a novel endogenous HSC-mobilizing agent. sP-sel injections achieved a relatively faster and more convenient regimen to mobilize HSCs in mice than G-CSF. These findings may serve as a reference for developing and optimizing human HSC mobilization in the future.
Collapse
Grants
- MOST103-2321-B-320-001 Ministry of Science and Technology, Taiwan
- MOST105-2633-B-320-001 Ministry of Science and Technology, Taiwan
- MOST106-2633-B-320-001 Ministry of Science and Technology, Taiwan
- MOST108-2311-B-320-001 Ministry of Science and Technology, Taiwan
- TCMMP104-06 Buddhist Tzu Chi Medical Foundation
- TCMMP108-04 Buddhist Tzu Chi Medical Foundation
- TCMMP111-01 Buddhist Tzu Chi Medical Foundation
- TCRD106-42 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- TCRD108-55 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- TCRD110-61 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- TCRD111-082 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- TCRD112-054 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- TCAS-112-02 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
Collapse
Affiliation(s)
- Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan, Republic of China
- Buddhist Tzu Chi Stem Cells Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Yu-Shan Liou
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China
| | - Shang-Hsien Yang
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan, Republic of China
- Buddhist Tzu Chi Stem Cells Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
- Department of Pediatric Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Guan-Ling Lin
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Ya-Wen Chiang
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China
| | - Chi-Cheng Li
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
- Center of Stem Cell and Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Jen-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China.
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China.
| |
Collapse
|
5
|
Reinhold AK, Hartmannsberger B, Burek M, Rittner HL. Stabilizing the neural barrier - A novel approach in pain therapy. Pharmacol Ther 2023; 249:108484. [PMID: 37390969 DOI: 10.1016/j.pharmthera.2023.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Chronic and neuropathic pain are a widespread burden. Incomplete understanding of underlying pathomechanisms is one crucial factor for insufficient treatment. Recently, impairment of the blood nerve barrier (BNB) has emerged as one key aspect of pain initiation and maintenance. In this narrative review, we discuss several mechanisms and putative targets for novel treatment strategies. Cells such as pericytes, local mediators like netrin-1 and specialized proresolving mediators (SPMs), will be covered as well as circulating factors including the hormones cortisol and oestrogen and microRNAs. They are crucial in either the BNB or similar barriers and associated with pain. While clinical studies are still scarce, these findings might provide valuable insight into mechanisms and nurture development of therapeutic approaches.
Collapse
Affiliation(s)
- Ann-Kristin Reinhold
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Beate Hartmannsberger
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Malgorzata Burek
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Heike L Rittner
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany.
| |
Collapse
|
6
|
Hsu CL, Wen YT, Hsu TC, Chen CC, Lee LY, Chen WP, Tsai RK. Neuroprotective Effects of Erinacine A on an Experimental Model of Traumatic Optic Neuropathy. Int J Mol Sci 2023; 24:1504. [PMID: 36675019 PMCID: PMC9864134 DOI: 10.3390/ijms24021504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Erinacine A (EA), a natural neuroprotectant, is isolated from a Chinese herbal medicine, Hericium erinaceus. The aim of this study was to investigate the neuroprotective effects of EA in a rat model of traumatic optic neuropathy. The optic nerves (ONs) of adult male Wistar rats were crushed using a standardized method and divided into three experimental groups: phosphate-buffered saline (PBS control)-treated group, standard EA dose-treated group (2.64 mg/kg in 0.5 mL of PBS), and double EA dose-treated group (5.28 mg/kg in 0.5 mL of PBS). After ON crush, each group was fed orally every day for 14 days before being euthanized. The visual function, retinal ganglion cell (RGC) density, and RGC apoptosis were determined using flash visual-evoked potentials (fVEP) analysis, retrograde Fluoro-Gold labelling, and TdT-dUTP nick end-labelling (TUNEL) assay, respectively. Macrophage infiltration of ON was detected by immunostaining (immunohistochemistry) for ED1. The protein levels of phosphor-receptor-interacting serine/threonine-protein kinase1 (pRIP1), caspase 8 (Cas8), cleaved caspase 3 (cCas3), tumour necrosis factor (TNF)-α, tumour necrosis factor receptor1 (TNFR1), interleukin (IL)-1β, inducible nitric oxide synthase (iNOS), nuclear factor erythroid 2-related factor 2 (Nrf2), haem oxygenase-1 (HO-1), and superoxide dismutase 1 (SOD1) were evaluated by Western blotting. When comparing the standard EA dose-treated group and the double EA dose-treated group with the PBS-treated group, fVEP analysis showed that the amplitudes of P1−N2 in the standard EA dose group and the double EA dose-treated group were 1.8 and 2.4-fold, respectively, higher than that in the PBS-treated group (p < 0.05). The density of RGC in the standard EA dose-treated group and the double EA dose-treated group were 2.3 and 3.7-fold, respectively, higher than that in the PBS-treated group (p < 0.05). The TUNEL assay showed that the standard EA dose-treated group and the double EA dose-treated group had significantly reduced numbers of apoptotic RGC by 10.0 and 15.6-fold, respectively, compared with the PBS-treated group (p < 0.05). The numbers of macrophages on ON were reduced by 1.8 and 2.2-fold in the standard EA dose-treated group and the double EA dose-treated group, respectively (p < 0.01). On the retinal samples, the levels of pRIP, Cas8, cCas3, TNF-α, TNFR1, IL-1β, and iNOS were decreased, whereas those of Nrf2, HO-1, and SOD1 were increased in both EA-treated groups compared to those in the PBS-treated group (p < 0.05). EA treatment has neuroprotective effects on an experimental model of traumatic optic neuropathy by suppressing apoptosis, neuroinflammation, and oxidative stress to protect the RGCs from death as well as preserving the visual function.
Collapse
Affiliation(s)
- Chiao-Ling Hsu
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Yao-Tseng Wen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Tzu-Chao Hsu
- Department of Medical Education, Medical Administration Office, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Chin-Chu Chen
- Biotech Research Institute, Grap King Bio Ltd., Taoyuan 325002, Taiwan
| | - Li-Ya Lee
- Biotech Research Institute, Grap King Bio Ltd., Taoyuan 325002, Taiwan
| | - Wan-Ping Chen
- Biotech Research Institute, Grap King Bio Ltd., Taoyuan 325002, Taiwan
| | - Rong-Kung Tsai
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica, Hualien 970, Taiwan
| |
Collapse
|
7
|
Chen TW, Wu PY, Wen YT, Desai TD, Huang CT, Liu PK, Tsai RK. Vitamin B3 Provides Neuroprotection via Antioxidative Stress in a Rat Model of Anterior Ischemic Optic Neuropathy. Antioxidants (Basel) 2022; 11:antiox11122422. [PMID: 36552630 PMCID: PMC9774344 DOI: 10.3390/antiox11122422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Supplementing with vitamin B3 has been reported to protect against retinal ganglion cell (RGC) damage events and exhibit multiple neuroprotective properties in a mouse model of optic nerve injury. In this study, a rat model of anterior ischemic optic neuropathy was used to assess the neuroprotective benefits of vitamin B3 (rAION). Vitamin B3 (500 mg/kg/day) or phosphate-buffered saline (PBS) was administered to the rAION-induced rats every day for 28 days. The vitamin B3-treated group had significantly higher first positive and second negative peak (P1-N2) amplitudes of flash visual-evoked potentials and RGC densities than the PBS-treated group (p < 0.05). A terminal deoxynucleotidyl transferase dUTP nick end labeling assay conducted on vitamin B3-treated rats revealed a significant reduction in apoptotic cells (p < 0.05). Superoxide dismutase and thiobarbituric acid reactive substance activity showed that vitamin B3 treatment decreased reactive oxygen species (p < 0.05). Therefore, vitamin B3 supplementation preserves vision in rAION-induced rats by reducing oxidative stress, neuroinflammation, and mitochondrial apoptosis.
Collapse
Affiliation(s)
- Tu-Wen Chen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Po-Ying Wu
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yao-Tseng Wen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Tushar Dnyaneshwar Desai
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Chin-Te Huang
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Ophthalmology, School of Medicine, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan
| | - Pei-Kang Liu
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Rong-Kung Tsai
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
- Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica, Hualien 970, Taiwan
- Correspondence:
| |
Collapse
|
8
|
Transcriptomic Analysis Reveals That Granulocyte Colony-Stimulating Factor Trigger a Novel Signaling Pathway (TAF9-P53-TRIAP1-CASP3) to Protect Retinal Ganglion Cells after Ischemic Optic Neuropathy. Int J Mol Sci 2022; 23:ijms23158359. [PMID: 35955492 PMCID: PMC9368818 DOI: 10.3390/ijms23158359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Optic nerve head (ONH) infarct can result in progressive retinal ganglion cell (RGC) death. The granulocyte colony-stimulating factor (GCSF) protects the RGC after ON infarct. However, protective mechanisms of the GCSF after ONH infarct are complex and remain unclear. To investigate the complex mechanisms involved, the transcriptome profiles of the GCSF-treated retinas were examined using microarray technology. The retinal mRNA samples on days 3 and 7 post rat anterior ischemic optic neuropathy (rAION) were analyzed by microarray and bioinformatics analyses. GCSF treatment influenced 3101 genes and 3332 genes on days 3 and 7 post rAION, respectively. ONH infarct led to changes in 702 and 179 genes on days 3 and 7 post rAION, respectively. After cluster analysis, the levels of TATA box-binding protein (TBP)-associated factor were significantly reduced after ONH infarct, but these significantly increased after GCSF treatment. The network analysis revealed that TBP associated factor 9 (TAF9) can bind to P53 to induce TP53-regulated inhibitor of apoptosis 1 (TRIAP1) expression. To evaluate the function of TAF9 in RGC apoptosis, GCSF plus TAF9 siRNA-treated rats were evaluated using retrograde labeling with FluoroGold assay, TUNEL assay, and Western blotting in an rAION model. The RGC densities in the GCSF plus TAF9 siRNA-treated rAION group were 1.95-fold (central retina) and 1.75-fold (midperipheral retina) lower than that in the GCSF-treated rAION group (p < 0.05). The number of apoptotic RGC in the GCSF plus TAF9 siRNA-treated group was threefold higher than that in the GCSF-treated group (p < 0.05). Treatment with TAF9 siRNA significantly reduced GCSF-induced TP53 and TRIAP1 expression by 2.4-fold and 4.7-fold, respectively, in the rAION model. Overexpression of TAF9 significantly reduced apoptotic RGC and CASP3 levels, and induced TP53 and TRIAP1 expression in the rAION model. Therefore, we have demonstrated that GCSF modulated a new pathway, TAF9-P53-TRIAP1-CASP3, to control RGC death and survival after ON infarct.
Collapse
|
9
|
Chou YY, Chien JY, Ciou JW, Huang SP. The Protective Effects of n-Butylidenephthalide on Retinal Ganglion Cells during Ischemic Injury. Int J Mol Sci 2022; 23:ijms23042095. [PMID: 35216208 PMCID: PMC8877670 DOI: 10.3390/ijms23042095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Clinically, acute ischemic symptoms in the eyes are one of the main causes of vision loss, with the associated inflammatory response and oxidative stress being the key factors that cause injury. Nonarteritic anterior ischemic optic neuropathy (NAION) is the most common type of ischemic optic neuropathy (ION); however, there are still no effective or safe treatment options to date. In this study, we investigated the neuroprotective effects of n-butylidenephthalide (BP) treatment in an experimental NAION rodent model (rAION). BP (10 mg/kg) or PBS (control group) were administered on seven consecutive days in the rAION model. Rats were evaluated for visual function by flash visual evoked potentials (FVEPs) at 4 weeks after NAION induction. The retina and optic nerve were removed for histological examination after the rats were euthanized. The molecular machinery of BP treatment in the rAION model was analyzed using Western blotting. We discovered that BP effectively improves retinal ganglion cell survival rates by preventing apoptotic processes after AION induction and reducing the inflammatory response through which blood-borne macrophages infiltrate the optic nerve. In addition, BP significantly preserved the integrity of the myelin sheath in the rAION model, demonstrating that BP can prevent the development of demyelination. Our immunoblotting results revealed the molecular mechanism through which BP mitigates the neuroinflammatory response through inhibition of the NF-κB signaling pathway. Taken together, these results demonstrate that BP can be used as an exceptional neuroprotective agent for ischemic injury.
Collapse
Affiliation(s)
- Yu-Yau Chou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan; (Y.-Y.C.); (J.-W.C.)
| | - Jia-Ying Chien
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
| | - Jhih-Wei Ciou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan; (Y.-Y.C.); (J.-W.C.)
| | - Shun-Ping Huang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan; (Y.-Y.C.); (J.-W.C.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
- Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung 472, Taiwan
- Correspondence: ; Tel.: +886-3-8565-301 (ext. 2664)
| |
Collapse
|
10
|
Lung-Derived Selectins Enhance Metastatic Behavior of Triple Negative Breast Cancer Cells. Biomedicines 2021; 9:biomedicines9111580. [PMID: 34829810 PMCID: PMC8615792 DOI: 10.3390/biomedicines9111580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022] Open
Abstract
The lung is one of the deadliest sites of breast cancer metastasis, particularly for triple negative breast cancer (TNBC). We have previously shown that the lung produces several soluble factors that may enhance the metastatic behavior of TNBC, including E-, L-, and P-selectin. In this paper, we hypothesize that lung-derived selectins promote TNBC metastatic behavior and may serve as a potential therapeutic target. Lungs were isolated from mice and used to generate lung-conditioned media (CM). Lung-derived selectins were immunodepleted and TNBC migration and proliferation were assessed in response to native or selectin-depleted lung-CM. A 3D ex vivo pulmonary metastasis assay (PuMA) was used to assess the metastatic progression of TNBC in the lungs of wild-type versus triple-selectin (ELP-/-) knockout mice. We observed that individual lung-derived selectins enhance in vitro migration (p ≤ 0.05), but not the proliferation of TNBC cells, and that ex vivo metastatic progression is reduced in the lungs of ELP-/- mice compared to wild-type mice (p ≤ 0.05). Treatment with the pan-selectin inhibitor bimosiamose reduced in vitro lung-specific TNBC migration and proliferation (p ≤ 0.05). Taken together, these results suggest that lung-derived selectins may present a potential therapeutic target against TNBC metastasis. Future studies are aimed at elucidating the pro-metastatic mechanisms of lung-derived selectins and developing a lung-directed therapeutic approach.
Collapse
|
11
|
Chien JY, Chou YY, Ciou JW, Liu FY, Huang SP. The Effects of Two Nrf2 Activators, Bardoxolone Methyl and Omaveloxolone, on Retinal Ganglion Cell Survival during Ischemic Optic Neuropathy. Antioxidants (Basel) 2021; 10:antiox10091466. [PMID: 34573098 PMCID: PMC8470542 DOI: 10.3390/antiox10091466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
Nonarteritic anterior ischemic optic neuropathy (NAION) is one of the most common acute optic neuropathies that affect the over 55-year-old population. NAION causes the loss of visual function, and it has no safe and effective therapy. Bardoxolone methyl (methyl 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate; CDDO-Me; RTA 402) is a semisynthetic triterpenoid with effects against antioxidative stress and inflammation in neurodegeneration and kidney disease that activates the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Moreover, RTA 402 is an FDA-approved compound for the treatment of solid tumors, lymphoid malignancies, melanoma, and chronic kidney disease. Omaveloxolone (RTA 408) is an activator of Nrf2 and an inhibitor of NFκB, possessing antioxidative and anti-inflammatory activities in mitochondrial bioenergetics. RTA 408 is also under clinical investigation for Friedreich ataxia (FA). In this study, a rodent anterior ischemic optic neuropathy (rAION) model induced by photothrombosis was used to examine the therapeutic effects of RTA 402 and RTA 408. Treatment with RTA402 results in antiapoptotic, antioxidative stress, anti-inflammatory, and myelin-preserving effects on retinal ganglion cell (RGC) survival and visual function via regulation of NQO1 and HO-1, reduced IL-6 and Iba1 expression in macrophages, and promoted microglial expression of TGF-β and Ym1 + 2 in the retina and optic nerve. However, these effects were not observed after RTA 408 treatment. Our results provide explicit evidence that RTA 402 modulates the Nrf2 and NFκB signaling pathways to protect RGCs from apoptosis and maintain the visual function in an rAION model. These findings indicate that RTA 402 may a potential therapeutic agent for ischemic optic neuropathy.
Collapse
Affiliation(s)
- Jia-Ying Chien
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
| | - Yu-Yau Chou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan; (Y.-Y.C.); (J.-W.C.); (F.-Y.L.)
| | - Jhih-Wei Ciou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan; (Y.-Y.C.); (J.-W.C.); (F.-Y.L.)
| | - Fang-Yun Liu
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan; (Y.-Y.C.); (J.-W.C.); (F.-Y.L.)
| | - Shun-Ping Huang
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan; (Y.-Y.C.); (J.-W.C.); (F.-Y.L.)
- Department of Ophthalmology, Tzu Chi University, Hualien 970, Taiwan
- Correspondence: ; Tel.: +886-3-8565301 (ext. 2664)
| |
Collapse
|
12
|
Chien JY, Lin SF, Chou YY, Huang CYF, Huang SP. Protective Effects of Oroxylin A on Retinal Ganglion Cells in Experimental Model of Anterior Ischemic Optic Neuropathy. Antioxidants (Basel) 2021; 10:antiox10060902. [PMID: 34204966 PMCID: PMC8226497 DOI: 10.3390/antiox10060902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
Nonarteritic anterior ischemic optic neuropathy (NAION) is the most common cause of acute vision loss in older people, and there is no effective therapy. The effect of the systemic or local application of steroids for NAION patients remains controversial. Oroxylin A (OA) (5,7-dihydroxy-6-methoxyflavone) is a bioactive flavonoid extracted from Scutellariae baicalensis Georgi. with various beneficial effects, including anti-inflammatory and neuroprotective effects. A previous study showed that OA promotes retinal ganglion cell (RGC) survival after optic nerve (ON) crush injury. The purpose of this research was to further explore the potential actions of OA in ischemic injury in an experimental anterior ischemic optic neuropathy (rAION) rat model induced by photothrombosis. Our results show that OA efficiently attenuated ischemic injury in rats by reducing optic disc edema, the apoptotic death of retinal ganglion cells, and the infiltration of inflammatory cells. Moreover, OA significantly ameliorated the pathologic changes of demyelination, modulated microglial polarization, and preserved visual function after rAION induction. OA activated nuclear factor E2 related factor (Nrf2) signaling and its downstream antioxidant enzymes NAD(P)H:quinone oxidoreductase (NQO-1) and heme oxygenase 1 (HO-1) in the retina. We demonstrated that OA activates Nrf2 signaling, protecting retinal ganglion cells from ischemic injury, in the rAION model and could potentially be used as a therapeutic approach in ischemic optic neuropathy.
Collapse
Affiliation(s)
- Jia-Ying Chien
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
| | - Shu-Fang Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Yu-Yau Chou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan;
| | - Chi-Ying F. Huang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (C.-Y.F.H.); (S.-P.H.); Tel.: +886-2-28267904 (C.-Y.F.H.); +886-3-8565301#2664 (S.-P.H.)
| | - Shun-Ping Huang
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan;
- Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung 472, Taiwan
- Correspondence: (C.-Y.F.H.); (S.-P.H.); Tel.: +886-2-28267904 (C.-Y.F.H.); +886-3-8565301#2664 (S.-P.H.)
| |
Collapse
|
13
|
Wen YT, Huang CW, Liu CP, Chen CH, Tu CM, Hwang CS, Chen YH, Chen WR, Lin KL, Ho YC, Chen TC, Tsai RK. Inhibition of Retinal Ganglion Cell Loss By a Novel ROCK Inhibitor (E212) in Ischemic Optic Nerve Injury Via Antioxidative and Anti-Inflammatory Actions. Invest Ophthalmol Vis Sci 2021; 62:21. [PMID: 34015079 PMCID: PMC8142697 DOI: 10.1167/iovs.62.6.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/24/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose This study investigated the neuroprotective effects of administration of ROCK inhibitor E212 on ischemic optic neuropathy. Methods Rats received an intravitreal injection of either E212 or PBS immediately after optic nerve infarct. The oxidative stress in the retina was detected by performing superoxide dismutase activity and CellROX assays. The integrity of retinal pigment epithelium was determined by staining of zona occludens 1. The visual function, retinal ganglion cell (RGC) density, and RGC apoptosis were determined by using flash visual-evoked potential analysis, retrograde FluoroGold labeling, and TdT-dUTP nick end-labeling assay. Macrophage infiltration was detected by staining for ED1. The protein levels of TNF-α, p-CRMP, p-AKT1, p-STAT3, and CD206 were evaluated using Western blotting. Results Administration of E212 resulted in a 1.23-fold increase in the superoxide dismutase activity of the retina and 2.28-fold decrease in RGC-produced reactive oxygen species as compared to the levels observed upon treatment with PBS (P < 0.05). Moreover, E212 prevented the disruption of the blood-retinal barrier (BRB) in contrast to PBS. The P1-N2 amplitude and RGC density in the E212-treated group were 1.75- and 2.05-fold higher, respectively, than those in the PBS-treated group (P < 0.05). The numbers of apoptotic RGCs and macrophages were reduced by 2.93- and 2.54-fold, respectively, in the E212-treated group compared with those in the PBS-treated group (P < 0.05). The levels of p-AKT1, p-STAT3, and CD206 were increased, whereas those of p-PTEN, p-CRMP2, and TNF-α were decreased after treatment with E212 (P < 0.05). Conclusions Treatment with E212 suppresses oxidative stress, BRB disruption, and neuroinflammation to protect the visual function in ischemic optic neuropathy.
Collapse
Affiliation(s)
- Yao-Tseng Wen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ching-Wen Huang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Peng Liu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chih-Hung Chen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chia-Mu Tu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chrong-Shiong Hwang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Yi-Hsun Chen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Wan-Ru Chen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Keh-Liang Lin
- Department of Medical laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chieh Ho
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Rong-Kung Tsai
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica, Hualien, Taiwan
| |
Collapse
|
14
|
Potential Protective and Therapeutic Roles of the Nrf2 Pathway in Ocular Diseases: An Update. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9410952. [PMID: 32273949 PMCID: PMC7125500 DOI: 10.1155/2020/9410952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 12/19/2022]
Abstract
Nuclear factor- (erythroid-derived 2-) like 2 (Nrf2) is a regulator of many processes of life, and it plays an important role in antioxidant, anti-inflammatory, and antifibrotic responses and in cancer. This review is focused on the potential mechanism of Nrf2 in the occurrence and development of ocular diseases. Also, several Nrf2 inducers, including noncoding RNAs and exogenous compounds, which control the expression of Nrf2 through different pathways, are discussed in ocular disease models and ocular cells, protecting them from dysfunctional changes. Therefore, Nrf2 might be a potential target of protecting ocular cells from various stresses and preventing ocular diseases.
Collapse
|
15
|
Haematococcus pluvialis-Derived Astaxanthin Is a Potential Neuroprotective Agent against Optic Nerve Ischemia. Mar Drugs 2020; 18:md18020085. [PMID: 32012819 PMCID: PMC7074344 DOI: 10.3390/md18020085] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Astaxanthin, a xanthophyll belonging to the family of carotenoids, is a potent antioxidant. However, much less is known about its protective effects on the oxidative stress of ischemic optic nerve. We hypothesized that astaxanthin treatment could protect retinal ganglion cells (RGCs) from death via anti-oxidative and anti-apoptotic responses. Adult male Wistar rats were fed astaxanthin (100 mg/kg/day) by daily gavage for seven consecutive days, either before or after inducing oxidative stress in the retina by photodynamic treatment. The visual function, RGC apoptosis, macrophage infiltration in the optic nerve, expression of p-Akt, p-mTOR, SGK1, pS6K, Nrf2, p62, TNFα, Il1β in retinas were investigated. The visual function and the RGC densities were significantly higher in both pre- and post-treatment groups. The numbers of apoptotic RGCs and extrinsic macrophage infiltration in the optic nerve were significantly decreased in both astaxanthin-treated groups. Furthermore, pre- and post-treatment of astaxanthin showed a higher expression of p-Akt, p-mTOR, Nrf2 and superoxide dismutase activity, and a lower expression of cleaved caspase-3, suggesting anti-apoptotic and anti-oxidative roles. Our findings indicate that astaxanthin can preserve visual function and reduce RGC apoptosis after ischemic insults. Including astaxanthin in daily diet as a supplement may be beneficiary for ischemic optic neuropathy.
Collapse
|
16
|
Effect of Autophagy Regulated by Sirt1/FoxO1 Pathway on the Release of Factors Promoting Thrombosis from Vascular Endothelial Cells. Int J Mol Sci 2019; 20:ijms20174132. [PMID: 31450612 PMCID: PMC6747322 DOI: 10.3390/ijms20174132] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023] Open
Abstract
Factors promoting thrombosis such as von Willebrand factor (vWF) and P-selectin are essential for the development of atherosclerosis (AS) and arterial thrombosis. The processing, maturation and release of vWF are regulated by autophagy of vascular endothelial cells. The Sirt1/FoxO1 pathway is an important pathway to regulate autophagy of endothelial cells, therefore the Sirt1/FoxO1 pathway may be an important target for the prevention of thrombosis. We investigated the role of ox-LDL in the release of vWF and P-selectin and the expression of Sirt1 and FoxO1 by Western Blot, Flow Cytometry, ELISA, and tandem fluorescent mRFP-GFP-LC3. We found that vWF and P-selectin secretion increased and Sirt1/FoxO1 pathway was depressed in human umbilical vein endothelial cells (HUVEC) when treated with ox-LDL. Moreover, the expression of autophagy-related protein LC3-II/I and p62 increased. Then, we explored the relationship between autophagy regulated by the Sirt1/FoxO1 pathway and the secretion of vWF and P-selectin. We found that Sirt1/FoxO1, activated by the Sirt1 activators resveratrol (RSV) and SRT1720, decreased the secretion of vWF and P-selectin, which can be abolished by the autophagy inhibitor 3-MA. The expression of Rab7 increased when Sirt1/FoxO1 pathway was activated, and the accumulation of p62 was decreased. Autophagy flux was inhibited by ox-LDL and Sirt1/FoxO1 pathway might enhance autophagy flux through the promotion of the Rab7 expression. Taken together, our data suggest that by enhancing autophagy flux and decreasing the release of vWF and P-selectin, the Sirt1/FoxO1 pathway may be a promising target to prevent AS and arterial thrombosis.
Collapse
|
17
|
Wen YT, Zhang JR, Kapupara K, Tsai RK. mTORC2 activation protects retinal ganglion cells via Akt signaling after autophagy induction in traumatic optic nerve injury. Exp Mol Med 2019; 51:1-11. [PMID: 31409770 PMCID: PMC6802655 DOI: 10.1038/s12276-019-0298-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 02/01/2023] Open
Abstract
Traumatic optic neuropathy is an injury to the optic nerve that leads to vision loss. Autophagy is vital for cell survival and cell death in central nervous system injury, but the role of autophagy in traumatic optic nerve injury remains uncertain. Optic nerve crush is a robust model of traumatic optic nerve injury. p62 siRNA and rapamycin are autophagy inducers and have different neuroprotective effects in the central nervous system. In this study, p62 and rapamycin induced autophagy, but only p62 siRNA treatment provided a favorable protective effect in visual function and retinal ganglion cell (RGC) survival. Moreover, the number of macrophages at the optic nerve lesion site was lower in the p62-siRNA-treated group than in the other groups. p62 siRNA induced more M2 macrophage polarization than rapamycin did. Rapamycin inhibited both mTORC1 and mTORC2 activation, whereas p62 siRNA inhibited only mTORC1 activation and maintained mTORC2 and Akt activation. Inhibition of mTORC2-induced Akt activation resulted in blood–optic nerve barrier disruption. Combined treatment with rapamycin and the mTORC2 activator SC79 improved RGC survival. Overall, our findings suggest that mTORC2 activation after autophagy induction is necessary for the neuroprotection of RGCs in traumatic optic nerve injury and may lead to new clinical applications. Regulating molecular signaling pathways that control the degradation of cellular components—a process known as autophagy—could offer a new approach to treating optic nerve damage after traumatic injuries. There is currently no established treatment option for traumatic optic nerve injury. Rong-Kung Tsai and colleagues at Tzu Chi University in Hualien, Taiwan, explored the role of a protein complex called mTORC2 in autophagy during the repair of optic nerves in rats. They investigated mTORC2 activation by small RNA molecules that also activate autophagy, and by drugs that activate autophagy but inhibit mTORC2. The results indicate that autophagy associated with activation of mTORC2 protects damaged retinal neurons and promotes visual recovery. In addition to treating optic nerve injuries, drugs activating mTORC2 and autophagy might help treat nerve-related diseases of the eye, including glaucoma.
Collapse
Affiliation(s)
- Yao-Tseng Wen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Jia-Rong Zhang
- Department of Ophthalmology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Kishan Kapupara
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Rong-Kung Tsai
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan. .,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
18
|
Wang LY, Fan RF, Yang DB, Zhang D, Wang L. Puerarin reverses cadmium-induced lysosomal dysfunction in primary rat proximal tubular cells via inhibiting Nrf2 pathway. Biochem Pharmacol 2019; 162:132-141. [DOI: 10.1016/j.bcp.2018.10.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
|
19
|
Lee H, Choi YK. Regenerative Effects of Heme Oxygenase Metabolites on Neuroinflammatory Diseases. Int J Mol Sci 2018; 20:ijms20010078. [PMID: 30585210 PMCID: PMC6337166 DOI: 10.3390/ijms20010078] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022] Open
Abstract
Heme oxygenase (HO) catabolizes heme to produce HO metabolites, such as carbon monoxide (CO) and bilirubin (BR), which have gained recognition as biological signal transduction effectors. The neurovascular unit refers to a highly evolved network among endothelial cells, pericytes, astrocytes, microglia, neurons, and neural stem cells in the central nervous system (CNS). Proper communication and functional circuitry in these diverse cell types is essential for effective CNS homeostasis. Neuroinflammation is associated with the vascular pathogenesis of many CNS disorders. CNS injury elicits responses from activated glia (e.g., astrocytes, oligodendrocytes, and microglia) and from damaged perivascular cells (e.g., pericytes and endothelial cells). Most brain lesions cause extensive proliferation and growth of existing glial cells around the site of injury, leading to reactions causing glial scarring, which may act as a major barrier to neuronal regrowth in the CNS. In addition, damaged perivascular cells lead to the breakdown of the blood-neural barrier, and an increase in immune activation, activated glia, and neuroinflammation. The present review discusses the regenerative role of HO metabolites, such as CO and BR, in various vascular diseases of the CNS such as stroke, traumatic brain injury, diabetic retinopathy, and Alzheimer's disease, and the role of several other signaling molecules.
Collapse
Affiliation(s)
- Huiju Lee
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Yoon Kyung Choi
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
20
|
Kapupara K, Huang TL, Wen YT, Huang SP, Tsai RK. Optic nerve head width and retinal nerve fiber layer changes are proper indexes for validating the successful induction of experimental anterior ischemic optic neuropathy. Exp Eye Res 2018; 181:105-111. [PMID: 30557569 DOI: 10.1016/j.exer.2018.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/29/2018] [Accepted: 12/14/2018] [Indexed: 11/17/2022]
Abstract
Reproducible skills are essential for successful induction of a rat model of anterior ischemic optic neuropathy (rAION). We established an in vivo validation index by measuring the natural course of optic nerve head (ONH) width and retinal nerve fiber layer (RNFL) thickness in the rAION model using optical coherence tomography (OCT). The rAION model was induced by photodynamic operations. We measured the ONH width, RNFL, Inner Plexiform layer (IPL) and Ganglion cell complex (GCC) thickness in the acute stage (<3 days), subacute stage (day-7 to day-14) and later stage (day-14 to day-28) post-infarct by OCT. Retinal layers were measured by hematoxylin and eosin stain (HE) to confirm the OCT findings. The RGCs survival rate was determined by retrograde Fluoro-gold labeling, and the visual function was assessed with flash visual-evoked potentials (FVEPs) 4 weeks post-infarct. We observed significant thinning in GCC, IPL, and RNFL at day-14 and day-28 but only RNFL showed significant thinning between day-14 and day-28. The ONH showed significant swelling in the acute stage which correlated at a greater extent with RNFL than GCC and IPL. Further RNFL correlated at a greater extent at with GCC than IPL. HE-stained retina cross sections also showed IPL and RNFL thinning, which further confirmed our OCT findings. The RGC density and P1-N2 amplitude were significantly reduced in rAION. Our data suggest that Swelling, reduction of swelling, and atrophy of RNFL in acute, sub-acute, and later stage, respectively and ONH swelling in the acute stage are essential events for confirming the successful induction of rAION.
Collapse
Affiliation(s)
- Kishan Kapupara
- Institute of Eye Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Tzu-Lun Huang
- Department of Ophthalmology, Far Eastern Memorial Hospital, Banqiao District, New Taipei City, Taiwan; Department of Electrical Engineering, Yuan-Ze University, Chung-Li, Taoyuan, Taiwan
| | - Yao-Tseng Wen
- Institute of Eye Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Shun-Ping Huang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Rong-Kung Tsai
- Institute of Eye Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan; Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
21
|
Liu SY, Song JY, Fan B, Wang Y, Pan YR, Che L, Sun YJ, Li GY. Resveratrol protects photoreceptors by blocking caspase- and PARP-dependent cell death pathways. Free Radic Biol Med 2018; 129:569-581. [PMID: 30342188 DOI: 10.1016/j.freeradbiomed.2018.10.431] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 12/24/2022]
Abstract
Retinal degeneration is a major cause of severe vision loss and irreversible blindness and is characterized by progressive damage to retinal photoreceptor cells. Resveratrol (RSV) serves as an activator of the histone deacetylase, Sirt1, and has been shown to exert anti-oxidative properties. In this study, we mimicked retinal degeneration by subjecting photoreceptors (661 W cells) to glucose deprivation (GD) or light exposure. Under these conditions, we investigated the mechanisms underlying GD- or light exposure-induced cell death and the protective effect of RSV. We found that GD and light exposure resulted in mitochondrial dysfunction, oxidative stress, and cell death. Treatment of injured cells with RSV decreased the production of reactive oxygen species (ROS), improved the ratio of reduced/oxidized glutathione (GSH/GSSG), mitochondrial membrane potential and morphology, and reduced apoptosis. We used the caspase inhibitor, z-VAD-fmk, and a lentiviral-mediated shRNA knockdown of PARP-1 to reveal that GD and light exposure-induced cell death have different underlying mechanisms; GD triggered a caspase-dependent cell death pathway, whereas light exposure triggered a PARP-dependent cell death pathway. The level of caspase-9 and caspase-3, upregulated following GD, were reduced by treatment with RSV. Similarly, the level of PARP-1 and AIF, upregulated following light exposure, were decreased by treatment with RSV. Additionally, treatment with RSV elevated the protein expression and enzymatic activity of Sirt1 and a Sirt1 inhibitor reduced the protective effect of RSV against insult-induced cellular injuries, indicating that RSV's protective effect may involve Sirt1 activation. Finally, we investigated the neuroprotection of RSV in vivo. Administration of RSV to mice under extreme light exposure led to a suppression of the light-induced thinning of the outer nuclear layer (ONL) detected by hematoxylin and eosin (H&E) staining and restored retinal function evaluated by electroretinography (ERG). Taken together, our findings provide evidence that treatment with RSV has neuroprotective effects on both GD and light exposure-induced cell death pathways in photoreceptor cells.
Collapse
Affiliation(s)
- Shu-Yan Liu
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun 130041, China
| | - Jing-Yao Song
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun 130041, China
| | - Bin Fan
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun 130041, China
| | - Ying Wang
- Department of Hemooncolog, Second Hospital of JiLin University, ChangChun 130041, China
| | - Yi-Ran Pan
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun 130041, China
| | - Lin Che
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun 130041, China
| | - Ying-Jian Sun
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun 130041, China
| | - Guang-Yu Li
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun 130041, China.
| |
Collapse
|
22
|
Meng N, Tang H, Zhang H, Jiang C, Su L, Min X, Zhang W, Zhang H, Miao Z, Zhang W, Zhuang C. Fragment-growing guided design of Keap1-Nrf2 protein-protein interaction inhibitors for targeting myocarditis. Free Radic Biol Med 2018; 117:228-237. [PMID: 29428410 DOI: 10.1016/j.freeradbiomed.2018.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/30/2022]
Abstract
Small-molecule inhibitors that block the Keap1-Nrf2 protein-protein interactions are being intensely pursued as a new therapeutic strategy for oxidative stress-related diseases, such as cancer, diabetes, Alzheimer's disease, arteriosclerosis, inflammation and myocarditis. However, there are not enough studies on antioxidant treatments using small molecules in myocarditis. We herein provided a series of novel hydronaphthoquinones as the Keap1-Nrf2 interaction inhibitors targeting LPS-induced myocarditis both in vitro and in vivo. These compounds were designed through an in-silico fragment growing approach based on our previous reported compound, S47 (1). The new compounds were predicted to form additional hydrogen bonds with the S363 residue, leading to higher inhibitory activity. Among these new derivatives, compounds S01 and S05 emerged as inhibitors with significant biochemical potency, as determined by fluorescent anisotropy assay and confirmed by surface plasmon resonance (SPR) and differential scanning fluorimetry (DSF) assays. These inhibitors can dose-dependently protect the H9c2 cardiac cells against LPS-induced injury (100% at 2 μM and 4 μM) and effectively prolong survival or save the life of LPS-injured mice. Mechanistic studies showed that these inhibitors could release Nrf2 in H9c2 cells and LPS-inflammatory mouse models and translocate into the nucleus in a dose-response manner, which significantly increased the downstream genes (HO-1, NQO-1) and the pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), while ROS production dramatically decreased. Their protective effects and the mechanism of action were further confirmed by siNrf2 transfected experiment. Collectively, the novel hydronaphthoquinones can be used as promising lead compounds for the study of Keap1-Nrf2 protein-protein interactions and further anti-myocarditis drug development.
Collapse
Affiliation(s)
- Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hua Tang
- Research Center for Marine Drugs, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Hao Zhang
- Research Center for Marine Drugs, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China; School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Chengshi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Li Su
- Research Center for Marine Drugs, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xiao Min
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wannian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China; School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Zhenyuan Miao
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| | - Wen Zhang
- Research Center for Marine Drugs, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| | - Chunlin Zhuang
- Research Center for Marine Drugs, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|