1
|
Di X, Li Y, Wei J, Li T, Liao B. Targeting Fibrosis: From Molecular Mechanisms to Advanced Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410416. [PMID: 39665319 PMCID: PMC11744640 DOI: 10.1002/advs.202410416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Indexed: 12/13/2024]
Abstract
As the final stage of disease-related tissue injury and repair, fibrosis is characterized by excessive accumulation of the extracellular matrix. Unrestricted accumulation of stromal cells and matrix during fibrosis impairs the structure and function of organs, ultimately leading to organ failure. The major etiology of fibrosis is an injury caused by genetic heterogeneity, trauma, virus infection, alcohol, mechanical stimuli, and drug. Persistent abnormal activation of "quiescent" fibroblasts that interact with or do not interact with the immune system via complicated signaling cascades, in which parenchymal cells are also triggered, is identified as the main mechanism involved in the initiation and progression of fibrosis. Although the mechanisms of fibrosis are still largely unknown, multiple therapeutic strategies targeting identified molecular mechanisms have greatly attenuated fibrotic lesions in clinical trials. In this review, the organ-specific molecular mechanisms of fibrosis is systematically summarized, including cardiac fibrosis, hepatic fibrosis, renal fibrosis, and pulmonary fibrosis. Some important signaling pathways associated with fibrosis are also introduced. Finally, the current antifibrotic strategies based on therapeutic targets and clinical trials are discussed. A comprehensive interpretation of the current mechanisms and therapeutic strategies targeting fibrosis will provide the fundamental theoretical basis not only for fibrosis but also for the development of antifibrotic therapies.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Ya Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jingwen Wei
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Tianyue Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Banghua Liao
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| |
Collapse
|
2
|
Xiang Y, Huang G, Luo C, Jiang J, Zhang T, Zeng Q, Zhou F, Du D. Investigates the Role of PANoptosis in Idiopathic Pulmonary Fibrosis and Potential Therapeutic Targets. J Inflamm Res 2024; 17:11605-11629. [PMID: 39737099 PMCID: PMC11682943 DOI: 10.2147/jir.s490457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/15/2024] [Indexed: 01/01/2025] Open
Abstract
Purpose Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease. PANoptosis, a unique inflammatory programmed cell death, it manifests as the simultaneous activation of signaling markers for pyroptosis, apoptosis, and necroptosis. However, research on the role of PANoptosis in the development of IPF is currently limited. This study was aimed to explore the role of PANoptosis in IPF. Methods In this study, we first identified PANDEGs using the GEO database. Exploring potential biological functions and immune cell infiltration abundance through GO/KEGG enrichment analysis and Immune infiltration analysis. Through machine learning and experimental validation, we identified four diagnostic genes and four prognostic genes associated with PANoptosis, leading to the development of a diagnostic and prognostic model for IPF. Our single-cell analysis further explored the role of these PANoptosis prognostic genes. Additionally, the L1000FWD application was used to identify small molecule drugs, based on the four PANoptosis prognostic genes, and confirmed their efficacy through molecular docking. Results 104 PANoptosis differentially expressed genes were identified from IPF and normal tissues. Enrichment analysis indicated that these genes were associated with immune-inflammatory response pathway. We developed a diagnostic and prognostic models based on PANoptosis related genes. The diagnostic model included AKT1, PDCD4, PSMA2, and PPP3CB. Conversely, the prognostic model included TNFRSF12A, DAPK2, UACA, and DSP. External dataset validation and qPCR showed the reliability of most of the conclusions. Additionally, potential therapeutic drugs, including Metergoline, Candesartan, and Selumetinib, were identified based on four prognostic genes. Molecular docking shows that these drugs have good binding ability with their targets. Conclusion Importantly, our findings provide scientific evidence for the diagnosis and prognostic biomarkers of IPF patients, as well as small molecule therapeutic drugs.
Collapse
Affiliation(s)
- Yunfei Xiang
- Department of Traumatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 40044, People’s Republic of China
- Department of Traumatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 40014, People’s Republic of China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, 40014, People’s Republic of China
| | - Guangbin Huang
- Department of Traumatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 40014, People’s Republic of China
| | - Can Luo
- Department of Emergency, Affiliated Hospital of Zunyi Medical University Zunyi, Guizhou, 563003, People’s Republic of China
| | - Junyu Jiang
- Department of Traumatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 40044, People’s Republic of China
- Department of Traumatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 40014, People’s Republic of China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, 40014, People’s Republic of China
| | - Tao Zhang
- Department of Traumatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 40044, People’s Republic of China
- Department of Traumatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 40014, People’s Republic of China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, 40014, People’s Republic of China
| | - Qingbo Zeng
- Department of Emergency, Affiliated Hospital of Zunyi Medical University Zunyi, Guizhou, 563003, People’s Republic of China
| | - Fating Zhou
- Department of Traumatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 40044, People’s Republic of China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, 40014, People’s Republic of China
- Department of Emergency Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 40014, People’s Republic of China
| | - Dingyuan Du
- Department of Traumatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 40014, People’s Republic of China
| |
Collapse
|
3
|
Lazar M, Barbu EC, Chitu CE, Buzoianu M, Petre AC, Tiliscan C, Arama SS, Arama V, Ion DA, Olariu MC. Surviving COVID-19 and Battling Fibrosis: A Retrospective Cohort Study Across Three Pandemic Waves. Diagnostics (Basel) 2024; 14:2811. [PMID: 39767173 PMCID: PMC11674708 DOI: 10.3390/diagnostics14242811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES We aimed to characterize the fibrosis following COVID-19 pneumonia, using quantitative analysis, after three months and subsequently, after two years of patients' release from the hospital, and to identify the risk factors for pulmonary fibrosis. METHODS We performed a retrospective, observational cohort study on 420 patients with severe forms of COVID-19. For all patients, we registered demographic, inflammatory and biochemical parameters, complete blood count and D-dimers; all patients underwent three computed tomography scans (at admittance, at 3 months and at 2 years). RESULTS We found fibrosis in 67.9% of patients at the 3-month evaluation and in 42.4% of patients at the 2-year evaluation, registering a significant decrease in the severe and moderate fibrosis cases, with a slight increase in the mild fibrosis cases. The risk of fibrosis was found to be proportional to the values of age, duration of hospital stay, inflammatory markers (ESR, fibrinogen), cytolytic markers (LDH, AST) and D-dimers. The highest correlations with lung fibrosis were registered for interstitial pulmonary involvement (for the 3-month evaluation) and total pulmonary involvement (for the 2-year evaluation). CONCLUSIONS Lung fibrosis represents a significant post-COVID-19 complication found in 42% of patients with severe forms of pneumonia at the 2-year evaluation. A significant overall decrease in the severity of lung fibrosis was registered at the 2-year evaluation compared to the 3-month evaluation. We consider that the amount of interstitial pulmonary involvement represents the optimal parameter to estimate the risk of lung fibrosis following SARS-CoV-2 pneumonia.
Collapse
Affiliation(s)
- Mihai Lazar
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania; (M.L.); (C.E.C.); (C.T.); (S.S.A.); (V.A.); (D.A.I.); (M.C.O.)
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, No. 1, Calistrat Grozovici Street, Sector 2, 021105 Bucharest, Romania;
| | - Ecaterina Constanta Barbu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania; (M.L.); (C.E.C.); (C.T.); (S.S.A.); (V.A.); (D.A.I.); (M.C.O.)
| | - Cristina Emilia Chitu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania; (M.L.); (C.E.C.); (C.T.); (S.S.A.); (V.A.); (D.A.I.); (M.C.O.)
| | - Mihaela Buzoianu
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, No. 1, Calistrat Grozovici Street, Sector 2, 021105 Bucharest, Romania;
| | - Andreea Catalina Petre
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania; (M.L.); (C.E.C.); (C.T.); (S.S.A.); (V.A.); (D.A.I.); (M.C.O.)
| | - Catalin Tiliscan
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania; (M.L.); (C.E.C.); (C.T.); (S.S.A.); (V.A.); (D.A.I.); (M.C.O.)
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, No. 1, Calistrat Grozovici Street, Sector 2, 021105 Bucharest, Romania;
| | - Stefan Sorin Arama
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania; (M.L.); (C.E.C.); (C.T.); (S.S.A.); (V.A.); (D.A.I.); (M.C.O.)
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, No. 1, Calistrat Grozovici Street, Sector 2, 021105 Bucharest, Romania;
| | - Victoria Arama
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania; (M.L.); (C.E.C.); (C.T.); (S.S.A.); (V.A.); (D.A.I.); (M.C.O.)
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, No. 1, Calistrat Grozovici Street, Sector 2, 021105 Bucharest, Romania;
| | - Daniela Adriana Ion
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania; (M.L.); (C.E.C.); (C.T.); (S.S.A.); (V.A.); (D.A.I.); (M.C.O.)
| | - Mihaela Cristina Olariu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania; (M.L.); (C.E.C.); (C.T.); (S.S.A.); (V.A.); (D.A.I.); (M.C.O.)
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, No. 1, Calistrat Grozovici Street, Sector 2, 021105 Bucharest, Romania;
| |
Collapse
|
4
|
Weng J, Cheng Q, Yang J, Jin H, Zhang R, Guan J, Ma Y, Wang L, Chen C, Wang Z. Gal-1-mediated cytochrome p450 activation promotes fibroblast into myofibroblast differentiation in pulmonary fibrosis. Int Immunopharmacol 2024; 141:112920. [PMID: 39137631 DOI: 10.1016/j.intimp.2024.112920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Pulmonary fibrosis (PF) results from excessive extracellular matrix (ECM) deposition and tissue remodeling after activation of fibroblasts into myofibroblasts. Abnormally deposited fibrotic ECM, in turn, promotes fibroblast activation and accelerates loss of lung structure and function. However, the molecular mediators and exact mechanisms by which fibrotic ECM promotes fibroblast activation are unclear. In a bleomycin-induced PF mouse model, we found Galectin-1 (Gal-1) expression was significantly increased in lung tissue, and overexpression of Gal-1 plasmid-transfected fibroblasts were activated into myofibroblasts. Using the decellularization technique to prepare decellularized fibrotic ECM and constructing a 3D in vitro co-culture system with fibroblasts, we found that decellularized fibrotic ECM induced a high expression of Gal-1 and promoted the activation of fibroblasts into myofibroblasts. Therefore, Gal-1 has been identified as a pivotal mediator in PF. Further, we found that decellularized fibrotic ECM delivered mechanical signals to cells through the Gal-1-mediated FAK-Src-P130Cas mechanical signalling pathway, while the CYP450 enzymes (mainly involved in CYP1A1, CYP24A1, CYP3A4, and CYP2D6 isoforms) acted as a chemical signalling pathway to receive mechanical signals transmitted from upstream Gal-1, thereby promoting fibroblast activation. The Gal-1 inhibitor OTX008 or the CYP1A1 inhibitor 7-Hydroxyflavone prevented PF in mice and inhibited the role of fibrotic ECM in promoting fibroblast activation into myofibroblasts, preventing PF. These results reveal novel molecular mechanisms of lung fibrosis formation and identify Gal-1 and its downstream CYP1A1 as potential therapeutic targets for PF disease treatmnts.
Collapse
Affiliation(s)
- Jie Weng
- Department of General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Key Laboratory of Precision General Practice and Health Management, Wenzhou 325000, China; South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou 325014, China
| | - Qianhui Cheng
- Department of Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jingwen Yang
- Department of General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Key Laboratory of Precision General Practice and Health Management, Wenzhou 325000, China; Department of General Practice, Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou 318001, China
| | - Haijuan Jin
- Department of General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Theorem Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, China
| | - Ran Zhang
- Department of Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiangan Guan
- Department of Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuan Ma
- Department of Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Liang Wang
- Department of Public Health, Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA
| | - Chan Chen
- Wenzhou Key Laboratory of Precision General Practice and Health Management, Wenzhou 325000, China; Department of Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Zhiyi Wang
- Department of General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Key Laboratory of Precision General Practice and Health Management, Wenzhou 325000, China; South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou 325014, China; Department of General Practice, Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou 318001, China.
| |
Collapse
|
5
|
Balta C, Herman H, Ciceu A, Lepre CC, Mladin B, Rosu M, Oatis D, Russo M, Peteu VE, Gherghiceanu M, Fenyvesi F, Cotoraci C, Trotta MC, D'Amico M, Hermenean A. Chrysin-loaded calixarene-cyclodextrin ternary drug delivery system inhibits TGF-β and galectin-1 mediated pathways in diabetic liver fibrosis. Biochem Pharmacol 2024; 229:116474. [PMID: 39122218 DOI: 10.1016/j.bcp.2024.116474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/12/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
This study investigated the efficacy of a new chrysin-loaded calixarene-cyclodextrin ternary drug delivery system (DDS) in reversing liver fibrosis in a mouse model of chronic diabetes. The system was designed to enhance the solubility and bioavailability of chrysin (CHR) and calixarene 0118 (OTX008). Adult male CD1 mice received streptozotocin (STZ) injections to induce diabetes. After 20 weeks, they underwent intraperitoneal treatments twice weekly for a two-week period. Histological analyses revealed that long-term hyperglycaemia increased liver fibrosis and altered hepatic ultrastructure, characterized by lipid accumulation, hepatic stellate cell activation, and collagen deposition. The treatment with the chrysin-loaded DDS restored liver structure closely to normal levels, as opposed to the minimal impact observed with sulfobutylated β-cyclodextrin (SBECD) alone. The treatment significantly decreased serum activities of alanine /aspartate transaminases and reduced the gene expression of collagen type I (Col-I). It also modulated the transforming growth factor beta 1 (TGF-β1)/Smad signalling pathway, inhibiting the activation and proliferation of hepatic stellate cells. The treatment led to a downregulation of the TGF-β1 gene and its receptors TGFβR1 and TGFβR2, together with a decrease in Smad 2 and 3 mRNA levels. Conversely, Smad 7 mRNA expression was increased by the DDS. Furthermore, it downregulated galectin-1 (Gal-1) gene and protein levels, which correlated with fibrotic markers. In conclusion, the chrysin-loaded calixarene-cyclodextrin ternary DDS presents a promising therapeutic approach for diabetic liver fibrosis, effectively targeting fibrotic pathways and restoring hepatic function and structure.
Collapse
Affiliation(s)
- Cornel Balta
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 310025 Arad, Romania
| | - Hildegard Herman
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 310025 Arad, Romania
| | - Alina Ciceu
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 310025 Arad, Romania
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; PhD Course in Translational Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Bianca Mladin
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 310025 Arad, Romania
| | - Marcel Rosu
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 310025 Arad, Romania
| | - Daniela Oatis
- Doctoral School of Biology, Faculty of Medicine, Vasile Goldis Western University of Arad, Arad, Romania
| | - Marina Russo
- PhD Course in National Interest in Public Administration and Innovation for Disability and Social Inclusion, Department of Mental, Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; School of Pharmacology and Clinical Toxicology, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | - Mihaela Gherghiceanu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; Department of Cell Biology, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ferenc Fenyvesi
- Department of Molecular Pharmaceutics and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary
| | - Coralia Cotoraci
- Department of Haematology, Faculty of Medicine, Vasile Goldis Western University of Arad, 310025 Arad, Romania
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 310025 Arad, Romania; Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, 310025 Arad, Romania.
| |
Collapse
|
6
|
Li R, Colombo M, Wang G, Rodriguez-Romera A, Benlabiod C, Jooss NJ, O’Sullivan J, Brierley CK, Clark SA, Pérez Sáez JM, Aragón Fernández P, Schoof EM, Porse B, Meng Y, Khan AO, Wen S, Dong P, Zhou W, Sousos N, Murphy L, Clarke M, Olijnik AA, C. Wong Z, Karali CS, Sirinukunwattana K, Ryou H, Norfo R, Cheng Q, Carrelha J, Ren Z, Thongjuea S, Rathinam VA, Krishnan A, Royston D, Rabinovich GA, Mead AJ, Psaila B. A proinflammatory stem cell niche drives myelofibrosis through a targetable galectin-1 axis. Sci Transl Med 2024; 16:eadj7552. [PMID: 39383242 PMCID: PMC7616771 DOI: 10.1126/scitranslmed.adj7552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 07/01/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Myeloproliferative neoplasms are stem cell-driven cancers associated with a large burden of morbidity and mortality. Most patients present with early-stage disease, but a substantial proportion progress to myelofibrosis or secondary leukemia, advanced cancers with a poor prognosis and high symptom burden. Currently, it remains difficult to predict progression, and therapies that reliably prevent or reverse fibrosis are lacking. A major bottleneck to the discovery of disease-modifying therapies has been an incomplete understanding of the interplay between perturbed cellular and molecular states. Several cell types have individually been implicated, but a comprehensive analysis of myelofibrotic bone marrow is lacking. We therefore mapped the cross-talk between bone marrow cell types in myelofibrotic bone marrow. We found that inflammation and fibrosis are orchestrated by a "quartet" of immune and stromal cell lineages, with basophils and mast cells creating a TNF signaling hub, communicating with megakaryocytes, mesenchymal stromal cells, and proinflammatory fibroblasts. We identified the β-galactoside-binding protein galectin-1 as a biomarker of progression to myelofibrosis and poor survival in multiple patient cohorts and as a promising therapeutic target, with reduced myeloproliferation and fibrosis in vitro and in vivo and improved survival after galectin-1 inhibition. In human bone marrow organoids, TNF increased galectin-1 expression, suggesting a feedback loop wherein the proinflammatory myeloproliferative neoplasm clone creates a self-reinforcing niche, fueling progression to advanced disease. This study provides a resource for studying hematopoietic cell-niche interactions, with relevance for cancer-associated inflammation and disorders of tissue fibrosis.
Collapse
Affiliation(s)
- Rong Li
- CAMS Oxford Institute; University of Oxford; Oxford, United Kingdom (UK)
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Michela Colombo
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
- Human Technopole; Milan, Italy
| | - Guanlin Wang
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
- MRC WIMM Centre for Computational Biology, University of Oxford; Oxford, United Kingdom
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology; Fudan University, Shanghai, China
- Qizhi Institute, Shanghai, China
| | - Antonio Rodriguez-Romera
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Camelia Benlabiod
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Natalie J. Jooss
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Jennifer O’Sullivan
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Charlotte K. Brierley
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Sally-Ann Clark
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Juan M. Pérez Sáez
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | - Erwin M. Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark; Denmark
| | - Bo Porse
- The Finsen Laboratory, Copenhagen University Hospital; Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen; Denmark
- Department of Clinical Medicine, University of Copenhagen; Copenhagen, Denmark
| | - Yiran Meng
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Abdullah O. Khan
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences; University of Birmingham; Birmingham, UK
| | - Sean Wen
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Pengwei Dong
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology; Fudan University, Shanghai, China
| | - Wenjiang Zhou
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology; Fudan University, Shanghai, China
| | - Nikolaos Sousos
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Lauren Murphy
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Matthew Clarke
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Aude-Anais Olijnik
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Zoë C. Wong
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Christina Simoglou Karali
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Korsuk Sirinukunwattana
- Oxford Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford; Oxford, UK
| | - Hosuk Ryou
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford; Oxford, UK
| | - Ruggiero Norfo
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Qian Cheng
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Joana Carrelha
- Haematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford; Oxford, UK
| | - Zemin Ren
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Supat Thongjuea
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Vijay A Rathinam
- Department of Immunology, University of Connecticut Health School of Medicine; Farmington, ConnecticutUSA
| | - Anandi Krishnan
- Stanford Cancer Institute, Stanford University School of Medicine; Stanford, California, USA
| | - Daniel Royston
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen; Denmark
- Oxford University Hospitals NHS Trust; Oxford, UK
| | - Gabriel A. Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adam J Mead
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
- Oxford University Hospitals NHS Trust; Oxford, UK
| | - Bethan Psaila
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
- Oxford University Hospitals NHS Trust; Oxford, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Boshart A, Petrovic S, Abovsky M, Pastrello C, Farkona S, Manion K, Neupane S, Allen M, Jurisica I, Konvalinka A. Molecular landscape of kidney allograft tissues data integration portal (NephroDIP): a curated database to improve integration of high-throughput kidney transplant datasets. Front Immunol 2024; 15:1469500. [PMID: 39399491 PMCID: PMC11466753 DOI: 10.3389/fimmu.2024.1469500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Kidney transplantation is the optimal treatment for end-stage kidney disease; however, premature allograft loss remains a serious issue. While many high-throughput omics studies have analyzed patient allograft biospecimens, integration of these datasets is challenging, which represents a considerable barrier to advancing our understanding of the mechanisms of allograft loss. Methods To facilitate integration, we have created a curated database containing all open-access high-throughput datasets from human kidney transplant studies, termed NephroDIP (Nephrology Data Integration Portal). PubMed was searched for high-throughput transcriptomic, proteomic, single nucleotide variant, metabolomic, and epigenomic studies in kidney transplantation, which yielded 9,964 studies. Results From these, 134 studies with available data detailing 260 comparisons and 83,262 molecules were included in NephroDIP v1.0. To illustrate the capabilities of NephroDIP, we have used the database to identify common gene, protein, and microRNA networks that are disrupted in patients with chronic antibody-mediated rejection, the most important cause of late allograft loss. We have also explored the role of an immunomodulatory protein galectin-1 (LGALS1), along with its interactors and transcriptional regulators, in kidney allograft injury. We highlight the pathways enriched among LGALS1 interactors and transcriptional regulators in kidney fibrosis and during immunosuppression. Discussion NephroDIP is an open access data portal that facilitates data visualization and will help provide new insights into existing kidney transplant data through integration of distinct studies and modules (https://ophid.utoronto.ca/NephroDIP).
Collapse
Affiliation(s)
- Alex Boshart
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Stefan Petrovic
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Mark Abovsky
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Sofia Farkona
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Kieran Manion
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Slaghaniya Neupane
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Maya Allen
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON, Canada
| |
Collapse
|
8
|
Jia Q, Yang Y, Yao S, Chen X, Hu Z. Emerging Roles of Galectin-3 in Pulmonary Diseases. Lung 2024; 202:385-403. [PMID: 38850292 DOI: 10.1007/s00408-024-00709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
Galectin-3 is a multifunctional protein that is involved in various physiological and pathological events. Emerging evidence suggests that galectin-3 also plays a critical role in the pathogenesis of pulmonary diseases. Galectin-3 can be produced and secreted by various cell types in the lungs, and the overexpression of galectin-3 has been found in acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary hypertension (PH), pulmonary fibrosis diseases, lung cancer, lung infection, chronic obstructive pulmonary disease (COPD), and asthma. Galectin-3 exerts diverse effects on the inflammatory response, immune cell activation, fibrosis and tissue remodeling, and tumorigenesis in these pulmonary disorders, and genetic and pharmacologic modulation of galectin-3 has therapeutic effects on the treatment of pulmonary illnesses. In this review, we summarize the structure and function of galectin-3 and the underlying mechanisms of galectin-3 in pulmonary disease pathologies; we also discuss preclinical and clinical evidence regarding the therapeutic potential of galectin-3 inhibitors in these pulmonary disorders. Additionally, targeting galectin-3 may be a very promising therapeutic approach for the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Qi Jia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yiyi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Zhiqiang Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| |
Collapse
|
9
|
Perez-Moreno E, Oyanadel C, de la Peña A, Hernández R, Pérez-Molina F, Metz C, González A, Soza A. Galectins in epithelial-mesenchymal transition: roles and mechanisms contributing to tissue repair, fibrosis and cancer metastasis. Biol Res 2024; 57:14. [PMID: 38570874 PMCID: PMC10993482 DOI: 10.1186/s40659-024-00490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Galectins are soluble glycan-binding proteins that interact with a wide range of glycoproteins and glycolipids and modulate a broad spectrum of physiological and pathological processes. The expression and subcellular localization of different galectins vary among tissues and cell types and change during processes of tissue repair, fibrosis and cancer where epithelial cells loss differentiation while acquiring migratory mesenchymal phenotypes. The epithelial-mesenchymal transition (EMT) that occurs in the context of these processes can include modifications of glycosylation patterns of glycolipids and glycoproteins affecting their interactions with galectins. Moreover, overexpression of certain galectins has been involved in the development and different outcomes of EMT. This review focuses on the roles and mechanisms of Galectin-1 (Gal-1), Gal-3, Gal-4, Gal-7 and Gal-8, which have been involved in physiologic and pathogenic EMT contexts.
Collapse
Affiliation(s)
- Elisa Perez-Moreno
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia y Vida, Santiago, Chile
| | - Claudia Oyanadel
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Adely de la Peña
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia y Vida, Santiago, Chile
| | - Ronny Hernández
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Francisca Pérez-Molina
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudia Metz
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia y Vida, Santiago, Chile.
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia y Vida, Santiago, Chile.
| |
Collapse
|
10
|
Cao Z, Ramadan A, Tai A, Zetterberg F, Panjwani N. Anti-Angiogenic and Anti-Scarring Dual Effect of Galectin-3 Inhibition in Mouse Models of Corneal Wound Healing. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:447-458. [PMID: 38159722 DOI: 10.1016/j.ajpath.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/05/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Corneal scarring is the third leading cause of global blindness. Neovascularization of ocular tissues is a major predisposing factor in scar development. Although corneal transplantation is effective in restoring vision, some patients are at high risk for graft rejection due to the presence of blood vessels in the injured cornea. Current treatment options for controlling corneal scarring are limited, and outcomes are typically poor. In this study, topical application of a small-molecule inhibitor of galectin-3, GB1265, in mouse models of corneal wound healing, led to the reduction of the following in injured corneas: i) corneal angiogenesis; ii) corneal fibrosis; iii) infiltration of immune cells; and iv) expression of the proinflammatory cytokine IL-1β. Four independent techniques (RNA sequencing, NanoString, real-time quantitative RT-PCR, and Western blot analysis) determined that decreased corneal opacity in the galectin-3 inhibitor-treated corneas was associated with decreases in the numbers of genes and signaling pathways known to promote fibrosis. These findings allowed for a high level of confidence in the conclusion that galectin-3 inhibition by the small-molecule inhibitor GB1265 has dual anti-angiogenic and anti-scarring effects. Targeting galectin-3 by GB1265 is, thus, attractive for the development of innovative therapies for a myriad of ocular and nonocular diseases characterized by pathologic angiogenesis and fibrosis.
Collapse
Affiliation(s)
- Zhiyi Cao
- New England Eye Center/Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts
| | - Abdulraouf Ramadan
- New England Eye Center/Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts
| | - Albert Tai
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
| | | | - Noorjahan Panjwani
- New England Eye Center/Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts; Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
11
|
Zetterberg FR, Diehl C, Håkansson M, Kahl-Knutson B, Leffler H, Nilsson UJ, Peterson K, Roper JA, Slack RJ. Discovery of Selective and Orally Available Galectin-1 Inhibitors. J Med Chem 2023; 66:16980-16990. [PMID: 38059452 DOI: 10.1021/acs.jmedchem.3c01787] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
A new series of orally available α-d-galactopyranosides with high affinity and specificity toward galectin-1 have been discovered. High affinity and specificity were achieved by changing six-membered aryl-triazolyl substituents in a series of recently published galectin-3-selective α-d-thiogalactosides (e.g., GB1107 Kd galectin-1/3 3.7/0.037 μM) for five-membered heterocycles such as thiazoles. The in vitro pharmacokinetic properties were optimized, resulting in several galectin-1 inhibitors with favorable properties. One compound, GB1490 (Kd galectin-1/3 0.4/2.7 μM), was selected for further characterization toward a panel of galectins showing a selectivity of 6- to 320-fold dependent on galectin. The X-ray structure of GB1490 bound to galectin-1 reveals the compound bound in a single conformation in the carbohydrate binding site. GB1490 was shown to reverse galectin-1-induced apoptosis of Jurkat cells at low μM concentrations. No cell cytotoxicity was observed for GB1490 up to 90 μM in the A549 cells. In pharmacokinetic studies in mice, GB1490 showed high oral bioavailability (F% > 99%).
Collapse
Affiliation(s)
- Fredrik R Zetterberg
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8 A, SE-413 46 Gothenburg, Sweden
| | - Carl Diehl
- SARomics Biostructures AB, Medicon Village, SE-223 81 Lund, Sweden
| | - Maria Håkansson
- SARomics Biostructures AB, Medicon Village, SE-223 81 Lund, Sweden
| | - Barbro Kahl-Knutson
- Department of Laboratory Medicine, Lund University, Box 124, SE-221 00, Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Lund University, Box 124, SE-221 00, Lund, Sweden
| | - Ulf J Nilsson
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8 A, SE-413 46 Gothenburg, Sweden
- Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Kristoffer Peterson
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8 A, SE-413 46 Gothenburg, Sweden
| | - James A Roper
- Stevenage Bioscience Catalyst, Galecto Biotech ApS, Stevenage, Hertfordshire SG1 2FX U.K
| | - Robert J Slack
- Stevenage Bioscience Catalyst, Galecto Biotech ApS, Stevenage, Hertfordshire SG1 2FX U.K
| |
Collapse
|
12
|
Trotta MC, Herman H, Ciceu A, Mladin B, Rosu M, Lepre CC, Russo M, Bácskay I, Fenyvesi F, Marfella R, Hermenean A, Balta C, D’Amico M. Chrysin-based supramolecular cyclodextrin-calixarene drug delivery system: a novel approach for attenuating cardiac fibrosis in chronic diabetes. Front Pharmacol 2023; 14:1332212. [PMID: 38169923 PMCID: PMC10759242 DOI: 10.3389/fphar.2023.1332212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction: Cardiac fibrosis is strongly induced by diabetic conditions. Both chrysin (CHR) and calixarene OTX008, a specific inhibitor of galectin 1 (Gal-1), seem able to reduce transforming growth factor beta (TGF-β)/SMAD pro-fibrotic pathways, but their use is limited to their low solubility. Therefore, we formulated a dual-action supramolecular system, combining CHR with sulfobutylated β-cyclodextrin (SBECD) and OTX008 (SBECD + OTX + CHR). Here we aimed to test the anti-fibrotic effects of SBECD + OTX + CHR in hyperglycemic H9c2 cardiomyocytes and in a mouse model of chronic diabetes. Methods: H9c2 cardiomyocytes were exposed to normal (NG, 5.5 mM) or high glucose (HG, 33 mM) for 48 h, then treated with SBECD + OTX + CHR (containing OTX008 0.75-1.25-2.5 µM) or the single compounds for 6 days. TGF-β/SMAD pathways, Mitogen-Activated Protein Kinases (MAPKs) and Gal-1 levels were assayed by Enzyme-Linked Immunosorbent Assays (ELISAs) or Real-Time Quantitative Reverse Transcription Polymerase chain reaction (qRT-PCR). Adult CD1 male mice received a single intraperitoneal (i.p.) administration of streptozotocin (STZ) at a dosage of 102 mg/kg body weight. From the second week of diabetes, mice received 2 times/week the following i.p. treatments: OTX (5 mg/kg)-SBECD; OTX (5 mg/kg)-SBECD-CHR, SBECD-CHR, SBECD. After a 22-week period of diabetes, mice were euthanized and cardiac tissue used for tissue staining, ELISA, qRT-PCR aimed to analyse TGF-β/SMAD, extracellular matrix (ECM) components and Gal-1. Results: In H9c2 cells exposed to HG, SBECD + OTX + CHR significantly ameliorated the damaged morphology and reduced TGF-β1, its receptors (TGFβR1 and TGFβR2), SMAD2/4, MAPKs and Gal-1. Accordingly, these markers were reduced also in cardiac tissue from chronic diabetes, in which an amelioration of cardiac remodeling and ECM was evident. In both settings, SBECD + OTX + CHR was the most effective treatment compared to the other ones. Conclusion: The CHR-based supramolecular SBECD-calixarene drug delivery system, by enhancing the solubility and the bioavailability of both CHR and calixarene OTX008, and by combining their effects, showed a strong anti-fibrotic activity in rat cardiomyocytes and in cardiac tissue from mice with chronic diabetes. Also an improved cardiac tissue remodeling was evident. Therefore, new drug delivery system, which could be considered as a novel putative therapeutic strategy for the treatment of diabetes-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Bianca Mladin
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Marcel Rosu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Caterina Claudia Lepre
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
- PhD Course in Translational Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marina Russo
- PhD Course in National Interest in Public Administration and Innovation for Disability and Social Inclusion, Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- School of Pharmacology and Clinical Toxicology, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ildikó Bácskay
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Debrecen, Hungary
| | - Ferenc Fenyvesi
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Arad, Romania
| | - Cornel Balta
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
13
|
Targeting galectin-driven regulatory circuits in cancer and fibrosis. Nat Rev Drug Discov 2023; 22:295-316. [PMID: 36759557 DOI: 10.1038/s41573-023-00636-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/11/2023]
Abstract
Galectins are a family of endogenous glycan-binding proteins that have crucial roles in a broad range of physiological and pathological processes. As a group, these proteins use both extracellular and intracellular mechanisms as well as glycan-dependent and independent pathways to reprogramme the fate and function of numerous cell types. Given their multifunctional roles in both tissue fibrosis and cancer, galectins have been identified as potential therapeutic targets for these disorders. Here, we focus on the therapeutic relevance of galectins, particularly galectin 1 (GAL1), GAL3 and GAL9 to tumour progression and fibrotic diseases. We consider an array of galectin-targeted strategies, including small-molecule carbohydrate inhibitors, natural polysaccharides and their derivatives, peptides, peptidomimetics and biological agents (notably, neutralizing monoclonal antibodies and truncated galectins) and discuss their mechanisms of action, selectivity and therapeutic potential in preclinical models of fibrosis and cancer. We also review the results of clinical trials that aim to evaluate the efficacy of galectin inhibitors in patients with idiopathic pulmonary fibrosis, nonalcoholic steatohepatitis and cancer. The rapid pace of glycobiology research, combined with the acute need for drugs to alleviate fibrotic inflammation and overcome resistance to anticancer therapies, will accelerate the translation of anti-galectin therapeutics into clinical practice.
Collapse
|
14
|
Oatis D, Simon-Repolski E, Balta C, Mihu A, Pieretti G, Alfano R, Peluso L, Trotta MC, D’Amico M, Hermenean A. Cellular and Molecular Mechanism of Pulmonary Fibrosis Post-COVID-19: Focus on Galectin-1, -3, -8, -9. Int J Mol Sci 2022; 23:8210. [PMID: 35897786 PMCID: PMC9332679 DOI: 10.3390/ijms23158210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Pulmonary fibrosis is a consequence of the pathological accumulation of extracellular matrix (ECM), which finally leads to lung scarring. Although the pulmonary fibrogenesis is almost known, the last two years of the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its post effects added new particularities which need to be explored. Many questions remain about how pulmonary fibrotic changes occur within the lungs of COVID-19 patients, and whether the changes will persist long term or are capable of resolving. This review brings together existing knowledge on both COVID-19 and pulmonary fibrosis, starting with the main key players in promoting pulmonary fibrosis, such as alveolar and endothelial cells, fibroblasts, lipofibroblasts, and macrophages. Further, we provide an overview of the main molecular mechanisms driving the fibrotic process in connection with Galactin-1, -3, -8, and -9, together with the currently approved and newly proposed clinical therapeutic solutions given for the treatment of fibrosis, based on their inhibition. The work underlines the particular pathways and processes that may be implicated in pulmonary fibrosis pathogenesis post-SARS-CoV-2 viral infection. The recent data suggest that galectin-1, -3, -8, and -9 could become valuable biomarkers for the diagnosis and prognosis of lung fibrosis post-COVID-19 and promising molecular targets for the development of new and original therapeutic tools to treat the disease.
Collapse
Affiliation(s)
- Daniela Oatis
- Department of Infectious Disease, Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania;
- Doctoral School of Biology, Vasile Goldis Western University of Arad, 310414 Arad, Romania
| | - Erika Simon-Repolski
- Doctoral School of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania;
- Department of Pneumology, Arad Clinical Emergency Hospital, 310031 Arad, Romania
| | - Cornel Balta
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310144 Arad, Romania;
| | - Alin Mihu
- Department of Microbiology, Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania;
| | - Gorizio Pieretti
- Department of Plastic Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Roberto Alfano
- Department of Advanced Medical and Surgical Sciences “DAMSS”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Luisa Peluso
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.P.); (M.C.T.); (M.D.)
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.P.); (M.C.T.); (M.D.)
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.P.); (M.C.T.); (M.D.)
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310144 Arad, Romania;
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania
| |
Collapse
|
15
|
Zhang X, Duan XJ, Li LR, Chen YP. lncRNA NEAT1 promotes hypoxia-induced inflammation and fibrosis of alveolar epithelial cells via targeting miR-29a/NFATc3 axis. Kaohsiung J Med Sci 2022; 38:739-748. [PMID: 35708150 DOI: 10.1002/kjm2.12535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 11/09/2022] Open
Abstract
The objective of the present study was to explore the function and mechanism of long noncoding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) in pulmonary fibrosis (PF) progression. HPAEpic cells and A549 cells were exposed to hypoxic conditions to establish an in vitro model. Cell apoptosis was detected by TUNEL assay, and inflammatory cytokine levels were detected by ELISA. Gene and protein expression levels were identified by qRT-PCR and Western blot assays, respectively. The interaction among NEAT1, miR-29a, and NFATc3 was identified by dual-luciferase reporter and RNA pull-down assays. In hypoxia-treated cells, hypoxia markers (HIF-1α and HIF-2α), cytokines (TNF-α, IL-1β, and IL-6) and fibrotic markers (α-SMA, collagen I and collagen III) were significantly enhanced. Consistently, the expression levels of NEAT1 and NFATc3 were increased, but miR-29a was decreased in hypoxia-stimulated cells. Knockdown of NEAT1 significantly decreased cell apoptosis and the releases of TNF-α, IL-1β, and IL-6 as well as reduced the levels of α-SMA, collagen I, and collagen III. Moreover, NEAT1 positively regulated NFATc3 expression by directly targeting miR-29a. Functional experiments showed that the anti-apoptotic, anti-inflammatory, and anti-fibrotic effects mediated by NETA1 silencing were impeded by miR-29a inhibition or NFATc3 overexpression in hypoxia-stimulated HPAEpic and A549 cells. Collectively, these data demonstrated that NEAT1 knockdown inhibited hypoxia-induced cell apoptosis, inflammation, and fibrosis by targeting the miR-29a/NFATc3 axis in PF, suggesting that NEAT1 might be a potential therapeutic target for relieving PF progression.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha, Hunan Province, P. R. China
| | - Xiao-Jun Duan
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha, Hunan Province, P. R. China
| | - Lin-Rui Li
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha, Hunan Province, P. R. China
| | - Yan-Ping Chen
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha, Hunan Province, P. R. China
| |
Collapse
|
16
|
Yu D, Bu M, Yu P, Li Y, Chong Y. Regulation of wound healing and fibrosis by galectins. J Mol Med (Berl) 2022; 100:861-874. [PMID: 35589840 DOI: 10.1007/s00109-022-02207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
Galectins are a family of proteins with at least one carbohydrate-recognition domain. Galectins are present in various tissues and organs and participate in different physiological and pathological molecular reactions in vivo. Wound healing is the basic process of traumatic disease recovery. Wound healing involves three overlapping stages: inflammation, proliferation, and remodelling. Furthermore, a comparison of wound healing with the tumour microenvironment revealed that galectin plays a key role in the wound healing process. The current review describes the role of galectin in inflammation, angiogenesis, re-epithelialisation, and fibrous scar formation and evaluates its potential as a therapeutic drug for wounds.
Collapse
Affiliation(s)
- Dong Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.,Department of Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Ming Bu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.,Department of Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Ping Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yaping Li
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.,Department of Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China. .,Department of Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu, China.
| |
Collapse
|
17
|
New Insights into the Neuromyogenic Spectrum of a Gain of Function Mutation in SPTLC1. Genes (Basel) 2022; 13:genes13050893. [PMID: 35627278 PMCID: PMC9140917 DOI: 10.3390/genes13050893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Serine palmitoyltransferase long chain base subunit 1 (SPTLC1) encodes a serine palmitoyltransferase (SPT) resident in the endoplasmic reticulum (ER). Pathological SPTLC1 variants cause a form of hereditary sensory and autonomic neuropathy (HSAN1A), and have recently been linked to unrestrained sphingoid base synthesis, causing a monogenic form of amyotrophic lateral sclerosis (ALS). It was postulated that the phenotypes associated with dominant variants in SPTLC1 may represent a continuum between neuropathy and ALS in some cases, complicated by additional symptoms such as cognitive impairment. A biochemical explanation for this clinical observation does not exist. By performing proteomic profiling on immortalized lymphoblastoid cells derived from one patient harbouring an alanine to serine amino acid substitution at position 20, we identified a subset of dysregulated proteins playing significant roles in neuronal homeostasis and might have a potential impact on the manifestation of symptoms. Notably, the identified p.(A20S)-SPTLC1 variant is associated with decrease of transcript and protein level. Moreover, we describe associated muscle pathology findings, including signs of mild inflammation accompanied by dysregulation of respective markers on both the protein and transcript levels. By performing coherent anti-Stokes Raman scattering microscopy, presence of protein and lipid aggregates could be excluded.
Collapse
|
18
|
Hermenean A, Oatis D, Herman H, Ciceu A, D’Amico G, Trotta MC. Galectin 1-A Key Player between Tissue Repair and Fibrosis. Int J Mol Sci 2022; 23:ijms23105548. [PMID: 35628357 PMCID: PMC9142121 DOI: 10.3390/ijms23105548] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022] Open
Abstract
Galectins are ten family members of carbohydrate-binding proteins with a high affinity for β galactose-containing oligosaccharides. Galectin-1 (Gal-1) is the first protein discovered in the family, expressed in many sites under normal and pathological conditions. In the first part of the review article, we described recent advances in the Gal-1 modulatory role on wound healing, by focusing on the different phases triggered by Gal-1, such as inflammation, proliferation, tissue repair and re-epithelialization. On the contrary, Gal-1 persistent over-expression enhances angiogenesis and extracellular matrix (ECM) production via PI3K/Akt pathway activation and leads to keloid tissue. Therefore, the targeted Gal-1 modulation should be considered a method of choice to treat wound healing and avoid keloid formation. In the second part of the review article, we discuss studies clarifying the role of Gal-1 in the pathogenesis of proliferative diabetic retinopathy, liver, renal, pancreatic and pulmonary fibrosis. This evidence suggests that Gal-1 may become a biomarker for the diagnosis and prognosis of tissue fibrosis and a promising molecular target for the development of new and original therapeutic tools to treat fibrosis in different chronic diseases.
Collapse
Affiliation(s)
- Anca Hermenean
- Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania;
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (A.C.); (G.D.)
- Correspondence:
| | - Daniela Oatis
- Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania;
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (A.C.); (G.D.)
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (A.C.); (G.D.)
| | - Giovanbattista D’Amico
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (A.C.); (G.D.)
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
19
|
Velázquez-Enríquez JM, Ramírez-Hernández AA, Navarro LMS, Reyes-Avendaño I, González-García K, Jiménez-Martínez C, Castro-Sánchez L, Sánchez-Chino XM, Vásquez-Garzón VR, Baltiérrez-Hoyos R. Proteomic Analysis Reveals Differential Expression Profiles in Idiopathic Pulmonary Fibrosis Cell Lines. Int J Mol Sci 2022; 23:ijms23095032. [PMID: 35563422 PMCID: PMC9105114 DOI: 10.3390/ijms23095032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, irreversible lung disorder of unknown cause. This disease is characterized by profibrotic activation of resident pulmonary fibroblasts resulting in aberrant deposition of extracellular matrix (ECM) proteins. However, although much is known about the pathophysiology of IPF, the cellular and molecular processes that occur and allow aberrant fibroblast activation remain an unmet need. To explore the differentially expressed proteins (DEPs) associated with aberrant activation of these fibroblasts, we used the IPF lung fibroblast cell lines LL97A (IPF-1) and LL29 (IPF-2), compared to the normal lung fibroblast cell line CCD19Lu (NL-1). Protein samples were quantified and identified using a label-free quantitative proteomic analysis approach by liquid chromatography-tandem mass spectrometry (LC-MS/MS). DEPs were identified after pairwise comparison, including all experimental groups. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein–Protein Interaction (PPI) network construction were used to interpret the proteomic data. Eighty proteins expressed exclusively in the IPF-1 and IPF-2 clusters were identified. In addition, 19 proteins were identified up-regulated in IPF-1 and 10 in IPF-2; 10 proteins were down-regulated in IPF-1 and 2 in IPF-2 when compared to the NL-1 proteome. Using the search tool for retrieval of interacting genes/proteins (STRING) software, a PPI network was constructed between the DEPs and the 80 proteins expressed exclusively in the IPF-2 and IPF-1 clusters, containing 115 nodes and 136 edges. The 10 hub proteins present in the IPP network were identified using the CytoHubba plugin of the Cytoscape software. GO and KEGG pathway analyses showed that the hub proteins were mainly related to cell adhesion, integrin binding, and hematopoietic cell lineage. Our results provide relevant information on DEPs present in IPF lung fibroblast cell lines when compared to the normal lung fibroblast cell line that could play a key role during IPF pathogenesis.
Collapse
Affiliation(s)
- Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico; (J.M.V.-E.); (A.A.R.-H.); (I.R.-A.); (K.G.-G.)
| | - Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico; (J.M.V.-E.); (A.A.R.-H.); (I.R.-A.); (K.G.-G.)
| | | | - Itayetzi Reyes-Avendaño
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico; (J.M.V.-E.); (A.A.R.-H.); (I.R.-A.); (K.G.-G.)
| | - Karina González-García
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico; (J.M.V.-E.); (A.A.R.-H.); (I.R.-A.); (K.G.-G.)
| | - Cristian Jiménez-Martínez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico;
| | - Luis Castro-Sánchez
- Conacyt-Centro Universitario de Investigaciones Biomédicas “CUIB”, Universidad de Colima, Colima 28045, Mexico;
| | - Xariss Miryam Sánchez-Chino
- Catedra-Conacyt, Departamento de Salud El Colegio de La Frontera Sur, Unidad Villahermosa, Tabasco 86280, Mexico;
| | | | - Rafael Baltiérrez-Hoyos
- Conacyt-Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico;
- Correspondence:
| |
Collapse
|
20
|
Szalontai K, Gémes N, Furák J, Varga T, Neuperger P, Balog JÁ, Puskás LG, Szebeni GJ. Chronic Obstructive Pulmonary Disease: Epidemiology, Biomarkers, and Paving the Way to Lung Cancer. J Clin Med 2021; 10:jcm10132889. [PMID: 34209651 PMCID: PMC8268950 DOI: 10.3390/jcm10132889] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), the frequently fatal pathology of the respiratory tract, accounts for half a billion cases globally. COPD manifests via chronic inflammatory response to irritants, frequently to tobacco smoke. The progression of COPD from early onset to advanced disease leads to the loss of the alveolar wall, pulmonary hypertension, and fibrosis of the respiratory epithelium. Here, we focus on the epidemiology, progression, and biomarkers of COPD with a particular connection to lung cancer. Dissecting the cellular and molecular players in the progression of the disease, we aim to shed light on the role of smoking, which is responsible for the disease, or at least for the more severe symptoms and worse patient outcomes. We summarize the inflammatory conditions, as well as the role of EMT and fibroblasts in establishing a cancer-prone microenvironment, i.e., the soil for ‘COPD-derived’ lung cancer. We highlight that the major health problem of COPD can be alleviated via smoking cessation, early diagnosis, and abandonment of the usage of biomass fuels on a global basis.
Collapse
Affiliation(s)
- Klára Szalontai
- Csongrád County Hospital of Chest Diseases, Alkotmány u. 36., H6772 Deszk, Hungary;
| | - Nikolett Gémes
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
- PhD School in Biology, University of Szeged, H6726 Szeged, Hungary
| | - József Furák
- Department of Surgery, University of Szeged, Semmelweis u. 8., H6725 Szeged, Hungary;
| | - Tünde Varga
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
| | - Patrícia Neuperger
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
- PhD School in Biology, University of Szeged, H6726 Szeged, Hungary
| | - József Á. Balog
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
- PhD School in Biology, University of Szeged, H6726 Szeged, Hungary
| | - László G. Puskás
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
- Avicor Ltd. Alsó Kikötő sor 11/D, H6726 Szeged, Hungary
| | - Gábor J. Szebeni
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary
- CS-Smartlab Devices Ltd., Ady E. u. 14., H7761 Kozármisleny, Hungary
- Correspondence:
| |
Collapse
|
21
|
Abstract
Background Galectins are proteins that bind β-galactosides such as N-acetyllactosamine present in N-linked and O-linked glycoproteins and that seem to be implicated in inflammatory and immune responses as well as fibrotic mechanisms. This preliminary study investigated serum galectins as clinical biomarkers in lung transplant patients with chronic lung allograft dysfunction (CLAD), phenotype bronchiolitis obliterans syndrome (BOS). Materials and Methods Nineteen lung transplant patients [median age (IQR), 55 (45–62) years; 53% males] were enrolled in the study. Peripheral blood concentrations of galectins-1, 3 and 9 were determined with commercial ELISA kits. Results Galectin-1 concentrations were higher in BOS than in stable LTX patients (p = 0.0394). In logistic regression analysis, testing BOS group as dependent variable with Gal-1 and 3 as independent variables, area under the receiver operating characteristics (AUROC) curve was 98.9% (NPV 90% and PPV 88.9%, p = 0.0003). With the stable LTX group as dependent variable and Gal-1, 3 and 9 as independent variables, AUROC was 92.6% (NPV 100% and PPV 90%, p = 0.0023). In stable patients were observed an inverse correlation of Gal-3 with DLCO% and KCO%, and between Gal-9 and KCO%. Conclusion Galectins-1, 3 and 9 are possible clinical biomarkers in lung transplant patients with diagnostic and prognostic meaning. These molecules may be directly implicated in the pathological mechanisms of BOS. The hypothesis that they could be new therapeutic targets in BOS patients is intriguing and also worth exploring.
Collapse
|
22
|
Tanguy J, Goirand F, Bouchard A, Frenay J, Moreau M, Mothes C, Oudot A, Helbling A, Guillemin M, Bonniaud P, Cochet A, Collin B, Bellaye PS. [ 18F]FMISO PET/CT imaging of hypoxia as a non-invasive biomarker of disease progression and therapy efficacy in a preclinical model of pulmonary fibrosis: comparison with the [ 18F]FDG PET/CT approach. Eur J Nucl Med Mol Imaging 2021; 48:3058-3074. [PMID: 33580818 PMCID: PMC8426306 DOI: 10.1007/s00259-021-05209-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/17/2021] [Indexed: 12/23/2022]
Abstract
Purpose Idiopathic pulmonary fibrosis (IPF) is a progressive disease with poor outcome and limited therapeutic options. Imaging of IPF is limited to high-resolution computed tomography (HRCT) which is often not sufficient for a definite diagnosis and has a limited impact on therapeutic decision and patient management. Hypoxia of the lung is a significant feature of IPF but its role on disease progression remains elusive. Thus, the aim of our study was to evaluate hypoxia imaging with [18F]FMISO as a predictive biomarker of disease progression and therapy efficacy in preclinical models of lung fibrosis in comparison with [18F]FDG. Methods Eight-week-old C57/BL6 mice received an intratracheal administration of bleomycin (BLM) at day (D) 0 to initiate lung fibrosis. Mice received pirfenidone (300 mg/kg) or nintedanib (60 mg/kg) by daily gavage from D9 to D23. Mice underwent successive PET/CT imaging at several stages of the disease (baseline, D8/D9, D15/D16, D22/D23) with [18F]FDG and [18F]FMISO. Histological determination of the lung expression of HIF-1α and GLUT-1 was performed at D23. Results We demonstrate that mean lung density on CT as well as [18F]FDG and [18F]FMISO uptakes are upregulated in established lung fibrosis (1.4-, 2.6- and 3.2-fold increase respectively). At early stages, lung areas with [18F]FMISO uptake are still appearing normal on CT scans and correspond to areas which will deteriorate towards fibrotic lesions at later timepoints. Nintedanib and pirfenidone dramatically and rapidly decreased mean lung density on CT as well as [18F]FDG and [18F]FMISO lung uptakes (pirfenidone: 1.2-, 2.9- and 2.6-fold decrease; nintedanib: 1.2-, 2.3- and 2.5-fold decrease respectively). Early [18F]FMISO lung uptake was correlated with aggressive disease progression and better nintedanib efficacy. Conclusion [18F]FMISO PET imaging is a promising tool to early detect and monitor lung fibrosis progression and therapy efficacy. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05209-2.
Collapse
Affiliation(s)
- Julie Tanguy
- INSERM U1231, Equipe HSP-pathies, 7 Boulevard Jeanne d'Arc, Dijon, France.,Centre de Référence Constitutif des Maladies Pulmonaires Rares de l'Adultes de Dijon, réseau OrphaLung, Filère RespiFil. Centre Hospitalier Universitaire de Bourgogne, Dijon, France
| | - Françoise Goirand
- INSERM U1231, Equipe HSP-pathies, 7 Boulevard Jeanne d'Arc, Dijon, France.,Centre de Référence Constitutif des Maladies Pulmonaires Rares de l'Adultes de Dijon, réseau OrphaLung, Filère RespiFil. Centre Hospitalier Universitaire de Bourgogne, Dijon, France
| | - Alexanne Bouchard
- Centre George François Leclerc, Service de médecine nucléaire, Plateforme d'imagerie et de radiothérapie précliniques, 1 rue du professeur Marion, Dijon, France
| | - Jame Frenay
- Centre George François Leclerc, Service de médecine nucléaire, Plateforme d'imagerie et de radiothérapie précliniques, 1 rue du professeur Marion, Dijon, France
| | - Mathieu Moreau
- Institut de Chimie Moléculaire de l'Université́ de Bourgogne, UMR CNRS 6302, Université de Bourgogne Franche-Comté, 21000, Dijon, France
| | | | - Alexandra Oudot
- Centre George François Leclerc, Service de médecine nucléaire, Plateforme d'imagerie et de radiothérapie précliniques, 1 rue du professeur Marion, Dijon, France
| | - Alex Helbling
- Centre George François Leclerc, Service de médecine nucléaire, Plateforme d'imagerie et de radiothérapie précliniques, 1 rue du professeur Marion, Dijon, France
| | - Mélanie Guillemin
- Centre George François Leclerc, Service de médecine nucléaire, Plateforme d'imagerie et de radiothérapie précliniques, 1 rue du professeur Marion, Dijon, France
| | - Philippe Bonniaud
- INSERM U1231, Equipe HSP-pathies, 7 Boulevard Jeanne d'Arc, Dijon, France.,Centre de Référence Constitutif des Maladies Pulmonaires Rares de l'Adultes de Dijon, réseau OrphaLung, Filère RespiFil. Centre Hospitalier Universitaire de Bourgogne, Dijon, France
| | - Alexandre Cochet
- Centre George François Leclerc, Service de médecine nucléaire, Plateforme d'imagerie et de radiothérapie précliniques, 1 rue du professeur Marion, Dijon, France.,ImVIA, EA 7535, Université de Bourgogne, Dijon, France
| | - Bertrand Collin
- INSERM U1231, Equipe HSP-pathies, 7 Boulevard Jeanne d'Arc, Dijon, France.,Institut de Chimie Moléculaire de l'Université́ de Bourgogne, UMR CNRS 6302, Université de Bourgogne Franche-Comté, 21000, Dijon, France
| | - Pierre-Simon Bellaye
- Centre de Référence Constitutif des Maladies Pulmonaires Rares de l'Adultes de Dijon, réseau OrphaLung, Filère RespiFil. Centre Hospitalier Universitaire de Bourgogne, Dijon, France. .,Centre George François Leclerc, Service de médecine nucléaire, Plateforme d'imagerie et de radiothérapie précliniques, 1 rue du professeur Marion, Dijon, France.
| |
Collapse
|
23
|
Peña-Oyarzún D, Reyes M, Hernández-Cáceres MP, Kretschmar C, Morselli E, Ramirez-Sarmiento CA, Lavandero S, Torres VA, Criollo A. Role of Autophagy in the Microenvironment of Oral Squamous Cell Carcinoma. Front Oncol 2020; 10:602661. [PMID: 33363032 PMCID: PMC7756113 DOI: 10.3389/fonc.2020.602661] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Oral squamous cell carcinoma, the most common type of oral cancer, affects more than 275,000 people per year worldwide. Oral squamous cell carcinoma is very aggressive, as most patients die after 3 to 5 years post-diagnosis. The initiation and progression of oral squamous cell carcinoma are multifactorial: smoking, alcohol consumption, and human papilloma virus infection are among the causes that promote its development. Although oral squamous cell carcinoma involves abnormal growth and migration of oral epithelial cells, other cell types such as fibroblasts and immune cells form the carcinoma niche. An underlying inflammatory state within the oral tissue promotes differential stress-related responses that favor oral squamous cell carcinoma. Autophagy is an intracellular degradation process that allows cancer cells to survive under stress conditions. Autophagy degrades cellular components by sequestering them in vesicles called autophagosomes, which ultimately fuse with lysosomes. Although several autophagy markers have been associated with oral squamous cell carcinoma, it remains unclear whether up- or down-regulation of autophagy favors its progression. Autophagy levels during oral squamous cell carcinoma are both timing- and cell-specific. Here we discuss how autophagy is required to establish a new cellular microenvironment in oral squamous cell carcinoma and how autophagy drives the phenotypic change of oral squamous cell carcinoma cells by promoting crosstalk between carcinoma cells, fibroblasts, and immune cells.
Collapse
Affiliation(s)
- Daniel Peña-Oyarzún
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas & Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Facultad de Odontología, Instituto de Investigación en Ciencias Odontológicas, Universidad de Chile, Santiago, Chile.,Autophagy Research Center, Universidad de Chile, Santiago, Chile.,Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Montserrat Reyes
- Departamento de Patología y Medicina Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - María Paz Hernández-Cáceres
- Autophagy Research Center, Universidad de Chile, Santiago, Chile.,Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Kretschmar
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas & Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Facultad de Odontología, Instituto de Investigación en Ciencias Odontológicas, Universidad de Chile, Santiago, Chile.,Autophagy Research Center, Universidad de Chile, Santiago, Chile
| | - Eugenia Morselli
- Autophagy Research Center, Universidad de Chile, Santiago, Chile.,Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cesar A Ramirez-Sarmiento
- Facultades de Ingenieria, Medicina y Ciencias Biológicas, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas & Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Vicente A Torres
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas & Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Facultad de Odontología, Instituto de Investigación en Ciencias Odontológicas, Universidad de Chile, Santiago, Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas & Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Facultad de Odontología, Instituto de Investigación en Ciencias Odontológicas, Universidad de Chile, Santiago, Chile.,Autophagy Research Center, Universidad de Chile, Santiago, Chile
| |
Collapse
|
24
|
d’Alessandro M, De Vita E, Bergantini L, Mazzei MA, di Valvasone S, Bonizzoli M, Peris A, Sestini P, Bargagli E, Bennett D. Galactin-1, 3 and 9: Potential biomarkers in idiopathic pulmonary fibrosis and other interstitial lung diseases. Respir Physiol Neurobiol 2020; 282:103546. [DOI: 10.1016/j.resp.2020.103546] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022]
|
25
|
Kirkpatrick LD, Shupp JW, Smith RD, Alkhalil A, Moffatt LT, Carney BC. Galectin-1 production is elevated in hypertrophic scar. Wound Repair Regen 2020; 29:117-128. [PMID: 33073427 DOI: 10.1111/wrr.12869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/23/2022]
Abstract
Upon healing, burn wounds often leave hypertrophic scars (HTSs) marked by excess collagen deposition, dermal and epidermal thickening, hypervascularity, and an increased density of fibroblasts. The Galectins, a family of lectins with a conserved carbohydrate recognition domain, function intracellularly and extracellularly to mediate a multitude of biological processes including inflammatory responses, angiogenesis, cell migration and differentiation, and cell-ECM adhesion. Galectin-1 (Gal-1) has been associated with several fibrotic diseases and can induce keratinocyte and fibroblast proliferation, migration, and differentiation into fibroproliferative myofibroblasts. In this study, Gal-1 expression was assessed in human and porcine HTS. In a microarray, galectins 1, 4, and 12 were upregulated in pig HTS compared to normal skin (fold change = +3.58, +6.11, and +3.03, FDR <0.01). Confirmatory qRT-PCR demonstrated significant upregulation of Galectin-1 (LGALS1) transcription in HTS in both human and porcine tissues (fold change = +7.78 and +7.90, P <.05). In pig HTS, this upregulation was maintained throughout scar development and remodeling. Immunofluorescent staining of Gal-1 in human and porcine HTS showed significantly increased fluorescence (202.5 ± 58.2 vs 35.2 ± 21.0, P <.05 and 276.1 ± 12.7 vs 69.7 ± 25.9, P <.01) compared to normal skin and co-localization with smooth muscle actin-expressing myofibroblasts. A strong positive correlation (R = .948) was observed between LGALS1 and Collagen type 1 alpha 1 mRNA expression. Gal-1 is overexpressed in HTS at the mRNA and protein levels and may have a role in the development of scar phenotypes due to fibroblast over-proliferation, collagen secretion, and dermal thickening. The role of galectins shows promise for future study and may lead to the development of a pharmacotherapy for treatment of HTS.
Collapse
Affiliation(s)
- Liam D Kirkpatrick
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA
| | - Jeffrey W Shupp
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, District of Columbia, USA.,The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, District of Columbia, USA.,Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Robert D Smith
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA
| | - Abdulnaser Alkhalil
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA
| | - Lauren T Moffatt
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Bonnie C Carney
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
26
|
Khawaja AA, Chong DLW, Sahota J, Mikolasch TA, Pericleous C, Ripoll VM, Booth HL, Khan S, Rodriguez-Justo M, Giles IP, Porter JC. Identification of a Novel HIF-1α-α Mβ 2 Integrin-NET Axis in Fibrotic Interstitial Lung Disease. Front Immunol 2020; 11:2190. [PMID: 33178179 PMCID: PMC7594517 DOI: 10.3389/fimmu.2020.02190] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
Neutrophilic inflammation correlates with mortality in fibrotic interstitial lung disease (ILD) particularly in the most severe form, idiopathic pulmonary fibrosis (IPF), although the underlying mechanisms remain unclear. Neutrophil function is modulated by numerous factors, including integrin activation, inflammatory cytokines and hypoxia. Hypoxia has an important role in inflammation and may also contribute to pulmonary disease. We aimed to determine how neutrophil activation occurs in ILD and the relative importance of hypoxia. Using lung biopsies and bronchoalveolar lavage (BAL) fluid from ILD patients we investigated the extent of hypoxia and neutrophil activation in ILD lungs. Then we used ex vivo neutrophils isolated from healthy volunteers and BAL from patients with ILD and non-ILD controls to further investigate aberrant neutrophil activation in hypoxia and ILD. We demonstrate for the first time using intracellular staining, HIF-1α stabilization in neutrophils and endothelial cells in ILD lung biopsies. Hypoxia enhanced both spontaneous (+1.31-fold, p < 0.05) and phorbol 12-myristate 13-acetate (PMA)-induced (+1.65-fold, p < 0.001) neutrophil extracellular trap (NET) release, neutrophil adhesion (+8.8-fold, <0.05), and trans-endothelial migration (+1.9-fold, p < 0.05). Hypoxia also increased neutrophil expression of the αM (+3.1-fold, p < 0.001) and αX (+1.6-fold, p < 0.01) integrin subunits. Interestingly, NET formation was induced by αMβ2 integrin activation and prevented by cation chelation. Finally, we observed NET-like structures in IPF lung sections and in the BAL from ILD patients, and quantification showed increased cell-free DNA content (+5.5-fold, p < 0.01) and MPO-citrullinated histone H3 complexes (+21.9-fold, p < 0.01) in BAL from ILD patients compared to non-ILD controls. In conclusion, HIF-1α upregulation may augment neutrophil recruitment and activation within the lung interstitium through activation of β2 integrins. Our results identify a novel HIF-1α- αMβ2 integrin axis in NET formation for future exploration in therapeutic approaches to fibrotic ILD.
Collapse
Affiliation(s)
- Akif A. Khawaja
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
- Centre for Rheumatology, University College London, London, United Kingdom
| | - Deborah L. W. Chong
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | - Jagdeep Sahota
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | - Theresia A. Mikolasch
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
- Interstitial Lung Disease Service, University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Charis Pericleous
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Vera M. Ripoll
- Centre for Rheumatology, University College London, London, United Kingdom
| | - Helen L. Booth
- Interstitial Lung Disease Service, University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Saif Khan
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Manuel Rodriguez-Justo
- Department of Histopathology, University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Ian P. Giles
- Centre for Rheumatology, University College London, London, United Kingdom
| | - Joanna C. Porter
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
- Interstitial Lung Disease Service, University College London Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
27
|
Yu DH, Ruan XL, Huang JY, Liu XP, Ma HL, Chen C, Hu WD, Li S. Analysis of the Interaction Network of Hub miRNAs-Hub Genes, Being Involved in Idiopathic Pulmonary Fibers and Its Emerging Role in Non-small Cell Lung Cancer. Front Genet 2020; 11:302. [PMID: 32300359 PMCID: PMC7142269 DOI: 10.3389/fgene.2020.00302] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrotic interstitial lung disease with lesions confined to the lungs. To identify meaningful microRNA (miRNA) and gene modules related to the IPF progression, GSE32537 (RNA-sequencing data) and GSE32538 (miRNA-sequencing data) were downloaded and processed, and then weighted gene co-expression network analysis (WGCNA) was applied to construct gene co-expression networks and miRNA co-expression networks. GSE10667, GSE70866, and GSE27430 were used to make a reasonable validation for the results and evaluate the clinical significance of the genes and the miRNAs. Six hub genes (COL3A1, COL1A2, OGN, COL15A1, ASPN, and MXRA5) and seven hub miRNAs (hsa-let-7b-5p, hsa-miR-26a-5p, hsa-miR-25-3p, hsa-miR-29c-3p, hsa-let-7c-5p, hsa-miR-29b-3p, and hsa-miR-26b-5p) were clarified and validated. Meanwhile, iteration network of hub miRNAs-hub genes was constructed, and the emerging role of the network being involved in non-small cell lung cancer (NSCLC) was also analyzed by several webtools. The expression levels of hub genes were different between normal lung tissues and NSCLC tissues. Six genes (COL3A1, COL1A2, OGN, COL15A1, ASPN, and MXRA5) and three miRNAs (hsa-miR-29c-3p, hsa-let-7c-5p, and hsa-miR-29b-3p) were related to the survival time of lung adenocarcinoma (LUAD). The interaction network of hub miRNAs-hub genes might provide common mechanisms involving in IPF and NSCLC. More importantly, useful clues were provided for clinical treatment of both diseases based on novel molecular advances.
Collapse
Affiliation(s)
- Dong Hu Yu
- Department of Biological Repositories, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiao-Lan Ruan
- Department of Hematology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Jing-Yu Huang
- Department of Thoracic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiao-Ping Liu
- Department of Biological Repositories, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hao-Li Ma
- Department of Biological Repositories, Zhongnan Hospital, Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center, Wuhan University, Wuhan, China
| | - Chen Chen
- Department of Biological Repositories, Zhongnan Hospital, Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center, Wuhan University, Wuhan, China
| | - Wei-Dong Hu
- Department of Thoracic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Sheng Li
- Department of Biological Repositories, Zhongnan Hospital, Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center, Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Moreira A, Winter C, Joy J, Winter L, Jones M, Noronha M, Porter M, Quim K, Corral A, Alayli Y, Seno T, Mustafa S, Hornsby P, Ahuja S. Intranasal delivery of human umbilical cord Wharton's jelly mesenchymal stromal cells restores lung alveolarization and vascularization in experimental bronchopulmonary dysplasia. Stem Cells Transl Med 2020; 9:221-234. [PMID: 31774626 PMCID: PMC6988765 DOI: 10.1002/sctm.18-0273] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a devastating lung condition that develops in premature newborns exposed to prolonged mechanical ventilation and supplemental oxygen. Significant morbidity and mortality are associated with this costly disease and effective therapies are limited. Mesenchymal stem/stromal cells (MSCs) are multipotent cells that can repair injured tissue by secreting paracrine factors known to restore the function and integrity of injured lung epithelium and endothelium. Most preclinical studies showing therapeutic efficacy of MSCs for BPD are administered either intratracheally or intravenously. The purpose of this study was to examine the feasibility and effectiveness of human cord tissue-derived MSC administration given via the intranasal route. Human umbilical cord tissue MSCs were isolated, characterized, and given intranasally (500 000 cells per 20 μL) to a hyperoxia-induced rat model of BPD. Lung alveolarization, vascularization, and pulmonary vascular remodeling were restored in animals receiving MSC treatment. Gene and protein analysis suggest the beneficial effects of MSCs were attributed, in part, to a concerted effort targeting angiogenesis, immunomodulation, wound healing, and cell survival. These findings are clinically significant, as neonates who develop BPD have altered alveolar development, decreased pulmonary vascularization and chronic inflammation, all resulting in impaired tissue healing. Our study is the first to report the intranasal delivery of umbilical cord Wharton's jelly MSCs in experimental BPD is feasible, noninvasive, and an effective route that may bear clinical applicability.
Collapse
Affiliation(s)
- Alvaro Moreira
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Caitlyn Winter
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Jooby Joy
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Lauryn Winter
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Maxwell Jones
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Michelle Noronha
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Melissa Porter
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Kayla Quim
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Alexis Corral
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Yasmeen Alayli
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Tyrelle Seno
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Shamimunisa Mustafa
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Peter Hornsby
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Sunil Ahuja
- Microbiology and ImmunologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| |
Collapse
|
29
|
Elevated level of Galectin-1 in bronchoalveolar lavage of patients with idiopathic pulmonary fibrosis. Respir Physiol Neurobiol 2020; 273:103323. [DOI: 10.1016/j.resp.2019.103323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
|
30
|
Sun Y, Sun W, Yang N, Liu J, Tang H, Li F, Sun X, Gao L, Pei F, Liu J, Lin H, Taihua W. The effect of core fucosylation-mediated regulation of multiple signaling pathways on lung pericyte activation and fibrosis. Int J Biochem Cell Biol 2019; 117:105639. [PMID: 31669139 DOI: 10.1016/j.biocel.2019.105639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
The main event in the progression of pulmonary fibrosis is the appearance of myofibroblasts. Recent evidence supports pericytes as a major source of myofibroblasts. TGFβ/Smad2/3 and PDGF/Erk signaling pathways are important for regulating pericyte activation. Previous studies have demonstrated that PDGFβR and TGFβR are modified by core fucosylation (CF) catalyzed by α-1,6-fucosyltransferase (FUT8). The aim of this study was to compare the effect of inhibiting CF versus the PDGFβR and TGFβR signaling pathways on pericyte activation and lung fibrosis. FUT8shRNA was used to knock down FUT8-mediated CF both in vivo and in isolated lung pericytes. The small molecule receptor antagonists, ST1571 (imatinib) and LY2109761, were used to block the PDGFβ/pErk and TGFβ/pSmad2/3 signaling pathways, respectively. Pericyte detachment and myofibroblastic transformation were assessed by immunofluorescence and Western blot. Histochemical and immunohistochemical staining were used to evaluate the effect of the intervention on pulmonary fibrosis. Our findings demonstrate that FUT8shRNA significantly blocked pericyte activation and the progression of pulmonary fibrosis, achieving intervention effects superior to the small molecule inhibitors. The PDGFβ and TGFβ pathways were simultaneously affected by the CF blockade. FUT8 expression was upregulated with the transformation of pericytes into myofibroblasts, and silencing FUT8 expression inhibited this transformation. In addition, there is a causal relationship between CF modification catalyzed by FUT8 and pulmonary fibrosis. Our findings suggest that FUT8 may be a novel therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Ying Sun
- Departments of Respiratory Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, PR China
| | - Wei Sun
- Post-doctoral research station, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, PR China
| | - Ning Yang
- Departments of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China
| | - Jia Liu
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China
| | - HaiYing Tang
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China
| | - Fengzhou Li
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China
| | - Xiuna Sun
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China
| | - Lili Gao
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China
| | - Fuyang Pei
- Departments of Respiratory Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, PR China
| | - Jia Liu
- Departments of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China
| | - Hongli Lin
- Departments of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China.
| | - Wu Taihua
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China.
| |
Collapse
|
31
|
Ballester B, Milara J, Cortijo J. Mucins as a New Frontier in Pulmonary Fibrosis. J Clin Med 2019; 8:jcm8091447. [PMID: 31514468 PMCID: PMC6780288 DOI: 10.3390/jcm8091447] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial pulmonary disease with a median survival of 3–5 years after diagnosis. Recent evidence identifies mucins as key effectors in cell growth and tissue remodeling processes compatible with the processes observed in IPF. Mucins are classified in two groups depending on whether they are secreted (secreted mucins) or tethered to cell membranes (transmembrane mucins). Secreted mucins (MUC2, MUC5AC, MUC5B, MUC6-8 and MUC19) are released to the extracellular medium and recent evidence has shown that a promoter polymorphism in the secreted mucin MUC5B is associated with IPF risk. Otherwise, transmembrane mucins (MUC1, MUC3, MUC4, MUC12-17 and MUC20) have a receptor-like structure, sensing the external environment and activating intracellular signal transduction pathways essential for mucosal maintenance and damage repair. In this context, the extracellular domain can be released to the external environment by metalloproteinase action, increased in IPF, thus activating fibrotic processes. For example, several studies have reported increased serum extracellular secreted KL6/MUC1 during IPF acute exacerbation. Moreover, MUC1 and MUC4 overexpression in the main IPF cells has been observed. In this review we summarize the current knowledge of mucins as promising druggable targets for IPF.
Collapse
Affiliation(s)
- Beatriz Ballester
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain.
- CIBERES, Health Institute Carlos III, 46010 Valencia, Spain.
| | - Javier Milara
- CIBERES, Health Institute Carlos III, 46010 Valencia, Spain.
- Institute of Health Research-INCLIVA, 46010 Valencia, Spain.
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBERES, Health Institute Carlos III, 46010 Valencia, Spain
- Research and teaching Unit, University General Hospital Consortium of Valencia, 46014 Valencia, Spain
| |
Collapse
|
32
|
Organ crosstalk: the potent roles of inflammation and fibrotic changes in the course of organ interactions. Inflamm Res 2019; 68:825-839. [PMID: 31327029 DOI: 10.1007/s00011-019-01271-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Organ crosstalk can be defined as the complex and mutual biological communication between distant organs mediated by signaling factors. Normally, crosstalk helps to coordinate and maintain homeostasis, but sudden or chronic dysfunction in any organ causes dysregulation in another organ. Many signal molecules, including cytokines and growth factors, are involved in the metabolic dysregulation, and excessive or inappropriate release of these molecules leads to organ dysfunction or disease (e.g., obesity, type 2 diabetes). AIM AND METHOD The aim of this review is to reveal the impact of organ crosstalk on the pathogenesis of diseases associated with organ interactions and the role of inflammatory and fibrotic changes in the organ dysfunction. After searching in MEDLINE, PubMed and Google Scholar databases using 'organ crosstalk' as a keyword, studies related to organ crosstalk and organ interaction were compiled and examined. CONCLUSION The organ crosstalk and the functional integration of organ systems are exceedingly complex processes. Organ crosstalk contributes to metabolic homeostasis and affects the inflammatory response, related pathways and fibrotic changes. As in the case of interactions between adipose tissue and intestine, stimulation of inflammatory mechanisms plays an active role in the development of diseases including insulin resistance, obesity, type 2 diabetes and hepatic steatosis. The increased level of knowledge about the 'crosstalk' between any organ and distant organs will facilitate the early diagnosis of the disease as well as the management of the treatment practices in the short- and long-term organ dysfunction.
Collapse
|
33
|
Tian Y, Li H, Gao Y, Liu C, Qiu T, Wu H, Cao M, Zhang Y, Ding H, Chen J, Cai H. Quantitative proteomic characterization of lung tissue in idiopathic pulmonary fibrosis. Clin Proteomics 2019; 16:6. [PMID: 30774578 PMCID: PMC6364390 DOI: 10.1186/s12014-019-9226-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive, eventually fatal disease. IPF is characterized by excessive accumulation of the extracellular matrix (ECM) in the alveolar parenchyma and progressive lung scarring. The pathogenesis of IPF and whether the ECM involved in the process remain unknown. Methods To identify potential treatment target and ECM associated proteins that may be involved in the development of IPF, we employed isobaric tag for relative and absolute quantitation (iTRAQ) combined liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach to examine protein expression in lung tissues from IPF patients. Results A total of 662 proteins with altered expression (455 upregulated proteins and 207 downregulated proteins) were identified in lung tissue of IPF patients compared with control. KEGG pathway enrichment analysis showed that the altered proteins in lung tissue mainly belonged to the PI3K-Akt signaling, focal adhesion, ECM-receptor interaction, and carbon metabolism pathways. According to the bioinformatic definition of the matrisome, 229 matrisome proteins were identified in lung tissue. These proteins comprised the ECM of lung, of which 104 were core matrisome proteins, and 125 were matrisome-associated proteins. Of the 229 ECM quantified proteins, 56 significantly differentially expressed proteins (19 upregulated proteins and 37 downregulated proteins) were detected in IPF lung tissue samples. In addition to proteins with well-known functions such as COL1A1, SCGB1A1, TAGLN, PSEN2, TSPAN1, CTSB, AGR2, CSPG2, and SERPINB3, we identified several novel ECM proteins with unknown function deposited in IPF lung tissue including LGALS7, ASPN, HSP90AA1 and HSP90AB1. Some of these differentially expressed proteins were further verified using Western blot analysis and immunohistochemical staining. Conclusions This study provides a list of proteomes that were detected in IPF lung tissue by iTRAQ technology combined with LC-MS/MS. The findings of this study will contribute better understanding to the pathogenesis of IPF and facilitate the development of therapeutic targets.
Collapse
Affiliation(s)
- Yaqiong Tian
- 1Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008 Jiangsu People's Republic of China
| | - Hui Li
- 1Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008 Jiangsu People's Republic of China
| | - Yujuan Gao
- 1Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008 Jiangsu People's Republic of China
| | - Chuanmei Liu
- 2Department of Respiratory Medicine, Yi Ji Shan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu, 241001 Anhui People's Republic of China
| | - Ting Qiu
- Department of Respiratory Medicine, KunShan Hospital of Traditional Chinese Medicine, No. 189 Chaoyang Road, Kunshan, 215300 Jiangsu People's Republic of China
| | - Hongyan Wu
- 4Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008 Jiangsu People's Republic of China
| | - Mengshu Cao
- 1Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008 Jiangsu People's Republic of China
| | - Yingwei Zhang
- 1Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008 Jiangsu People's Republic of China
| | - Hui Ding
- 5Department of Respiratory Medicine, Yixing People Hospital, Affiliated Jiangsu University, No. 75 Tongzhenguan Road, Yixing, 214200 Jiangsu People's Republic of China
| | - Jingyu Chen
- 6Jiangsu Key Laboratory of Organ Transplantation, Wuxi People's Hospital, Nanjing Medical University, No. 299 Qingyang Road, Wuxi, 214023 Jiangsu People's Republic of China
| | - Hourong Cai
- 1Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008 Jiangsu People's Republic of China
| |
Collapse
|
34
|
Gene Expression Signatures Point to a Male Sex-Specific Lung Mesenchymal Cell PDGF Receptor Signaling Defect in Infants Developing Bronchopulmonary Dysplasia. Sci Rep 2018; 8:17070. [PMID: 30459472 PMCID: PMC6244280 DOI: 10.1038/s41598-018-35256-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
Male sex is a risk factor for development of bronchopulmonary dysplasia (BPD), a common chronic lung disease following preterm birth. We previously found that tracheal aspirate mesenchymal stromal cells (MSCs) from premature infants developing BPD show reduced expression of PDGFRα, which is required for normal lung development. We hypothesized that MSCs from male infants developing BPD exhibit a pathologic gene expression profile deficient in PDGFR and its downstream effectors, thereby favoring delayed lung development. In a discovery cohort of 6 male and 7 female premature infants, we analyzed the tracheal aspirate MSCs transcriptome. A unique gene signature distinguished MSCs from male infants developing BPD from all other MSCs. Genes involved in lung development, PDGF signaling and extracellular matrix remodeling were differentially expressed. We sought to confirm these findings in a second cohort of 13 male and 12 female premature infants. mRNA expression of PDGFRA, FGF7, WNT2, SPRY1, MMP3 and FOXF2 were significantly lower in MSCs from male infants developing BPD. In female infants developing BPD, tracheal aspirate levels of proinflammatory CCL2 and profibrotic Galectin-1 were higher compared to male infants developing BPD and female not developing BPD. Our findings support a notion for sex-specific differences in the mechanisms of BPD development.
Collapse
|
35
|
Zheng Y, Feng W, Wang YJ, Sun Y, Shi G, Yu Q. Galectins as potential emerging key targets in different types of leukemia. Eur J Pharmacol 2018; 844:73-78. [PMID: 30452910 DOI: 10.1016/j.ejphar.2018.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/20/2018] [Accepted: 11/14/2018] [Indexed: 01/11/2023]
Abstract
Galectins are carbohydrate-binding proteins and these have very high affinity for β-galactoside containing glycoproteins and glycolipids. Amongst sixteen types of galectin, the role of galectin 1, 3, 9 and 12 is defined in the development and progression of different types of leukemia including acute myeloid leukemia, acute promyelocytic leukemia, B-cell precursor acute lymphoblastic leukemia, adult T cell leukemia and chronic lymphocytic leukemia. There are multiple mechanisms through which these galectins may affect tumor proliferation. These may include increased production of tumor resistance conferring proteins such as multidrug resistance (MDR-1) and myeloid cell leukemia (MCL-1). Moreover, galectin-9 may act on Tim-3 receptors present on the circulating CD8+ T cells to impair immune system function and the latter provide an ideal environment for the proliferation of leukemic cells. The present review describes the role and mechanisms involved in galectin-mediated development and progression of different types of leukemia.
Collapse
Affiliation(s)
- Yan Zheng
- The Department of Anesthesia, China-Japan Union Hospital of Jilin University, China.
| | - Wei Feng
- The Department of Anesthesia, China-Japan Union Hospital of Jilin University, China
| | - Yu-Juan Wang
- The Department of Hematology and Oncology, The Second Hospital of Jilin University, China.
| | - Yan Sun
- The Department of Hematology and Oncology, The Second Hospital of Jilin University, China.
| | - Guang Shi
- The Department of Hematology and Oncology, The Second Hospital of Jilin University, China.
| | - Qiong Yu
- The Department of Hematology and Oncology, The Second Hospital of Jilin University, China.
| |
Collapse
|
36
|
Wu D, Kanda A, Liu Y, Kase S, Noda K, Ishida S. Galectin-1 promotes choroidal neovascularization and subretinal fibrosis mediated via epithelial-mesenchymal transition. FASEB J 2018; 33:2498-2513. [PMID: 30277820 DOI: 10.1096/fj.201801227r] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
VEGFA and TGF-β are known major angiogenic and fibrogenic factors. Galectin-1, encoded by lectin, galactoside-binding, soluble ( LGALS) 1, has attracted growing attention for its facilitatory role in angiogenesis and fibrosis through its modification of VEGFA and TGF-β receptor signaling pathways. We reveal galectin-1 involvement in the mouse model of laser-induced choroidal neovascularization (CNV) and subretinal fibrosis, both of which represent the pathogenesis of age-related macular degeneration (AMD). Neither deletion nor overexpression of Lgals1 affected physiologic retinal development or visual function. Galectin-1/ Lgals1 was upregulated by CNV induction, whereas deletion of Lgals1 suppressed CNV together with downstream molecules of VEGF receptor (VEGFR)2. Loss of Lgals1 also attenuated subretinal fibrosis, expression of epithelial-mesenchymal transition (EMT) markers including Snai1, and phosphorylation of SMAD family member 2. Supporting these in vivo findings, silencing of LGALS1 in human retinal pigment epithelial (RPE) cells inhibited TGF-β1-induced EMT-related molecules and cell motilities. Conversely, overexpression of Lgals1 enhanced CNV and subretinal fibrosis. Specimens from patients with AMD demonstrated colocalization of galectin-1 with VEGFR2 in neovascular endothelial cells and with phosphorylated SMAD2 in RPE cells. These results suggested a biologic significance of galectin-1 as a key promotor for both angiogenesis and fibrosis in eyes with AMD.-Wu, D., Kanda, A., Liu, Y., Kase, S., Noda, K., Ishida, S. Galectin-1 promotes choroidal neovascularization and subretinal fibrosis mediated via epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Di Wu
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Atsuhiro Kanda
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ye Liu
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Kase
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kousuke Noda
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Susumu Ishida
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
37
|
Gokey JJ, Snowball J, Sridharan A, Speth JP, Black KE, Hariri LP, Perl AKT, Xu Y, Whitsett JA. MEG3 is increased in idiopathic pulmonary fibrosis and regulates epithelial cell differentiation. JCI Insight 2018; 3:122490. [PMID: 30185671 DOI: 10.1172/jci.insight.122490] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/19/2018] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease causing fibrotic remodeling of the peripheral lung, leading to respiratory failure. Peripheral pulmonary epithelial cells lose normal alveolar epithelial gene expression patterns and variably express genes associated with diverse conducting airway epithelial cells, including basal cells. Single-cell RNA sequencing of pulmonary epithelial cells isolated from IPF lung tissue demonstrated altered expression of LncRNAs, including increased MEG3. MEG3 RNA was highly expressed in subsets of the atypical IPF epithelial cells and correlated with conducting airway epithelial gene expression patterns. Expression of MEG3 in human pulmonary epithelial cell lines increased basal cell-associated RNAs, including TP63, KRT14, STAT3, and YAP1, and enhanced cell migration, consistent with a role for MEG3 in regulating basal cell identity. MEG3 reduced expression of TP73, SOX2, and Notch-associated RNAs HES1 and HEY1, in primary human bronchial epithelial cells, demonstrating a role for MEG3 in the inhibition of genes influencing basal cell differentiation into club, ciliated, or goblet cells. MEG3 induced basal cell genes and suppressed genes associated with terminal differentiation of airway cells, supporting a role for MEG3 in regulation of basal progenitor cell functions, which may contribute to tissue remodeling in IPF.
Collapse
Affiliation(s)
- Jason J Gokey
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - John Snowball
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Anusha Sridharan
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Joseph P Speth
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Lida P Hariri
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Anne-Karina T Perl
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Yan Xu
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jeffrey A Whitsett
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
38
|
Haynes SE, Majmudar JD, Martin BR. DIA-SIFT: A Precursor and Product Ion Filter for Accurate Stable Isotope Data-Independent Acquisition Proteomics. Anal Chem 2018; 90:8722-8726. [PMID: 29989796 DOI: 10.1021/acs.analchem.8b01618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Quantitative mass spectrometry-based protein profiling is widely used to measure protein levels across different treatments or disease states, yet current mass spectrometry acquisition methods present distinct limitations. While data-independent acquisition (DIA) bypasses the stochastic nature of data-dependent acquisition (DDA), fragment spectra derived from DIA are often complex and challenging to deconvolve. In-line ion mobility separation (IMS) adds an additional dimension to increase peak capacity for more efficient product ion assignment. As a similar strategy to sequential window acquisition methods (SWATH), IMS-enabled DIA methods rival DDA methods for protein annotation. Here we evaluate IMS-DIA quantitative accuracy using stable isotope labeling by amino acids in cell culture (SILAC). Since SILAC analysis doubles the sample complexity, we find that IMS-DIA analysis is not sufficiently accurate for sensitive quantitation. However, SILAC precursor pairs share common retention and drift times, and both species cofragment to yield multiple quantifiable isotopic y-ion peak pairs. Since y-ion SILAC ratios are intrinsic for each quantified precursor, combined MS1 and y-ion ratio analysis significantly increases the total number of measurements. With increased sampling, we present DIA-SIFT ( SILAC Intrinsic Filtering Tool), a simple statistical algorithm to identify and eliminate poorly quantified MS1 and/or MS2 events. DIA-SIFT combines both MS1 and y-ion ratios, removes outliers, and provides more accurate and precise quantitation (<15% CV) without removing any proteins from the final analysis. Overall, pooled MS1 and MS2 quantitation increases sampling in IMS-DIA SILAC analyses for accurate and precise quantitation.
Collapse
Affiliation(s)
- Sarah E Haynes
- Department of Chemistry , University of Michigan , 930 N. University Avenue, Ann Arbor , Michigan 48109 , United States
| | - Jaimeen D Majmudar
- Department of Chemistry , University of Michigan , 930 N. University Avenue, Ann Arbor , Michigan 48109 , United States
| | - Brent R Martin
- Department of Chemistry , University of Michigan , 930 N. University Avenue, Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
39
|
Carlos CP, Silva AA, Gil CD, Oliani SM. Pharmacological treatment with galectin-1 protects against renal ischaemia-reperfusion injury. Sci Rep 2018; 8:9568. [PMID: 29934646 PMCID: PMC6015078 DOI: 10.1038/s41598-018-27907-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 06/07/2018] [Indexed: 11/21/2022] Open
Abstract
Galectin-1 protein (GAL-1) has important anti-inflammatory properties, but related pharmacologic approaches to effectively treat or prevent renal ischaemia and reperfusion injury are highly limited. Here, we investigated the effect of GAL-1 in a renal ischaemia-reperfusion injury rat model and an in vitro hypoxia-reoxygenation model with a proximal renal tubular epithelial cell line. In vivo, pretreatment with GAL-1 attenuated the renal parameters changed by ischaemia-reperfusion/hypoxia-reoxygenation, with recovery of renal function, protecting against influx of leukocytes, cell death and oxidative stress. Ischaemia-reperfusion/hypoxia-reoxygenation was also associated with increased renal endogenous expression of GAL-1 and intercellular adhesion molecule 1 (ICAM-1) plus augmented levels of proinflammatory cytokines IL-1β, TNF-α and MCP-1 and decreased anti-inflammatory IL-10 in urine, all of which were abrogated by GAL-1 treatment. In vitro studies demonstrated renal tubular epithelial cells as an important source of GAL-1 during hypoxia-reoxygenation and confirmed the protective effects of exogenous GAL-1 through downregulation of proinflammatory cytokine release by proximal renal tubular epithelial cells. Collectively, our findings confirm the important anti-inflammatory role of GAL-1 in kidney ischaemia and reperfusion injury and indicate its promising use as a therapeutic approach.
Collapse
Affiliation(s)
- Carla P Carlos
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas, Sao Paulo State University, UNESP, São José do Rio Preto, SP, Brazil.,Department of Medicine, FACERES School of Medicine, São José do Rio Preto, SP, Brazil
| | - Analice A Silva
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas, Sao Paulo State University, UNESP, São José do Rio Preto, SP, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, Federal University of Sao Paulo, UNIFESP, São Paulo, SP, Brazil
| | - Sonia M Oliani
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas, Sao Paulo State University, UNESP, São José do Rio Preto, SP, Brazil. .,Department of Morphology and Genetics, Federal University of Sao Paulo, UNIFESP, São Paulo, SP, Brazil.
| |
Collapse
|