1
|
Ge X, Wekselblatt JB, Elmore S, Wang B, Wang T, Dai R, Zhang T, Dave H, Ghaderi M, Anilkumar AR, Wang B, Sirsi SR, Ahn JM, Shapiro MG, Oka Y, Lois C, Qin Z. In Vivo Cytosolic Delivery of Biomolecules into Neurons for Super-Resolution Imaging and Genome Modification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501033. [PMID: 40285608 DOI: 10.1002/advs.202501033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/27/2025] [Indexed: 04/29/2025]
Abstract
Efficient delivery of biomolecules into neurons has significant impacts on therapeutic applications in the central nervous system (CNS) and fundamental neuroscience research. Existing viral and non-viral delivery methods often suffer from inefficient intracellular access due to the endocytic pathway. Here, a neuron-targeting and direct cytosolic delivery platform is discovered by using a 15-amino-acid peptide, termed the N1 peptide, which enables neuron-specific targeting and cytosolic delivery of functional biomolecules. The N1 peptide initially binds hyaluronan in the extracellular matrix and subsequently passes the membrane of neurons without being trapped into endosome. This mechanism facilitates the efficient delivery of cell-impermeable and photo-stable fluorescent dye for super-resolution imaging of dendritic spines, and functional proteins, such as Cre recombinase, for site-specific genome modification. Importantly, the N1 peptide exhibits robust neuronal specificity across diverse species, including mice, rats, tree shrews, and zebra finches. Its targeting capability is further demonstrated through various administration routes, including intraparenchymal, intrathecal, and intravenous (i.v.) injections after blood-brain barrier (BBB) opening with focused ultrasound (FUS). These findings establish the N1 peptide as a versatile and functional platform with significant potential for bioimaging and advanced therapeutic applications.
Collapse
Affiliation(s)
- Xiaoqian Ge
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| | - Joseph B Wekselblatt
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Department of Opthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Scott Elmore
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| | - Bo Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Tongtong Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Renjinming Dai
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| | - Tingting Zhang
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| | - Harsh Dave
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| | - Mohammadaref Ghaderi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| | - Athul Raj Anilkumar
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| | - Bill Wang
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| | - Shashank R Sirsi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| | - Jung-Mo Ahn
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Howard Hughes Medical Institute, Pasadena, CA, 91125, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Zhenpeng Qin
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| |
Collapse
|
2
|
Mascotte-Cruz JU, Vera A, Leija L, Lopez-Salas FE, Gradzielski M, Koetz J, Gatica-García B, Rodríguez-Oviedo CP, Valenzuela-Arzeta IE, Escobedo L, Reyes-Corona D, Gutierrez-Castillo ME, Maldonado-Berny M, Espadas-Alvarez AJ, Orozco-Barrios CE, Martinez-Fong D. Focused ultrasound on the substantia nigra enables safe neurotensin-polyplex nanoparticle-mediated gene delivery to dopaminergic neurons intranasally and by blood circulation. DISCOVER NANO 2024; 19:60. [PMID: 38564106 PMCID: PMC10987469 DOI: 10.1186/s11671-024-04005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Neurotensin-polyplex nanoparticles provide efficient gene transfection of nigral dopaminergic neurons when intracerebrally injected in preclinical trials of Parkinson's disease because they do not cross the blood-brain barrier (BBB). Therefore, this study aimed to open BBB with focused ultrasound (FUS) on the substantia nigra to attain systemic and intranasal transfections and evaluate its detrimental effect in rats. Systemically injected Evans Blue showed that a two-pulse FUS opened the nigral BBB. Accordingly, 35 μL of neurotensin-polyplex nanoparticles encompassing the green fluorescent protein plasmid (79.6 nm mean size and + 1.3 mV Zeta-potential) caused its expression in tyrosine hydroxylase(+) cells (dopaminergic neurons) of both substantiae nigrae upon delivery via internal carotid artery, retro-orbital venous sinus, or nasal mucosa 30 min after FUS. The intracarotid delivery yielded the highest transgene expression, followed by intranasal and venous administration. However, FUS caused neuroinflammation displayed by infiltrated lymphocytes (positive to cluster of differentiation 45), activated microglia (positive to ionized calcium-binding adaptor molecule 1), neurotoxic A1 astrocytes (positive to glial fibrillary acidic protein and complement component 3), and neurotrophic A2 astrocytes (positive to glial fibrillary acidic protein and S100 calcium-binding protein A10), that ended 15 days after FUS. Dopaminergic neurons and axonal projections decreased but recuperated basal values on day 15 after transfection, correlating with a decrease and recovery of locomotor behavior. In conclusion, FUS caused transient neuroinflammation and reversible neuronal affection but allowed systemic and intranasal transfection of dopaminergic neurons in both substantiae nigrae. Therefore, FUS could advance neurotensin-polyplex nanotechnology to clinical trials for Parkinson's disease.
Collapse
Affiliation(s)
- Juan U Mascotte-Cruz
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Arturo Vera
- Departamento de Ingeniería Eléctrica-Bioelectrónica, Centro de Investigación y de Estudios Avanzados, Ciudad de Mexico, México
| | - Lorenzo Leija
- Departamento de Ingeniería Eléctrica-Bioelectrónica, Centro de Investigación y de Estudios Avanzados, Ciudad de Mexico, México
| | - Francisco E Lopez-Salas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México Instituto de Investigaciones Biomédicas, Ciudad de Mexico, México
| | - Michael Gradzielski
- Institut für Chemie, Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin, Berlin, Germany
| | - Joachim Koetz
- Institut für Chemie , Universität Potsdam, Potsdam, Germany
| | - Bismark Gatica-García
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
- Nanoparticle Therapy Institute, Aguascalientes, México
| | | | - Irais E Valenzuela-Arzeta
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Lourdes Escobedo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | | | - M E Gutierrez-Castillo
- Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo, Departamento de Biociencias e Ingeniería, Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Minerva Maldonado-Berny
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Armando J Espadas-Alvarez
- Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo, Departamento de Biociencias e Ingeniería, Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Carlos E Orozco-Barrios
- CONAHCYT - Unidad de Investigaciones Médicas en Enfermedades Neurológicas, Hospital de Especialidades "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México.
- Nanoparticle Therapy Institute, Aguascalientes, México.
| |
Collapse
|
3
|
Sanchez-Martos M, Martinez-Navarrete G, Bernabeu-Zornoza A, Humphreys L, Fernandez E. Evaluation and Optimization of Poly-d-Lysine as a Non-Natural Cationic Polypeptide for Gene Transfer in Neuroblastoma Cells. NANOMATERIALS 2021; 11:nano11071756. [PMID: 34361142 PMCID: PMC8308159 DOI: 10.3390/nano11071756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
Cationic polypeptides and cationic polymers have cell-penetrating capacities and have been used in gene transfer studies. In this study, we investigate the capability of a polymer of d-lysine (PDL), a chiral form of α–Poly-lysine, as a possible nonviral vector for releasing genetic materials to neuroblastoma cells and evaluate its stability against proteases. We tested and compared its transfection effectiveness in vitro as a vehicle for the EGFP plasmid DNA (pDNA) reporter in the SH-SY5Y human neuroblastoma, HeLa, and 3T3 cell lines. Using fluorescent microscopy and flow cytometry, we demonstrated high transfection efficiencies based on EGFP fluorescence in SH-SY5Y cells, compared with HeLa and 3T3. Our results reveal PDL as an efficient vector for gene delivery specifically in the SH-SY5Y cell line and suggest that PDL can be used as a synthetic cell-penetrating polypeptide for gene therapy in neuroblastoma cells.
Collapse
Affiliation(s)
- Miguel Sanchez-Martos
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, 03201 Elche, Spain; (M.S.-M.); (G.M.-N.); (A.B.-Z.); (L.H.)
| | - Gema Martinez-Navarrete
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, 03201 Elche, Spain; (M.S.-M.); (G.M.-N.); (A.B.-Z.); (L.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Adela Bernabeu-Zornoza
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, 03201 Elche, Spain; (M.S.-M.); (G.M.-N.); (A.B.-Z.); (L.H.)
| | - Lawrence Humphreys
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, 03201 Elche, Spain; (M.S.-M.); (G.M.-N.); (A.B.-Z.); (L.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Eduardo Fernandez
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, 03201 Elche, Spain; (M.S.-M.); (G.M.-N.); (A.B.-Z.); (L.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-965222001
| |
Collapse
|
4
|
Lopez-Salas FE, Nadella R, Maldonado-Berny M, Escobedo-Sanchez ML, Fiorentino-Pérez R, Gatica-García B, Fernandez-Parrilla MA, Mario Gil M, Reyes-Corona D, García U, Orozco-Barrios CE, Gutierrez-Castillo ME, Martinez-Fong D. Synthetic Monopartite Peptide That Enables the Nuclear Import of Genes Delivered by the Neurotensin-Polyplex Vector. Mol Pharm 2020; 17:4572-4588. [PMID: 33125243 DOI: 10.1021/acs.molpharmaceut.0c00755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurotensin (NTS)-polyplex is a multicomponent nonviral vector that enables gene delivery via internalization of the neurotensin type 1 receptor (NTSR1) to dopaminergic neurons and cancer cells. An approach to improving its therapeutic safety is replacing the viral karyophilic component (peptide KPSV40; MAPTKRKGSCPGAAPNKPK), which performs the nuclear import activity, by a shorter synthetic peptide (KPRa; KMAPKKRK). We explored this issue and the mechanism of plasmid DNA translocation through the expression of the green fluorescent protein or red fluorescent protein fused with KPRa and internalization assays and whole-cell patch-clamp configuration experiments in a single cell together with importin α/β pathway blockers. We showed that KPRa electrostatically bound to plasmid DNA increased the transgene expression compared with KPSV40 and enabled nuclear translocation of KPRa-fused red fluorescent proteins and plasmid DNA. Such translocation was blocked with ivermectin or mifepristone, suggesting importin α/β pathway mediation. KPRa also enabled NTS-polyplex-mediated expression of reporter or physiological genes such as human mesencephalic-derived neurotrophic factor (hMANF) in dopaminergic neurons in vivo. KPRa is a synthetic monopartite peptide that showed nuclear import activity in NTS-polyplex vector-mediated gene delivery. KPRa could also improve the transfection of other nonviral vectors used in gene therapy.
Collapse
Affiliation(s)
- Francisco E Lopez-Salas
- Programa de Doctorado en Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - Rasajna Nadella
- Biosciences, IIIT Srikakulam-RGUKT, Etcherla 532402, Srikakulam District, Andhra Pradesh, India
| | - Minerva Maldonado-Berny
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - Maria L Escobedo-Sanchez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - Rosana Fiorentino-Pérez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - Bismark Gatica-García
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - Manuel A Fernandez-Parrilla
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - Moreno Mario Gil
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - David Reyes-Corona
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - Ubaldo García
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - Carlos E Orozco-Barrios
- Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Unidad de Investigaciones Médicas en Enfermedades Neurológicas, CONACyT, Av. Cuauhtémoc 330, Doctores, 06720 Ciudad de México, Mexico
| | - Maria E Gutierrez-Castillo
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo, Instituto Politécnico Nacional, 30 de junio de 1520 s/n, La Laguna Ticoman, 07340 Ciudad de Mexico, Mexico
| | - Daniel Martinez-Fong
- Programa de Doctorado en Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico.,Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| |
Collapse
|
5
|
Korbecki J, Gutowska I, Kojder I, Jeżewski D, Goschorska M, Łukomska A, Lubkowska A, Chlubek D, Baranowska-Bosiacka I. New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection. Oncotarget 2018; 9:7219-7270. [PMID: 29467963 PMCID: PMC5805549 DOI: 10.18632/oncotarget.24102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/02/2018] [Indexed: 11/25/2022] Open
Abstract
Recent years have seen considerable progress in understanding the biochemistry of cancer. For example, more significance is now assigned to the tumor microenvironment, especially with regard to intercellular signaling in the tumor niche which depends on many factors secreted by tumor cells. In addition, great progress has been made in understanding the influence of factors such as neurotensin, growth differentiation factor-15 (GDF-15), sphingosine-1-phosphate (S1P), and infection with cytomegalovirus (CMV) on the 'hallmarks of cancer' in glioblastoma multiforme. Therefore, in the present work we describe the influence of these factors on the proliferation and apoptosis of neoplastic cells, cancer stem cells, angiogenesis, migration and invasion, and cancer immune evasion in a glioblastoma multiforme tumor. In particular, we discuss the effect of neurotensin, GDF-15, S1P (including the drug FTY720), and infection with CMV on tumor-associated macrophages (TAM), microglial cells, neutrophil and regulatory T cells (Treg), on the tumor microenvironment. In order to better understand the role of the aforementioned factors in tumoral processes, we outline the latest models of intratumoral heterogeneity in glioblastoma multiforme. Based on the most recent reports, we discuss the problems of multi-drug therapy in treating glioblastoma multiforme.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland.,Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biała, 43-309 Bielsko-Biała, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ireneusz Kojder
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agnieszka Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
6
|
Aranda-Barradas ME, Márquez M, Quintanar L, Santoyo-Salazar J, Espadas-Álvarez AJ, Martínez-Fong D, García-García E. Development of a Parenteral Formulation of NTS-Polyplex Nanoparticles for Clinical Purpose. Pharmaceutics 2018; 10:pharmaceutics10010005. [PMID: 29301386 PMCID: PMC5874818 DOI: 10.3390/pharmaceutics10010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 12/23/2017] [Accepted: 01/02/2018] [Indexed: 11/20/2022] Open
Abstract
Neurotensin (NTS)-polyplex is a nanoparticle system for targeted gene delivery that holds great promise for treatment of Parkinson’s disease and various types of cancer. However, the high instability in aqueous suspension of NTS-polyplex nanoparticles is a major limitation for their widespread clinical use. To overcome this obstacle, we developed a clinical formulation and a lyophilization process for NTS-polyplex nanoparticles. The reconstituted samples were compared with fresh preparations by using transmission electron microscopy, dynamic light scattering, electrophoretic mobility, circular dichroism and transfection assays in vitro and in vivo. Our formulation was able to confer lyoprotection and stability to these nanoparticles. In addition, transmission electron microscopy (TEM) and size exclusion-high performance liquid chromatography (SEC-HPLC) using a radioactive tag revealed that the interaction of reconstituted nanoparticles with fetal bovine or human serum did not alter their biophysical features. Furthermore, the formulation and the lyophilization procedure guaranteed functional NTS-polyplex nanoparticles for at least six months of storage at 25 °C and 60% relative humidity. Our results offer a pharmaceutical guide for formulation and long-term storage of NTS-polyplex nanoparticles that could be applied to other polyplexes.
Collapse
Affiliation(s)
- María E Aranda-Barradas
- Nanosciences and Nanotechnology Department, Center for Research and Advanced Studies of the National Polytechnical Institute, Mexico City 07360, Mexico.
| | - Maripaz Márquez
- Chemistry Department, Center for Research and Advanced Studies of the National Polytechnical Institute, Mexico City 07360, Mexico.
- Pharmacology Department, Center for Research and Advanced Studies of the National Polytechnical Institute, Mexico City 07360, Mexico.
| | - Liliana Quintanar
- Chemistry Department, Center for Research and Advanced Studies of the National Polytechnical Institute, Mexico City 07360, Mexico.
| | - Jaime Santoyo-Salazar
- Physics Department, Center for Research and Advanced Studies of the National Polytechnical Institute, Mexico City 07360, Mexico.
| | - Armando J Espadas-Álvarez
- Physiology, Biophysics and Neurosciences Department, Center for Research and Advanced Studies of the National Polytechnical Institute, Mexico City 07360, Mexico.
| | - Daniel Martínez-Fong
- Nanosciences and Nanotechnology Department, Center for Research and Advanced Studies of the National Polytechnical Institute, Mexico City 07360, Mexico.
- Physiology, Biophysics and Neurosciences Department, Center for Research and Advanced Studies of the National Polytechnical Institute, Mexico City 07360, Mexico.
| | - Elizabeth García-García
- Pharmaceutical Nanotechnology Department, Psicofarma, S.A. de C.V., Mexico City 14050, Mexico.
| |
Collapse
|
7
|
Espadas-Alvarez AJ, Bannon MJ, Orozco-Barrios CE, Escobedo-Sanchez L, Ayala-Davila J, Reyes-Corona D, Soto-Rodriguez G, Escamilla-Rivera V, De Vizcaya-Ruiz A, Eugenia Gutierrez-Castillo M, Padilla-Viveros A, Martinez-Fong D. Regulation of human GDNF gene expression in nigral dopaminergic neurons using a new doxycycline-regulated NTS-polyplex nanoparticle system. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1363-1375. [PMID: 28219741 DOI: 10.1016/j.nano.2017.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/24/2017] [Accepted: 02/03/2017] [Indexed: 01/02/2023]
Abstract
The human glial-cell derived neurotrophic factor (hGDNF) gene transfer by neurotensin (NTS)-polyplex nanoparticles functionally restores the dopamine nigrostriatal system in experimental Parkinson's disease models. However, high levels of sustained expression of GDNF eventually can cause harmful effects. Herein, we report an improved NTS-polyplex nanoparticle system that enables regulation of hGDNF expression within dopaminergic neurons. We constructed NTS-polyplex nanoparticles containing a single bifunctional plasmid that codes for the reverse tetracycline-controlled transactivator advanced (rtTA-Adv) under the control of NBRE3x promoter, and for hGDNF under the control of tetracycline-response element (TRE). Another bifunctional plasmid contained the enhanced green fluorescent protein (GFP) gene. Transient transfection experiments in N1E-115-Nurr1 cells showed that doxycycline (100 ng/mL) activates hGDNF and GFP expression. Doxycycline (5 mg/kg, i.p.) administration in rats activated hGDNF expression only in transfected dopaminergic neurons, whereas doxycycline withdrawal silenced transgene expression. Our results offer a specific doxycycline-regulated system suitable for nanomedicine-based treatment of Parkinson's disease.
Collapse
Affiliation(s)
| | - Michael J Bannon
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Carlos E Orozco-Barrios
- CONACYT - Medical Research Unit in Neurological Diseases, National Medical Center "Siglo XXI", IMSS, Mexico City, Mexico
| | | | - Jose Ayala-Davila
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV, Mexico City, Mexico
| | - David Reyes-Corona
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV, Mexico City, Mexico
| | | | | | | | | | - America Padilla-Viveros
- Knowledge transfer and commercialization office, the 3C agency, CINVESTAV, Mexico City, Mexico
| | - Daniel Martinez-Fong
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV, Mexico City, Mexico; PhD Program on Nanoscience and Nanotechnology (DNyN), CINVESTAV, Mexico City, Mexico.
| |
Collapse
|
8
|
Ayala-Sarmiento AE, Martinez-Fong D, Segovia J. The Internalization of Neurotensin by the Low-Affinity Neurotensin Receptors (NTSR2 and vNTSR2) Activates ERK 1/2 in Glioma Cells and Allows Neurotensin-Polyplex Transfection of tGAS1. Cell Mol Neurobiol 2015; 35:785-95. [PMID: 25772140 PMCID: PMC11486267 DOI: 10.1007/s10571-015-0172-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/07/2015] [Indexed: 01/14/2023]
Abstract
Glioblastoma is the most malignant primary brain tumor and is very resistant to treatment; hence, it has a poor prognosis. Neurotensin receptor type 1 (NTSR1) plays a key role in cancer malignancy and has potential therapeutic applications. However, the presence and function of neurotensin (NTS) receptors in glioblastoma is not clearly established. RT-PCR assays showed that healthy (non-tumor) astroglial cells and C6 glioma cells express NTSR2 and its isoform (vNTSR2) rather than NTSR1. In glioma cells, NTS promotes the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK 1/2), an effect that was completely abolished by blocking the internalization of the NTS/NTSR complex. We demonstrated pharmacologically that the internalization is dependent on the activation of NTSR2 receptors and it was prevented by levocabastine, a NTSR2 receptor antagonist. The internalization of NTSR2 and vNTSR2 was further demonstrated by its ability to mediate gene transfer (transfection) via the NTS-polyplex system. Expression of reporter transgenes and of the pro-apoptotic soluble form of growth arrest specific 1 (tGAS1) was observed in glioma cells. A significant reduction on the viability of C6 cells was determined when tGAS1 was transfected into glioma cells. Conversely, astroglial cells could neither internalize NTS nor activate ERK 1/2 and could not be transfected by the NTS-polyplex. These results demonstrate that the internalization process of NTSR2 receptors is a key regulator necessary to trigger the activation of the ERK 1/2. Our data support a new internalization pathway in glioma C6 cells that involve NTSR2/vNTSR2, which can be used to selectively transfer therapeutic genes using the NTS-polyplex system.
Collapse
Affiliation(s)
- Alberto E. Ayala-Sarmiento
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07360 Mexico, DF Mexico
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07360 Mexico, DF Mexico
- Programa de Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN # 2508, 07360 Mexico, DF Mexico
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07360 Mexico, DF Mexico
| |
Collapse
|
9
|
Hernandez-Chan NG, Bannon MJ, Orozco-Barrios CE, Escobedo L, Zamudio S, De la Cruz F, Gongora-Alfaro JL, Armendáriz-Borunda J, Reyes-Corona D, Espadas-Alvarez AJ, Flores-Martínez YM, Ayala-Davila J, Hernandez-Gutierrez ME, Pavón L, García-Villegas R, Nadella R, Martinez-Fong D. Neurotensin-polyplex-mediated brain-derived neurotrophic factor gene delivery into nigral dopamine neurons prevents nigrostriatal degeneration in a rat model of early Parkinson's disease. J Biomed Sci 2015; 22:59. [PMID: 26198255 PMCID: PMC4511027 DOI: 10.1186/s12929-015-0166-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 07/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The neurotrophin Brain-Derived Neurotrophic Factor (BDNF) influences nigral dopaminergic neurons via autocrine and paracrine mechanisms. The reduction of BDNF expression in Parkinson's disease substantia nigra (SN) might contribute to the death of dopaminergic neurons because inhibiting BDNF expression in the SN causes parkinsonism in the rat. This study aimed to demonstrate that increasing BDNF expression in dopaminergic neurons of rats with one week of 6-hydroxydopamine lesion recovers from parkinsonism. The plasmids phDAT-BDNF-flag and phDAT-EGFP, coding for enhanced green fluorescent protein, were transfected using neurotensin (NTS)-polyplex, which enables delivery of genes into the dopaminergic neurons via neurotensin-receptor type 1 (NTSR1) internalization. RESULTS Two weeks after transfections, RT-PCR and immunofluorescence techniques showed that the residual dopaminergic neurons retain NTSR1 expression and susceptibility to be transfected by the NTS-polyplex. phDAT-BDNF-flag transfection did not increase dopaminergic neurons, but caused 7-fold increase in dopamine fibers within the SN and 5-fold increase in innervation and dopamine levels in the striatum. These neurotrophic effects were accompanied by a significant improvement in motor behavior. CONCLUSIONS NTS-polyplex-mediated BDNF overexpression in dopaminergic neurons has proven to be effective to remit hemiparkinsonism in the rat. This BDNF gene therapy might be helpful in the early stage of Parkinson's disease.
Collapse
Affiliation(s)
- Nancy G Hernandez-Chan
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV, Av. Instituto Politécnico Nacional # 2508, México D.F, 07360, Mexico.
| | - Michael J Bannon
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield Ave, 3355 Scott Hall, Detroit, MI, 48201, USA.
| | - Carlos E Orozco-Barrios
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV, Av. Instituto Politécnico Nacional # 2508, México D.F, 07360, Mexico.
| | - Lourdes Escobedo
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV, Av. Instituto Politécnico Nacional # 2508, México D.F, 07360, Mexico.
| | - Sergio Zamudio
- Escuela Nacional de Ciencias Biológicas, IPN, Wilfrido Massieu s/n, México D.F, 07738, Mexico.
| | - Fidel De la Cruz
- Escuela Nacional de Ciencias Biológicas, IPN, Wilfrido Massieu s/n, México D.F, 07738, Mexico.
| | - Jose L Gongora-Alfaro
- Departamento de Neurociencias, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad de Yucatán, Av. Itzaes # 490 x 59-A, Mérida, Yucatán, 97000, Mexico.
| | - Juan Armendáriz-Borunda
- Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Sierra Mojada # 950, Guadalajara, Jalisco, 44281, Mexico.
| | - David Reyes-Corona
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV, Av. Instituto Politécnico Nacional # 2508, México D.F, 07360, Mexico.
| | - Armando J Espadas-Alvarez
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV, Av. Instituto Politécnico Nacional # 2508, México D.F, 07360, Mexico.
| | - Yazmin M Flores-Martínez
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV, Av. Instituto Politécnico Nacional # 2508, México D.F, 07360, Mexico.
| | - Jose Ayala-Davila
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV, Av. Instituto Politécnico Nacional # 2508, México D.F, 07360, Mexico.
| | - Maria E Hernandez-Gutierrez
- Department of Psychoimmunology, National Institute of Psychiatry "Ramón de la Fuente", Calzada México Xochimilco # 101, México D.F, 14370, Mexico.
| | - Lenin Pavón
- Department of Psychoimmunology, National Institute of Psychiatry "Ramón de la Fuente", Calzada México Xochimilco # 101, México D.F, 14370, Mexico.
| | - Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV, Av. Instituto Politécnico Nacional # 2508, México D.F, 07360, Mexico.
| | - Rasajna Nadella
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV, Av. Instituto Politécnico Nacional # 2508, México D.F, 07360, Mexico.
- Program de doctorado en Nanociencias and Nanotecnología, CINVESTAV, Av. Instituto Politécnico Nacional # 2508, México D.F, 07360, Mexico.
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV, Av. Instituto Politécnico Nacional # 2508, México D.F, 07360, Mexico.
- Program de doctorado en Nanociencias and Nanotecnología, CINVESTAV, Av. Instituto Politécnico Nacional # 2508, México D.F, 07360, Mexico.
| |
Collapse
|
10
|
López-Ornelas A, Vergara P, Segovia J. Neural stem cells producing an inducible and soluble form of Gas1 target and inhibit intracranial glioma growth. Cytotherapy 2014; 16:1011-23. [DOI: 10.1016/j.jcyt.2013.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 11/19/2013] [Accepted: 12/12/2013] [Indexed: 01/14/2023]
|
11
|
Castillo-Rodríguez RA, Arango-Rodríguez ML, Escobedo L, Hernandez-Baltazar D, Gompel A, Forgez P, Martínez-Fong D. Suicide HSVtk gene delivery by neurotensin-polyplex nanoparticles via the bloodstream and GCV Treatment specifically inhibit the growth of human MDA-MB-231 triple negative breast cancer tumors xenografted in athymic mice. PLoS One 2014; 9:e97151. [PMID: 24824754 PMCID: PMC4019532 DOI: 10.1371/journal.pone.0097151] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/15/2014] [Indexed: 12/31/2022] Open
Abstract
The human breast adenocarcinoma cell line MDA-MB-231 has the triple-negative breast cancer (TNBC) phenotype, which is an aggressive subtype with no specific treatment. MDA-MB-231 cells express neurotensin receptor type 1 (NTSR1), which makes these cells an attractive target of therapeutic genes that are delivered by the neurotensin (NTS)-polyplex nanocarrier via the bloodstream. We addressed the relevance of this strategy for TNBC treatment using NTS-polyplex nanoparticles harboring the herpes simplex virus thymidine kinase (HSVtk) suicide gene and its complementary prodrug ganciclovir (GCV). The reporter gene encoding green fluorescent protein (GFP) was used as a control. NTS-polyplex successfully transfected both genes in cultured MDA-MB-231 cells. The transfection was demonstrated pharmacologically to be dependent on activation of NTSR1. The expression of HSVtk gene decreased cell viability by 49% (P<0.0001) and induced apoptosis in cultured MDA-MB-231 cells after complementary GCV treatment. In the MDA-MB-231 xenograft model, NTS-polyplex nanoparticles carrying either the HSVtk gene or GFP gene were injected into the tumors or via the bloodstream. Both routes of administration allowed the NTS-polyplex nanoparticles to reach and transfect tumorous cells. HSVtk expression and GCV led to apoptosis, as shown by the presence of cleaved caspase-3 and Apostain immunoreactivity, and significantly inhibited the tumor growth (55-60%) (P<0.001). At the end of the experiment, the weight of tumors transfected with the HSVtk gene was 55% less than that of control tumors (P<0.05). The intravenous transfection did not induce apoptosis in peripheral organs. Our results offer a promising gene therapy for TNBC using the NTS-polyplex nanocarrier.
Collapse
Affiliation(s)
- Rosa A. Castillo-Rodríguez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), México, D.F., México
| | - Martha L. Arango-Rodríguez
- Instituto de Ciencias, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Lourdes Escobedo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), México, D.F., México
| | - Daniel Hernandez-Baltazar
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), México, D.F., México
| | - Anne Gompel
- Unité de Gynécologie, Université Paris Descartes, AP-HP, Port Royal Cochin, Paris, France
| | - Patricia Forgez
- Department of Cellular Homeostasis and Cancer, Université Paris Descartes, INSERM UMR-S 1007, Paris, France
| | - Daniel Martínez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), México, D.F., México
- Programa de Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), México, D.F., México
| |
Collapse
|
12
|
Hernandez ME, Rembao JD, Hernandez-Baltazar D, Castillo-Rodriguez RA, Tellez-Lopez VM, Flores-Martinez YM, Orozco-Barrios CE, Rubio HA, Sánchez-García A, Ayala-Davila J, Arango-Rodriguez ML, Pavón L, Mejia-Castillo T, Forgez P, Martinez-Fong D. Safety of the intravenous administration of neurotensin-polyplex nanoparticles in BALB/c mice. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2014; 10:745-754. [PMID: 24333586 DOI: 10.1016/j.nano.2013.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/14/2013] [Accepted: 11/20/2013] [Indexed: 11/15/2022]
Abstract
UNLABELLED Neurotensin (NTS)-polyplex is a gene nanocarrier that has potential nanomedicine-based applications for the treatment of Parkinson's disease and cancers of cells expressing NTS receptor type 1. We assessed the acute inflammatory response to NTS-polyplex carrying a reporter gene in BALB/c mice. The intravenous injection of NTS-polyplex caused the specific expression of the reporter gene in gastrointestinal cells. Six hours after an intravenous injection of propidium iodide labeled-NTS-polyplex, fluorescent spots were located in the cells of the organs with a mononuclear phagocyte system, suggesting NTS-polyplex clearance. In contrast to lipopolysaccharide and carbon tetrachloride, NTS-polyplex did not increase the serum levels of tumor necrosis factor alpha, interleukin (IL)-1β, IL-6, bilirubin, aspartate transaminase, and alanine transaminase. NTS-polyplex increased the levels of serum amyloid A and alkaline phosphatase, but these levels normalized after 24 h. Compared to carrageenan, the local injection of NTS-polyplex did not produce inflammation. Our results support the safety of NTS-polyplex. FROM THE CLINICAL EDITOR This study focuses on the safety of neurotensin (NTS)-polyplex, a gene nanocarrier that has potential in the treatment of Parkinson's disease and cancers of cells expressing NTS receptor type 1. NTS polyplex demonstrates a better safety profile compared with carrageenan, lipopolysaccharide, and carbon tetrachloride in a murine model.
Collapse
Affiliation(s)
| | | | | | | | - Victor M Tellez-Lopez
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-I.P.N., Mexico DF, Mexico
| | | | | | | | | | - Jose Ayala-Davila
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-I.P.N., Mexico DF, Mexico
| | - Martha L Arango-Rodriguez
- Instituto de Ciencias, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Lenin Pavón
- Department of Psychoimmunology, INPRF, Mexico DF, Mexico
| | - Teresa Mejia-Castillo
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-I.P.N., Mexico DF, Mexico
| | | | - Daniel Martinez-Fong
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-I.P.N., Mexico DF, Mexico; PhD Program in Nanoscience and Nanotechnology; CINVESTAV-I.P.N., Mexico DF, Mexico.
| |
Collapse
|
13
|
Hernandez-Baltazar D, Martinez-Fong D, Trudeau LE. Optimizing NTS-polyplex as a tool for gene transfer to cultured dopamine neurons. PLoS One 2012; 7:e51341. [PMID: 23300540 PMCID: PMC3530538 DOI: 10.1371/journal.pone.0051341] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/30/2012] [Indexed: 11/18/2022] Open
Abstract
The study of signal transduction in dopamine (DA)-containing neurons as well as the development of new therapeutic approaches for Parkinson's disease requires the selective expression of transgenes in such neurons. Here we describe optimization of the use of the NTS-polyplex, a gene carrier system taking advantage of neurotensin receptor internalization, to transfect mouse DA neurons in primary culture. The plasmids DsRed2 (4.7 kbp) and VGLUT2-Venus (11 kbp) were used to compare the ability of this carrier system to transfect plasmids of different sizes. We examined the impact of age of the neurons (1, 3, 5 and 8 days after seeding), of culture media used during the transfection (Neurobasal with B27 vs. conditioned medium) and of three molar ratios of plasmid DNA to carrier. While the NTS-polyplex successfully transfected both plasmids in a control N1E-115 cell line, only the pDsRed2 plasmid could be transfected in primary cultured DA neurons. We achieved 20% transfection efficiency of pDsRed2 in DA neurons, with 80% cell viability. The transfection was demonstrated pharmacologically to be dependent on activation of neurotensin receptors and to be selective for DA neurons. The presence of conditioned medium for transfection was found to be required to insure cell viability. Highest transfection efficiency was achieved in the most mature neurons. In contrast, transfection with the VGLUT2-Venus plasmid produced cell damage, most likely due to the high molar ratios required, as evidenced by a 15% cell viability of DA neurons at the three molar ratios tested (1:36, 1:39 and 1:42). We conclude that, when used at molar ratios lower than 1:33, the NTS-polyplex can selectively transfect mature cultured DA neurons with only low levels of toxicity. Our results provide evidence that the NTS-polyplex has good potential for targeted gene delivery in cultured DA neurons, an in vitro system of great use for the screening of new therapeutic approaches for Parkinson's disease.
Collapse
Affiliation(s)
- Daniel Hernandez-Baltazar
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D.F., México
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D.F., México
| | - Louis-Eric Trudeau
- Department of Pharmacology, Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montreal, Montréal, Québec, Canada
| |
Collapse
|
14
|
Kenny GD, Villegas-Llerena C, Tagalakis AD, Campbell F, Welser K, Botta M, Tabor AB, Hailes HC, Lythgoe MF, Hart SL. Multifunctional receptor-targeted nanocomplexes for magnetic resonance imaging and transfection of tumours. Biomaterials 2012; 33:7241-50. [DOI: 10.1016/j.biomaterials.2012.06.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/22/2012] [Indexed: 12/21/2022]
|
15
|
Martinez-Fong D, Bannon MJ, Trudeau LE, Gonzalez-Barrios JA, Arango-Rodriguez ML, Hernandez-Chan NG, Reyes-Corona D, Armendáriz-Borunda J, Navarro-Quiroga I. NTS-Polyplex: a potential nanocarrier for neurotrophic therapy of Parkinson's disease. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:1052-69. [PMID: 22406187 DOI: 10.1016/j.nano.2012.02.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 02/14/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED Nanomedicine has focused on targeted neurotrophic gene delivery to the brain as a strategy to stop and reverse neurodegeneration in Parkinson's disease. Because of improved transfection ability, synthetic nanocarriers have become candidates for neurotrophic therapy. Neurotensin (NTS)-polyplex is a "Trojan horse" synthetic nanocarrier system that enters dopaminergic neurons through NTS receptor internalization to deliver a genetic cargo. The success of preclinical studies with different neurotrophic genes supports the possibility of using NTS-polyplex in nanomedicine. In this review, we describe the mechanism of NTS-polyplex transfection. We discuss the concept that an effective neurotrophic therapy requires a simultaneous effect on the axon terminals and soma of the remaining dopaminergic neurons. We also discuss the future of this strategy for the treatment of Parkinson's disease. FROM THE CLINICAL EDITOR This review paper focuses on nanomedicine-based treatment of Parkinson's disease, a neurodegenerative condition with existing symptomatic but no curative treatment. Neurotensin-polyplex is a synthetic nanocarrier system that enables delivery of genetic cargo to dopaminergic neurons via NTS receptor internalization.
Collapse
|
16
|
Wu Z, Martinez-Fong D, Trédaniel J, Forgez P. Neurotensin and its high affinity receptor 1 as a potential pharmacological target in cancer therapy. Front Endocrinol (Lausanne) 2012; 3:184. [PMID: 23335914 PMCID: PMC3547287 DOI: 10.3389/fendo.2012.00184] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/26/2012] [Indexed: 12/12/2022] Open
Abstract
Cancer is a worldwide health problem. Personalized treatment represents a future advancement for cancer treatment, in part due to the development of targeted therapeutic drugs. These molecules are expected to be more effective than current treatments and less harmful to normal cells. The discovery and validation of new targets are the foundation and the source of these new therapies. The neurotensinergic system has been shown to enhance cancer progression in various cancers such as pancreatic, prostate, lung, breast, and colon cancer. It also triggers multiple oncogenic signaling pathways, such as the PKC/ERK and AKT pathways. In this review, we discuss the contribution of the neurotensinergic system to cancer progression, as well as the regulation and mechanisms of the system in order to highlight its potential as a therapeutic target, and its prospect for its use as a treatment in certain cancers.
Collapse
Affiliation(s)
- Zherui Wu
- INSERM-UPMC UMR_S938, Hôpital Saint-AntoineParis, France
| | - Daniel Martinez-Fong
- Departamento de Fisiologïa, Biofïsica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico City, Mexico
| | - Jean Trédaniel
- INSERM-UPMC UMR_S938, Hôpital Saint-AntoineParis, France
- Unité de Cancérologie Thoracique, Groupe Hospitalier Paris Saint-Joseph/Université Paris DescartesParis, France
| | - Patricia Forgez
- INSERM-UPMC UMR_S938, Hôpital Saint-AntoineParis, France
- *Correspondence: Patricia Forgez, INSERM-UPMC UMR_S938, Hôpital Saint-Antoine, Bâtiment Raoul Kourilsky, 184 rue du Faubourg St-Antoine, 75571 Paris Cedex 12, France. e-mail:
| |
Collapse
|
17
|
Orozco-Barrios CE, Battaglia-Hsu SF, Arango-Rodriguez ML, Ayala-Davila J, Chery C, Alberto JM, Schroeder H, Daval JL, Martinez-Fong D, Gueant JL. Vitamin B12-impaired metabolism produces apoptosis and Parkinson phenotype in rats expressing the transcobalamin-oleosin chimera in substantia nigra. PLoS One 2009; 4:e8268. [PMID: 20027219 PMCID: PMC2791211 DOI: 10.1371/journal.pone.0008268] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 11/19/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Vitamin B12 is indispensable for proper brain functioning and cytosolic synthesis of S-adenosylmethionine. Whether its deficiency produces effects on viability and apoptosis of neurons remains unknown. There is a particular interest in investigating these effects in Parkinson disease where Levodopa treatment is known to increase the consumption of S-adenosylmethionine. To cause deprivation of vitamin B12, we have recently developed a cell model that produces decreased synthesis of S-adenosylmethionine by anchoring transcobalamin (TCII) to the reticulum through its fusion with Oleosin (OLEO). METHODOLOGY Gene constructs including transcobalamin-oleosin (TCII-OLEO) and control constructs, green fluorescent protein-transcobalamin-oleosin (GFP-TCII-OLEO), oleosin-transcobalamin (OLEO-TCII), TCII and OLEO were used for expression in N1E-115 cells (mouse neuroblastoma) and in substantia nigra of adult rats, using a targeted transfection with a Neurotensin polyplex system. We studied the viability and the apoptosis in the transfected cells and targeted tissue. The turning behavior was evaluated in the rats transfected with the different plasmids. PRINCIPAL FINDINGS The transfection of N1E-115 cells by the TCII-OLEO-expressing plasmid significantly affected cell viability and increased immunoreactivity of cleaved Caspase-3. No change in propidium iodide uptake (used as a necrosis marker) was observed. The transfected rats lost neurons immunoreactive to tyrosine hydroxylase. The expression of TCII-OLEO was observed in cells immunoreactive to tyrosine hydroxylase of the substantia nigra, with a superimposed expression of cleaved Caspase-3. These cellular and tissular effects were not observed with the control plasmids. Rats transfected with TCII-OLEO expressing plasmid presented with a significantly higher number of turns, compared with those transfected with the other plasmids. CONCLUSIONS/SIGNIFICANCE In conclusion, the TCII-OLEO transfection was responsible for apoptosis in N1E-115 cells and rat substantia nigra and for Parkinson-like phenotype. This suggests evaluating whether vitamin B12 deficit could aggravate the PD in patients under Levodopa therapy by impairing S-adenosylmethionine synthesis in substantia nigra.
Collapse
Affiliation(s)
- Carlos Enrique Orozco-Barrios
- Department of Physiology, Biophysics and Neuroscience, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
- Inserm U954, Faculté de Médecine, Nancy-Université, Nancy, France
| | | | - Martha Ligia Arango-Rodriguez
- Department of Physiology, Biophysics and Neuroscience, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| | - Jose Ayala-Davila
- Department of Physiology, Biophysics and Neuroscience, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| | - Celine Chery
- Inserm U954, Faculté de Médecine, Nancy-Université, Nancy, France
| | | | - Henry Schroeder
- Institut national de la recherche agronomique (INRA), URAFPA, Nancy-Université, Nancy, France
| | - Jean-Luc Daval
- Inserm U954, Faculté de Médecine, Nancy-Université, Nancy, France
| | - Daniel Martinez-Fong
- Department of Physiology, Biophysics and Neuroscience, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| | | |
Collapse
|