1
|
Sorbara M, Cristol M, Cornebois A, Desrumeaux K, Cordelier P, Bery N. Protocol to identify E3 ligases amenable to biodegraders using a cell-based screening. STAR Protoc 2024; 5:103413. [PMID: 39453816 PMCID: PMC11541768 DOI: 10.1016/j.xpro.2024.103413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/09/2024] [Accepted: 10/04/2024] [Indexed: 10/27/2024] Open
Abstract
Here, we provide a protocol for the identification of E3 ubiquitin ligases that are functional when implemented as biodegraders using a cell-based screening assay. We describe steps for establishing a stable cell line expressing a GFP-tagged protein of interest (POI), preparing a sub-library of E3 ligases to screen, and performing the cell-based screening. This protocol can be broadly applied to identify any functional E3 ligase in a biodegrader setting. For complete details on the use and execution of this protocol, please refer to Cornebois et al.1.
Collapse
Affiliation(s)
- Marie Sorbara
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31100 Toulouse, France
| | - Margot Cristol
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31100 Toulouse, France
| | - Anaïs Cornebois
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31100 Toulouse, France; Sanofi, Large Molecule Research, 94400 Vitry-sur-Seine, France
| | | | - Pierre Cordelier
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31100 Toulouse, France
| | - Nicolas Bery
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31100 Toulouse, France.
| |
Collapse
|
2
|
Lumeau A, Bery N, Francès A, Gayral M, Labrousse G, Ribeyre C, Lopez C, Nevot A, El Kaoutari A, Hanoun N, Sarot E, Perrier M, Pont F, Cerapio JP, Fournié JJ, Lopez F, Madrid-Mencia M, Pancaldi V, Pillaire MJ, Bergoglio V, Torrisani J, Dusetti N, Hoffmann JS, Buscail L, Lutzmann M, Cordelier P. Cytidine Deaminase Resolves Replicative Stress and Protects Pancreatic Cancer from DNA-Targeting Drugs. Cancer Res 2024; 84:1013-1028. [PMID: 38294491 PMCID: PMC10982645 DOI: 10.1158/0008-5472.can-22-3219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/31/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
Cytidine deaminase (CDA) functions in the pyrimidine salvage pathway for DNA and RNA syntheses and has been shown to protect cancer cells from deoxycytidine-based chemotherapies. In this study, we observed that CDA was overexpressed in pancreatic adenocarcinoma from patients at baseline and was essential for experimental tumor growth. Mechanistic investigations revealed that CDA localized to replication forks where it increased replication speed, improved replication fork restart efficiency, reduced endogenous replication stress, minimized DNA breaks, and regulated genetic stability during DNA replication. In cellular pancreatic cancer models, high CDA expression correlated with resistance to DNA-damaging agents. Silencing CDA in patient-derived primary cultures in vitro and in orthotopic xenografts in vivo increased replication stress and sensitized pancreatic adenocarcinoma cells to oxaliplatin. This study sheds light on the role of CDA in pancreatic adenocarcinoma, offering insights into how this tumor type modulates replication stress. These findings suggest that CDA expression could potentially predict therapeutic efficacy and that targeting CDA induces intolerable levels of replication stress in cancer cells, particularly when combined with DNA-targeted therapies. SIGNIFICANCE Cytidine deaminase reduces replication stress and regulates DNA replication to confer resistance to DNA-damaging drugs in pancreatic cancer, unveiling a molecular vulnerability that could enhance treatment response.
Collapse
Affiliation(s)
- Audrey Lumeau
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Nicolas Bery
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Audrey Francès
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Marion Gayral
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Guillaume Labrousse
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Cyril Ribeyre
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Charlene Lopez
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Adele Nevot
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Abdessamad El Kaoutari
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Université Aix-Marseille, Marseille, France
| | - Naima Hanoun
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Emeline Sarot
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Marion Perrier
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Frederic Pont
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Juan-Pablo Cerapio
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Frederic Lopez
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Miguel Madrid-Mencia
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Vera Pancaldi
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
- Barcelona Supercomputing Center, Barcelona, Spain
| | | | | | - Jerome Torrisani
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Université Aix-Marseille, Marseille, France
| | - Jean-Sebastien Hoffmann
- Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Laboratoire de pathologie, Institut Universitaire du Cancer-Toulouse, Toulouse, France
| | - Louis Buscail
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
- Service de gastroentérologie et d'hépatologie, CHU Rangueil, Université de Toulouse, Toulouse, France
| | - Malik Lutzmann
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Pierre Cordelier
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| |
Collapse
|
3
|
Grygoryev D, Ekstrom T, Manalo E, Link JM, Alshaikh A, Keith D, Allen-Petersen BL, Sheppard B, Morgan T, Soufi A, Sears RC, Kim J. Sendai virus is robust and consistent in delivering genes into human pancreatic cancer cells. Heliyon 2024; 10:e27221. [PMID: 38463758 PMCID: PMC10923719 DOI: 10.1016/j.heliyon.2024.e27221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly intratumorally heterogeneous disease that includes several subtypes and is highly plastic. Effective gene delivery to all PDAC cells is essential for modulating gene expression and identifying potential gene-based therapeutic targets in PDAC. Most current gene delivery systems for pancreatic cells are optimized for islet or acinar cells. Lentiviral vectors are the current main gene delivery vectors for PDAC, but their transduction efficiencies vary depending on pancreatic cell type, and are especially poor for the classical subtype of PDAC cells from both primary tumors and cell lines. Methods We systemically compare transduction efficiencies of glycoprotein G of vesicular stomatitis virus (VSV-G)-pseudotyped lentiviral and Sendai viral vectors in human normal pancreatic ductal and PDAC cells. Results We find that the Sendai viral vector gives the most robust gene delivery efficiency regardless of PDAC cell type. Therefore, we propose using Sendai viral vectors to transduce ectopic genes into PDAC cells.
Collapse
Affiliation(s)
- Dmytro Grygoryev
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University School of Medicine, USA
| | - Taelor Ekstrom
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University School of Medicine, USA
| | - Elise Manalo
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University School of Medicine, USA
| | - Jason M. Link
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University School of Medicine, USA
| | - Amani Alshaikh
- The University of Edinburgh, Centre for Regenerative Medicine, Institute of Regeneration and Repair, Institute of Stem Cell Research, Edinburgh, UK
- King Abdulaziz City for Science and Technology, Health Sector (KACST), Riyadh, Saudi Arabia
| | - Dove Keith
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University School of Medicine, USA
| | - Brittany L. Allen-Petersen
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University School of Medicine, USA
| | - Brett Sheppard
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University School of Medicine, USA
- Department of Surgery, Oregon Health & Science University School of Medicine, USA
| | - Terry Morgan
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University School of Medicine, USA
- Department of Pathology, Oregon Health & Science University School of Medicine, USA
- Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, OR, 97201, USA
| | - Abdenour Soufi
- The University of Edinburgh, Centre for Regenerative Medicine, Institute of Regeneration and Repair, Institute of Stem Cell Research, Edinburgh, UK
| | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University School of Medicine, USA
- Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, OR, 97201, USA
| | - Jungsun Kim
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University School of Medicine, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, USA
- Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, OR, 97201, USA
| |
Collapse
|
4
|
Blaauboer A, Van Koetsveld PM, Mustafa DAM, Dumas J, Dogan F, Van Zwienen S, Van Eijck CHJ, Hofland LJ. Immunomodulatory antitumor effect of interferon‑beta combined with gemcitabine in pancreatic cancer. Int J Oncol 2022; 61:97. [PMID: 35795999 DOI: 10.3892/ijo.2022.5387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/06/2022] [Indexed: 11/06/2022] Open
Abstract
Resistance to gemcitabine is common and critically limits its therapeutic efficacy in patients with pancreatic cancer. Interferon‑beta (IFN‑β) induces numerous antitumor effects and synergizes with gemcitabine treatment. The immunomodulatory effects of this treatment regimen have not yet been described. In the present study, the antitumor effect of IFN‑β combined with gemcitabine was investigated in immune competent mice. Mouse KPC3 cells were used in all experiments. Treatment effects were determined with cell proliferation assay. Reverse transcription‑quantitative PCR was used to measure gene expression. For in vivo experiments, cells were subcutaneously injected in immune competent mice. For immune profiling, NanoString analysis was performed on tumor samples of treated and untreated mice. Baseline expression of Ifnar‑1 and Ifnar‑2c in KPC3 cells was 1.42±0.16 and 1.50±0.17, respectively. IC50 value of IFN‑β on cell growth was high (>1,000 IU/ml). IFN‑β pre‑treatment increased the in vitro response to gemcitabine (1.3‑fold decrease in EC50; P<0.001). In vivo, tumor size was not statistically significant smaller in mice treated with IFN‑β plus gemcitabine (707±92 mm3 vs. 1,239±338 mm3 in vehicle‑treated mice; P=0.16). IFN‑β alone upregulated expression of numerous immune‑related genes. This effect was less pronounced when combined with gemcitabine. For the first time, to the best of our knowledge, the immunomodulatory effects of IFN‑β, alone and combined with gemcitabine, in pancreatic cancer were reported. Prognostic markers for predicting effective responses to IFN‑β therapy are urgently needed.
Collapse
Affiliation(s)
- Amber Blaauboer
- Department of Surgery, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Peter M Van Koetsveld
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Dana A M Mustafa
- Department of Pathology, The Tumor Immuno‑Pathology Laboratory, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Jasper Dumas
- Department of Pathology, The Tumor Immuno‑Pathology Laboratory, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Fadime Dogan
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Suzanne Van Zwienen
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Casper H J Van Eijck
- Department of Surgery, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Leo J Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
5
|
Rouanet M, Hanoun N, Hubert Lulka, Ferreira C, Garcin P, Sramek M, Jacquemin G, Coste A, Pagan D, Valle C, Sarot E, Pancaldi V, Lopez F, Buscail L, Cordelier P. The antitumoral activity of TLR7 ligands is corrupted by the microenvironment of pancreatic tumors. Mol Ther 2022; 30:1553-1563. [PMID: 35038581 PMCID: PMC9077317 DOI: 10.1016/j.ymthe.2022.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/20/2021] [Accepted: 01/12/2022] [Indexed: 11/18/2022] Open
Abstract
Toll-like receptors (TLRs) are key players in the innate immune system. Recent studies have suggested that they may affect the growth of pancreatic cancer, a disease with no cure. Among them, TLR7 shows promise for therapy but may also promotes tumor growth. Thus, we aimed to clarify the therapeutic potential of TLR7 ligands in experimental pancreatic cancer models, to open the door for clinical applications. In vitro, we found that TLR7 ligands strongly inhibit the proliferation of both human and murine pancreatic cancer cells, compared with TLR2 agonists. Hence, TLR7 treatment alters cancer cells' cell cycle and induces cell death by apoptosis. In vivo, TLR7 agonist therapy significantly delays the growth of murine pancreatic tumors engrafted in immunodeficient mice. Remarkably, TLR7 ligands administration instead increases tumor growth and accelerates animal death when tumors are engrafted in immunocompetent models. Further investigations revealed that TLR7 agonists modulate the intratumoral content and phenotype of macrophages and that depleting such tumor-associated macrophages strongly hampers TLR7 agonist-induced tumor growth. Collectively, our findings shine a light on the duality of action of TLR7 agonists in experimental cancer models and call into question their use for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Marie Rouanet
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France; Department of Gastroenterology and University of Toulouse III, Rangueil Hospital, Toulouse, France
| | - Naima Hanoun
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Hubert Lulka
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Cindy Ferreira
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Pierre Garcin
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Martin Sramek
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Godefroy Jacquemin
- Institut RESTORE, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Agnès Coste
- Institut RESTORE, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Delphine Pagan
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Carine Valle
- Technological cluster, Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université de Toulouse, Toulouse, France
| | - Emeline Sarot
- Technological cluster, Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université de Toulouse, Toulouse, France
| | - Vera Pancaldi
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Frédéric Lopez
- Technological cluster, Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université de Toulouse, Toulouse, France
| | - Louis Buscail
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France; Department of Gastroenterology and University of Toulouse III, Rangueil Hospital, Toulouse, France
| | - Pierre Cordelier
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France.
| |
Collapse
|
6
|
ABO blood group antigen therapy: a potential new strategy against solid tumors. Sci Rep 2021; 11:16241. [PMID: 34376742 PMCID: PMC8355358 DOI: 10.1038/s41598-021-95794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
The economic burden of tumors is increasing, so there is an urgent need to develop new therapies for their treatment. Killing tumors by activating complement is an effective strategy for the treatment. We used the ABO blood group system and the corresponding antibodies to activate the killer cell capacity of the complement system. After the construction of a mouse model containing blood group A antibodies and inoculating colorectal cancer and breast cancer cells into the axillae of the mice, intratumoural injection using a lentivirus carrying a blood group antigen as a drug significantly reduced the tumor volume of the mice. Compared with the control group, the content of the C5b-9 complement membrane attack complex in the tumors of mice treated with the blood group A antigen was significantly increased, and the proportion of NK cells was also significantly increased. In vitro cell-based experiments proved that tumor cells expressing blood group A antigens showed significantly inhibited cell proliferation when added to serum containing blood group A antibodies. These results all prove that the ABO blood group antigen may become a powerful tool for the treatment of tumors in patients.
Collapse
|
7
|
Hromic-Jahjefendic A, Lundstrom K. Viral Vector-Based Melanoma Gene Therapy. Biomedicines 2020; 8:E60. [PMID: 32187995 PMCID: PMC7148454 DOI: 10.3390/biomedicines8030060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
Gene therapy applications of oncolytic viruses represent an attractive alternative for cancer treatment. A broad range of oncolytic viruses, including adenoviruses, adeno-associated viruses, alphaviruses, herpes simplex viruses, retroviruses, lentiviruses, rhabdoviruses, reoviruses, measles virus, Newcastle disease virus, picornaviruses and poxviruses, have been used in diverse preclinical and clinical studies for the treatment of various diseases, including colon, head-and-neck, prostate and breast cancer as well as squamous cell carcinoma and glioma. The majority of studies have focused on immunotherapy and several drugs based on viral vectors have been approved. However, gene therapy for malignant melanoma based on viral vectors has not been utilized to its full potential yet. This review represents a summary of the achievements of preclinical and clinical studies using viral vectors, with the focus on malignant melanoma.
Collapse
Affiliation(s)
- Altijana Hromic-Jahjefendic
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | | |
Collapse
|
8
|
Zhou S, Ma X, Wang ZJ, Zhang WY, Jiang H, Li SD, Zhang TZ, Du J, Lu Z. Research on the establishment of a TPM3 monoclonal stable transfected PANC-1 cell line and the experiment of the EMT occurrence in human pancreatic cancer. Onco Targets Ther 2019; 12:5577-5587. [PMID: 31371995 PMCID: PMC6628969 DOI: 10.2147/ott.s212689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/21/2019] [Indexed: 01/16/2023] Open
Abstract
Background: Pancreatic cancer is one of the most aggressive human malignancies that is associated with early metastasis and chemoresistance. Tropomyosin (TPM) is an indispensable regulatory protein for muscle contraction, Abnormal expressions of TPM gene are closely related to the carcinogenesis and metastasis of malignant tumors. Purpose: In this experiment, a monoclonal stable transfected cell line was established by the knock-down of TMP3 expression in PANC-1 cells with the lentivirus method, and the impacts of the downregulated TPM3 gene expression on the EMT-related molecules and biological behaviors of PANC-1 cells were explored. Methods: Based on the TPM3 gene sequence, we designed the RNA interference sequence, constructed and screened out the recombinant plasmid segment TPM3-shRNA with the optimal silencing effect, and carried out lentivirus titer determination and packaging. The recombinant lentiviral interference vector LV-TPM3-shRNA was transfected into PANC-1 cells; the transfection efficiency was then evaluated to screen out the monoclonal stable transfected PANC-1 cell line with downregulated TPM3 expression. The qRT-PCR and Western blot were used to detect the changes in the gene- and protein-levels expressions of EMT-related transcription factors in the target cell line and to respectively test the variations of the invasion and proliferation capacities. Results: It is shown that the monoclonal stable transfected PANC-1 cell line with downregulated TPM3 expression was successfully established with the recombinant lentiviral vector. After knocking down the expression of TPM3 gene in PANC-1 cells, EMT occurred in the cells; the cell phenotype showed malignant transformation, and the in vitro biological behaviors of the cells (such as proliferation and invasion) were enhanced to different degrees. Conclusion: It is indicated that the TPM3 gene can be a potential target spot for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Shuo Zhou
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, People's Republic of China
| | - Xiang Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, People's Republic of China
| | - Zhen-Jie Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, People's Republic of China
| | - Wei-Yue Zhang
- Department of Emergency Medicine, The Second People's Hospital of Bengbu City, Bengbu 233000, Anhui, People's Republic of China
| | - Hai Jiang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, People's Republic of China
| | - San-Dang Li
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, People's Republic of China
| | - Tai-Zhe Zhang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, People's Republic of China
| | - Jie Du
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, People's Republic of China
| | - Zheng Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, People's Republic of China
| |
Collapse
|
9
|
Diaz-Riascos ZV, Ginesta MM, Fabregat J, Serrano T, Busquets J, Buscail L, Cordelier P, Capellá G. Expression and Role of MicroRNAs from the miR-200 Family in the Tumor Formation and Metastatic Propensity of Pancreatic Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:491-503. [PMID: 31336236 PMCID: PMC6656921 DOI: 10.1016/j.omtn.2019.06.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022]
Abstract
MicroRNAs from the miR-200 family are commonly associated with the inhibition of the metastatic potential of cancer cells, following inhibition of ZEB transcription factors expression and epithelial-to-mesenchymal transition. However, previous studies performed in pancreatic adenocarcinoma revealed a more complex picture challenging this canonical model. To gain better insights into the role of miR-200 family members in this disease, we analyzed the expression of miR-200a, miR-200b, miR-200c, miR-141, miR-429, and miR-205, and ZEB1, ZEB2, and CDH1 in pancreatic tumors and matching normal adjacent parenchyma and patient-derived xenografts. We found that miR-200a, miR-429, and miR-205 are frequently overexpressed in pancreatic tumors, whereas CDH1 is downregulated, and ZEB1 and ZEB2 levels remain unchanged. Furthermore, we measured a positive correlation between miR-200 family members and CDH1 expression, and a negative correlation between ZEB1 and miR-200c, miR-141, and miR-205 expression, respectively. Interestingly, we identified significant changes in expression of epithelial-to-mesenchymal transition regulators and miR-200 members in patient-derived xenografts. Lastly, functional studies revealed that miR-141 and miR-429 inhibit the tumorigenic potential of pancreatic cancer cells. Taken together, this comprehensive analysis strongly suggests that miRNAs from the miR-200 family, and in particular miR-429, may act as a tumor suppressor gene in pancreatic cancer.
Collapse
Affiliation(s)
- Zamira Vanessa Diaz-Riascos
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mireia M Ginesta
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; CIBERONC, Centro de Investigación Biomédica en Red en Cáncer, Madrid, Spain
| | - Joan Fabregat
- Department of Surgery, Hepatobiliopancreatic Unit, IDIBELL-Hospital Universitari Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Teresa Serrano
- Department of Pathology, IDIBELL-Hospital Universitari Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Juli Busquets
- Department of Surgery, Hepatobiliopancreatic Unit, IDIBELL-Hospital Universitari Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Louis Buscail
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM U1037, Cancer Research Centre of Toulouse (CRCT), Toulouse, France; Department of Gastroenterology, CHU Toulouse-Rangueil, Toulouse, France
| | - Pierre Cordelier
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM U1037, Cancer Research Centre of Toulouse (CRCT), Toulouse, France.
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; CIBERONC, Centro de Investigación Biomédica en Red en Cáncer, Madrid, Spain.
| |
Collapse
|
10
|
Lundstrom K. New frontiers in oncolytic viruses: optimizing and selecting for virus strains with improved efficacy. Biologics 2018; 12:43-60. [PMID: 29445265 PMCID: PMC5810530 DOI: 10.2147/btt.s140114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oncolytic viruses have demonstrated selective replication and killing of tumor cells. Different types of oncolytic viruses – adenoviruses, alphaviruses, herpes simplex viruses, Newcastle disease viruses, rhabdoviruses, Coxsackie viruses, and vaccinia viruses – have been applied as either naturally occurring or engineered vectors. Numerous studies in animal-tumor models have demonstrated substantial tumor regression and prolonged survival rates. Moreover, clinical trials have confirmed good safety profiles and therapeutic efficacy for oncolytic viruses. Most encouragingly, the first cancer gene-therapy drug – Gendicine, based on oncolytic adenovirus type 5 – was approved in China. Likewise, a second-generation oncolytic herpes simplex virus-based drug for the treatment of melanoma has been registered in the US and Europe as talimogene laherparepvec.
Collapse
|
11
|
Abstract
Gene therapy based on viral vectors has demonstrated steady progress recently, not only in the area of cancers. A multitude of viral vectors has been engineered for both preventive and therapeutic applications. Two main approaches comprise of viral vector-based delivery of toxic or anticancer genes or immunization with anticancer antigens. Tumor growth inhibition and tumor regression have been observed, providing improved survival rates in animal tumor models. Furthermore, vaccine-based cancer immunotherapy has demonstrated both tumor regression and protection against challenges with lethal doses of tumor cells. Several clinical trials with viral vectors have also been conducted. Additionally, viral vector-based cancer drugs have been approved. This review gives an overview of different viral vector systems and their applications in cancer gene therapy.
Collapse
|
12
|
Rouanet M, Lebrin M, Gross F, Bournet B, Cordelier P, Buscail L. Gene Therapy for Pancreatic Cancer: Specificity, Issues and Hopes. Int J Mol Sci 2017; 18:ijms18061231. [PMID: 28594388 PMCID: PMC5486054 DOI: 10.3390/ijms18061231] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
Abstract
A recent death projection has placed pancreatic ductal adenocarcinoma as the second cause of death by cancer in 2030. The prognosis for pancreatic cancer is very poor and there is a great need for new treatments that can change this poor outcome. Developments of therapeutic innovations in combination with conventional chemotherapy are needed urgently. Among innovative treatments the gene therapy offers a promising avenue. The present review gives an overview of the general strategy of gene therapy as well as the limitations and stakes of the different experimental in vivo models, expression vectors (synthetic and viral), molecular tools (interference RNA, genome editing) and therapeutic genes (tumor suppressor genes, antiangiogenic and pro-apoptotic genes, suicide genes). The latest developments in pancreatic carcinoma gene therapy are described including gene-based tumor cell sensitization to chemotherapy, vaccination and adoptive immunotherapy (chimeric antigen receptor T-cells strategy). Nowadays, there is a specific development of oncolytic virus therapies including oncolytic adenoviruses, herpes virus, parvovirus or reovirus. A summary of all published and on-going phase-1 trials is given. Most of them associate gene therapy and chemotherapy or radiochemotherapy. The first results are encouraging for most of the trials but remain to be confirmed in phase 2 trials.
Collapse
Affiliation(s)
- Marie Rouanet
- Department of Gastroenterology, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse 31059, France.
- INSERM UMR 1037, Cancer Research Center of Toulouse, Toulouse 31037, France.
| | - Marine Lebrin
- Center for Clinical Investigation 1436, Module of Biotherapy, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse Cedex 9, France.
| | - Fabian Gross
- Center for Clinical Investigation 1436, Module of Biotherapy, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse Cedex 9, France.
| | - Barbara Bournet
- Department of Gastroenterology, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse 31059, France.
- INSERM UMR 1037, Cancer Research Center of Toulouse, Toulouse 31037, France.
- University of Toulouse III, Medical School of Medicine Rangueil, Toulouse 31062, France.
| | - Pierre Cordelier
- INSERM UMR 1037, Cancer Research Center of Toulouse, Toulouse 31037, France.
| | - Louis Buscail
- Department of Gastroenterology, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse 31059, France.
- INSERM UMR 1037, Cancer Research Center of Toulouse, Toulouse 31037, France.
- Center for Clinical Investigation 1436, Module of Biotherapy, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse Cedex 9, France.
- University of Toulouse III, Medical School of Medicine Rangueil, Toulouse 31062, France.
| |
Collapse
|
13
|
Hanoun N, Gayral M, Pointreau A, Buscail L, Cordelier P. Initial Characterization of Integrase-Defective Lentiviral Vectors for Pancreatic Cancer Gene Therapy. Hum Gene Ther 2016; 27:184-92. [PMID: 26731312 PMCID: PMC4779299 DOI: 10.1089/hum.2015.151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/23/2015] [Indexed: 12/11/2022] Open
Abstract
The vast majority (85%) of pancreatic ductal adenocarcinomas (PDACs) are discovered at too of a late stage to allow curative surgery. In addition, PDAC is highly resistant to conventional methods of chemotherapy and radiotherapy, which only offer a marginal clinical benefit. Consequently, the prognosis of this cancer is devastating, with a 5-year survival rate of less than 5%. In this dismal context, we recently demonstrated that PDAC gene therapy using nonviral vectors is safe and feasible, with early signs of efficacy in selected patients. Our next step is to transfer to the clinic HIV-1-based lentiviral vectors (LVs) that outshine other therapeutic vectors to treat experimental models of PDAC. However, a primary safety issue presented by LVs that may delay their use in patients is the risk of oncogenesis after vector integration in the host's cell DNA. Thus, we developed a novel anticancerous approach based on integrase-defective lentiviral vectors (IDLVs) and demonstrated that IDLVs can be successfully engineered to transiently deliver therapeutic genes to inhibit pancreatic cancer cells proliferation. This work stems for the use of therapeutic IDLVs for the management of PDAC, in forthcoming early phase gene therapy clinical trial for this disease with no cure.
Collapse
Affiliation(s)
- Naima Hanoun
- Inserm, UMR1037 CRCT, Toulouse, France
- Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Toulouse, France
| | - Marion Gayral
- Inserm, UMR1037 CRCT, Toulouse, France
- Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Toulouse, France
| | - Adeline Pointreau
- Inserm, UMR1037 CRCT, Toulouse, France
- Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Toulouse, France
- Department of Gastroenterology, CHU Toulouse-Rangueil, Toulouse, France
| | - Louis Buscail
- Inserm, UMR1037 CRCT, Toulouse, France
- Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Toulouse, France
- Department of Gastroenterology, CHU Toulouse-Rangueil, Toulouse, France
| | - Pierre Cordelier
- Inserm, UMR1037 CRCT, Toulouse, France
- Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Toulouse, France
| |
Collapse
|
14
|
Chu Y, Oum YH, Carrico IS. Surface modification via strain-promoted click reaction facilitates targeted lentiviral transduction. Virology 2015; 487:95-103. [PMID: 26499046 DOI: 10.1016/j.virol.2015.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/19/2015] [Accepted: 09/21/2015] [Indexed: 11/29/2022]
Abstract
As a result of their ability to integrate into the genome of both dividing and non-dividing cells, lentiviruses have emerged as a promising vector for gene delivery. Targeted gene transduction of specific cells and tissues by lentiviral vectors has been a major goal, which has proven difficult to achieve. We report a novel targeting protocol that relies on the chemoselective attachment of cancer specific ligands to unnatural glycans on lentiviral surfaces. This strategy exhibits minimal perturbation on virus physiology and demonstrates remarkable flexibility. It allows for targeting but can be more broadly useful with applications such as vector purification and immunomodulation.
Collapse
Affiliation(s)
- Yanjie Chu
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Yoon Hyeun Oum
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Isaac S Carrico
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA; Institute of Chemical Biology and Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA.
| |
Collapse
|
15
|
Yi XP, Han T, Li YX, Long XY, Li WZ. Simultaneous silencing of XIAP and survivin causes partial mesenchymal-epithelial transition of human pancreatic cancer cells via the PTEN/PI3K/Akt pathway. Mol Med Rep 2015; 12:601-8. [PMID: 25707849 DOI: 10.3892/mmr.2015.3380] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 01/21/2015] [Indexed: 11/05/2022] Open
Abstract
Pancreatic cancer has one of the highest mortality rates among malignant tumors and is characterized by rapid invasion, early metastasis and chemoresistance. X-linked inhibitor of apoptosis (XIAP) and survivin are two of the most important members of the IAP family. Previous studies have shown that XIAP and survivin were overexpressed in pancreatic cancer and were closely associated with cell proliferation and chemoresistance to gemcitabine. In the present study, stable inhibition of XIAP and survivin in Panc-1 cells was performed using lentivirus-carried short hairpin RNAs. The expression of XIAP, survivin, E-cadherin, Slug, phosphatase and tensin homolog (PTEN) and phosphorylated Akt was then measured. In addition, cell proliferation, apoptosis, invasion and migration were assessed. The results showed that stable inhibition of XIAP and survivin expression in Panc-1 cells significantly reduced cell proliferation, increased apoptosis and partially reversed the epithelial-mesenchymal transition (EMT). Furthermore, the results of the present study demonstrated that the partial reversal of the EMT was accompanied by inhibited cell invasion and migration as well as increased chemosensitivity to gemcitabine in pancreatic cancer cells; this was indicated to be mediated via the PTEN/phosphatidylinositol 3-kinase/Akt signaling pathway. In conclusion, these results suggested that simultaneous inhibition of XIAP and survivin may be a promising strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Xiao-Ping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Tong Han
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yi-Xiong Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xue-Ying Long
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wen-Zheng Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
16
|
Liu SX, Xia ZS, Zhong YQ. Gene therapy in pancreatic cancer. World J Gastroenterol 2014; 20:13343-68. [PMID: 25309069 PMCID: PMC4188890 DOI: 10.3748/wjg.v20.i37.13343] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/29/2013] [Accepted: 06/12/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC by searching the literature published in English using the PubMed database and analyzing clinical trials registered on the Gene Therapy Clinical Trials Worldwide website (http://www. wiley.co.uk/genmed/ clinical). Viral vectors are main gene delivery tools in gene therapy of cancer, and especially, oncolytic virus shows brighter prospect due to its tumor-targeting property. Efficient therapeutic targets for gene therapy include tumor suppressor gene p53, mutant oncogene K-ras, anti-angiogenesis gene VEGFR, suicide gene HSK-TK, cytosine deaminase and cytochrome p450, multiple cytokine genes and so on. Combining different targets or combination strategies with traditional chemoradiotherapy may be a more effective approach to improve the efficacy of cancer gene therapy. Cancer gene therapy is not yet applied in clinical practice, but basic and clinical studies have demonstrated its safety and clinical benefits. Gene therapy will be a new and promising field for the treatment of PC.
Collapse
|
17
|
Shahidi-Hamedani N, Shier WT, Moghadam Ariaee F, Abnous K, Ramezani M. Targeted gene delivery with noncovalent electrostatic conjugates of sgc-8c aptamer and polyethylenimine. J Gene Med 2014; 15:261-9. [PMID: 23794147 DOI: 10.1002/jgm.2718] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Several strategies have been shown to improve the transfection efficiency of polyethylenimine (PEI) as a nonviral gene delivery vector. In the present study, a nucleic acid aptamer specific for protein tyrosine kinase 7 (PTK7) surface marker, sgc-8c, was conjugated electrostatically to pre-formed 10-kDa PEI/plasmid DNA polyplexes, and the ability of the conjugate to transfer genetic material was evaluated in MOLT-4 human acute lymphoblastic leukemia T-cells, which express PTK7 on their surface. METHODS Polyplexes (plasmid DNA-vector conjugates), prepared using PEI-sgc-8c conjugate and pCMVLuc as a reporter gene, were characterized in terms of particle size, surface charge and the extent of DNA condensation. Polyplexes were also evaluated for cytotoxicity using the MTS colorimetric assay, as well as for transfection efficiency in MOLT-4 cells, and compared with the results obtained in U266 cells, which lack cell surface PTK7. RESULTS Relative to pDNA/PEI, the size of pDNA/PEI/sgc-8c aptamer polyplexes increased with decreasing zeta potential. In MOLT-4 cells, pDNA/PEI/sgc-8c aptamer polyplexes exhibited an almost six- to eight-fold increase in transfection efficiency compared to that of pDNA/PEI polyplex, indicating that conjugation of sgc-8c aptamer to pre-formed 10-kDa PEI/plasmid DNA polyplexes achieved effective targeting without covalent attachment, whereas receptor-mediated conducted transfection was confirmed by performing a competitive transfection experiment and a cellular uptake study. CONCLUSIONS The results of the present study provide an example of the usefulness of a nucleic acid aptamer in the form of noncovalent, electrostatic conjugates as an approach for enhancing the transfection efficiency of a polycation vector such as PEI without significant induced cytotoxicity.
Collapse
Affiliation(s)
- Nasim Shahidi-Hamedani
- Pharmaceutical Research Centre, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | |
Collapse
|
18
|
Johnson JL, de Mejia EG. Flavonoid apigenin modified gene expression associated with inflammation and cancer and induced apoptosis in human pancreatic cancer cells through inhibition of GSK-3β/NF-κB signaling cascade. Mol Nutr Food Res 2013; 57:2112-27. [PMID: 23943362 DOI: 10.1002/mnfr.201300307] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 06/09/2013] [Accepted: 06/13/2013] [Indexed: 01/04/2023]
Abstract
SCOPE The objective was to examine the inhibitory effects of citrus fruit bioactive compounds on BxPC-3 and PANC-1 human pancreatic cancer cells, focusing on the antiproliferative mechanism of action of the flavonoid apigenin related to the glycogen synthase kinase-3β/nuclear factor kappa B signaling pathway. METHODS AND RESULTS Flavonoids, limonoids, phenolic acids, and ascorbic acid were tested for cytotoxic effects on BxPC-3 and PANC-1 cells; apigenin was the most potent (IC50 = 23 and 12 μM for 24 and 48 h for BxPC-3 and IC50 = 71 and 41 μM for 24 and 48 h for PANC-1). Apigenin induced pancreatic cell death through inhibition of the glycogen synthase kinase-3β/nuclear factor kappa B signaling pathway. Apigenin arrested cell cycle at G2 /M phase (36 and 32% at 50 μM for BxPC-3 and PANC-1, respectively) with concomitant decrease in the expression of cyclin B1. Apigenin activated the mitochondrial pathway of apoptosis (44 and 14% at 50 μM for BxPC-3 and PANC-1, respectively) and modified the expression of apoptotic proteins. Apigenin highly upregulated the expression of cytokine genes IL17F (114.2-fold), LTA (33.1-fold), IL17C (23.2-fold), IL17A (11.3-fold), and IFNB1 (8.9-fold) in BxPC-3 cells, which potentially contributed to the anticancer properties. CONCLUSION Flavonoids have a protective role in pancreatic cancer tumorigenesis.
Collapse
Affiliation(s)
- Jodee L Johnson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, IL, USA
| | | |
Collapse
|
19
|
Xu CM, Liu WW, Liu CJ, Wen C, Lu HF, Wan FS. Mst1 overexpression inhibited the growth of human non-small cell lung cancer in vitro and in vivo. Cancer Gene Ther 2013; 20:453-60. [PMID: 23928732 DOI: 10.1038/cgt.2013.40] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 05/19/2013] [Indexed: 01/06/2023]
Abstract
Mammalian STE20-like kinase 1 (Mst1) ubiquitously encodes serine threonine kinase, which is a 59-kDa class II GC kinase that shares 76% identity in amino-acid sequence with MST2, and is the closest mammalian homolog of Drosophila Hippo protein kinase, a major inhibitor of cell proliferation in Drosophila. Recent studies have shown that Mst1 and Mst2 perform tumor-suppressor function in a redundant manner and were originally identified as pro-apoptotic cytoplasmic kinases important for controlling cell growth, proliferation, apoptosis and organ size. We used recombinant eukaryotic expression vector containing human wild-type Mst1 gene to transfect human non-small cell lung cancer (NSCLC) A549 cells in vitro and in vivo. The results showed that Mst1 overexpression inhibited cell proliferation and induced apoptosis of A549 cells, promoted Yes-associated protein (YAP) (Ser127) phosphorylation and downregulated the transcriptional level of Cystein-rich protein connective tissue growth factor (CTGF), amphiregulin (AREG) and Survivin. In human NSCLC-cell-A549-xenograft models, Mst1 gene or cisplatin alone suppressed the growth of tumors and increased the cytoplasm-positive expression levels of YAP and Phospho-YAP (Ser127) proteins; however, their combination had the strongest anticancer effects. Overall, Mst1 has an important role in inhibiting the growth of NSCLC in vitro and in vivo; its antiproliferative effect is associated with induction of apoptosis through promotion of the cytoplasmic localization and phosphorylation of YAP protein at Ser127 site, indicating that Mst1 may be developed as a promising therapeutic target for NSCLC.
Collapse
Affiliation(s)
- C M Xu
- Department of Biochemistry and Molecular Biology, Basic Medical College of Nanchang University, Nanchang, China
| | | | | | | | | | | |
Collapse
|
20
|
Sicard F, Gayral M, Lulka H, Buscail L, Cordelier P. Targeting miR-21 for the therapy of pancreatic cancer. Mol Ther 2013; 21:986-94. [PMID: 23481326 DOI: 10.1038/mt.2013.35] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite tremendous efforts worldwide from clinicians and cancer scientists, pancreatic ductal adenocarcinoma (PDA) remains a deadly disease for which no cure is available. Recently, microRNAs (miRNAs) have emerged as key actors in carcinogenesis and we demonstrated that microRNA-21 (miR-21), oncomiR is expressed early during PDA. In the present study, we asked whether targeting miR-21 in human PDA-derived cell lines using lentiviral vectors (LVs) may impede tumor growth. We demonstrated that LVs-transduced human PDA efficiently downregulated miR-21 expression, both in vitro and in vivo. Consequently, cell proliferation was strongly inhibited and PDA-derived cell lines died by apoptosis through the mitochondrial pathway. In vivo, miR-21 depletion stopped the progression of a very aggressive model of PDA, to induce cell death by apoptosis; furthermore, combining miR-21 targeting and chemotherapeutic treatment provoked tumor regression. We demonstrate herein for the first time that targeting oncogenic miRNA strongly inhibit pancreatic cancer tumor growth both in vitro and in vivo. Because miR-21 is overexpressed in most human tumors; therapeutic delivery of miR-21 antagonists may still be beneficial for a large number of cancers for which no cure is available.
Collapse
Affiliation(s)
- Flavie Sicard
- INSERM U1037, Cancer Research Center of Toulouse, Toulouse, France
| | | | | | | | | |
Collapse
|
21
|
Lafitte M, Rousseau B, Moranvillier I, Taillepierre M, Peuchant E, Guyonnet-Dupérat V, Bedel A, Dubus P, de Verneuil H, Moreau-Gaudry F, Dabernat S. In vivo gene transfer targeting in pancreatic adenocarcinoma with cell surface antigens. Mol Cancer 2012; 11:81. [PMID: 23088623 PMCID: PMC3546072 DOI: 10.1186/1476-4598-11-81] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 08/16/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma is a deadly malignancy resistant to current therapies. It is critical to test new strategies, including tumor-targeted delivery of therapeutic agents. This study tested the possibility to target the transfer of a suicide gene in tumor cells using an oncotropic lentiviral vector. RESULTS Three cell surface markers were evaluated to target the transduction of cells by lentiviruses pseudotyped with a modified glycoprotein from Sindbis virus. Only Mucin-4 and the Claudin-18 proteins were found efficient for targeted lentivirus transductions in vitro. In subcutaneous xenografts of human pancreatic cancer cells models, Claudin-18 failed to achieve efficient gene transfer but Mucin-4 was found very potent. Human pancreatic tumor cells were modified to express a fluorescent protein detectable in live animals by bioimaging, to perform a direct non invasive and costless follow up of the tumor growth. Targeted gene transfer of a bicistronic transgene bearing a luciferase gene and the herpes simplex virus thymidine kinase gene into orthotopic grafts was carried out with Mucin-4 oncotropic lentiviruses. By contrast to the broad tropism VSV-G carrying lentivirus, this oncotropic lentivirus was found to transduce specifically tumor cells, sparing normal pancreatic cells in vivo. Transduced cells disappeared after ganciclovir treatment while the orthotopic tumor growth was slowed down. CONCLUSION This work considered for the first time three aspect of pancreatic adenocarcinoma targeted therapy. First, lentiviral transduction of human pancreatic tumor cells was possible when cells were grafted orthotopically. Second, we used a system targeting the tumor cells with cell surface antigens and sparing the normal cells. Finally, the TK/GCV anticancer system showed promising results in vivo. Importantly, the approach presented here appeared to be a safer, much more specific and an as efficient way to perform gene delivery in pancreatic tumors, in comparison with a broad tropism lentivirus. This study will be useful in future designing of targeted therapies for pancreatic cancer.
Collapse
|
22
|
Jiang C, Yi XP, Shen H, Li YX. Targeting X-linked inhibitor of apoptosis protein inhibits pancreatic cancer cell growth through p-Akt depletion. World J Gastroenterol 2012; 18:2956-65. [PMID: 22736919 PMCID: PMC3380323 DOI: 10.3748/wjg.v18.i23.2956] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine whether lentivirus-mediated shRNA targeting the X-linked inhibitor of apoptosis protein (XIAP) gene could be exploited in the treatment of pancreatic cancer.
METHODS: Human pancreatic cancer cells Panc-1, Mia-paca2, Bxpc-3 and SW1990, infected with lentivirus, were analyzed by real-time polymerase chain reaction (PCR). Western blotting was used to examine XIAP protein levels, survivin and p-Akt to confirm the result of real-time PCR and determine the possible mechanism. The 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to measure IC50 to determine chemosensitivity to the chemotherapeutic drugs 5-fluorouracil (5-FU) and gemcitabine. A colony assay, MTT assay and a tumorigenicity experiment were used to study cell proliferation in vitro and in vivo. Caspase-3/7 activity, 4',6-diamidino-2-phenylindole-staining and flow cytometric measurements were used to study apoptosis in SW1990 cells.
RESULTS: XIAP proteins were found to be differentially expressed among pancreatic cancer cell lines Panc-1, Mia-paca2, Bxpc-3 and SW1990. Data of real-time PCR and Western blotting showed that XIAP was reduced persistently and markedly by lentivirus-mediated shRNA. Downregulation of XIAP by transfection with XIAP shRNA resulted in decreased p-Akt expression. XIAP shRNA also inhibited the growth of pancreatic cancer cells in vitro and in vivo, enhanced drug-induced apoptosis and increased chemosensitivity to 5-FU and gemcitabine. Results also suggest that inhibition of XIAP and subsequent p-Akt depletion may have an anti-tumor effect through attenuating the ability of cancer cells to survive.
CONCLUSION: Lentivirus-mediated gene therapy is an attractive strategy in the treatment of pancreatic cancer and justifies the use of lentivirus in pancreatic cancer gene therapy studies.
Collapse
|
23
|
Fillat C, Jose A, Bofill-Deros X, Mato-Berciano A, Maliandi MV, Sobrevals L. Pancreatic cancer gene therapy: from molecular targets to delivery systems. Cancers (Basel) 2011; 3:368-95. [PMID: 24212620 PMCID: PMC3756366 DOI: 10.3390/cancers3010368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/05/2011] [Accepted: 01/13/2011] [Indexed: 02/08/2023] Open
Abstract
The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.
Collapse
Affiliation(s)
- Cristina Fillat
- Programa Gens i Malaltia, Centre de Regulació Genòmica-CRG, UPF, Parc de Recerca Biomèdica de Barcelona-PRBB and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
24
|
Touchefeu Y, Harrington KJ, Galmiche JP, Vassaux G. Review article: gene therapy, recent developments and future prospects in gastrointestinal oncology. Aliment Pharmacol Ther 2010; 32:953-68. [PMID: 20937041 DOI: 10.1111/j.1365-2036.2010.04424.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gene therapy consists of the introduction of genetic material into cells for a therapeutic purpose. A wide range of gene therapy vectors have been developed and used for applications in gastrointestinal oncology. AIM To review recent developments and published clinical trials concerning the application of gene therapy in the treatment of liver, colon and pancreatic cancers. METHODS Search of the literature published in English using the PubMed database. RESULTS A large variety of therapeutic genes are under investigation, such as tumour suppressor, suicide, antiangiogenesis, inflammatory cytokine and micro-RNA genes. Recent progress concerns new vectors, such as oncolytic viruses, and the synergy between viral gene therapy, chemotherapy and radiation therapy. As evidence of these basic developments, recently published phase I and II clinical trials, using both single agents and combination strategies, in adjuvant or advanced disease settings, have shown encouraging results and good safety records. CONCLUSIONS Cancer gene therapy is not yet indicated in clinical practice. However, basic and clinical advances have been reported and gene therapy is a promising, new therapeutic approach for the treatment of gastrointestinal tumours.
Collapse
Affiliation(s)
- Y Touchefeu
- Institut des Maladies de l'Appareil Digestif, INSERM U, University Hospital, Nantes, France.
| | | | | | | |
Collapse
|