1
|
Dianat-Moghadam H, Sharifi M, Salehi R, Keshavarz M, Shahgolzari M, Amoozgar Z. Engaging stemness improves cancer immunotherapy. Cancer Lett 2023; 554:216007. [PMID: 36396102 DOI: 10.1016/j.canlet.2022.216007] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Intra-tumoral immune cells promote the stemness of cancer stem cells (CSCs) in the tumor microenvironment (TME). CSCs promote tumor progression, relapse, and resistance to immunotherapy. Cancer stemness induces the expression of neoantigens and neo-properties in CSCs, creating an opportunity for targeted immunotherapies. Isolation of stem-like T cells or retaining stemness in T clonotypes strategies produces exhaustion-resistance T cells with superior re-expansion capacity and long-lasting responses after adoptive cell therapies. Stem cells-derived NK cells may be the next generation of NK cell products for immunotherapy. Here, we have reviewed mechanisms by which stemness factors modulated the immunoediting of the TME and summarized the potentials of CSCs in the development of immunotherapy regimens, including CAR-T cells, CAR-NK cells, cancer vaccines, and monoclonal antibodies. We have discussed the natural or genetically engineered stem-like T cells and stem cell-derived NK cells with increased cytotoxicity to tumor cells. Finally, we have provided a perspective on approaches that may improve the therapeutic efficacy of these novel adoptive cell-based products in targeting immunosuppressive TME.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehdi Shahgolzari
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zohreh Amoozgar
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Saha T, Lukong KE. Breast Cancer Stem-Like Cells in Drug Resistance: A Review of Mechanisms and Novel Therapeutic Strategies to Overcome Drug Resistance. Front Oncol 2022; 12:856974. [PMID: 35392236 PMCID: PMC8979779 DOI: 10.3389/fonc.2022.856974] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most frequent type of malignancy in women worldwide, and drug resistance to the available systemic therapies remains a major challenge. At the molecular level, breast cancer is heterogeneous, where the cancer-initiating stem-like cells (bCSCs) comprise a small yet distinct population of cells within the tumor microenvironment (TME) that can differentiate into cells of multiple lineages, displaying varying degrees of cellular differentiation, enhanced metastatic potential, invasiveness, and resistance to radio- and chemotherapy. Based on the expression of estrogen and progesterone hormone receptors, expression of human epidermal growth factor receptor 2 (HER2), and/or BRCA mutations, the breast cancer molecular subtypes are identified as TNBC, HER2 enriched, luminal A, and luminal B. Management of breast cancer primarily involves resection of the tumor, followed by radiotherapy, and systemic therapies including endocrine therapies for hormone-responsive breast cancers; HER2-targeted therapy for HER2-enriched breast cancers; chemotherapy and poly (ADP-ribose) polymerase inhibitors for TNBC, and the recent development of immunotherapy. However, the complex crosstalk between the malignant cells and stromal cells in the breast TME, rewiring of the many different signaling networks, and bCSC-mediated processes, all contribute to overall drug resistance in breast cancer. However, strategically targeting bCSCs to reverse chemoresistance and increase drug sensitivity is an underexplored stream in breast cancer research. The recent identification of dysregulated miRNAs/ncRNAs/mRNAs signatures in bCSCs and their crosstalk with many cellular signaling pathways has uncovered promising molecular leads to be used as potential therapeutic targets in drug-resistant situations. Moreover, therapies that can induce alternate forms of regulated cell death including ferroptosis, pyroptosis, and immunotherapy; drugs targeting bCSC metabolism; and nanoparticle therapy are the upcoming approaches to target the bCSCs overcome drug resistance. Thus, individualizing treatment strategies will eliminate the minimal residual disease, resulting in better pathological and complete response in drug-resistant scenarios. This review summarizes basic understanding of breast cancer subtypes, concept of bCSCs, molecular basis of drug resistance, dysregulated miRNAs/ncRNAs patterns in bCSCs, and future perspective of developing anticancer therapeutics to address breast cancer drug resistance.
Collapse
Affiliation(s)
- Taniya Saha
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Oncolytic viruses: A novel treatment strategy for breast cancer. Genes Dis 2021; 10:430-446. [DOI: 10.1016/j.gendis.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022] Open
|
4
|
Jahan N, Ghouse SM, Martuza RL, Rabkin SD. In Situ Cancer Vaccination and Immunovirotherapy Using Oncolytic HSV. Viruses 2021; 13:v13091740. [PMID: 34578321 PMCID: PMC8473045 DOI: 10.3390/v13091740] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex virus (HSV) can be genetically altered to acquire oncolytic properties so that oncolytic HSV (oHSV) preferentially replicates in and kills cancer cells, while sparing normal cells, and inducing anti-tumor immune responses. Over the last three decades, a better understanding of HSV genes and functions, and improved genetic-engineering techniques led to the development of oHSV as a novel immunovirotherapy. The concept of in situ cancer vaccination (ISCV) was first introduced when oHSV was found to induce a specific systemic anti-tumor immune response with an abscopal effect on non-injected tumors, in the process of directly killing tumor cells. Thus, the use of oHSV for tumor vaccination in situ is antigen-agnostic. The research and development of oHSVs have moved rapidly, with the field of oncolytic viruses invigorated by the FDA/EMA approval of oHSV talimogene laherparepvec in 2015 for the treatment of advanced melanoma. Immunovirotherapy can be enhanced by arming oHSV with immunomodulatory transgenes and/or using them in combination with other chemotherapeutic and immunotherapeutic agents. This review offers an overview of the development of oHSV as an agent for ISCV against solid tumors, describing the multitude of different oHSVs and their efficacy in immunocompetent mouse models and in clinical trials.
Collapse
Affiliation(s)
- Nusrat Jahan
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Shanawaz M. Ghouse
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Robert L. Martuza
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Samuel D. Rabkin
- Department of Neurosurgery, Massachusetts General Hospital, 185 Cambridge St., CPZN-3800, Boston, MA 02114, USA
- Correspondence:
| |
Collapse
|
5
|
Costa A, Vale N. Strategies for the treatment of breast cancer: from classical drugs to mathematical models. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:6328-6385. [PMID: 34517536 DOI: 10.3934/mbe.2021316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Breast cancer is one of the most common cancers and generally affects women. It is a heterogeneous disease that presents different entities, different biological characteristics, and differentiated clinical behaviors. With this in mind, this literature review had as its main objective to analyze the path taken from the simple use of classical drugs to the application of mathematical models, which through the many ongoing studies, have been considered as one of the reliable strategies, explaining the reasons why chemotherapy is not always successful. Besides, the most commonly mentioned strategies are immunotherapy, which includes techniques and therapies such as the use of antibodies, cytokines, antitumor vaccines, oncolytic and genomic viruses, among others, and nanoparticles, including metallic, magnetic, polymeric, liposome, dendrimer, micelle, and others, as well as drug reuse, which is a process by which new therapeutic indications are found for existing and approved drugs. The most commonly used pharmacological categories are cardiac, antiparasitic, anthelmintic, antiviral, antibiotic, and others. For the efficient development of reused drugs, there must be a process of exchange of purposes, methods, and information already available, and for their better understanding, computational mathematical models are then used, of which the methods of blind search or screening, based on the target, knowledge, signature, pathway or network and the mechanism to which it is directed, stand out. To conclude it should be noted that these different strategies can be applied alone or in combination with each other always to improve breast cancer treatment.
Collapse
Affiliation(s)
- Ana Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
6
|
Kwan A, Winder N, Muthana M. Oncolytic Virotherapy Treatment of Breast Cancer: Barriers and Recent Advances. Viruses 2021; 13:1128. [PMID: 34208264 PMCID: PMC8230950 DOI: 10.3390/v13061128] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Oncolytic virotherapy (OV) is an emerging class of immunotherapeutic drugs. Their mechanism of action is two-fold: direct cell lysis and unmasking of the cancer through immunogenic cell death, which allows the immune system to recognize and eradicate tumours. Breast cancer is the most common cancer in women and is challenging to treat with immunotherapy modalities because it is classically an immunogenically "cold" tumour type. This provides an attractive niche for OV, given viruses have been shown to turn "cold" tumours "hot," thereby opening a plethora of treatment opportunities. There has been a number of pre-clinical attempts to explore the use of OV in breast cancer; however, these have not led to any meaningful clinical trials. This review considers both the potential and the barriers to OV in breast cancer, namely, the limitations of monotherapy and the scope for combination therapy, improving viral delivery and challenges specific to the breast cancer population (e.g., tumour subtype, menopausal status, age).
Collapse
Affiliation(s)
| | | | - Munitta Muthana
- Department of Oncology and Metabolism, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK; (A.K.); (N.W.)
| |
Collapse
|
7
|
He L, Yu A, Deng L, Zhang H. Eradicating the Roots: Advanced Therapeutic Approaches Targeting Breast Cancer Stem Cells. Curr Pharm Des 2020; 26:2009-2021. [PMID: 32183663 DOI: 10.2174/1381612826666200317132949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/08/2020] [Indexed: 12/30/2022]
Abstract
Accumulating evidences have demonstrated that the existence of breast cancer-initiating cells, which drives the original tumorigenicity, local invasion and migration propensity of breast cancer. These cells, termed as breast cancer stem cells (BCSCs), possess properties including self-renewal, multidirectional differentiation and proliferative potential, and are believed to play important roles in the intrinsic drug resistance of breast cancer. One of the reasons why BCBCs cause difficulties in breast cancer treating is that BCBCs can control both genetic and non-genetic elements to keep their niches safe and sound, which allows BCSCs for constant self-renewal and differentiation. Therapeutic strategies designed to target BCSCs may ultimately result in effective interventions for the treatment of breast cancer. Novel strategies including nanomedicine, oncolytic virus therapy, immunotherapy and induced differentiation therapy are emerging and proved to be efficient in anti-BCSCs therapy. In this review, we summarized breast tumor biology and the current challenges of breast cancer therapies, focused on breast cancer stem cells, and introduced promising therapeutic strategies targeting BCSCs.
Collapse
Affiliation(s)
- Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Anran Yu
- The State University of New York, Buffalo, NY 12246, United States
| | - Li Deng
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Hongwei Zhang
- School of Pharmacy, MCPHS University, Boston, MA 02115, United States
| |
Collapse
|
8
|
Tang S, Mao G, Yuan Y, Weng Y, Zhu R, Cai C, Mao J. Optimization of oat seed steeping and germination temperatures to maximize nutrient content and antioxidant activity. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Siyu Tang
- School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Ge Mao
- School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Yue Yuan
- School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Yundan Weng
- School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Ruiyu Zhu
- School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Chenggang Cai
- School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing Hangzhou China
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Product Hangzhou China
| | - Jianwei Mao
- School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing Hangzhou China
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Product Hangzhou China
| |
Collapse
|
9
|
Zendedel E, Atkin SL, Sahebkar A. Use of stem cells as carriers of oncolytic viruses for cancer treatment. J Cell Physiol 2019; 234:14906-14913. [PMID: 30770550 DOI: 10.1002/jcp.28320] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 01/19/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Therapeutic application of stem cells and oncolytic viruses in cancer treatment has rapidly increased in the last decade. Oncolytic viruses are considered as a new class of anticancer agents because of their ability to selectively infect and destroy cancer cells. Furthermore, regarding the specific migratory capacity of stem cells, they can be used as carriers or vectors targeting metastatic cancer. Promising results have been reported regarding the use of stem cells and oncolytic viruses as a therapeutic approach for the treatment of metastatic cancer. The present review aimed to determine the approaches involved in the use of the tumor-homing capacity of stem cells for cancer treatment.
Collapse
Affiliation(s)
- Elham Zendedel
- Department of Biology, Faculty of Sciences, Islamic Azad University-Mashhad Branch, Mashhad, Iran
| | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Ebrahimi S, Ghorbani E, Shafiee M, Ryzhikov M, Hassanian SM, Azadmanesh K. Therapeutic potency of oncolytic virotherapy in breast cancer targeting, current status and perspective. J Cell Biochem 2018; 120:2801-2809. [PMID: 30260014 DOI: 10.1002/jcb.27725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/29/2018] [Indexed: 12/26/2022]
Abstract
Breast cancer is the most common cause of cancer death in women and presents a serious therapeutic challenge worldwide. Traditional treatments are less successful at targeting cancer tumors, leading to recurrent treatment-resistant secondary malignancies. Oncolytic virotherapy (OV) is a novel anticancer strategy with therapeutic implications at targeting cancer cells by using mechanisms that differ from conventional therapies. Administration of OVs either alone or in combination with standard therapies provide new insights regarding the effectiveness and improvement of treatment responses for breast cancer patients. This review summarizes cellular, animal and clinical studies investigating therapeutic potency of oncolytic virotherapy in breast cancer treatment for a better understanding and hence a better management of this disease.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Department of Microbiology, Al-Zahra University, Tehran, Iran
| | - Mojtaba Shafiee
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, Missouri
| | - Seyed M Hassanian
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
11
|
Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis. Semin Cancer Biol 2018; 53:90-109. [PMID: 29966677 DOI: 10.1016/j.semcancer.2018.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Metastasis is one of the most challenging issues in cancer patient management, and effective therapies to specifically target disease progression are missing, emphasizing the urgent need for developing novel anti-metastatic therapeutics. Cancer stem cells (CSCs) gained fast attention as a minor population of highly malignant cells within liquid and solid tumors that are responsible for tumor onset, self-renewal, resistance to radio- and chemotherapies, and evasion of immune surveillance accelerating recurrence and metastasis. Recent progress in the identification of their phenotypic and molecular characteristics and interactions with the tumor microenvironment provides great potential for the development of CSC-based targeted therapies and radical improvement in metastasis prevention and cancer patient prognosis. Here, we report on newly uncovered signaling mechanisms controlling CSC's aggressiveness and treatment resistance, and CSC-specific agents and molecular therapeutics, some of which are currently under investigation in clinical trials, gearing towards decisive functional CSC intrinsic or surface markers. One special research focus rests upon subverted regulatory pathways such as insulin-like growth factor 1 receptor signaling and its interactors in metastasis-initiating cell populations directly related to the gain of stem cell- and EMT-associated properties, as well as key components of the E2F transcription factor network regulating metastatic progression, microenvironmental changes, and chemoresistance. In addition, the study provides insight into systems biology tools to establish complex molecular relationships behind the emergence of aggressive phenotypes from high-throughput data that rely on network-based analysis and their use to investigate immune escape mechanisms or predict clinical outcome-relevant CSC receptor signaling signatures. We further propose that customized vector technologies could drastically enhance systemic drug delivery to target sites, and summarize recent progress and remaining challenges. This review integrates available knowledge on CSC biology, computational modeling approaches, molecular targeting strategies, and delivery techniques to envision future clinical therapies designed to conquer metastasis-initiating cells.
Collapse
|
12
|
Chaurasiya S, Chen NG, Warner SG. Oncolytic Virotherapy versus Cancer Stem Cells: A Review of Approaches and Mechanisms. Cancers (Basel) 2018; 10:E124. [PMID: 29671772 PMCID: PMC5923379 DOI: 10.3390/cancers10040124] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 12/26/2022] Open
Abstract
A growing body of evidence suggests that a subset of cells within tumors are resistant to conventional treatment modalities and may be responsible for disease recurrence. These cells are called cancer stem cells (CSC), which share properties with normal stem cells including self-renewal, pluripotency, drug resistance, and the ability to maintain quiescence. While most conventional therapies can efficiently destroy rapidly dividing cancer cells comprising the bulk of a tumor, they often fail to kill the less abundant and quiescent CSCs. Furthermore, killing of only differentiated cells in the tumor may actually allow for enrichment of CSCs and thereby portend a bad prognosis. Therefore, targeting of CSCs is important to achieve long-term success in cancer therapy. Oncolytic viruses represent a completely different class of therapeutics that can kill cancer cells in a variety of ways, which differ from those of conventional therapies. Hence, CSCs that are inherently resistant to conventional therapies may be susceptible to oncolytic virus-mediated killing. Recent studies have shown that oncolytic viruses can efficiently kill CSCs in many types of cancer. Here, we discuss the mechanism through which CSCs can escape conventional therapies and how they may still be susceptible to different classes of oncolytic viruses. Furthermore, we provide a summary of recent studies that have tested oncolytic viruses on CSCs of different origins and discuss possible future directions for this fascinating subset of oncolytic virus research.
Collapse
Affiliation(s)
- Shyambabu Chaurasiya
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Nanhai G Chen
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.
- Center for Gene Therapy, Department of Hematologic and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
- Gene Editing and Viral Vector Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Susanne G Warner
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
13
|
O’Bryan SM, Mathis JM. Oncolytic Virotherapy for Breast Cancer Treatment. Curr Gene Ther 2018; 18:192-205. [PMID: 30207220 PMCID: PMC7499349 DOI: 10.2174/1566523218666180910163805] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/20/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022]
Abstract
Breast cancer continues to be a leading cause of mortality among women. While at an early stage, localized breast cancer is easily treated; however, advanced stages of disease continue to carry a high mortality rate. The discrepancy in treatment success highlights that current treatments are insufficient to treat advanced-stage breast cancer. As new and improved treatments have been sought, one therapeutic approach has gained considerable attention. Oncolytic viruses are uniquely capable of targeting cancer cells through intrinsic or engineered means. They come in many forms, mainly from four major virus groups as defined by the Baltimore classification system. These vectors can target and kill cancer cells, and even stimulate immunotherapeutic effects in patients. This review discusses not only individual oncolytic viruses pursued in the context of breast cancer treatment but also the emergence of combination therapies with current or new therapies, which has become a particularly promising strategy for treatment of breast cancer. Overall, oncolytic virotherapy is a promising strategy for increased treatment efficacy for advanced breast cancer and consequently provides a unique platform for personalized treatments in patients.
Collapse
Affiliation(s)
- Samia M. O’Bryan
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - J. Michael Mathis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
14
|
Chen X, Han J, Chu J, Zhang L, Zhang J, Chen C, Chen L, Wang Y, Wang H, Yi L, Elder JB, Wang QE, He X, Kaur B, Chiocca EA, Yu J. A combinational therapy of EGFR-CAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases. Oncotarget 2017; 7:27764-77. [PMID: 27050072 PMCID: PMC5053686 DOI: 10.18632/oncotarget.8526] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/16/2016] [Indexed: 12/11/2022] Open
Abstract
Breast cancer brain metastases (BCBMs) are common in patients with metastatic breast cancer and indicate a poor prognosis. These tumors are especially resistant to currently available treatments due to multiple factors. However, the combination of chimeric antigen receptor (CAR)-modified immune cells and oncolytic herpes simplex virus (oHSV) has not yet been explored in this context. In this study, NK-92 cells and primary NK cells were engineered to express the second generation of EGFR-CAR. The efficacies of anti-BCBMs of EGFR-CAR NK cells, oHSV-1, and their combination were tested in vitro and in a breast cancer intracranial mouse model. In vitro, compared with mock-transduced NK-92 cells or primary NK cells, EGFR-CAR-engineered NK-92 cells and primary NK cells displayed enhanced cytotoxicity and IFN-γ production when co-cultured with breast cancer cell lines MDA-MB-231, MDA-MB-468, and MCF-7. oHSV-1 alone was also capable of lysing and destroying these cells. However, a higher cytolytic effect of EGFR-CAR NK-92 cells was observed when combined with oHSV-1 compared to the monotherapies. In the mice intracranially pre-inoculated with EGFR-expressing MDA-MB-231 cells, intratumoral administration of either EGFR-CAR-transduced NK-92 cells or oHSV-1 mitigated tumor growth. Notably, the combination of EGFR-CAR NK-92 cells with oHSV-1 resulted in more efficient killing of MDA-MB-231 tumor cells and significantly longer survival of tumor-bearing mice when compared to monotherapies. These results demonstrate that regional administration of EGFR-CAR NK-92 cells combined with oHSV-1 therapy is a potentially promising strategy to treat BCBMs.
Collapse
Affiliation(s)
- Xilin Chen
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,Lymphoma/Head and Neck Oncology Department, 307 Hospital, Beijing 100071, China
| | - Jianfeng Han
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Jianhong Chu
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA.,Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215000, China
| | - Lingling Zhang
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Jianying Zhang
- Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Charlie Chen
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Luxi Chen
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Youwei Wang
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Hongwei Wang
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Long Yi
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - J Bradley Elder
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA.,Department of Neurological Surgery, The Ohio State University, Columbus, Ohio 43210, USA
| | - Qi-En Wang
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Balveen Kaur
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA.,Department of Neurological Surgery, The Ohio State University, Columbus, Ohio 43210, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital and Harvey Cushing Neuro-oncology Laboratories, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA.,The James Cancer Hospital, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Orzechowska BU, Jędryka M, Zwolińska K, Matkowski R. VSV based virotherapy in ovarian cancer: the past, the present and …future? J Cancer 2017; 8:2369-2383. [PMID: 28819441 PMCID: PMC5560156 DOI: 10.7150/jca.19473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023] Open
Abstract
The standard approach to treating patients with advanced epithelial ovarian cancer (EOC) after primary debulking surgery remains taxane and platinum-based chemotherapy. Despite treatment with this strategy, the vast majority of patients relapse and develop drug-resistant metastatic disease that may be driven by cancer stem cells (CSCs) or cancer initiating cells (CICs). Oncolytic viruses circumvent typical drug-resistance mechanisms, therefore they may provide a safe and effective alternative treatment for chemotherapy-resistant CSCs/CICs. Among oncolytic viruses vesicular stomatitis virus (VSV) has demonstrated oncolysis and preferential replication in cancer cells. In this review, we summarize the recent findings regarding existing knowledge on biology of the ovarian cancer and the role of ovarian CSCs (OCSCs) in tumor dissemination and chemoresistance. In addition we also present an overview of recent advances in ovarian cancer therapies with oncolytic viruses (OV). We focus particularly on key genetic or immune response pathways involved in tumorigenesis in ovarian cancer which facilitate oncolytic activity of vesicular stomatitis virus (VSV). We highlight the prospects of targeting OCSCs with VSV. The importance of testing an emerging ovarian cancer animal models and ovarian cancer cell culture conditions influencing oncolytic efficacy of VSV is also addressed.
Collapse
Affiliation(s)
- Beata Urszula Orzechowska
- Laboratory of Virology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Marcin Jędryka
- Division of Surgical Oncology, Gynaecological Oncology, Chemotherapy and Department of Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413 Wrocław, Poland
- Lower Silesian Oncology Centre, Wroclaw, Plac Hirszfelda 12, 53-413 Wrocław, Poland
| | - Katarzyna Zwolińska
- Laboratory of Virology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Rafał Matkowski
- Division of Surgical Oncology, Gynaecological Oncology, Chemotherapy and Department of Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413 Wrocław, Poland
- Lower Silesian Oncology Centre, Wroclaw, Plac Hirszfelda 12, 53-413 Wrocław, Poland
| |
Collapse
|
16
|
Liu F, Qi CL, Kong M, Liu TT, Li L, Li BJ. Screening specific polypeptides of breast cancer stem cells from a phage display random peptide library. Oncol Lett 2016; 12:4727-4731. [PMID: 28105180 DOI: 10.3892/ol.2016.5248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/27/2016] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to identify polypeptides that specifically bond to breast cancer stem cells from a phage display random 12 peptide library, in addition to the affinity and specificity of polypeptides. A phage display random 12 peptide library was screened using breast cancer stem cells as targets isolated from the MDA-MB-231 cell line using the serum-free culture technique with hs578bst and MDA-MB-231 cells as subtract-screening cells. Positive and specific binding clones were amplified and sent for sequencing. The affinity and specificity of the positive clones were subsequently identified by ELISA and 3,3'-diaminobenzidine staining. The results demonstrated that phages were gathered ~500 times following three rounds of biopanning. ELISA identified that the affinity to breast cancer stem cells of the no. 6 phage was 6.14 times higher than that in the control group. In addition, immunohistochemistry observed that the no. 6 phage exhibited high-specificity bonding to breast cancer stem cells, and the peptide sequence of the positive phage was GYSASRSTIPGK following DNA sequencing and translation. Thus, the present study isolated a specific peptide that bonds to breast cancer stem cells from a phage display random peptide library, which may facilitate further studies regarding the stem cell-targeted therapy of breast cancer.
Collapse
Affiliation(s)
- Fei Liu
- Cancer Center, Taian Hospital, Taishan Medical College, Taian, Shandong 271000, P.R. China
| | - Chun-Ling Qi
- Clinical Test Center, Taian Hospital, Taishan Medical College, Taian, Shandong 271000, P.R. China
| | - Mian Kong
- Department of Thyroid Breast Surgery, The First People's Hospital of Jining, Jining, Shandong 272000, P.R. China
| | - Ting-Ting Liu
- Cancer Center, Taian Hospital, Taishan Medical College, Taian, Shandong 271000, P.R. China
| | - Lei Li
- Cancer Center, Taian Hospital, Taishan Medical College, Taian, Shandong 271000, P.R. China
| | - Bao-Jiang Li
- Cancer Center, Taian Hospital, Taishan Medical College, Taian, Shandong 271000, P.R. China
| |
Collapse
|
17
|
Nigim F, Esaki SI, Hood M, Lelic N, James MF, Ramesh V, Stemmer-Rachamimov A, Cahill DP, Brastianos PK, Rabkin SD, Martuza RL, Wakimoto H. A new patient-derived orthotopic malignant meningioma model treated with oncolytic herpes simplex virus. Neuro Oncol 2016; 18:1278-87. [PMID: 26951380 DOI: 10.1093/neuonc/now031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/06/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Higher-grade meningiomas (HGMs; World Health Organization grades II and III) pose a clinical problem due to high recurrence rates and the absence of effective therapy. Preclinical development of novel therapeutics requires a disease model that recapitulates the genotype and phenotype of patient HGM. Oncolytic herpes simplex virus (oHSV) has shown efficacy and safety in cancers in preclinical and clinical studies, but its utility for HGM has not been well characterized. METHODS Tumorsphere cultures and serial orthotopic xenografting in immunodeficient mice were used to establish a patient-derived HGM model. The model was pathologically and molecularly characterized by immunohistochemistry, western blot, and genomic DNA sequencing and compared with the patient tumor. Anti-HGM effects of oHSV G47Δ were assessed using cell viability and virus replication assays in vitro and animal survival analysis following intralesional injections of G47Δ. RESULTS We established a serially transplantable orthotopic malignant meningioma model, MN3, which was lethal within 3 months after tumorsphere implantation. MN3 xenografts exhibited the pathological hallmarks of malignant meningioma such as high Ki67 and vimentin expression. Both the patient tumor and xenografts were negative for neurofibromin 2 (merlin) and had the identical NF2 mutation. Oncolytic HSV G47Δ efficiently spread and killed MN3 cells, as well as other patient-derived HGM lines in vitro. Treatment with G47Δ significantly extended the survival of mice bearing subdural MN3 tumors. CONCLUSIONS We established a new patient-derived meningioma model that will enable the study of targeted therapeutic approaches for HGM. Based on these studies, it is reasonable to consider a clinical trial of G47Δ for HGM.
Collapse
Affiliation(s)
- Fares Nigim
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shin-Ichi Esaki
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael Hood
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nina Lelic
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marianne F James
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Vijaya Ramesh
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anat Stemmer-Rachamimov
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel P Cahill
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Priscilla K Brastianos
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Samuel D Rabkin
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Robert L Martuza
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hiroaki Wakimoto
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Cuddington BP, Mossman KL. Oncolytic bovine herpesvirus type 1 as a broad spectrum cancer therapeutic. Curr Opin Virol 2015; 13:11-6. [PMID: 25846987 DOI: 10.1016/j.coviro.2015.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/09/2015] [Accepted: 03/16/2015] [Indexed: 11/29/2022]
Abstract
Oncolytic viruses selectively replicate in tumor cells and elicit antitumor effects in vivo by both direct and indirect methods. They are attractive avenues of cancer therapy due to the absence of toxic side effects often seen in current treatment modalities. Bovine herpesvirus type 1 (BHV-1) holds promise as a broad-spectrum oncolytic vector that is able to infect and kill human tumor cells from a variety of histological origins, including cancer-initiating cells. In the majority of cases, BHV-1 elicits tumor cell death in the absence of a productive infection. In vivo, BHV-1 affects the incidence of secondary lesions in cotton rats bearing subcutaneous breast adenocarcinomas. These recent studies contribute to the characterization of BHV-1 as an oncolytic virus.
Collapse
Affiliation(s)
- Breanne P Cuddington
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Karen L Mossman
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
19
|
Wang JN, Xu LH, Zeng WG, Hu P, Rabkin SD, Liu RR. Treatment of Human Thyroid Carcinoma Cells with the G47delta Oncolytic Herpes Simplex Virus. Asian Pac J Cancer Prev 2015; 16:1241-5. [DOI: 10.7314/apjcp.2015.16.3.1241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
20
|
Wang A, Chen L, Li C, Zhu Y. Heterogeneity in cancer stem cells. Cancer Lett 2015; 357:63-68. [DOI: 10.1016/j.canlet.2014.11.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 01/06/2023]
|
21
|
Tong Y, Qian W. Targeting cancer stem cells with oncolytic virus. Stem Cell Investig 2014; 1:20. [PMID: 27358866 DOI: 10.3978/j.issn.2306-9759.2014.11.01] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/14/2014] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) represent a distinct subpopulation of cancer cells which are shown to be relatively resistant to conventional anticancer therapies and have been correlated to disease recurrence. Oncolytic viruses utilize methods of cell killing that differ from traditional therapies and thus are able to elude the typical mechanisms that CSCs use to resist current chemotherapies and radiotherapies. Moreover, genetically engineered oncolytic viruses may further augment the oncolytic effects. Here we review the recent data regarding the ability of several oncolytic viruses to eradicate CSCs.
Collapse
Affiliation(s)
- Yin Tong
- 1 Department of Hematology, Shanghai General Hospital, Shanghai 200080, China ; 2 Institute of Hematology, the First Afflilated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wenbin Qian
- 1 Department of Hematology, Shanghai General Hospital, Shanghai 200080, China ; 2 Institute of Hematology, the First Afflilated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
22
|
Antoszczyk S, Spyra M, Mautner VF, Kurtz A, Stemmer-Rachamimov AO, Martuza RL, Rabkin SD. Treatment of orthotopic malignant peripheral nerve sheath tumors with oncolytic herpes simplex virus. Neuro Oncol 2014; 16:1057-66. [PMID: 24470552 PMCID: PMC4096170 DOI: 10.1093/neuonc/not317] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUNDS Malignant peripheral nerve sheath tumors (MPNSTs) are an aggressive and often lethal sarcoma that frequently develops in patients with neurofibromatosis type 1 (NF1). We developed new preclinical MPNST models and tested the efficacy of oncolytic herpes simplex viruses (oHSVs), a promising cancer therapeutic that selectively replicates in and kills cancer cells. METHODS Mouse NF1(-) MPNST cell lines and human NF1(-) MPNST stemlike cells (MSLCs) were implanted into the sciatic nerves of immunocompetent and athymic mice, respectively. Tumor growth was followed by external measurement and sciatic nerve deficit using a hind-limb scoring system. Oncolytic HSV G47Δ as well as "armed" G47Δ expressing platelet factor 4 (PF4) or interleukin (IL)-12 were injected intratumorally into established sciatic nerve tumors. RESULTS Mouse MPNST cell lines formed tumors with varying growth kinetics. A single intratumoral injection of G47Δ in sciatic nerve tumors derived from human S462 MSLCs in athymic mice or mouse M2 (37-3-18-4) cells in immunocompetent mice significantly inhibited tumor growth and prolonged survival. Local IL-12 expression significantly improved the efficacy of G47Δ in syngeneic mice, while PF4 expression prolonged survival. Injection of G47Δ directly into the sciatic nerve of athymic mice resulted in only mild symptoms that did not differ from phosphate buffered saline control. CONCLUSIONS Two new orthotopic MPNST models are described, including in syngeneic mice, expanding the options for preclinical testing. Oncolytic HSV G47Δ exhibited robust efficacy in both immunodeficient and immunocompetent MPNST models while maintaining safety. Interleukin-12 expression improved efficacy. These studies support the clinical translation of G47Δ for patients with MPNST.
Collapse
Affiliation(s)
- Slawomir Antoszczyk
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Melanie Spyra
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Victor Felix Mautner
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Andreas Kurtz
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Anat O Stemmer-Rachamimov
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Robert L Martuza
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Samuel D Rabkin
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| |
Collapse
|
23
|
Duebgen M, Martinez-Quintanilla J, Tamura K, Hingtgen S, Redjal N, Wakimoto H, Shah K. Stem cells loaded with multimechanistic oncolytic herpes simplex virus variants for brain tumor therapy. J Natl Cancer Inst 2014; 106:dju090. [PMID: 24838834 DOI: 10.1093/jnci/dju090] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The current treatment regimen for malignant glioblastoma multiforme (GBM) is tumor resection followed by chemotherapy and radiation therapy. Despite the proven safety of oncolytic herpes simplex virus (oHSV) in clinical trials for GBMs, its efficacy is suboptimal mainly because of insufficient viral spread after tumor resection. METHODS Human mesenchymal stem cells (MSC) were loaded with oHSV (MSC-oHSV), and their fate was explored by real-time imaging in vitro and in vivo. Using novel diagnostic and armed oHSV mutants and real-time multimodality imaging, the efficacy of MSC-oHSV and its proapoptotic variant, oHSV-TRAIL encapsulated in biocompatible synthetic extracellular matrix (sECM), was tested in different mouse GBM models, which more accurately reflect the current clinical settings of malignant, resistant, and resected tumors. All statistical tests were two-sided. RESULTS MSC-oHSVs effectively produce oHSV progeny, which results in killing of GBMs in vitro and in vivo mediated by a dynamic process of oHSV infection and tumor destruction. sECM-encapsulated MSC-oHSVs result in statistically significant increased anti-GBM efficacy compared with direct injection of purified oHSV in a preclinical model of GBM resection, resulting in prolonged median survival in mice (P < .001 with Gehan-Breslow-Wilcoxin test). To supersede resistant tumors, MSC loaded with oHSV-TRAIL effectively induce apoptosis-mediated killing and prolonged median survival in mice bearing oHSV- and TRAIL-resistant GBM in vitro (P < .001 with χ(2) contingency test). CONCLUSIONS Human MSC loaded with different oHSV variants provide a platform to translate oncolytic virus therapies to clinics in a broad spectrum of GBMs after resection and could also have direct implications in different cancer types.
Collapse
Affiliation(s)
- Matthias Duebgen
- Affiliations of authors: Molecular Neurotherapy and Imaging Laboratory (MD, JM-Q, SH, NR, HW, KS), Department of Radiology (MD, JM-Q, KT, SH, NR, HW, KS), Department of Neurosurgery (NR, HW), and Department of Neurology (KS), Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA (KS)
| | - Jordi Martinez-Quintanilla
- Affiliations of authors: Molecular Neurotherapy and Imaging Laboratory (MD, JM-Q, SH, NR, HW, KS), Department of Radiology (MD, JM-Q, KT, SH, NR, HW, KS), Department of Neurosurgery (NR, HW), and Department of Neurology (KS), Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA (KS)
| | - Kaoru Tamura
- Affiliations of authors: Molecular Neurotherapy and Imaging Laboratory (MD, JM-Q, SH, NR, HW, KS), Department of Radiology (MD, JM-Q, KT, SH, NR, HW, KS), Department of Neurosurgery (NR, HW), and Department of Neurology (KS), Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA (KS)
| | - Shawn Hingtgen
- Affiliations of authors: Molecular Neurotherapy and Imaging Laboratory (MD, JM-Q, SH, NR, HW, KS), Department of Radiology (MD, JM-Q, KT, SH, NR, HW, KS), Department of Neurosurgery (NR, HW), and Department of Neurology (KS), Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA (KS)
| | - Navid Redjal
- Affiliations of authors: Molecular Neurotherapy and Imaging Laboratory (MD, JM-Q, SH, NR, HW, KS), Department of Radiology (MD, JM-Q, KT, SH, NR, HW, KS), Department of Neurosurgery (NR, HW), and Department of Neurology (KS), Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA (KS)
| | - Hiroaki Wakimoto
- Affiliations of authors: Molecular Neurotherapy and Imaging Laboratory (MD, JM-Q, SH, NR, HW, KS), Department of Radiology (MD, JM-Q, KT, SH, NR, HW, KS), Department of Neurosurgery (NR, HW), and Department of Neurology (KS), Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA (KS)
| | - Khalid Shah
- Affiliations of authors: Molecular Neurotherapy and Imaging Laboratory (MD, JM-Q, SH, NR, HW, KS), Department of Radiology (MD, JM-Q, KT, SH, NR, HW, KS), Department of Neurosurgery (NR, HW), and Department of Neurology (KS), Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA (KS).
| |
Collapse
|
24
|
Triple-negative breast cancer: new perspectives for novel therapies. Med Oncol 2013; 30:653. [DOI: 10.1007/s12032-013-0653-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/24/2013] [Indexed: 01/13/2023]
|
25
|
Xu C, Li H, Su C, Li Z. Viral therapy for pancreatic cancer: tackle the bad guys with poison. Cancer Lett 2013; 333:1-8. [PMID: 23354590 DOI: 10.1016/j.canlet.2013.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer is one of the most devastating diseases with very poor prognosis. Only a small proportion is curable by surgical resection, whilst standard chemotherapy for patients with advanced disease has only modest effect with substantial toxicity. Therefore, there is an urgent need for the development of novel therapeutic approaches to improve the patient outcome. Recently the viral therapy is emerging as a novel effective therapeutic approach for cancer with the potential to selectively treat both primary tumor and metastatic lesions. This review provides an overview of the current status of viral treatment for pancreatic cancer, both in the laboratories and in clinical settings.
Collapse
Affiliation(s)
- Can Xu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | | | | | | |
Collapse
|