1
|
Mourtada J, Thibaudeau C, Wasylyk B, Jung AC. The Multifaceted Role of Human Dickkopf-3 (DKK-3) in Development, Immune Modulation and Cancer. Cells 2023; 13:75. [PMID: 38201279 PMCID: PMC10778571 DOI: 10.3390/cells13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The human Dickkopf (DKK) family includes four main secreted proteins, DKK-1, DKK-2, DKK-3, and DKK-4, as well as the DKK-3 related protein soggy (Sgy-1 or DKKL1). These glycoproteins play crucial roles in various biological processes, and especially modulation of the Wnt signaling pathway. DKK-3 is distinct, with its multifaceted roles in development, stem cell differentiation and tissue homeostasis. Intriguingly, DKK-3 appears to have immunomodulatory functions and a complex role in cancer, acting as either a tumor suppressor or an oncogene, depending on the context. DKK-3 is a promising diagnostic and therapeutic target that can be modulated by epigenetic reactivation, gene therapy and DKK-3-blocking agents. However, further research is needed to optimize DKK-3-based therapies. In this review, we comprehensively describe the known functions of DKK-3 and highlight the importance of context in understanding and exploiting its roles in health and disease.
Collapse
Affiliation(s)
- Jana Mourtada
- Laboratoire de Biologie Tumorale, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France; (J.M.); (C.T.)
- Laboratoire STREINTH (Stress Response and Innovative Therapies), INSERM U1113 IRFAC, Université de Strasbourg, 67200 Strasbourg, France
| | - Chloé Thibaudeau
- Laboratoire de Biologie Tumorale, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France; (J.M.); (C.T.)
- Laboratoire STREINTH (Stress Response and Innovative Therapies), INSERM U1113 IRFAC, Université de Strasbourg, 67200 Strasbourg, France
| | - Bohdan Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch Graffenstaden, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U 1258, 67404 Illkirch Graffenstaden, France
- Centre Nationale de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch Graffenstaden, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Alain C. Jung
- Laboratoire de Biologie Tumorale, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France; (J.M.); (C.T.)
- Laboratoire STREINTH (Stress Response and Innovative Therapies), INSERM U1113 IRFAC, Université de Strasbourg, 67200 Strasbourg, France
| |
Collapse
|
2
|
Katase N, Kudo K, Ogawa K, Sakamoto Y, Nishimatsu SI, Yamauchi A, Fujita S. DKK3/CKAP4 axis is associated with advanced stage and poorer prognosis in oral cancer. Oral Dis 2023; 29:3193-3204. [PMID: 35708905 DOI: 10.1111/odi.14277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE We previously reported that dickkopf WNT signaling inhibitor 3 (DKK3) would modulate malignant potential of oral squamous cell carcinoma (OSCC) via activating Akt. Recently, cytoskeleton associated protein 4 (CKAP4) functions as receptor of DKK3, which activates Akt in esophageal squamous cell carcinoma, but its expression and function in OSCC were unclear. METHODS We studied DKK3 and CKAP4 protein expression in OSCC tissue and investigated the correlation between protein expression and clinical data. We also investigated whether antibodies (Ab) for DKK3 or CKAP4 could suppress malignant potential of the cancer cells. RESULTS DKK3/CKAP4 protein expression was observed in majority of OSCC cases and was associated with significantly higher T-stage and TNM stage. Multivariate analysis revealed that DKK3 and CKAP4 were independent prognostic biomarkers for overall survival (OS) and disease-free survival (DFS), respectively. Survival analyses revealed that DKK3-positive cases and CKAP4-positive cases showed significantly shorter OS and DFS, respectively, and that DKK3/CKAP4 double-negative cases showed significantly favorable prognosis. Both anti-DKK3Ab and anti-CKAP4Ab could suppress cancer cell proliferation, migration, and invasion. CONCLUSION DKK3/CKAP4 axis is thought to be important in OSCC, and it would be a promising therapeutic target.
Collapse
Affiliation(s)
- Naoki Katase
- Department of Oral Pathology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kodai Kudo
- Department of Oral Pathology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Nagasaki University Dental School, Nagasaki, Japan
| | - Kazuhiro Ogawa
- Department of Oral Pathology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Nagasaki University Dental School, Nagasaki, Japan
| | - Yae Sakamoto
- Department of Oral Pathology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Nagasaki University Dental School, Nagasaki, Japan
| | | | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | - Shuichi Fujita
- Department of Oral Pathology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
3
|
Gohara Y, Tomonobu N, Kinoshita R, Futami J, Audebert L, Chen Y, Komalasari NLGY, Jiang F, Yoshizawa C, Murata H, Yamamoto KI, Watanabe M, Kumon H, Sakaguchi M. Novel extracellular role of REIC/Dkk-3 protein in PD-L1 regulation in cancer cells. J Mol Med (Berl) 2023; 101:431-447. [PMID: 36869893 PMCID: PMC10090029 DOI: 10.1007/s00109-023-02292-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 03/05/2023]
Abstract
The adenovirus-REIC/Dkk-3 expression vector (Ad-REIC) has been the focus of numerous clinical studies due to its potential for the quenching of cancers. The cancer-suppressing mechanisms of the REIC/DKK-3 gene depend on multiple pathways that exert both direct and indirect effects on cancers. The direct effect is triggered by REIC/Dkk-3-mediated ER stress that causes cancer-selective apoptosis, and the indirect effect can be classified in two ways: (i) induction, by Ad-REIC-mis-infected cancer-associated fibroblasts, of the production of IL-7, an important activator of T cells and NK cells, and (ii) promotion, by the secretory REIC/Dkk-3 protein, of dendritic cell polarization from monocytes. These unique features allow Ad-REIC to exert effective and selective cancer-preventative effects in the manner of an anticancer vaccine. However, the question of how the REIC/Dkk-3 protein leverages anticancer immunity has remained to be answered. We herein report a novel function of the extracellular REIC/Dkk-3-namely, regulation of an immune checkpoint via modulation of PD-L1 on the cancer-cell surface. First, we identified novel interactions of REIC/Dkk-3 with the membrane proteins C5aR, CXCR2, CXCR6, and CMTM6. These proteins all functioned to stabilize PD-L1 on the cell surface. Due to the dominant expression of CMTM6 among the proteins in cancer cells, we next focused on CMTM6 and observed that REIC/Dkk-3 competed with CMTM6 for PD-L1, thereby liberating PD-L1 from its complexation with CMTM6. The released PD-L1 immediately underwent endocytosis-mediated degradation. These results will enhance our understanding of not only the physiological nature of the extracellular REIC/Dkk-3 protein but also the Ad-REIC-mediated anticancer effects. KEY MESSAGES: • REIC/Dkk-3 protein effectively suppresses breast cancer progression through an acceleration of PD-L1 degradation. • PD-L1 stability on the cancer cell membrane is kept high by binding with mainly CMTM6. • Competitive binding of REIC/Dkk-3 protein with CMTM6 liberates PD-L1, leading to PD-L1 degradation.
Collapse
Affiliation(s)
- Yuma Gohara
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-Shi, Okayama, 700-8558, Japan
| | - Nahoko Tomonobu
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-Shi, Okayama, 700-8558, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-Shi, Okayama, 700-8558, Japan
| | - Junichiro Futami
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Léna Audebert
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-Shi, Okayama, 700-8558, Japan.,Sorbonne Université, Collège Doctoral, Paris, 75005, France
| | - Youyi Chen
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-Shi, Okayama, 700-8558, Japan.,Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ni Luh Gede Yoni Komalasari
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-Shi, Okayama, 700-8558, Japan.,Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Fan Jiang
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-Shi, Okayama, 700-8558, Japan
| | - Chikako Yoshizawa
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-Shi, Okayama, 700-8558, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-Shi, Okayama, 700-8558, Japan
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-Shi, Okayama, 700-8558, Japan
| | - Masami Watanabe
- Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Hiromi Kumon
- Innovation Center Okayama for Nanobio-Targeted Therapy, Okayama University, Okayama, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-Shi, Okayama, 700-8558, Japan.
| |
Collapse
|
4
|
Al Shareef Z, Ershaid MNA, Mudhafar R, Soliman SSM, Kypta RM. Dickkopf-3: An Update on a Potential Regulator of the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14235822. [PMID: 36497305 PMCID: PMC9738550 DOI: 10.3390/cancers14235822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Dickkopf-3 (Dkk-3) is a member of the Dickkopf family protein of secreted Wingless-related integration site (Wnt) antagonists that appears to modulate regulators of the host microenvironment. In contrast to the clear anti-tumorigenic effects of Dkk-3-based gene therapies, the role of endogenous Dkk-3 in cancer is context-dependent, with elevated expression associated with tumor promotion and suppression in different settings. The receptors and effectors that mediate the diverse effects of Dkk-3 have not been characterized in detail, contributing to an ongoing mystery of its mechanism of action. This review compares the various functions of Dkk-3 in the tumor microenvironment, where Dkk-3 has been found to be expressed by subpopulations of fibroblasts, endothelial, and immune cells, in addition to epithelial cells. We also discuss how the activation or inhibition of Dkk-3, depending on tumor type and context, might be used to treat different types of cancers.
Collapse
Affiliation(s)
- Zainab Al Shareef
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-6505-7250
| | - Mai Nidal Asad Ershaid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rula Mudhafar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Robert M. Kypta
- CIC BioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48160 Derio, Spain
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| |
Collapse
|
5
|
Katase N, Nishimatsu SI, Yamauchi A, Okano S, Fujita S. Establishment of anti-DKK3 peptide for the cancer control in head and neck squamous cell carcinoma (HNSCC). Cancer Cell Int 2022; 22:352. [PMID: 36376957 PMCID: PMC9664703 DOI: 10.1186/s12935-022-02783-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is the most common malignant tumor of the head and neck. We identified cancer-specific genes in HNSCC and focused on DKK3 expression. DKK3 gene codes two isoforms of proteins (secreted and non-secreted) with two distinct cysteine rich domains (CRDs). It is reported that DKK3 functions as a negative regulator of oncogenic Wnt signaling and, is therefore, considered to be a tumor suppressor gene. However, our series of studies have demonstrated that DKK3 expression is specifically high in HNSCC tissues and cells, and that DKK3 might determine the malignant potentials of HNSCC cells via the activation of Akt. Further analyses strongly suggested that both secreted DKK3 and non-secreted DKK3 could activate Akt signaling in discrete ways, and consequently exert tumor promoting effects. We hypothesized that DKK3 might be a specific druggable target, and it is necessary to establish a DKK3 inhibitor that can inhibit both secreted and non-secreted isoforms of DKK3. Methods Using inverse polymerase chain reaction, we generated mutant expression plasmids that express DKK3 without CRD1, CRD2, or both CRD1 and CRD2 (DKK3ΔC1, DKK3ΔC2, and DKK3ΔC1ΔC2, respectively). These plasmids were then transfected into HNSCC-derived cells to determine the domain responsible for DKK3-mediated Akt activation. We designed antisense peptides using the MIMETEC program, targeting DKK3-specific amino acid sequences within CRD1 and CRD2. The structural models for peptides and DKK3 were generated using Raptor X, and then a docking simulation was performed using CluPro2. Afterward, the best set of the peptides was applied into HNSCC-derived cells, and the effects on Akt phosphorylation, cellular proliferation, invasion, and migration were assessed. We also investigated the therapeutic effects of the peptides in the xenograft models. Results Transfection of mutant expression plasmids and subsequent functional analyses revealed that it is necessary to delete both CRD1 and CRD2 to inhibit Akt activation and inhibition of proliferation, migration, and invasion. The inhibitory peptides for CRD1 and CRD2 of DKK3 significantly reduced the phosphorylation of Akt, and consequently suppressed cellular proliferation, migration, invasion and in vivo tumor growth at very low doses. Conclusions This inhibitory peptide represents a promising new therapeutic strategy for HNSCC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02783-9.
Collapse
|
6
|
Hattori Y, Kurozumi K, Otani Y, Uneda A, Tsuboi N, Makino K, Hirano S, Fujii K, Tomita Y, Oka T, Matsumoto Y, Shimazu Y, Michiue H, Kumon H, Date I. Combination of Ad-SGE-REIC and bevacizumab modulates glioma progression by suppressing tumor invasion and angiogenesis. PLoS One 2022; 17:e0273242. [PMID: 36006934 PMCID: PMC9409598 DOI: 10.1371/journal.pone.0273242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
Reduced expression in immortalized cells/Dickkopf-3 (REIC/Dkk-3) is a tumor suppressor and its overexpression has been shown to exert anti-tumor effects as a therapeutic target gene in many human cancers. Recently, we demonstrated the anti-glioma effects of an adenoviral vector carrying REIC/Dkk-3 with the super gene expression system (Ad-SGE-REIC). Anti-vascular endothelial growth factor treatments such as bevacizumab have demonstrated convincing therapeutic advantage in patients with glioblastoma. However, bevacizumab did not improve overall survival in patients with newly diagnosed glioblastoma. In this study, we examined the effects of Ad-SGE-REIC on glioma treated with bevacizumab. Ad-SGE-REIC treatment resulted in a significant reduction in the number of invasion cells treated with bevacizumab. Western blot analyses revealed the increased expression of several endoplasmic reticulum stress markers in cells treated with both bevacizumab and Ad-SGE-REIC, as well as decreased β-catenin protein levels. In malignant glioma mouse models, overall survival was extended in the combination therapy group. These results suggest that the combination therapy of Ad-SGE-REIC and bevacizumab exerts anti-glioma effects by suppressing the angiogenesis and invasion of tumors. Combined Ad-SGE-REIC and bevacizumab might be a promising strategy for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Yasuhiko Hattori
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Kurozumi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Shizuoka, Japan
- * E-mail:
| | - Yoshihiro Otani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Atsuhito Uneda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nobushige Tsuboi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keigo Makino
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuichiro Hirano
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kentaro Fujii
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yusuke Tomita
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tetsuo Oka
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuji Matsumoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yosuke Shimazu
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Michiue
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
| | - Hiromi Kumon
- Innovation Center Okayama for Nanobio-targeted Therapy, Okayama University, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
7
|
Miyamoto A, Honjo T, Masui M, Kinoshita R, Kumon H, Kakimi K, Futami J. Engineering Cancer/Testis Antigens With Reversible S-Cationization to Evaluate Antigen Spreading. Front Oncol 2022; 12:869393. [PMID: 35600379 PMCID: PMC9115381 DOI: 10.3389/fonc.2022.869393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Serum autoantibody to cancer/testis antigens (CTAs) is a critical biomarker that reflects the antitumor immune response. Quantitative and multiplexed anti-CTA detection arrays can assess the immune status in tumors and monitor therapy-induced antitumor immune reactions. Most full-length recombinant CTA proteins tend to aggregate. Cysteine residue-specific S-cationization techniques facilitate the preparation of water-soluble and full-length CTAs. Combined with Luminex technology, we designed a multiple S-cationized antigen-immobilized bead array (MUSCAT) assay system to evaluate multiple serum antibodies to CTAs. Reducible S-alkyl-disulfide-cationized antigens in cytosolic conditions were employed to develop rabbit polyclonal antibodies as positive controls. These control antibodies sensitively detected immobilized antigens on beads and endogenous antigens in human lung cancer-derived cell lines. Rabbit polyclonal antibodies successfully confirmed the dynamic ranges and quantitative MUSCAT assay results. An immune monitoring study was conducted using the serum samples on an adenovirus−mediated REIC/Dkk−3 gene therapy clinical trial that showed a successful clinical response in metastatic castration-resistant prostate cancer. Autoantibody responses were closely related to clinical outcomes. Notably, upregulation of anti-CTA responses was monitored before tumor regression. Thus, quantitative monitoring of anti-CTA antibody biomarkers can be used to evaluate the cancer-immunity cycle. A quality-certified serum autoantibody monitoring system is a powerful tool for developing and evaluating cancer immunotherapy.
Collapse
Affiliation(s)
- Ai Miyamoto
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Tomoko Honjo
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Mirei Masui
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiromi Kumon
- Innovation Center Okayama for Nanobio-targeted Therapy, Okayama University, Okayama, Japan.,Niimi University, Niimi, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Junichiro Futami
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| |
Collapse
|
8
|
Dickkopf Proteins and Their Role in Cancer: A Family of Wnt Antagonists with a Dual Role. Pharmaceuticals (Basel) 2021; 14:ph14080810. [PMID: 34451907 PMCID: PMC8400703 DOI: 10.3390/ph14080810] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/29/2022] Open
Abstract
The Wnt signaling pathway regulates crucial aspects such as cell fate determination, cell polarity and organogenesis during embryonic development. Wnt pathway deregulation is a hallmark of several cancers such as lung, gastric and liver cancer, and has been reported to be altered in others. Despite the general agreement reached by the scientific community on the oncogenic potential of the central components of the pathway, the role of the antagonist proteins remains less clear. Deregulation of the pathway may be caused by overexpression or downregulation of a wide range of antagonist proteins. Although there is growing information related to function and regulation of Dickkopf (DKK) proteins, their pharmacological potential as cancer therapeutics still has not been fully developed. This review provides an update on the role of DKK proteins in cancer and possible potential as therapeutic targets for the treatment of cancer; available compounds in pre-clinical or clinical trials are also reviewed.
Collapse
|
9
|
Tessarollo NG, Domingues ACM, Antunes F, da Luz JCDS, Rodrigues OA, Cerqueira OLD, Strauss BE. Nonreplicating Adenoviral Vectors: Improving Tropism and Delivery of Cancer Gene Therapy. Cancers (Basel) 2021; 13:1863. [PMID: 33919679 PMCID: PMC8069790 DOI: 10.3390/cancers13081863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Recent preclinical and clinical studies have used viral vectors in gene therapy research, especially nonreplicating adenovirus encoding strategic therapeutic genes for cancer treatment. Adenoviruses were the first DNA viruses to go into therapeutic development, mainly due to well-known biological features: stability in vivo, ease of manufacture, and efficient gene delivery to dividing and nondividing cells. However, there are some limitations for gene therapy using adenoviral vectors, such as nonspecific transduction of normal cells and liver sequestration and neutralization by antibodies, especially when administered systemically. On the other hand, adenoviral vectors are amenable to strategies for the modification of their biological structures, including genetic manipulation of viral proteins, pseudotyping, and conjugation with polymers or biological membranes. Such modifications provide greater specificity to the target cell and better safety in systemic administration; thus, a reduction of antiviral host responses would favor the use of adenoviral vectors in cancer immunotherapy. In this review, we describe the structural and molecular features of nonreplicating adenoviral vectors, the current limitations to their use, and strategies to modify adenoviral tropism, highlighting the approaches that may allow for the systemic administration of gene therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bryan E. Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM24, University of São Paulo School of Medicine, São Paulo 01246-000, Brazil; (N.G.T.); (A.C.M.D.); (F.A.); (J.C.d.S.d.L.); (O.A.R.); (O.L.D.C.)
| |
Collapse
|
10
|
Gregg JR, Thompson TC. Considering the potential for gene-based therapy in prostate cancer. Nat Rev Urol 2021; 18:170-184. [PMID: 33637962 DOI: 10.1038/s41585-021-00431-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 01/31/2023]
Abstract
Therapeutic gene manipulation has been at the forefront of popular scientific discussion and basic and clinical research for decades. Basic and clinical research applications of CRISPR-Cas9-based technologies and ongoing clinical trials in this area have demonstrated the potential of genome editing to cure human disease. Evaluation of research and clinical trials in gene therapy reveals a concentration of activity in prostate cancer research and practice. Multiple aspects of prostate cancer care - including anatomical considerations that enable direct tumour injections and sampling, the availability of preclinical immune-competent models and the delineation of tumour-related antigens that might provide targets for an induced immune system - make gene therapy an appealing treatment option for this common malignancy. Vaccine-based therapies that induce an immune response and new technologies exploiting CRISPR-Cas9-assisted approaches, including chimeric antigen receptor (CAR) T cell therapies, are very promising and are currently under investigation both in the laboratory and in the clinic. Although laboratory and preclinical advances have, thus far, not led to oncologically relevant outcomes in the clinic, future studies offer great promise for gene therapy to become established in prostate cancer care.
Collapse
Affiliation(s)
- Justin R Gregg
- Department of Urology and Health Disparities Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Timothy C Thompson
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
11
|
Song X, Liu C, Wang N, Huang H, He S, Gong C, Wei Y. Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy. Adv Drug Deliv Rev 2021; 168:158-180. [PMID: 32360576 DOI: 10.1016/j.addr.2020.04.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/19/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
The clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems are efficient and versatile gene editing tools, which offer enormous potential to treat cancer by editing genome, transcriptome or epigenome of tumor cells and/or immune cells. A large body of works have been done with CRISPR/Cas systems for genetic modification, and 16 clinical trials were conducted to treat cancer by ex vivo or in vivo gene editing approaches. Now, promising preclinical works have begun using CRISPR/Cas systems in vivo. However, efficient and safe delivery of CRISPR/Cas systems in vivo is still a critical challenge for their clinical applications. This article summarizes delivery of CRISPR/Cas systems by physical methods, viral vectors and non-viral vectors for cancer gene therapy and immunotherapy. The prospects for the development of physical methods, viral vectors and non-viral vectors for delivery of CRISPR/Cas systems are reviewed, and promising advances in cancer treatment using CRISPR/Cas systems are discussed.
Collapse
Affiliation(s)
- Xiangrong Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ning Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hai Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Siyan He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
12
|
Cunliffe TG, Bates EA, Parker AL. Hitting the Target but Missing the Point: Recent Progress towards Adenovirus-Based Precision Virotherapies. Cancers (Basel) 2020; 12:E3327. [PMID: 33187160 PMCID: PMC7696810 DOI: 10.3390/cancers12113327] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/31/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022] Open
Abstract
More people are surviving longer with cancer. Whilst this can be partially attributed to advances in early detection of cancers, there is little doubt that the improvement in survival statistics is also due to the expansion in the spectrum of treatments available for efficacious treatment. Transformative amongst those are immunotherapies, which have proven effective agents for treating immunogenic forms of cancer, although immunologically "cold" tumour types remain refractive. Oncolytic viruses, such as those based on adenovirus, have great potential as anti-cancer agents and have seen a resurgence of interest in recent years. Amongst their many advantages is their ability to induce immunogenic cell death (ICD) of infected tumour cells, thus providing the alluring potential to synergise with immunotherapies by turning immunologically "cold" tumours "hot". Additionally, enhanced immune mediated cell killing can be promoted through the local overexpression of immunological transgenes, encoded from within the engineered viral genome. To achieve this full potential requires the development of refined, tumour selective "precision virotherapies" that are extensively engineered to prevent off-target up take via native routes of infection and targeted to infect and replicate uniquely within malignantly transformed cells. Here, we review the latest advances towards this holy grail within the adenoviral field.
Collapse
Affiliation(s)
| | | | - Alan L. Parker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (T.G.C.); (E.A.B.)
| |
Collapse
|
13
|
Kurozumi K, Fujii K, Shimazu Y, Tomita Y, Sasaki T, Yasuhara T, Hishikawa T, Kameda M, Kumon H, Date I. Study protocol of a Phase I/IIa clinical trial of Ad-SGE-REIC for treatment of recurrent malignant glioma. Future Oncol 2020; 16:151-159. [PMID: 31973596 DOI: 10.2217/fon-2019-0743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Malignant glioma is one of the most common brain cancers in humans, which is very devastating. The expression of reduced expression in immortalized cells/Dickkopf-3 (REIC/Dkk-3) is decreased in various human cancers. Lately, we have developed a novel second-generation adenoviral vector that expresses REIC/Dkk-3 (Ad-SGE-REIC) and revealed its antiglioma efficacy. The present investigator-initiated clinical trial is a single-arm, prospective, nonrandomized, noncomparative, open-label, single-center trial performed at Okayama University Hospital, Okayama, Japan. The primary end points are dose-limiting toxicities and the incidence of adverse events. The secondary end points are the objective response rate and immunological assessment. Use of Ad-SGE-REIC will help to improve the prognosis of patients with malignant brain tumors.
Collapse
Affiliation(s)
- Kazuhiko Kurozumi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Kentaro Fujii
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Yosuke Shimazu
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Yusuke Tomita
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Tomohito Hishikawa
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Masahiro Kameda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Hiromi Kumon
- Innovation Center Okayama for Nanobio-targeted Therapy, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| |
Collapse
|
14
|
Lang CMR, Chan CK, Veltri A, Lien WH. Wnt Signaling Pathways in Keratinocyte Carcinomas. Cancers (Basel) 2019; 11:cancers11091216. [PMID: 31438551 PMCID: PMC6769728 DOI: 10.3390/cancers11091216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
The skin functions as a barrier between the organism and the surrounding environment. Direct exposure to external stimuli and the accumulation of genetic mutations may lead to abnormal cell growth, irreversible tissue damage and potentially favor skin malignancy. Skin homeostasis is coordinated by an intricate signaling network, and its dysregulation has been implicated in the development of skin cancers. Wnt signaling is one such regulatory pathway orchestrating skin development, homeostasis, and stem cell activation. Aberrant regulation of Wnt signaling cascades not only gives rise to tumor initiation, progression and invasion, but also maintains cancer stem cells which contribute to tumor recurrence. In this review, we summarize recent studies highlighting functional evidence of Wnt-related oncology in keratinocyte carcinomas, as well as discussing preclinical and clinical approaches that target oncogenic Wnt signaling to treat cancers. Our review provides valuable insight into the significance of Wnt signaling for future interventions against keratinocyte carcinomas.
Collapse
Affiliation(s)
| | - Chim Kei Chan
- de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium
| | - Anthony Veltri
- de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium
| | - Wen-Hui Lien
- de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium.
| |
Collapse
|
15
|
Bhattacharyya S, Feferman L, Tobacman JK. Dihydrotestosterone inhibits arylsulfatase B and Dickkopf Wnt signaling pathway inhibitor (DKK)-3 leading to enhanced Wnt signaling in prostate epithelium in response to stromal Wnt3A. Prostate 2019; 79:689-700. [PMID: 30801800 DOI: 10.1002/pros.23776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/23/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND In tissue microarrays, immunostaining of the enzyme arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) was less in recurrent prostate cancers and in cancers with higher Gleason scores. In cultured prostate stem cells, decline in ARSB increased Wnt signaling through effects on Dickkopf Wnt Signaling Pathway Inhibitor (DKK)3. The effects of androgen exposure on ARSB and the impact of decline in ARSB on Wnt signaling in prostate tissue were unknown. METHODS Epithelial and stromal tissues from malignant and normal human prostate were obtained by laser capture microdissection. mRNA expression of ARSB, galactose-6-sulfate-sulfatase (GALNS) and Wnt-signaling targets was determined by QPCR. Non-malignant human epithelial and stromal prostate cells were grown in tissue culture, including two-cell layer cultures. ARSB was silenced by specific siRNA, and epithelial cells were treated with stromal spent media following treatment with IWP-2, an inhibitor of Wnt secretion, and by exogenous recombinant human Wnt3A. Promoter methylation was detected using specific DKK3 and ARSB promoter primers. The effects of DHT and of ARSB overexpression on DKK expression were determined. Cell proliferation was assessed by BrdU incorporation. RESULTS Normal stroma showed higher expression of vimentin, ARSB, and Wnt3A than epithelium. Normal epithelium had higher expression of E-cadherin, galactose 6-sulfate-sulfatase (GALNS), and DKK3 than stroma. In malignant epithelium, expression of ARSB and DKK3 declined, and expression of GALNS and Wnt signaling targets increased. In cultured prostate epithelial cells, Wnt-mediated signaling was greatest when ARSB was silenced and cells were exposed to exogenous Wnt3A. Exposure to 5α-dihydrotestosterone (DHT) increased ARSB and DKK3 promoter rmethylation, and effects of DHT on DKK3 expression were reversed when ARSB was overexpressed. CONCLUSIONS Androgen-induced declines in ARSB and DKK3 may contribute to prostate carcinogenesis by sustained activation of Wnt signaling in prostate epithelium in response to stromal Wnt3A.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Department of Medicine, The University of Illinois at Chicago and Jesse Brown VAMC, Chicago, Illinois
| | - Leo Feferman
- Department of Medicine, The University of Illinois at Chicago and Jesse Brown VAMC, Chicago, Illinois
| | - Joanne K Tobacman
- Department of Medicine, The University of Illinois at Chicago and Jesse Brown VAMC, Chicago, Illinois
| |
Collapse
|
16
|
Nagai S, Sugiyama D. Current Trends in Clinical Development of Gene and Cellular Therapeutic Products for Cancer in Japan. Clin Ther 2018; 41:174-184.e3. [PMID: 30528048 DOI: 10.1016/j.clinthera.2018.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE In Japan, gene therapy and cellular therapy are categorized as regenerative medicine products based on the Pharmaceuticals and Medical Devices Law that was implemented in 2014. In this new law, regenerative medicine products were newly defined, and a conditional and term-limited approval system for regenerative medicine products was instituted. In addition, the Ministry of Health, Labour and Welfare instituted the SAKIGAKE (meaning pioneer or forerunner in Japanese) designation system in 2015. This designation is similar to the breakthrough therapy designation in the United States. These new regulatory frameworks have stimulated clinical development of new gene and cellular products in Japan. In fact, oncolytic virus therapy for glioblastoma and NY-ESO-1 (T-cell receptor) T-cell therapy for synovial sarcoma were granted SAKIGAKE designation in 2016 and 2018, respectively. Oncolytic virus therapy and genetically engineered T-cell therapy for cancer are being actively developed and examined in investigator-initiated trials. METHODS This review analyzes the domestic and international clinical trial registries to comprehensively collect information on clinical trials of gene and cellular therapeutic products for cancer in Japan. IMPLICATIONS Current trends in clinical development of gene and cellular therapeutic products for cancer in Japan are discussed.
Collapse
Affiliation(s)
- Sumimasa Nagai
- Translational Research Center, The University of Tokyo Hospital, Tokyo, Japan.
| | - Daisuke Sugiyama
- Department of Translational Research Promotion Incubation Center for Advanced Medical Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
Protective effect of stromal Dickkopf-3 in prostate cancer: opposing roles for TGFBI and ECM-1. Oncogene 2018; 37:5305-5324. [PMID: 29858602 PMCID: PMC6160402 DOI: 10.1038/s41388-018-0294-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/12/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022]
Abstract
Aberrant transforming growth factor-β (TGF-β) signaling is a hallmark of the stromal microenvironment in cancer. Dickkopf-3 (Dkk-3), shown to inhibit TGF-β signaling, is downregulated in prostate cancer and upregulated in the stroma in benign prostatic hyperplasia, but the function of stromal Dkk-3 is unclear. Here we show that DKK3 silencing in WPMY-1 prostate stromal cells increases TGF-β signaling activity and that stromal cell-conditioned media inhibit prostate cancer cell invasion in a Dkk-3-dependent manner. DKK3 silencing increased the level of the cell-adhesion regulator TGF-β-induced protein (TGFBI) in stromal and epithelial cell-conditioned media, and recombinant TGFBI increased prostate cancer cell invasion. Reduced expression of Dkk-3 in patient tumors was associated with increased expression of TGFBI. DKK3 silencing reduced the level of extracellular matrix protein-1 (ECM-1) in prostate stromal cell-conditioned media but increased it in epithelial cell-conditioned media, and recombinant ECM-1 inhibited TGFBI-induced prostate cancer cell invasion. Increased ECM1 and DKK3 mRNA expression in prostate tumors was associated with increased relapse-free survival. These observations are consistent with a model in which the loss of Dkk-3 in prostate cancer leads to increased secretion of TGFBI and ECM-1, which have tumor-promoting and tumor-protective roles, respectively. Determining how the balance between the opposing roles of extracellular factors influences prostate carcinogenesis will be key to developing therapies that target the tumor microenvironment.
Collapse
|
18
|
CRISPR-Mediated Reactivation of DKK3 Expression Attenuates TGF-β Signaling in Prostate Cancer. Cancers (Basel) 2018; 10:cancers10060165. [PMID: 29843383 PMCID: PMC6025141 DOI: 10.3390/cancers10060165] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/22/2022] Open
Abstract
The DKK3 gene encodes a secreted protein, Dkk-3, that inhibits prostate tumor growth and metastasis. DKK3 is downregulated by promoter methylation in many types of cancer, including prostate cancer. Gene silencing studies have shown that Dkk-3 maintains normal prostate epithelial cell homeostasis by limiting TGF-β/Smad signaling. While ectopic expression of Dkk-3 leads to prostate cancer cell apoptosis, it is unclear if Dkk-3 has a physiological role in cancer cells. Here, we show that treatment of PC3 prostate cancer cells with the DNA methyltransferase (DNMT) inhibitor decitabine demethylates the DKK3 promoter, induces DKK3 expression, and inhibits TGF-β/Smad-dependent transcriptional activity. Direct induction of DKK3 expression using CRISPR-dCas9-VPR also inhibited TGF-β/Smad-dependent transcription and attenuated PC3 cell migration and proliferation. These effects were not observed in C4-2B cells, which do not respond to TGF-β. TGF-β signals can regulate gene expression directly via SMAD proteins and indirectly by increasing DNMT expression, leading to promoter methylation. Analysis of genes downregulated by promoter methylation and predicted to be regulated by TGF-β found that DKK3 induction increased expression of PTGS2, which encodes cyclooxygenase-2. Together, these observations provide support for using CRISPR-mediated induction of DKK3 as a potential therapeutic approach for prostate cancer and highlight complexities in Dkk-3 regulation of TGF-β signaling.
Collapse
|
19
|
Takayama K, Mizuguchi H. Generation of Optogenetically Modified Adenovirus Vector for Spatiotemporally Controllable Gene Therapy. ACS Chem Biol 2018; 13:449-454. [PMID: 29327920 DOI: 10.1021/acschembio.7b01058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gene therapy is expected to be utilized for the treatment of various diseases. However, the spatiotemporal resolution of current gene therapy technology is not high enough. In this study, we generated a new technology for spatiotemporally controllable gene therapy. We introduced optogenetic and CRISPR/Cas9 techniques into a recombinant adenovirus (Ad) vector, which is widely used in clinical trials and exhibits high gene transfer efficiency, to generate an illumination-dependent spatiotemporally controllable gene regulation system (designated the Opt/Cas-Ad system). We generated an Opt/Cas-Ad system that could regulate a potential tumor suppressor gene, and we examined the effectiveness of this system in cancer treatment using a xenograft tumor model. With the Opt/Cas-Ad system, highly selective tumor treatment could be performed by illuminating the tumor. In addition, Opt/Cas-Ad system-mediated tumor treatment could be stopped simply by turning off the light. We believe that our Opt/Cas-Ad system can enhance both the safety and effectiveness of gene therapy.
Collapse
Affiliation(s)
- Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka 565-0871, Japan
- PRESTO, Japan Science and Technology Agency , Saitama 332-0012, Japan
- Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition , Osaka 567-0085, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka 565-0871, Japan
- Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition , Osaka 567-0085, Japan
- Global Center for Medical Engineering and Informatics, Osaka University , Osaka 565-0871, Japan
| |
Collapse
|
20
|
Sawahara H, Shiraha H, Uchida D, Kato H, Kato R, Oyama A, Nagahara T, Iwamuro M, Horiguchi S, Tsutsumi K, Mandai M, Mimura T, Wada N, Takeuchi Y, Kuwaki K, Onishi H, Nakamura S, Watanabe M, Sakaguchi M, Takaki A, Nouso K, Yagi T, Nasu Y, Kumon H, Okada H. Promising therapeutic efficacy of a novel reduced expression in immortalized cells/dickkopf-3 expressing adenoviral vector for hepatocellular carcinoma. J Gastroenterol Hepatol 2017; 32:1769-1777. [PMID: 28168749 DOI: 10.1111/jgh.13757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/21/2017] [Accepted: 02/02/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Reduced expression in immortalized cells (REIC)/dickkopf-3 (Dkk-3) is a tumor suppressor gene that is downregulated in various cancers. In our previous study of prostate cancer, the REIC/Dkk-3-expressing adenoviral vector (Ad-REIC) was found to induce cancer-selective apoptosis. This study recently developed a novel super gene expression (SGE) system and used this system to re-construct an Ad-REIC vector, termed the Ad-SGE-REIC, to achieve more effective therapeutic outcomes. In this study, the therapeutic effects of Ad-SGE-REIC on hepatocellular carcinoma (HCC) was assessed. METHODS Human HCC cell lines (HLE, Huh7, HepG2, HLF, SK-Hep1, and PLC), human HCC tissues, and mouse HCC cell line (Hepa1-6) were used in this study. REIC/Dkk-3 expression was assessed by immunoblotting and immunohistochemistry. The relative cell viability and the apoptotic effect were examined in vitro, and the anti-tumor effects of Ad-SGE-REIC treatment were analyzed in the mouse xenograft model. This study additionally assessed anti-tumor immunological effects on the immunocompetent mice. RESULTS REIC/Dkk-3 expression was decreased in HCC cell lines and HCC tissues. Ad-SGE-REIC reduced cell viability and induced apoptosis in HCC cell lines (HLE and Huh7), inhibited tumor growth in the mouse xenograft model, and demonstrated in vivo anti-cancer immunostimulatory effects on the HCC cell line (Hepa1-6). CONCLUSIONS Ad-SGE-REIC treatment not only enhanced cell killing effects in vitro but also elicited significant therapeutic effects, with tumor growth suppression, in vivo. REIC/Dkk-3 gene therapy using Ad-SGE-REIC potentially represents an innovative new therapeutic tool for HCC.
Collapse
Affiliation(s)
- Hiroaki Sawahara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hidenori Shiraha
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hironari Kato
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ryo Kato
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Atsushi Oyama
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Teruya Nagahara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masaya Iwamuro
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shigeru Horiguchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Koichiro Tsutsumi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Mari Mandai
- Department of Internal Medicine, Okayama Saiseikai General Hospital, Okayama, Japan
| | - Tetsushige Mimura
- Department of Surgery, Okayama Saiseikai General Hospital, Okayama, Japan
| | - Nozomu Wada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuto Takeuchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kenji Kuwaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hideki Onishi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichiro Nakamura
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiro Nouso
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takahito Yagi
- Department of Gastroenterological Surgery, Transplant, and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yasutomo Nasu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Hiromi Kumon
- Department of Innovation Center Okayama for Nanobio-Targeted Therapy, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
21
|
|
22
|
Horikawa Y, Watanabe M, Sadahira T, Ariyoshi Y, Kobayashi Y, Araki M, Wada K, Ochiai K, Li SA, Nasu Y. Overexpression of REIC/Dkk-3 suppresses the expression of CD147 and inhibits the proliferation of human bladder cancer cells. Oncol Lett 2017; 14:3223-3228. [PMID: 28927069 DOI: 10.3892/ol.2017.6548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/25/2017] [Indexed: 02/06/2023] Open
Abstract
Our group previously developed an adenoviral vector encoding the REIC/Dkk-3 gene (Ad-REIC), a tumor suppressor, for cancer gene therapy. The Ad-REIC agent induces apoptosis and inhibits invasion in a number of cancer cell lines; however, the molecular mechanisms underlying its effects remain unclear. Cluster of differentiation 147 (CD147), also known as extracellular matrix metalloproteinase inducer (EMMPRIN), is a key molecule that promotes cancer proliferation and invasion. In order to elucidate the therapeutic mechanism of Ad-REIC, its effect on the expression of CD147 in human bladder cancer KK47 cells was investigated. Treatment with Ad-REIC markedly downregulated the expression of CD147 and significantly inhibited cellular proliferation. Since the expression of CD147 is reported to be under the positive control of mitogen-activated protein kinase (MAPK) signaling and the c-Myc protein, the correlations between the expression of CD147 and the activation of MAPKs or the expression of c-Myc were examined. Unexpectedly, no positive correlation was observed between the level of CD147 and the potential regulators that were assessed, indicating that another signaling pathway is responsible for the downregulation of CD147. The results from the present study demonstrate that Ad-REIC treatment can significantly downregulate the expression of CD147 in bladder cancer cells. Downregulation of the cancer-progression factor CD147 may be a novel mechanism that underlies the therapeutic effects of Ad-REIC treatment.
Collapse
Affiliation(s)
- Yuhei Horikawa
- Department of Urology, Okayama University, Okayama 700-8558, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University, Okayama 700-8558, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Takuya Sadahira
- Department of Urology, Okayama University, Okayama 700-8558, Japan
| | - Yuichi Ariyoshi
- Department of Urology, Okayama University, Okayama 700-8558, Japan
| | | | - Motoo Araki
- Department of Urology, Okayama University, Okayama 700-8558, Japan
| | - Koichiro Wada
- Department of Urology, Okayama University, Okayama 700-8558, Japan
| | - Kazuhiko Ochiai
- Department of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Shun-Ai Li
- Department of Urology, Okayama University, Okayama 700-8558, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Yasutomo Nasu
- Department of Urology, Okayama University, Okayama 700-8558, Japan
| |
Collapse
|
23
|
Fujita K, Nakai Y, Kawashima A, Ujike T, Nagahara A, Nakajima T, Inoue T, Lee CM, Uemura M, Miyagawa Y, Kaneda Y, Nonomura N. Phase I/II clinical trial to assess safety and efficacy of intratumoral and subcutaneous injection of HVJ-E in castration-resistant prostate cancer patients. Cancer Gene Ther 2017; 24:277-281. [PMID: 28497777 PMCID: PMC5562845 DOI: 10.1038/cgt.2017.15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/01/2017] [Accepted: 03/04/2017] [Indexed: 12/27/2022]
Abstract
Inactivated Sendai virus particles (hemagglutinating virus of Japan envelope (HVJ-E)) have a novel antitumor effect: HVJ-E fused to prostate cancer cells via cell surface receptor causes apoptosis of prostate cancer cells in vitro and in vivo. HVJ-E also induces antitumor immunity by activating natural killer (NK) cells and cytotoxic T cells and suppressing regulatory T cells in vivo. We conducted an open-label, single-arm, phase I/II clinical trial in patients with castration-resistant prostate cancer (CRPC) to determine the safety and efficacy of intratumoral and subcutaneous injection of HVJ-E. Patients with CRPC who were docetaxel-resistant or could not receive docetaxel treatment were eligible. HVJ-E was injected directly into the prostate on day 1 and subcutaneously on days 5, 8 and 12 in two 28-day treatment cycles using a 3+3 dose-escalation design. The primary end points were to evaluate safety and tolerability of HVJ-E. The secondary end points were to analyze tumor immunity and antitumor effect. The study is registered at UMIN Clinical Trials Registry, number UMIN000006142. Seven patients were enrolled, and six patients received HVJ-E. Grade 2 or 3 adverse events (Common Terminology Criteria for Adverse Events Ver. 4.0) were urinary retention and lymphopenia from which the patients recovered spontaneously. No Grade 4 adverse events were observed. Radiographically, three patients had stable disease in the low-dose group, and one patient had stable disease and two had progressive disease in the high-dose group. The prostate-specific antigen (PSA) declined from 14 to 1.9 ng ml-1 in one patient in the low-dose group after two cycles of HVJ-E treatment, and the PSA response rate was 16.6%. NK cell activity was elevated from day 12 to day 28 after HVJ-E administration, whereas serum interleukin-6, interferon (IFN)-α, IFN-β and IFN-γ levels were not affected by HVJ-E treatment. Intratumoral and subcutaneous injections of HVJ-E are feasible and PSA response was observed in a subgroup of CRPC patients.
Collapse
Affiliation(s)
- K Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Y Nakai
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - A Kawashima
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - T Ujike
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - A Nagahara
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - T Inoue
- Department of Medical Innovation, Osaka University Graduate School of Medicine, Suita, Japan
| | - C M Lee
- Department of Medical Innovation, Osaka University Graduate School of Medicine, Suita, Japan
| | - M Uemura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Y Miyagawa
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Y Kaneda
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - N Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|