1
|
Messaoudi M, Pakstis AJ, Boussetta S, Ben Ammar Elgaaied A, Kidd KK, Cherni L. CYP2C gene polymorphisms in North African populations. Mol Biol Rep 2024; 51:1145. [PMID: 39532754 DOI: 10.1007/s11033-024-10093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Cytochrome P450 is a superfamily of genes generating hemoproteins that metabolize foreign chemicals as well as endogenous compounds, such as steroids. The human CYP2C genes (CYP2C8, CYP2C9, CYP2C18, CYP2C19) cluster on chromosome 10 and metabolize many clinically useful drugs. CYP2C19 and CYP2C9 have been the most studied while CYP2C8 has been studied less frequently. CYP2C18 has been relatively ignored until recently but its importance has begun to be recognized. METHODS AND RESULTS We studied the genotypes of 7 pharmacogenetic markers in 3 CYP2C genes: CYP2C19 (rs12248560), CYP2C9 (rs4918758, rs1799853), and CYP2C8 (rs10509681, rs11572103, rs1058930, rs11572080), in one Libyan population and 7 Tunisian populations. Five of the 7 SNPs are in exons and have functional consequences while one intronic SNP is considered to be in close proximity to a regulatory region because of the many studies that report associations with metabolic effects. We carried out principal component analysis (PCA) on the North African populations and 83 other populations from the 1000 Genomes Project and Kidd Laboratory. The geographic clustering observed via PCA was more pronounced when considering multi-SNP haplotype frequencies. CONCLUSION This study reveals the intermediate position of North Africans between Europeans and Asians and the varied dissimilarities with other world regions. The genetic variation observed within and between geographic regions have implications for drug metabolism and adverse individual responses to medical treatments.
Collapse
Affiliation(s)
- Mohsen Messaoudi
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.
| | - Andrew J Pakstis
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Amel Ben Ammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Kenneth K Kidd
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
- Higher Institute of Biotechnology of Monastir, Monastir University, 5000, Monastir, Tunisia
| |
Collapse
|
2
|
Gonzalez-Covarrubias V, Morales-Franco M, Cruz-Correa OF, Martínez-Hernández A, García-Ortíz H, Barajas-Olmos F, Genis-Mendoza AD, Martínez-Magaña JJ, Nicolini H, Orozco L, Soberón X. Variation in Actionable Pharmacogenetic Markers in Natives and Mestizos From Mexico. Front Pharmacol 2019; 10:1169. [PMID: 31649539 PMCID: PMC6796793 DOI: 10.3389/fphar.2019.01169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
The identification and characterization of pharmacogenetic variants in Latin American populations is still an ongoing endeavor. Here, we investigated SNVs on genes listed by the Pharmacogenomics Knowledge Base in 1284 Mestizos and 94 Natives from Mexico. Five institutional cohorts with NGS data were retrieved from different research projects at INMEGEN, sequencing files were filtered for 55 pharmacogenes present in all cohorts to identify novel and known variation. Bioinformatic tools VEP, PROVEAN, and FATHMM were used to assess, in silico, the functional impact of this variation. Next, we focused on 17 genes with actionable variants that have been clinically implemented. Allele frequencies were compared with major continental groups and differences discussed in the scope of a pharmacogenomic impact. We observed a wide genetic variability for known and novel SNVs, the largest variation was on UGT1A > ACE > COMT > ABCB1 and the lowest on APOE and NAT2. Although with allele frequencies around 1%, novel variation was observed in 16 of 17 PGKB genes. In Natives we identified 59 variants and 58 in Mestizos. Several genes did not show novel variation, on CYP2B6, CYP2D6, and CYP3A4 in Natives; and APOE, UGT1A, and VKORC1 in Mestizos. Similarities in allele frequency, comparing major continental groups for VIP pharmacogenes, hint towards a comparable PGx for drugs metabolized by UGT1A1, DPYD, ABCB1, CBR3, COMT, and TPMT; in contrast to variants on CYP3A5 and CYP2B6 for which significant MAF differences were identified. Our observations offer some discernment into the extent of pharmacogenetic variation registered up-to-date in Mexicans and contribute to quantitatively dissect actionable pharmacogenetic variants in Natives and Mestizos.
Collapse
Affiliation(s)
| | | | | | | | - Humberto García-Ortíz
- Immunogenomics and Metabolic Diseases Laboratory, INMEGEN, CDMX, Mexico City, Mexico
| | | | | | | | - Humberto Nicolini
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, INMEGEN, Mexico City, Mexico
| | - Lorena Orozco
- Immunogenomics and Metabolic Diseases Laboratory, INMEGEN, CDMX, Mexico City, Mexico
| | - Xavier Soberón
- Pharmacogenomics Laboratory, INMEGEN, CDMX, Mexico City, Mexico
| |
Collapse
|
3
|
Jansson L, Carlsson PO. Pancreatic Blood Flow with Special Emphasis on Blood Perfusion of the Islets of Langerhans. Compr Physiol 2019; 9:799-837. [PMID: 30892693 DOI: 10.1002/cphy.c160050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pancreatic islets are more richly vascularized than the exocrine pancreas, and possess a 5- to 10-fold higher basal and stimulated blood flow, which is separately regulated. This is reflected in the vascular anatomy of the pancreas where islets have separate arterioles. There is also an insulo-acinar portal system, where numerous venules connect each islet to the acinar capillaries. Both islets and acini possess strong metabolic regulation of their blood perfusion. Of particular importance, especially in the islets, is adenosine and ATP/ADP. Basal and stimulated blood flow is modified by local endothelial mediators, the nervous system as well as gastrointestinal hormones. Normally the responses to the nervous system, especially the parasympathetic and sympathetic nerves, are fairly similar in endocrine and exocrine parts. The islets seem to be more sensitive to the effects of endothelial mediators, especially nitric oxide, which is a permissive factor to maintain the high basal islet blood flow. The gastrointestinal hormones with pancreatic effects mainly influence the exocrine pancreatic blood flow, whereas islets are less affected. A notable exception is incretin hormones and adipokines, which preferentially affect islet vasculature. Islet hormones can influence both exocrine and endocrine blood vessels, and these complex effects are discussed. Secondary changes in pancreatic and islet blood flow occur during several conditions. To what extent changes in blood perfusion may affect the pathogenesis of pancreatic diseases is discussed. Both type 2 diabetes mellitus and acute pancreatitis are conditions where we think there is evidence that blood flow may contribute to disease manifestations. © 2019 American Physiological Society. Compr Physiol 9:799-837, 2019.
Collapse
Affiliation(s)
- Leif Jansson
- Uppsala University, Department of Medical Cell Biology, Uppsala, Sweden
| | - Per-Ola Carlsson
- Uppsala University, Department of Medical Cell Biology, Uppsala, Sweden.,Uppsala University, Department of Medical Sciences, Uppsala, Sweden
| |
Collapse
|
4
|
Tavares LC, Marcatto LR, Soares RAG, Krieger JE, Pereira AC, Santos PCJL. Association Between ABCB1 Polymorphism and Stable Warfarin Dose Requirements in Brazilian Patients. Front Pharmacol 2018; 9:542. [PMID: 29875668 PMCID: PMC5975540 DOI: 10.3389/fphar.2018.00542] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/04/2018] [Indexed: 11/13/2022] Open
Abstract
The ideal dose of the oral anticoagulant warfarin varies widely among patients, mainly due to genetic factors. Genetic variations that impact warfarin pharmacokinetics and the vitamin K cycle are plausible candidates for being associated with warfarin dose requirements. Therefore, the aim of this study was to assess whether polymorphisms in the ABCB1 and CYP4F2 genes were associated with stable warfarin dose requirements in Brazilian patients. This retrospective study included samples from 309 individuals. Genotyping of ABCB1 c.3435C>T and CYP4F2 c.1297G>A were performed by polymerase chain reaction followed by melting curve analysis (HRM-PCR) and TaqMan® genotyping assay, respectively. Stable doses were adjusted in a linear multiple regression model for age, gender, body mass index, self-reported race, use of amiodarone, CYP2C9 (*2 and *3), VKORC1 c.1639G>A, and ABCB1 c.3435C>T or CYP4F2 c.1297G>A. By performing a univariate analysis of variance, we found that the warfarin patients who carry ABCB1 c.3435T variant alleles (CT and TT genotypes) need fewer warfarin stable doses in comparison with the individuals that are CC wild-type: 2.5 (p = 0.003) and 4.3 (p < 0.001) mg/week less, respectively, for the overall group of patients on stable anticoagulation therapeutics (n = 309); and 5.5 (p = 0.006) and 10.2 (p < 0.001) mg/week less, respectively, for the self-declared non-white stable subgroup (n = 76). No statistically significant differences in dose requirements were observed according to CYP4F2 genotypes. In conclusion, our results suggest ABCB1 c.3435C>T variant may influence warfarin dose requirements in Brazilian patients, when associated with other genotypic, demographic and clinical factors.
Collapse
Affiliation(s)
- Letícia C Tavares
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Leiliane R Marcatto
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Renata A G Soares
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Jose E Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo C J L Santos
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil.,Department of Pharmacology, Universidade Federal de São Paulo UNIFESP, São Paulo, Brazil
| |
Collapse
|
5
|
Tavares LC, Marcatto LR, Santos PCJL. Genotype-guided warfarin therapy: current status. Pharmacogenomics 2018; 19:667-685. [PMID: 29701078 DOI: 10.2217/pgs-2017-0207] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Warfarin pharmacogenomics has been an extensively studied field in the last decades as it is focused on personalized therapy to overcome the wide interpatient warfarin response variability and decrease the risk of side effects. In this expert review, besides briefly summarizing the current knowledge about warfarin pharmacogenetics, we also present an overview of recent studies that aimed to assess the efficacy, safety and economic issues related to genotype-based dosing algorithms used to guide warfarin therapy, including randomized and controlled clinical trials, meta-analyses and cost-effectiveness studies. To date, the findings still present disparities, mostly because of standard limitations. Thus, further studies should be encouraged to try to demonstrate the benefits of the application of warfarin pharmacogenomic dosing algorithms in clinical practice.
Collapse
Affiliation(s)
- Letícia C Tavares
- Laboratory of Genetics & Molecular Cardiology, Heart Institute (InCor), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, SP 05403-900, Brazil
| | - Leiliane R Marcatto
- Laboratory of Genetics & Molecular Cardiology, Heart Institute (InCor), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, SP 05403-900, Brazil
| | - Paulo C J L Santos
- Department of Pharmacology, Universidade Federal de Sao Paulo UNIFESP, SP 04044-020, Brazil
| |
Collapse
|
6
|
Oprea AD, Lombard FW, Kertai MD. Perioperative β-Adrenergic Blockade in Noncardiac and Cardiac Surgery: A Clinical Update. J Cardiothorac Vasc Anesth 2018; 33:817-832. [PMID: 29934209 DOI: 10.1053/j.jvca.2018.04.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Adriana D Oprea
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT
| | - Frederick W Lombard
- Division of Cardiothoracic Anesthesiology, Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Miklos D Kertai
- Division of Cardiothoracic Anesthesiology, Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
7
|
Alanazi A. Incorporating Pharmacogenomics into Health Information Technology, Electronic Health Record and Decision Support System: An Overview. J Med Syst 2016; 41:19. [DOI: 10.1007/s10916-016-0673-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
|
8
|
Johnston-Cox H, Björkegren JL, Kovacic JC. Genetics and Pharmacogenetics in Interventional Cardiology. Interv Cardiol 2016. [DOI: 10.1002/9781118983652.ch48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
9
|
Abstract
A prolonged QT interval is an important risk factor for ventricular arrhythmias and sudden cardiac death. QT prolongation can be caused by drugs. There are multiple risk factors for drug-induced QT prolongation, including genetic variation. QT prolongation is one of the most common reasons for withdrawal of drugs from the market, despite the fact that these drugs may be beneficial for certain patients and not harmful in every patient. Identifying genetic variants associated with drug-induced QT prolongation might add to tailored pharmacotherapy and prevent beneficial drugs from being withdrawn unnecessarily. In this review, our objective was to provide an overview of the genetic background of drug-induced QT prolongation, distinguishing pharmacokinetic and pharmacodynamic pathways. Pharmacokinetic-mediated genetic susceptibility is mainly characterized by variation in genes encoding drug-metabolizing cytochrome P450 enzymes or drug transporters. For instance, the P-glycoprotein drug transporter plays a role in the pharmacokinetic susceptibility of drug-induced QT prolongation. The pharmacodynamic component of genetic susceptibility is mainly characterized by genes known to be associated with QT interval duration in the general population and genes in which the causal mutations of congenital long QT syndromes are located. Ethnicity influences susceptibility to drug-induced QT interval prolongation, with Caucasians being more sensitive than other ethnicities. Research on the association between pharmacogenetic interactions and clinical endpoints such as sudden cardiac death is still limited. Future studies in this area could enable us to determine the risk of arrhythmias more adequately in clinical practice.
Collapse
|
10
|
Anwar MS, Iskandar MZ, Parry HM, Doney AS, Palmer CN, Lang CC. The future of pharmacogenetics in the treatment of heart failure. Pharmacogenomics 2015; 16:1817-27. [DOI: 10.2217/pgs.15.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Heart failure is a common disease with high levels of morbidity and mortality. Current treatment comprises β-blockers, ACE inhibitors, aldosterone antagonists and diuretics. Variation in clinical response seen in patients begs the question of whether there is a pharmacogenetic component yet to be identified. To date, the genes most studied involve the β-1, β-2, α-2 adrenergic receptors and the renin-angiotensin-aldosterone pathway, mainly focusing on SNPs. However results have been inconsistent. Genome-wide association studies and next-generation sequencing are seen as alternative approaches to discovering genetic variations influencing drug response. Hopefully future research will lay the foundations for genotype-led drug management in these patients with the ultimate aim of improving their clinical outcome.
Collapse
Affiliation(s)
- Mohamed Subhan Anwar
- Division of Cardiovascular & Diabetes Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Muhammad Zaid Iskandar
- Division of Cardiovascular & Diabetes Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Helen M Parry
- Department of Pharmacogenetics & Pharmacogenomics, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Alex S Doney
- Department of Pharmacogenetics & Pharmacogenomics, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Colin N Palmer
- Division of Cardiovascular & Diabetes Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Chim C Lang
- Division of Cardiovascular & Diabetes Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
11
|
Hughes KS, Cusack JC. Genetics, Genomics, and Pharmacogenomics. Ann Surg Oncol 2015. [DOI: 10.1245/s10434-015-4705-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Subhani S, Jamil K. Molecular docking of chemotherapeutic agents to CYP3A4 in non-small cell lung cancer. Biomed Pharmacother 2015. [DOI: 10.1016/j.biopha.2015.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
13
|
Beitelshees AL, Voora D, Lewis JP. Personalized antiplatelet and anticoagulation therapy: applications and significance of pharmacogenomics. Pharmgenomics Pers Med 2015; 8:43-61. [PMID: 25897256 PMCID: PMC4397717 DOI: 10.2147/pgpm.s52900] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, substantial effort has been made to better understand the influence of genetic factors on the efficacy and safety of numerous medications. These investigations suggest that the use of pharmacogenetic data to inform physician decision-making has great potential to enhance patient care by reducing on-treatment clinical events, adverse drug reactions, and health care-related costs. In fact, integration of such information into the clinical setting may be particularly applicable for antiplatelet and anticoagulation therapeutics, given the increasing body of evidence implicating genetic variation in variable drug response. In this review, we summarize currently available pharmacogenetic information for the most commonly used antiplatelet (ie, clopidogrel and aspirin) and anticoagulation (ie, warfarin) medications. Furthermore, we highlight the currently known role of genetic variability in response to next-generation antiplatelet (prasugrel and ticagrelor) and anticoagulant (dabigatran) agents. While compelling evidence suggests that genetic variants are important determinants of antiplatelet and anticoagulation therapy response, significant barriers to clinical implementation of pharmacogenetic testing exist and are described herein. In addition, we briefly discuss development of new diagnostic targets and therapeutic strategies as well as implications for enhanced patient care. In conclusion, pharmacogenetic testing can provide important information to assist clinicians with prescribing the most personalized and effective antiplatelet and anticoagulation therapy. However, several factors may limit its usefulness and should be considered.
Collapse
Affiliation(s)
- Amber L Beitelshees
- Program for Personalized and Genomic Medicine and Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Deepak Voora
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke School of Medicine, Durham, NC, USA
| | - Joshua P Lewis
- Program for Personalized and Genomic Medicine and Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Abstract
CYP3A ranks among the most abundant cytochrome P450 enzymes in the liver, playing a dominant role in metabolic elimination of clinically used drugs. A main member in CYP3A family, CYP3A4 expression and activity vary considerably among individuals, attributable to genetic and non-genetic factors, affecting drug dosage and efficacy. However, the extent of genetic influence has remained unclear. This review assesses current knowledge on the genetic factors influencing CYP3A4 activity. Coding region CYP3A4 polymorphisms are rare and account for only a small portion of inter-person variability in CYP3A metabolism. Except for the promoter allele CYP3A4*1B with ambiguous effect on expression, common CYP3A4 regulatory polymorphisms were thought to be lacking. Recent studies have identified a relatively common regulatory polymorphism, designated CYP3A4*22 with robust effects on hepatic CYP3A4 expression. Combining CYP3A4*22 with CYP3A5 alleles *1, *3 and *7 has promise as a biomarker predicting overall CYP3A activity. Also contributing to variable expression, the role of polymorphisms in transcription factors and microRNAs is discussed.
Collapse
Affiliation(s)
- Danxin Wang
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-614-292-7336; Fax: +1-614-292-7232
| | | |
Collapse
|
15
|
Seong SJ, Yoon YR, Lim MS. Serious adverse events during clinical trial for pharmacokinetic interaction between telmisartan and chlorthalidone in healthy Korean subjects: A case report. Transl Clin Pharmacol 2015. [DOI: 10.12793/tcp.2015.23.2.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Sook Jin Seong
- Department of Biomedical Science, BK21 Plus KNU Bio-Medical Convergence Program for Creative Talent and Clinical Trial Center, Kyungpook National University Graduate School and Hospital, Daegu 41944, Republic of Korea
| | - Young-Ran Yoon
- Department of Biomedical Science, BK21 Plus KNU Bio-Medical Convergence Program for Creative Talent and Clinical Trial Center, Kyungpook National University Graduate School and Hospital, Daegu 41944, Republic of Korea
| | - Mi-sun Lim
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 42415, Republic of Korea
| |
Collapse
|
16
|
Petropoulou E, Jamshidi Y, Behr ER. The genetics of pro-arrhythmic adverse drug reactions. Br J Clin Pharmacol 2014; 77:618-25. [PMID: 23834499 DOI: 10.1111/bcp.12208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/26/2013] [Indexed: 12/19/2022] Open
Abstract
Ventricular arrhythmia induced by drugs (pro-arrythmia) is an uncommon event, whose occurrence is unpredictable but potentially fatal. The ability of a variety of medications to induce these arrhythmias is a significant problem facing the pharmaceutical industry. Genetic variants have been shown to play a role in adverse events and are also known to influence an individual's optimal drug dose. This review provides an overview of the current understanding of the role of genetic variants in modulating the risk of drug induced arrhythmias.
Collapse
Affiliation(s)
- Evmorfia Petropoulou
- Human Genetics Research Centre, Division of Biomedical Sciences, St George's Hospital Medical School, London, SW17 0RE, UK
| | | | | |
Collapse
|
17
|
Kertai MD, Li YW, Li YJ, Shah SH, Kraus WE, Fontes ML, Stafford-Smith M, Newman MF, Podgoreanu MV, Mathew JP. G protein-coupled receptor kinase 5 gene polymorphisms are associated with postoperative atrial fibrillation after coronary artery bypass grafting in patients receiving β-blockers. ACTA ACUST UNITED AC 2014; 7:625-633. [PMID: 25049040 DOI: 10.1161/circgenetics.113.000451] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND We hypothesized that genetic variations in the adrenergic signaling pathway and cytochrome P450 2D6 enzyme are associated with new-onset atrial fibrillation (AF) in patients who underwent coronary artery bypass grafting and were treated with perioperative β-blockers (BBs). METHODS AND RESULTS Two cohorts of patients who underwent coronary artery bypass grafting and received perioperative BBs at Duke University Medical Center were studied. In a discovery cohort of 563 individuals from the Perioperative Genetics and Safety Outcomes Study (PEGASUS), using a covariate-adjusted logistic regression analysis, we tested 492 single-nucleotide polymorphisms (SNPs) in 10 candidate genes of the adrenergic signaling pathway and cytochrome P450 2D6 for association with postoperative AF despite perioperative BB therapy. SNPs meeting a false discovery rate ≤0.20 (P<0.002) were then tested in the replication cohort of 245 individuals from the Catheterization Genetics biorepository. Of the 492 SNPs examined, 4 intronic SNPs of the G protein-coupled kinase 5 (GRK5) gene were significantly associated with postoperative AF despite perioperative BB therapy in the discovery cohort with additive odds ratios between 1.72 and 2.75 (P=4.78×10(-5) to 0.0015). Three of these SNPs met nominal significance levels in the replication cohort with odds ratios between 2.07 and 2.60 (P=0.007 to 0.016). However, meta-analysis of the 2 data sets cohorts suggested strong association with postoperative AF despite perioperative BB therapy in all 4 SNPs (meta-P values from 1.66×10(-6) to 3.39×10(-5)). CONCLUSIONS In patients undergoing coronary artery bypass grafting, genetic variation in GRK5 is associated with postoperative AF despite perioperative BB therapy.
Collapse
Affiliation(s)
- Miklos D Kertai
- Department of Anesthesiology, Duke Perioperative Genomics Program, Duke University Medical Center, Durham, NC
| | - Yen-Wei Li
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC
| | - Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC.,Molecular Physiology Institute, Duke University Medical Center, Durham, NC
| | - Svati H Shah
- Molecular Physiology Institute, Duke University Medical Center, Durham, NC.,Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC
| | - William E Kraus
- Molecular Physiology Institute, Duke University Medical Center, Durham, NC.,Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC
| | - Manuel L Fontes
- Department of Anesthesiology, Duke Perioperative Genomics Program, Duke University Medical Center, Durham, NC
| | - Mark Stafford-Smith
- Department of Anesthesiology, Duke Perioperative Genomics Program, Duke University Medical Center, Durham, NC
| | - Mark F Newman
- Department of Anesthesiology, Duke Perioperative Genomics Program, Duke University Medical Center, Durham, NC
| | - Mihai V Podgoreanu
- Department of Anesthesiology, Duke Perioperative Genomics Program, Duke University Medical Center, Durham, NC
| | - Joseph P Mathew
- Department of Anesthesiology, Duke Perioperative Genomics Program, Duke University Medical Center, Durham, NC
| | | |
Collapse
|
18
|
Opinions, hopes and concerns regarding pharmacogenomics: a comparison of healthy individuals, heart failure patients and heart transplant recipients. THE PHARMACOGENOMICS JOURNAL 2014; 15:13-9. [PMID: 24980785 DOI: 10.1038/tpj.2014.29] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/12/2014] [Accepted: 05/22/2014] [Indexed: 01/17/2023]
Abstract
It is not yet known whether healthy individuals and patients with a chronic disease have similar attitudes towards pharmacogenomics. Thus we conducted a survey of 175 healthy volunteers, 175 heart failure (HF) patients and 100 heart transplant recipients to compare their opinions on this subject. Most participants (>90%) stated that they would accept pharmacogenomic testing and expressed high hopes regarding its potential applications. Overall, interest for pharmacogenomics was shared equally among the three groups. In contrast, after adjusting for age, gender, education and income, healthy individuals were more likely to voice concerns about potential employment (P=0.008 vs HF, odds ratio (OR)=2.93, confidence interval (CI)=1.33-6.47; P=0.010 vs Transplant, OR=2.46, CI=1.24-4.90) and insurance discrimination (P=0.001 vs HF, OR=5.58, CI=2.01-15.48; P<0.001 vs Transplant, OR=4.98, CI=2.03-12.21) and were possibly more worried by confidentiality issues. These findings highlight the need for strict legislation and proper educational strategies directed at the general population to facilitate the clinical implementation of pharmacogenomics.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Novel medical approaches and personalized medicine seek to use genetic information to 'individualize' and improve diagnosis, prevention, and therapy. The personalized management of cardiovascular disease involves a large spectrum of potential applications, from diagnostics of monogenic disorders, to prevention and management strategies based on modifier genes, to pharmacogenetics, in which individual genetic information is used to optimize the pharmacological treatments. RECENT FINDINGS Evidence suggests that the common polymorphic variants of modifier genes could influence drug response in cardiovascular disease in a variety of areas, including heart failure, arrhythmias, dyslipidemia, and hypertension. In heart failure, common genetic variants of β-adrenergic receptors, α-adrenergic receptors, and endothelin receptors (among others) have been associated with variable response to heart failure therapies. The challenge remains to develop strategies to leverage this information in ways that personalize and optimize cardiovascular therapy based on a patient's genetic profile. SUMMARY Although advances in technologies will continue to transition personalized medicine from the research to the clinical setting, healthcare providers will need to reshape the clinical diagnostic paradigms. Ultimately, pharmacogenetics will give providers the options for improving patient management on the basis of pharmacogenetic data.
Collapse
Affiliation(s)
- Luisa Mestroni
- University of Colorado Cardiovascular Institute and Adult Medical Genetics Program, Aurora, Colorado, USA
| | | | | | | |
Collapse
|
20
|
Olivier C, Williams-Jones B. Global pharmacogenomics: Where is the research taking us? Glob Public Health 2014; 9:312-24. [DOI: 10.1080/17441692.2014.887137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Sayols-Baixeras S, Lluís-Ganella C, Lucas G, Elosua R. Pathogenesis of coronary artery disease: focus on genetic risk factors and identification of genetic variants. Appl Clin Genet 2014; 7:15-32. [PMID: 24520200 PMCID: PMC3920464 DOI: 10.2147/tacg.s35301] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death and disability worldwide, and its prevalence is expected to increase in the coming years. CAD events are caused by the interplay of genetic and environmental factors, the effects of which are mainly mediated through cardiovascular risk factors. The techniques used to study the genetic basis of these diseases have evolved from linkage studies to candidate gene studies and genome-wide association studies. Linkage studies have been able to identify genetic variants associated with monogenic diseases, whereas genome-wide association studies have been more successful in determining genetic variants associated with complex diseases. Currently, genome-wide association studies have identified approximately 40 loci that explain 6% of the heritability of CAD. The application of this knowledge to clinical practice is challenging, but can be achieved using various strategies, such as genetic variants to identify new therapeutic targets, personal genetic information to improve disease risk prediction, and pharmacogenomics. The main aim of this narrative review is to provide a general overview of our current understanding of the genetics of coronary artery disease and its potential clinical utility.
Collapse
Affiliation(s)
- Sergi Sayols-Baixeras
- Cardiovascular epidemiology and Genetics Research Group, Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain
| | - Carla Lluís-Ganella
- Cardiovascular epidemiology and Genetics Research Group, Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain
| | - Gavin Lucas
- Cardiovascular epidemiology and Genetics Research Group, Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain
| | - Roberto Elosua
- Cardiovascular epidemiology and Genetics Research Group, Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW To review the most promising genetic markers associated with the variability in the safety or efficacy of warfarin and clopidogrel and highlight the verification and validation initiatives for translating clopidogrel and warfarin pharmacogenetic tests to clinical practice. RECENT FINDINGS Rapid advances in pharmacogenetics, continuous decrease in genotyping cost, development of point-of-care devices and the newly established clinical genotyping programs at several institutions hold the promise of individualizing clopidogrel and warfarin based on genotype. Guidelines have been established to assist clinicians in prescribing clopidogrel or warfarin dose based on genotype. However, the clinical utility of clopidogrel and warfarin is still limited. Accordingly, large randomized clinical trials are underway to define the role of clopidogrel and warfarin pharmacogenetics in clinical practice. SUMMARY Pharmacogenetics has offered compelling evidence toward the individualization of clopidogrel and warfarin therapies. The rapid advances in technology make the clinical implementation of clopidogrel and warfarin pharmacogenetics possible. The clinical genotyping programs and the ongoing clinical trials will help in overcoming some of the barriers facing the clinical implementation of clopidogrel and warfarin pharmacogenetics.
Collapse
|
23
|
Peterson JF, Bowton E, Field JR, Beller M, Mitchell J, Schildcrout J, Gregg W, Johnson K, Jirjis JN, Roden DM, Pulley JM, Denny JC. Electronic health record design and implementation for pharmacogenomics: a local perspective. Genet Med 2013; 15:833-41. [PMID: 24009000 PMCID: PMC3925979 DOI: 10.1038/gim.2013.109] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/17/2013] [Indexed: 01/08/2023] Open
Abstract
PURPOSE The design of electronic health records to translate genomic medicine into clinical care is crucial to successful introduction of new genomic services, yet there are few published guides to implementation. METHODS The design, implemented features, and evolution of a locally developed electronic health record that supports a large pharmacogenomics program at a tertiary-care academic medical center was tracked over a 4-year development period. RESULTS Developers and program staff created electronic health record mechanisms for ordering a pharmacogenomics panel in advance of clinical need (preemptive genotyping) and in response to a specific drug indication. Genetic data from panel-based genotyping were sequestered from the electronic health record until drug-gene interactions met evidentiary standards and deemed clinically actionable. A service to translate genotype to predicted drug-response phenotype populated a summary of drug-gene interactions, triggered inpatient and outpatient clinical decision support, updated laboratory records, and created gene results within online personal health records. CONCLUSION The design of a locally developed electronic health record supporting pharmacogenomics has generalizable utility. The challenge of representing genomic data in a comprehensible and clinically actionable format is discussed along with reflection on the scalability of the model to larger sets of genomic data.
Collapse
Affiliation(s)
- Josh F Peterson
- 1] Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; [2] Division of General Internal Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Johnson JA, Cavallari LH. Pharmacogenetics and cardiovascular disease--implications for personalized medicine. Pharmacol Rev 2013; 65:987-1009. [PMID: 23686351 PMCID: PMC3698938 DOI: 10.1124/pr.112.007252] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The past decade has seen tremendous advances in our understanding of the genetic factors influencing response to a variety of drugs, including those targeted at treatment of cardiovascular diseases. In the case of clopidogrel, warfarin, and statins, the literature has become sufficiently strong that guidelines are now available describing the use of genetic information to guide treatment with these therapies, and some health centers are using this information in the care of their patients. There are many challenges in moving from research data to translation to practice; we discuss some of these barriers and the approaches some health systems are taking to overcome them. The body of literature that has led to the clinical implementation of CYP2C19 genotyping for clopidogrel, VKORC1, CYP2C9; and CYP4F2 for warfarin; and SLCO1B1 for statins is comprehensively described. We also provide clarity for other genes that have been extensively studied relative to these drugs, but for which the data are conflicting. Finally, we comment briefly on pharmacogenetics of other cardiovascular drugs and highlight β-blockers as the drug class with strong data that has not yet seen clinical implementation. It is anticipated that genetic information will increasingly be available on patients, and it is important to identify those examples where the evidence is sufficiently robust and predictive to use genetic information to guide clinical decisions. The review herein provides several examples of the accumulation of evidence and eventual clinical translation in cardiovascular pharmacogenetics.
Collapse
Affiliation(s)
- Julie A Johnson
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, University of Florida, Box 100486, Gainesville, FL 32610-0486, USA.
| | | |
Collapse
|
25
|
Bochud M, Guessous I. Gene-environment interactions of selected pharmacogenes in arterial hypertension. Expert Rev Clin Pharmacol 2013; 5:677-86. [PMID: 23234325 DOI: 10.1586/ecp.12.58] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hypertension affects approximately 1 billion people worldwide. Owing to population aging, hypertension-related cardiovascular burden is expected to rise in the near future. In addition to genetic variants influencing the blood pressure response to antihypertensive drugs, several genes encoding for drug-metabolizing or -transporting enzymes have been associated with blood pressure and/or hypertension in humans (e.g., ACE, CYP1A2, CYP3A5, ABCB1 and MTHFR) regardless of drug treatment. These genes are also involved in the metabolism and transport of endogenous substances and their effects may be modified by selected environmental factors, such as diet or lifestyle. However, little is currently known on the complex interplay between environmental factors, endogenous factors, genetic variants and drugs on blood pressure control. This review will discuss the respective role of population-based primary prevention and personalized medicine for arterial hypertension, taking a pharmacogenomics' perspective focusing on selected pharmacogenes.
Collapse
Affiliation(s)
- Murielle Bochud
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Switzerland.
| | | |
Collapse
|
26
|
Mahida S, Hogarth AJ, Cowan C, Tayebjee MH, Graham LN, Pepper CB. Genetics of congenital and drug-induced long QT syndromes: current evidence and future research perspectives. J Interv Card Electrophysiol 2013; 37:9-19. [PMID: 23515882 DOI: 10.1007/s10840-013-9779-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/07/2013] [Indexed: 12/17/2022]
Abstract
The long QT syndrome (LQTS) is a condition characterized by abnormal prolongation of the QT interval with an associated risk of ventricular arrhythmias and sudden cardiac death. Congenital forms of LQTS arise due to rare and highly penetrant mutations that segregate in a Mendelian fashion. Over the years, multiple mutations in genes encoding ion channels and ion channel binding proteins have been reported to underlie congenital LQTS. Drugs are by far the most common cause of acquired forms of LQTS. Emerging evidence suggests that drug-induced LQTS also has a significant heritable component. However, the genetic substrate underlying drug-induced LQTS is presently largely unknown. In recent years, advances in next-generation sequencing technology and molecular biology techniques have significantly enhanced our ability to identify genetic variants underlying both monogenic diseases and more complex traits. In this review, we discuss the genetic basis of congenital and drug-induced LQTS and focus on future avenues of research in the field. Ultimately, a detailed characterization of the genetic substrate underlying congenital and drug-induced LQTS will enhance risk stratification and potentially result in the development of tailored genotype-based therapies.
Collapse
Affiliation(s)
- Saagar Mahida
- Leeds General Infirmary, Great George Street, Leeds, LS1 3EX, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Shahin MHA, Cavallari LH, Perera MA, Khalifa SI, Misher A, Langaee T, Patel S, Perry K, Meltzer DO, McLeod HL, Johnson JA. VKORC1 Asp36Tyr geographic distribution and its impact on warfarin dose requirements in Egyptians. Thromb Haemost 2013; 109:1045-50. [PMID: 23571513 DOI: 10.1160/th12-10-0789] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/03/2013] [Indexed: 02/04/2023]
Abstract
The VKORC1 Asp36Tyr single nucleotide polymorphism (SNP) is one of the most promising predictors of high warfarin dose, but data on its population prevalence is incomplete. We determined the frequency of this SNP in participants from seven countries on four continents and investigated its effect on warfarin dose requirement. One thousand samples were analysed to define the population prevalence of this SNP. Those samples included individuals from Egypt, Ghana, Sudan, Kenya, Saudi Arabia, Peru and African Americans from the United States. A total of 206 Egyptian samples were then used to investigate the effect of this SNP on warfarin dose requirements. This SNP was most frequent among Kenyans and Sudanese, with a minor allele frequency (MAF) of 6% followed by Saudi Arabians and Egyptians with a MAF of 3% and 2.5%, respectively. It was not detected in West Africans, based on our data from Ghana, and a large cohort of African Americans. Egyptian carriers of the VKORC1 Tyr36 showed higher warfarin dose requirement (57.1 ± 29.4 mg/week) than those with the Asp36Asp genotype (35.8 ± 16.6 mg/week; p=0.03). In linear regression analysis, this SNP had the greatest effect size among the genetic factors (16.6 mg/week increase in dose per allele), and improved the warfarin dose variability explained in Egyptians (model R2 from 31% to 36.5%). The warfarin resistant VKORC1 Asp36Tyr appears to be confined to north-eastern Africa and nearby Middle-Eastern populations, but in those populations where it is present, it has a significant influence on warfarin dose requirement and the percent of warfarin dose variability that can be explained.
Collapse
Affiliation(s)
- Mohamed Hossam A Shahin
- Center for Pharmacogenomics, University of Florida, Health Science Center, PO Box 100486, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Cardiovascular diseases remain the dominant cause of death worldwide. In the last decades, the remarkable advances in human genetic and genomic research, plus the now common use of genome-wide association studies, have led to the identification of numerous genetic variants associated with specific cardiovascular traits and diseases. Although the clinical applications are limited because the genetic risk of common cardiovascular disease is still unexplained, and the mechanisms of action of the genetic factor(s) are not known, these research advances have, in turn, widely opened the concept of personalized medicine. In this paper, the status and prospects of personalized medicine for cardiovascular disease will be presented. This will be followed by a discussion of issues regarding the implementation of personalized medicine.
Collapse
Affiliation(s)
- Claude Lenfant
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
29
|
Cabrera R, Muñoz A. Actualidad y proyección del estudio genético de las enfermedades cardiovasculares en colombia. REVISTA COLOMBIANA DE CARDIOLOGÍA 2013. [DOI: 10.1016/s0120-5633(13)70016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
30
|
Abstract
A new generation of technologies commonly named omics permits assessment of the entirety of the components of biological systems and produces an explosion of data and a major shift in our concepts of disease. These technologies will likely shape the future of health care. One aspect of these advances is that the data generated document the uniqueness of each human being in regard to disease risk and treatment response. These developments have reemphasized the concept of personalized medicine. Here we review the impact of omics technologies on one key aspect of personalized medicine: the individual drug response. We describe how knowledge of different omics may affect treatment decisions, namely drug choice and drug dose, and how it can be used to improve clinical outcomes.
Collapse
Affiliation(s)
- Urs A Meyer
- Division of Pharmacology and Neurobiology, Biozentrum of the University of Basel, CH-4056 Basel, Switzerland.
| | | | | |
Collapse
|
31
|
Santos PCJL, Dinardo CL, Schettert IT, Soares RAG, Kawabata-Yoshihara L, Bensenor IM, Krieger JE, Lotufo PA, Pereira AC. CYP2C9 and VKORC1 polymorphisms influence warfarin dose variability in patients on long-term anticoagulation. Eur J Clin Pharmacol 2012; 69:789-97. [PMID: 22990331 DOI: 10.1007/s00228-012-1404-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 09/02/2012] [Indexed: 01/24/2023]
Abstract
OBJECTIVES The main aim of this study was to determine whether CYP2C9 and VKORC1 polymorphisms influence warfarin dose variability during initial dose-finding phase and during maintenance treatment after 360 days. METHODS Two hundred and six consecutive patients who were beginning warfarin therapy were selected. They were assessed for general and clinical characteristics; prescribed warfarin dose; response to therapy on days 7-10, 30, 60, 180, and 360; adverse events; and CYP2C9 2, 3, 5, 6, 8, 11, and VKORC1 1639G >A assays. RESULTS During the first 30 days of anticoagulation, the relative variability of warfarin dose was significantly associated with CYP2C9*2 and CYP2C9*3 polymorphisms (p = 0.02) and with VKORC1 1639G >A genotypes (p = 0.04). Warfarin variability was also statistically different according to predicted metabolic phenotype and to VKORC1 genotypes after 360 days of treatment, and in the phase between 180 and 360 days (long-term dose variability). Both CYP2C9 and VKORC1 polymorphisms were associated with the international normalized ratio (INR) made between 7 and 10 days/initial dose ratio, adjusted for covariates (p < 0.01 and p = 0.02, respectively). Patients carrying VKORC1 and CYP2C9 variants presented lower required dose (at the end of follow-up of 360 days) compared to patients carrying wild-type genotypes (p = 0.04 and p = 0.03, respectively). CONCLUSIONS Genetic information on CYP2C9 and VKORC1 is important both for the initial dose-finding phase and during maintenance treatment with warfarin.
Collapse
Affiliation(s)
- Paulo Caleb Junior Lima Santos
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of Sao Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar, 44 Cerqueira Cesar, Sao Paulo, SP, CEP 05403-000, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kertai MD, Fontes M, Podgoreanu MV. Pharmacogenomics of β-blockers and statins: possible implications for perioperative cardiac complications. J Cardiothorac Vasc Anesth 2012; 26:1101-14. [PMID: 22889606 DOI: 10.1053/j.jvca.2012.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Indexed: 01/09/2023]
Affiliation(s)
- Miklos D Kertai
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
| | | | | |
Collapse
|
33
|
Soares RAG, Santos PCJL, Machado-Coelho GLL, do Nascimento RM, Mill JG, Krieger JE, Pereira AC. CYP2C9 and VKORC1 polymorphisms are differently distributed in the Brazilian population according to self-declared ethnicity or genetic ancestry. Genet Test Mol Biomarkers 2012; 16:957-63. [PMID: 22808915 DOI: 10.1089/gtmb.2012.0019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Warfarin-dosing pharmacogenetic algorithms have presented different performances across ethnicities, and the impact in admixed populations is not fully known. AIMS To evaluate the CYP2C9 and VKORC1 polymorphisms and warfarin-predicted metabolic phenotypes according to both self-declared ethnicity and genetic ancestry in a Brazilian general population plus Amerindian groups. METHODS Two hundred twenty-two Amerindians (Tupinikin and Guarani) were enrolled and 1038 individuals from the Brazilian general population who were self-declared as White, Intermediate (Brown, Pardo in Portuguese), or Black. Samples of 274 Brazilian subjects from Sao Paulo were analyzed for genetic ancestry using an Affymetrix 6.0(®) genotyping platform. The CYP2C9*2 (rs1799853), CYP2C9*3 (rs1057910), and VKORC1 g.-1639G>A (rs9923231) polymorphisms were genotyped in all studied individuals. RESULTS The allelic frequency for the VKORC1 polymorphism was differently distributed according to self-declared ethnicity: White (50.5%), Intermediate (46.0%), Black (39.3%), Tupinikin (40.1%), and Guarani (37.3%) (p<0.001), respectively. The frequency of intermediate plus poor metabolizers (IM+PM) was higher in White (28.3%) than in Intermediate (22.7%), Black (20.5%), Tupinikin (12.9%), and Guarani (5.3%), (p<0.001). For the samples with determined ancestry, subjects carrying the GG genotype for the VKORC1 had higher African ancestry and lower European ancestry (0.14±0.02 and 0.62±0.02) than in subjects carrying AA (0.05±0.01 and 0.73±0.03) (p=0.009 and 0.03, respectively). Subjects classified as IM+PM had lower African ancestry (0.08±0.01) than extensive metabolizers (0.12±0.01) (p=0.02). CONCLUSIONS The CYP2C9 and VKORC1 polymorphisms are differently distributed according to self-declared ethnicity or genetic ancestry in the Brazilian general population plus Amerindians. This information is an initial step toward clinical pharmacogenetic implementation, and it could be very useful in strategic planning aiming at an individual therapeutic approach and an adverse drug effect profile prediction in an admixed population.
Collapse
Affiliation(s)
- Renata Alonso Gadi Soares
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
34
|
Current World Literature. Curr Opin Cardiol 2012; 27:318-26. [DOI: 10.1097/hco.0b013e328352dfaf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Abstract
Clopidogrel is a widely used antiplatelet agent to treat and prevent a variety of atherothrombotic diseases. More than a decade after its initial Food and Drug Administration approval, studies have emerged raising concerns regarding its possible reduced efficacy in patients who have impaired conversion of clopidogrel to its active metabolite (ie, poor metabolizers). Research has implicated genetic variations in the CYP2C19 isozyme as at least partly responsible for the variable antiplatelet response seen with clopidogrel. Studies have shown that patients possessing genetic variants of the CYP2C19 isozyme may be at increased risk of adverse cardiovascular events due to impaired clopidogrel efficacy, although this has not been definitively demonstrated. The Food and Drug Administration has issued a boxed warning regarding this concern. However, specific recommendations on genetic testing and alternative therapeutic strategies are not currently available. Genetic testing is commercially available to test patients for variability in the CYP2C19 isozyme, but altering antiplatelet therapy based on the results of this testing has not been adequately studied, and it is therefore not clear how to adjust therapy based on the results of this genetic testing. In addition, there are many other factors that may contribute to the variability in antiplatelet effect seen with clopidogrel besides CYP2C19 genetic polymorphisms. Ongoing trials dealing with adjusting antiplatelet therapy based on genetic testing will hopefully provide more useful information on how to appropriately integrate pharmacogenomics with the care of patients with atherothrombotic disease.
Collapse
|
36
|
Clinical Pharmacology & Therapeutics 2011: Year in Review. Clin Pharmacol Ther 2012. [DOI: 10.1038/clpt.2011.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
|
38
|
Sissung TM, Troutman SM, Campbell TJ, Pressler HM, Sung H, Bates SE, Figg WD. Transporter pharmacogenetics: transporter polymorphisms affect normal physiology, diseases, and pharmacotherapy. DISCOVERY MEDICINE 2012; 13:19-34. [PMID: 22284781 PMCID: PMC4006110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Drug transporters mediate the movement of endobiotics and xenobiotics across biological membranes in multiple organs and in most tissues. As such, they are involved in physiology, development of disease, drug pharmacokinetics, and ultimately the clinical response to a myriad of medications. Genetic variants in transporters cause population-specific differences in drug transport and are responsible for considerable inter-individual variation in physiology and pharmacotherapy. The purpose of this review is to provide a broad overview of how inherited variants in transporters are associated with disease etiology, disease state, and the pharmacological treatment of diseases. Given that there are thousands of published papers related to the interplay between transporter genetics and medicine, this review will provide examples that exemplify the broader focus of the literature.
Collapse
Affiliation(s)
| | - Sarah M. Troutman
- Molecular Pharmacology Section, National Cancer Institute, Bethesda, MD
| | - Tessa J Campbell
- Molecular Pharmacology Section, National Cancer Institute, Bethesda, MD
| | - Heather M. Pressler
- Molecular Pharmacology Section, National Cancer Institute, Bethesda, MD
- Johns Hopkins University, Baltimore, MD
| | - Hyeyoung Sung
- Clinical Pharmacology Program, National Cancer Institute, Bethesda, MD
| | - Susan E. Bates
- Medical Oncology Branch, National Cancer Institute, Bethesda, MD
| | - William D. Figg
- Clinical Pharmacology Program, National Cancer Institute, Bethesda, MD
- Molecular Pharmacology Section, National Cancer Institute, Bethesda, MD
- Medical Oncology Branch, National Cancer Institute, Bethesda, MD
| |
Collapse
|
39
|
|