1
|
Chatterjee P, Moss CT, Omar S, Dhillon E, Hernandez Borges CD, Tang AC, Stevens DA, Hsu JL. Allergic Bronchopulmonary Aspergillosis (ABPA) in the Era of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulators. J Fungi (Basel) 2024; 10:656. [PMID: 39330416 PMCID: PMC11433030 DOI: 10.3390/jof10090656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is a hypersensitivity disease caused by Aspergillus fumigatus (Af), prevalent in persons with cystic fibrosis (CF) or asthma. In ABPA, Af proteases drive a T-helper cell-2 (Th2)-mediated allergic immune response leading to inflammation that contributes to permanent lung damage. Corticosteroids and antifungals are the mainstays of therapies for ABPA. However, their long-term use has negative sequelae. The treatment of patients with CF (pwCF) has been revolutionized by the efficacy of cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy. Pharmacological improvement in CFTR function with highly effective elexacaftor/tezacaftor/ivacaftor (ETI) provides unprecedented improvements in lung function and other clinical outcomes of pwCF. The mechanism behind the improvement in patient outcomes is a continued topic of investigation as our understanding of the role of CFTR function evolves. As ETI therapy gains traction in CF management, understanding its potential impact on ABPA, especially on the allergic immune response pathways and Af infection becomes increasingly crucial for optimizing patient outcomes. This literature review aims to examine the extent of these findings and expand our understanding of the already published research focusing on the intersection between ABPA therapeutic approaches in CF and the rapid impact of the evolving CFTR modulator landscape. While our literature search yielded limited reports specifically focusing on the role of CFTR modulator therapy on CF-ABPA, findings from epidemiologic and retrospective studies suggest the potential for CFTR modulator therapies to positively influence pulmonary outcomes by addressing the underlying pathophysiology of CF-ABPA, especially by decreasing inflammatory response and Af colonization. Thus, this review highlights the promising scope of CFTR modulator therapy in decreasing the overall prevalence and incidence of CF-ABPA.
Collapse
Affiliation(s)
- Paulami Chatterjee
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | - Carson Tyler Moss
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Sarah Omar
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | - Ekroop Dhillon
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | | | - Alan C. Tang
- Department of Medicine, Keck School of Medicine, Los Angeles, CA 90089, USA;
| | - David A. Stevens
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA;
| | - Joe L. Hsu
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| |
Collapse
|
2
|
Kleinfelder K, Melotti P, Hristodor AM, Fevola C, Taccetti G, Terlizzi V, Sorio C. CFTR modulators response of S737F and T465N CFTR variants on patient-derived rectal organoids. Orphanet J Rare Dis 2024; 19:343. [PMID: 39272186 PMCID: PMC11401437 DOI: 10.1186/s13023-024-03334-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Predictions based on patient-derived materials of CFTR modulators efficacy have been performed lately in patient-derived cells, extending FDA-approved drugs for CF patients harboring rare variants. Here we developed intestinal organoids from subjects carrying S737F- and T465N-CFTR in trans with null alleles to evaluate their functional impact on CFTR protein function and their restoration upon CFTR modulator treatment. The characterization of S737F-CFTR was performed in two subjects recently assessed in nasal epithelial cells but not in colonoids. RESULTS Our functional analysis (Ussing chamber) confirmed that S737F-CFTR is a mild variant with residual function as investigated in colonoids of patients with S737F/Dele22-24 and S737F/W1282X genotypes. An increase of current upon Elexacaftor/Tezacaftor/Ivacaftor (ETI) treatment was recorded for the former genotype. T465N is a poorly characterized missense variant that strongly impacts CFTR function, as almost no CFTR-mediated anion secretion was registered for T465N/Q39X colonoids. ETI treatment substantially improved CFTR-mediated anion secretion and increased the rescue of mature CFTR expression compared to either untreated colonoids or to dual CFTR modulator therapies. CONCLUSIONS Our study confirms the presence of a residual function of the S737F variant and its limited response to CFTR modulators while predicting for the first time the potential clinical benefit of Trikafta® for patients carrying the rare T465N variant.
Collapse
Affiliation(s)
- Karina Kleinfelder
- Department of Medicine, Division of General Pathology, Cystic Fibrosis Laboratory "D. Lissandrini", University of Verona, 37134, Verona, Italy
| | - Paola Melotti
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata Verona, 37126, Verona, Italy
| | - Anca Manuela Hristodor
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata Verona, 37126, Verona, Italy
| | - Cristina Fevola
- Department of Pediatric Medicine, Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Center, Florence, Italy
| | - Giovanni Taccetti
- Department of Pediatric Medicine, Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Center, Florence, Italy
| | - Vito Terlizzi
- Department of Pediatric Medicine, Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Center, Florence, Italy.
| | - Claudio Sorio
- Department of Medicine, Division of General Pathology, Cystic Fibrosis Laboratory "D. Lissandrini", University of Verona, 37134, Verona, Italy.
| |
Collapse
|
3
|
Thakur S, Ankita, Dash S, Verma R, Kaur C, Kumar R, Mazumder A, Singh G. Understanding CFTR Functionality: A Comprehensive Review of Tests and Modulator Therapy in Cystic Fibrosis. Cell Biochem Biophys 2024; 82:15-34. [PMID: 38048024 DOI: 10.1007/s12013-023-01200-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023]
Abstract
Cystic fibrosis is a genetic disorder inherited in an autosomal recessive manner. It is caused by a mutation in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene on chromosome 7, which leads to abnormal regulation of chloride and bicarbonate ions in cells that line organs like the lungs and pancreas. The CFTR protein plays a crucial role in regulating chloride ion flow, and its absence or malfunction causes the production of thick mucus that affects several organs. There are more than 2000 identified mutations that are classified into seven categories based on their dysfunction mechanisms. In this article, we have conducted a thorough examination and consolidation of the diverse array of tests essential for the quantification of CFTR functionality. Furthermore, we have engaged in a comprehensive discourse regarding the recent advancements in CFTR modulator therapy, a pivotal approach utilized for the management of cystic fibrosis, alongside its concomitant relevance in evaluating CFTR functionality.
Collapse
Affiliation(s)
- Shorya Thakur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Panjab, India
| | - Ankita
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Panjab, India
| | - Shubham Dash
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Panjab, India
| | - Rupali Verma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Panjab, India
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Panjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Panjab, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, UP, India
| | - Gurvinder Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Panjab, India.
| |
Collapse
|
4
|
Ward A, Mauleon R, Arellano J, Ooi CY, Rosic N. Critical disease burdens of Australian adults with cystic fibrosis: Results from an online survey. Pediatr Pulmonol 2023; 58:1931-1941. [PMID: 37097078 PMCID: PMC10947436 DOI: 10.1002/ppul.26413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/19/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND The objective of this study was to conduct a web-based questionnaire to investigate self-reported phenotypes and disease burdens of individuals living in Australia and diagnosed with cystic fibrosis (CF) using a case-control study design. METHODS An online questionnaire was distributed to individuals with CF and healthy control subjects. Overall health rating, medications, family history, education, clinical indicators of disease, and symptoms, including their severity and frequency, were evaluated. RESULTS There was a total of 119 respondents consisting of 59 people living with CF and 60 controls. The CF cohort had significantly lower tertiary educational levels compared to controls. The analysis specific to the CF cohort depicted a significant correlation between the frequency of hospitalizations and the level of education in the CF cohort. Of the 26 self-reported symptoms of CF that were analyzed, 14 were significantly higher in the people living with CF. The CF cohort reporting symptoms of chronic pain (25%) described an increase in the burden of disease, depicting a 30% longer mean hospitalization, increased consumption of medications and significant relationships with four other symptoms, including muscle aches, digestive issues, pancreatic insufficiency, and abdominal swelling. CONCLUSIONS The nationwide survey identified a diverse range of clinical manifestations experienced by the Australian CF population. Chronic pain, linked to aging and the changing landscape of disease, was a significant indicator of the burden of disease. A comprehensive understanding of the phenotypic profiles and symptom variability will contribute to future research and provide insights into the impacts of disease and the burden of therapy, particularly in children, at the start of their health journey.
Collapse
Affiliation(s)
- Anastasia Ward
- Faculty of Health, Southern Cross University, Coolangatta, Queensland, Australia
| | - Ramil Mauleon
- Faculty of Health, Southern Cross University, Coolangatta, Queensland, Australia
- International Rice Research Institute, Laguna, Philippines
| | - Jacinta Arellano
- Faculty of Health, Southern Cross University, Coolangatta, Queensland, Australia
| | - Chee Y Ooi
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, UNSW, Sydney, Australia
- Department of Gastroenterology, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Nedeljka Rosic
- Faculty of Health, Southern Cross University, Coolangatta, Queensland, Australia
| |
Collapse
|
5
|
Chen Q, Shen Y, Zheng J. A review of cystic fibrosis: Basic and clinical aspects. Animal Model Exp Med 2021; 4:220-232. [PMID: 34557648 PMCID: PMC8446696 DOI: 10.1002/ame2.12180] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 11/15/2022] Open
Abstract
Cystic fibrosis is an autosomal recessive disease caused by mutations of the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). Here we summarize, at the basic descriptive level, clinical and genetic characteristics of cystic fibrosis gene mutations, while emphasizing differences between CF mutations found in Chinese pediatric CF patients compared to those found in Caucasian CF patients. In addition, we describe animal models used to study human cystic fibrosis disease and highlight unique features of each model that mimic specific human CF-associated signs and symptoms. At the clinical level, we summarize CF clinical manifestations and diagnostic, treatment, and prognostic methods to provide clinicians with information toward reducing CF misdiagnosis and missed diagnosis rates.
Collapse
Affiliation(s)
- Qionghua Chen
- Department No. 2 of Respiratory Medicine Beijing Children's Hospital Capital Medical University National Center for Children's Health Beijing China
- Department of Respiratory Medicine Quanzhou Children's Hospital Fujian Province Quanzhou China
| | - Yuelin Shen
- Department No. 2 of Respiratory Medicine Beijing Children's Hospital Capital Medical University National Center for Children's Health Beijing China
| | - Jingyang Zheng
- Department of Respiratory Medicine Quanzhou Children's Hospital Fujian Province Quanzhou China
| |
Collapse
|
6
|
Bono-Neri F, Romano C, Isedeh A. Cystic Fibrosis: Advancing Along the Continuum. J Pediatr Health Care 2019; 33:242-254. [PMID: 30529125 DOI: 10.1016/j.pedhc.2018.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/09/2018] [Accepted: 08/19/2018] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder resulting from a mutation in the gene which encodes a cellular transmembrane protein channel known as the CF transmembrane conductance regulator. Located systemically on the surface of numerous cells, these altered channels yield multisystem dysfunction. Typical manifestations seen are chronic, progressive, obstructive lung disease, pancreatic insufficiency, CF-related diabetes mellitus, malabsorption and malnutrition, liver disease, and infertility.Once considered a pediatric disorder, through developments in innovative care and therapeutic modalities, CF now spans the life continuum and has established itself as an ageless disease. Facing management of maturing-life issues, advanced practice nurses (APNs) in pediatrics now find themselves needing to collaborate with or facilitate transition of care to other APNs, such as nurse midwives and adult APNs, as well as their counterpart specialists in medicine, all while maintaining open communication with the patient, family and managing CF center.
Collapse
|
7
|
Rafeeq MM, Murad HAS. Cystic fibrosis: current therapeutic targets and future approaches. J Transl Med 2017; 15:84. [PMID: 28449677 PMCID: PMC5408469 DOI: 10.1186/s12967-017-1193-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/23/2017] [Indexed: 01/01/2023] Open
Abstract
Objectives Study of currently approved drugs and exploration of future clinical development pipeline therapeutics for cystic fibrosis, and possible limitations in their use. Methods Extensive literature search using individual and a combination of key words related to cystic fibrosis therapeutics. Key findings Cystic fibrosis is an autosomal recessive disorder due to mutations in CFTR gene leading to abnormality of chloride channels in mucus and sweat producing cells. Respiratory system and GIT are primarily involved but eventually multiple organs are affected leading to life threatening complications. Management requires drug therapy, extensive physiotherapy and nutritional support. Previously, the focus was on symptomatic improvement and complication prevention but recently the protein rectifiers are being studied which are claimed to correct underlying structural and functional abnormalities. Some improvement is observed by the corrector drugs. Other promising approaches are gene therapy, targeting of cellular interactomes, and newer drugs for symptomatic improvement. Conclusions The treatment has a long way to go as most of the existing therapeutics is for older children. Other limiting factors include mutation class, genetic profile, drug interactions, adverse effects, and cost. Novel approaches like gene transfer/gene editing, disease modeling and search for alternative targets are warranted.
Collapse
Affiliation(s)
- Misbahuddin M Rafeeq
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Rabigh Campus, Jeddah, 21589, Saudi Arabia.
| | - Hussam Aly Sayed Murad
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Rabigh Campus, Jeddah, 21589, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, 11562, Egypt
| |
Collapse
|
8
|
Waldman SA, Terzic A. Managing Innovation to Maximize Value Along the Discovery-Translation-Application Continuum. Clin Pharmacol Ther 2016; 101:8-12. [PMID: 27869291 DOI: 10.1002/cpt.551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 01/22/2023]
Abstract
Success in pharmaceutical development led to a record 51 drugs approved in the past year, surpassing every previous year since 1950. Technology innovation enabled identification and exploitation of increasingly precise disease targets ensuring next generation diagnostic and therapeutic products for patient management. The expanding biopharmaceutical portfolio stands, however, in contradistinction to the unsustainable costs that reflect remarkable challenges of clinical development programs. This annual Therapeutic Innovations issue juxtaposes advances in translating molecular breakthroughs into transformative therapies with essential considerations for lowering attrition and improving the cost-effectiveness of the drug-development paradigm. Realizing the discovery-translation-application continuum mandates a congruent approval, adoption, and access triad.
Collapse
Affiliation(s)
- S A Waldman
- Department of Pharmacology and Experimental Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - A Terzic
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Fox CS, Hall JL, Arnett DK, Ashley EA, Delles C, Engler MB, Freeman MW, Johnson JA, Lanfear DE, Liggett SB, Lusis AJ, Loscalzo J, MacRae CA, Musunuru K, Newby LK, O'Donnell CJ, Rich SS, Terzic A. Future translational applications from the contemporary genomics era: a scientific statement from the American Heart Association. Circulation 2015; 131:1715-36. [PMID: 25882488 DOI: 10.1161/cir.0000000000000211] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The field of genetics and genomics has advanced considerably with the achievement of recent milestones encompassing the identification of many loci for cardiovascular disease and variable drug responses. Despite this achievement, a gap exists in the understanding and advancement to meaningful translation that directly affects disease prevention and clinical care. The purpose of this scientific statement is to address the gap between genetic discoveries and their practical application to cardiovascular clinical care. In brief, this scientific statement assesses the current timeline for effective translation of basic discoveries to clinical advances, highlighting past successes. Current discoveries in the area of genetics and genomics are covered next, followed by future expectations, tools, and competencies for achieving the goal of improving clinical care.
Collapse
|
10
|
Khorrami A, Bonyadi M, Rafeey M, Omrani O. Association of TNF-α Gene Variants With Clinical Manifestation of Cystic Fibrosis Patients of Iranian Azeri Turkish Ethnicity. IRANIAN JOURNAL OF PEDIATRICS 2015. [PMID: 26199696 PMCID: PMC4505978 DOI: 10.5812/ijp.307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cystic fibrosis (CF), a life-limiting autosomal recessive disorder, is considered a monogenic disease that is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. According to several studies, mutation analysis of the cystic fibrosis transmembrane conductance regulator (CFTR) gene alone is insufficient to predict the phenotypic manifestations observed in cystic fibrosis (CF) patients. In addition, some patients with a milder CF phenotype do not carry any pathogenic mutation. Tumor Necrosis Factor-alpha (TNF-α) contributes to the pathophysiology of CF by causing cachexia. There is a reverse association between TNF-α concentration in patient's sputum and their pulmonary function. OBJECTIVES To assess the effect of non-CFTR genes on the clinical phenotype of CF, two polymorphic sites (-1031T/C and -308G/A) of the TNF-α gene, as a modifier, were studied. PATIENTS AND METHODS Focusing on the lung and gastrointestinal involvement as well as the poor growth, we first investigated the role of TNF-α gene in the clinical manifestation of CF. Furthermore, based on the hypothesis that the cumulative effect of specific alleles of multiple CF modifier genes, such as TNF-α, may create the final phenotype, we also investigated the potential role of TNF-α in non-classic CF patients without a known pathogenic mutation. In all, 80 CF patients and 157 healthy control subjects of Azeri Turkish ethnicity were studied by the PCR-RFLP method. The chi-square test with Yates' correction and Fisher's exact test were used for statistical analysis. RESULTS The allele and genotype distribution of the investigated polymorphisms, and their associated haplotypes were similar in all groups. CONCLUSIONS There was no evidence that supported the association of TNF-α gene polymorphisms with non-classic CF disease or the clinical presentation of classic CF.
Collapse
Affiliation(s)
- Aziz Khorrami
- Faculty of Natural Science, University of Tabriz, Tabriz, IR Iran
- Corresponding author: Aziz Khorrami, Faculty of Natural Science, University of Tabriz, Tabriz, IR Iran. Tel: +98-4133374322, Fax: +98-4133374323, E-mail:
| | - Mortaza Bonyadi
- Faculty of Natural Science, University of Tabriz, Tabriz, IR Iran
| | - Mandana Rafeey
- Department of Pediatrics, Tabriz University of Medical Sciences, Tabriz, IR Iran
| | - Omid Omrani
- Faculty of Natural Science, University of Tabriz, Tabriz, IR Iran
| |
Collapse
|
11
|
Serrano IC, Stoica G, Adams AM, Palomares E. Dual core quantum dots for highly quantitative ratiometric detection of trypsin activity in cystic fibrosis patients. NANOSCALE 2014; 6:13623-13629. [PMID: 25274267 DOI: 10.1039/c4nr03952a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present herein two colour encoded silica nanospheres (2nanoSi) for the fluorescence quantitative ratiometric determination of trypsin in humans. Current detection methods for cystic fibrosis diagnosis are slow, costly and suffer from false positives. The 2nanoSi proved to be a highly sensitive, fast (minutes), and single-step approach nanosensor for the screening and diagnosis of cystic fibrosis, allowing the quantification of trypsin concentrations in a wide range relevant for clinical applications (25-350 μg L(-1)). Furthermore, as trypsin is directly related to the development of cystic fibrosis (CF), different human genotypes, i.e. CF homozygotic, CF heterozygotic, and unaffected, respectively, can be determined using our 2nanoSi nanospheres. We anticipate the 2nanoSi system to be a starting point for non-invasive, easy-to-use and cost effective ratiometric fluorescent biomarkers for recessive genetic diseases like human cystic fibrosis. In a screening program in which the goal is to detect disease and also the carrier status, early diagnosis could be of great help.
Collapse
Affiliation(s)
- Iván Castelló Serrano
- Institute of Chemical Research of Catalonia (ICIQ), Avinguda del Països Catalans 16, 43007 Tarragona, Spain.
| | | | | | | |
Collapse
|
12
|
Electrophysiological evaluation of Cystic Fibrosis Conductance Transmembrane Regulator (CFTR) expression in human monocytes. Biochim Biophys Acta Gen Subj 2014; 1840:3088-95. [DOI: 10.1016/j.bbagen.2014.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/30/2014] [Accepted: 07/14/2014] [Indexed: 12/31/2022]
|
13
|
Ikpa PT, Bijvelds MJC, de Jonge HR. Cystic fibrosis: toward personalized therapies. Int J Biochem Cell Biol 2014; 52:192-200. [PMID: 24561283 DOI: 10.1016/j.biocel.2014.02.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 12/16/2022]
Abstract
Cystic fibrosis (CF), the most common, life-threatening monogenetic disease in Caucasians, is caused by mutations in the CFTR gene, encoding a cAMP- and cGMP-regulated epithelial chloride channel. Symptomatic therapies treating end-organ manifestations have increased the life expectancy of CF patients toward a mean of 40 years. The recent development of CFTR-targeted drugs that emerged from high-throughput screening and are capable of correcting the basic defect promises to transform the therapeutic landscape from a trial-and-error prescription to personalized medicine. This stratified approach is tailored to a specific functional class of mutations in CFTR, but can be refined further to an individual level by exploiting recent advances in ex vivo drug testing methods. These tests range from CFTR functional measurements in rectal biopsies donated by a CF patient to the use of patient-derived intestinal or pulmonary organoids. Such organoids may serve as an inexhaustible source of epithelial cells that can be stored in biobanks and allow medium- to high-throughput screening of CFTR activators, correctors and potentiators on the basis of a simple microscopic assay monitoring organoid swelling. Thus the recent breakthrough in stem cell biology allowing the culturing of mini-organs from individual patients is not only relevant for future stem cell therapy, but may also allow the preclinical testing of new drugs or combinations that are optimally suited for an individual patient.
Collapse
Affiliation(s)
- Pauline T Ikpa
- Erasmus MC-University Medical Center Rotterdam, Department of Gastroenterology & Hepatology, Rotterdam, The Netherlands
| | - Marcel J C Bijvelds
- Erasmus MC-University Medical Center Rotterdam, Department of Gastroenterology & Hepatology, Rotterdam, The Netherlands
| | - Hugo R de Jonge
- Erasmus MC-University Medical Center Rotterdam, Department of Gastroenterology & Hepatology, Rotterdam, The Netherlands.
| |
Collapse
|