1
|
Zhang Y, Gu A, An Z, Huang S, Zhang C, Zhong X, Hu Y. B cells enhance EphA2 chimeric antigen receptor T cells cytotoxicity against glioblastoma via improving persistence. Hum Immunol 2024; 85:111093. [PMID: 39243423 DOI: 10.1016/j.humimm.2024.111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a powerful adoptive immunotherapy against blood cancers, but the therapeutic effect was not efficient enough on solid tumors. B cells have been reported to play a critical role in regulating memory T differentiation and cytotoxic T development. However, as of yet the influence of such B cells on CAR T cells has not been discussed. In this study, using ephrin type-A receptor 2 (EphA2) specific CAR T cells, we cultured B cells successfully to stimulate CAR T cells in vitro, and investigated the cell differentiation and anti-tumor efficiency. We observed that EphA2-CAR T cells stimulated by B cells performed increased interferon γ (IFN γ) production and upregulated OX40 expression, as well as the enhanced anti-tumor activity and reduced PD-1 expression. The persistence of CAR T cells was enhanced after B cells stimulation for more than 7 days with the increased subset of central memory T cells (TCM). In addition, next generation sequencing was performed to explore the underlying mechanisms. The up-regulated genes clustered in, immune response activation, chemokine signaling pathway, calcium signaling pathway, cGMP-PKG signaling pathway and et al. which contributed to the upregulated anti-glioblastoma (GBM) activity of CAR T cells stimulated by B cell. Furthermore, MEF2C, CD40, SYK and TNFRSF13B were upregulated in CAR T cells after co-culturing with B cells. These genes functionally enriched in promoting lymphocytes proliferation and may contribute to the enhanced persistence of CAR T cells. In conclusion, these results indicated the critical role of B cells in prolonging CAR T cells longevity and enhancing anti-tumor activity, which paves the way for the therapeutic exploitation of EphA2-CAR T cells against GBM in the future.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Aiqin Gu
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Zhijing An
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Shuai Huang
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Can Zhang
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xiaosong Zhong
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yi Hu
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| |
Collapse
|
2
|
Aghbash PS, Rasizadeh R, Arefi V, Nahand JS, Baghi HB. Immune-checkpoint expression in antigen-presenting cells (APCs) of cytomegaloviruses infection after transplantation: as a diagnostic biomarker. Arch Microbiol 2023; 205:280. [PMID: 37430000 DOI: 10.1007/s00203-023-03623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
Cytomegalovirus (CMV), a member of the Herpesviridae family, mostly causes only slight feverish symptoms or can be asymptomatic in immunocompetent individuals. However, it is known to be particularly a significant cause of morbidity in immunocompromised patients, including transplant recipients, whose immune system has been weakened due to the consumption of immunosuppressor drugs. Therefore, the diagnosis of CMV infection after transplantation is crucial. New diagnostic methods for the quick detection of CMV have been developed as a result of understanding the clinical importance of invasive CMV. Antigen-presenting cells (APCs) and T cells are important components of the immune system and it may be possible to diagnose viral infections using immunological markers, such as lymphocytosis, cytotoxic T lymphocytes (CTL), and serum cytokine levels. Moreover, PD-1, CTLA 4, and TIGIT, which are expressed on certain T cells and antigen-presenting cells, are over-expressed during the infection. The assessment of CMV infection based on T cell and APC activity, and the expression of immunological checkpoints, can be helpful for the diagnosis of transplant patients at risk for CMV infection. In this review, we will investigate how immune checkpoints affect immune cells and how they impair organ transplantation after CMV infection.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reyhaneh Rasizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Arefi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
| |
Collapse
|
3
|
Heimli M, Flåm ST, Hjorthaug HS, Trinh D, Frisk M, Dumont KA, Ribarska T, Tekpli X, Saare M, Lie BA. Multimodal human thymic profiling reveals trajectories and cellular milieu for T agonist selection. Front Immunol 2023; 13:1092028. [PMID: 36741401 PMCID: PMC9895842 DOI: 10.3389/fimmu.2022.1092028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023] Open
Abstract
To prevent autoimmunity, thymocytes expressing self-reactive T cell receptors (TCRs) are negatively selected, however, divergence into tolerogenic, agonist selected lineages represent an alternative fate. As thymocyte development, selection, and lineage choices are dependent on spatial context and cell-to-cell interactions, we have performed Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) and spatial transcriptomics on paediatric human thymus. Thymocytes expressing markers of strong TCR signalling diverged from the conventional developmental trajectory prior to CD4+ or CD8+ lineage commitment, while markers of different agonist selected T cell populations (CD8αα(I), CD8αα(II), T(agonist), Treg(diff), and Treg) exhibited variable timing of induction. Expression profiles of chemokines and co-stimulatory molecules, together with spatial localisation, supported that dendritic cells, B cells, and stromal cells contribute to agonist selection, with different subsets influencing thymocytes at specific developmental stages within distinct spatial niches. Understanding factors influencing agonist T cells is needed to benefit from their immunoregulatory effects in clinical use.
Collapse
Affiliation(s)
- Marte Heimli
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Siri Tennebø Flåm
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | | | - Don Trinh
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Karl-Andreas Dumont
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Teodora Ribarska
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Mario Saare
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Benedicte Alexandra Lie
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway,*Correspondence: Benedicte Alexandra Lie,
| |
Collapse
|
4
|
Abdeladhim M, Karnell JL, Rieder SA. In or out of control: Modulating regulatory T cell homeostasis and function with immune checkpoint pathways. Front Immunol 2022; 13:1033705. [PMID: 36591244 PMCID: PMC9799097 DOI: 10.3389/fimmu.2022.1033705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/16/2022] [Indexed: 12/16/2022] Open
Abstract
Regulatory T cells (Tregs) are the master regulators of immunity and they have been implicated in different disease states such as infection, autoimmunity and cancer. Since their discovery, many studies have focused on understanding Treg development, differentiation, and function. While there are many players in the generation and function of truly suppressive Tregs, the role of checkpoint pathways in these processes have been studied extensively. In this paper, we systematically review the role of different checkpoint pathways in Treg homeostasis and function. We describe how co-stimulatory and co-inhibitory pathways modulate Treg homeostasis and function and highlight data from mouse and human studies. Multiple checkpoint pathways are being targeted in cancer and autoimmunity; therefore, we share insights from the clinic and discuss the effect of experimental and approved therapeutics on Treg biology.
Collapse
|
5
|
Gao Q, Chen X, Cherian S, Roshal M. Mature B‐ and plasma‐cell flow cytometric analysis: A review of the impact of targeted therapy. CYTOMETRY PART B: CLINICAL CYTOMETRY 2022; 104:224-242. [PMID: 36321879 DOI: 10.1002/cyto.b.22097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Flow cytometry has been indispensable in diagnosing B cell lymphoma and plasma cell neoplasms. The advances in novel multicolor flow cytometry have also made this technology a robust tool for monitoring minimal/measurable residual disease in chronic lymphocytic leukemia and multiple myeloma. However, challenges using conventional gating strategies to isolate neoplastic B or plasma cells are emerging due to the rapidly increasing number of antibody therapeutics targeting single or multiple classic B/plasma cell-lineage markers, such as CD19, CD20, and CD22 in B cells and CD38 in plasma cells. This review is the first of a two-part series that summarizes the most current targeted therapies used in B and plasma cell neoplasms and proposes detailed alternative approaches to overcome post-targeted therapy analysis challenges by flow cytometry. The second review in this series (Chen et al.) focuses on challenges encountered in the use of targeted therapy in precursor B cell neoplasms.
Collapse
Affiliation(s)
- Qi Gao
- Hematopathology Service, Department of Pathology and Laboratory Medicine Memorial Sloan Kettering Cancer Center New York New York USA
| | - Xueyan Chen
- Department of Laboratory Medicine and Pathology University of Washington Seattle WA USA
| | - Sindu Cherian
- Department of Laboratory Medicine and Pathology University of Washington Seattle WA USA
| | - Mikhail Roshal
- Hematopathology Service, Department of Pathology and Laboratory Medicine Memorial Sloan Kettering Cancer Center New York New York USA
| |
Collapse
|
6
|
Méndez-Frausto G, Godina-González S, Rivas-Santiago CE, Nungaray-Anguiano E, Mendoza-Almanza G, Rivas-Santiago B, Galván-Tejada CE, Gonzalez-Curiel IE. Downregulation of sCD40 and sCTLA4 in Recovered COVID-19 Patients with Comorbidities. Pathogens 2022; 11:pathogens11101128. [PMID: 36297185 PMCID: PMC9608172 DOI: 10.3390/pathogens11101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
The aim of this study was to analyze molecules associated with regulatory immune response in unvaccinated, recovered COVID-19 patients with and without diabetes mellitus (DM) and hypertension (HTN). We determined anti-SARS-CoV-2 nucleocapsid IgG in plasma by electrochemiluminescence immunoassay. The levels of sCD40, TGF-ß, IL-10, and sCTLA-4 were assessed by ELISA in the serum of the subjects, as well as in healthy donors. We observed that only half of the subjects in the non-comorbid group produced antibodies, whereas all subjects in comorbid groups were IgG-positive for the anti-SARS-CoV-2 nucleocapsid. High levels of sCTL-4 were observed in the non-comorbid group, and the level of IL-10 was observed to increase in seropositive subjects without comorbidities. TGF-ß concentration was similar in all groups studied. Finally, sCD40 decreased in the comorbid group. In conclusion, our results suggest that comorbidities such as DM and HTN alter the production of co-stimulatory inhibitory molecules sCTLA-4 and sCD40 in subjects recovering from mild COVID-19. The alterations observed here were independent of seropositivity, suggesting an effective humoral immune response against COVID-19 separate from the levels of co-stimulatory inhibitory molecules.
Collapse
Affiliation(s)
- Gwendolyne Méndez-Frausto
- Laboratorio de Inmunotoxicología y Terapéutica Experimental, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Susana Godina-González
- Laboratorio de Biomarcadores, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - César E. Rivas-Santiago
- CONACYT-Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico
| | - Edna Nungaray-Anguiano
- Laboratorio de Inmunotoxicología y Terapéutica Experimental, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Gretel Mendoza-Almanza
- CONACYT-Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico
| | | | - Carlos E. Galván-Tejada
- Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico
| | - Irma E. Gonzalez-Curiel
- Laboratorio de Inmunotoxicología y Terapéutica Experimental, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
- Correspondence: ; Tel.: +52-492-1324310
| |
Collapse
|
7
|
Puri S, Kenyon BM, Hamrah P. Immunomodulatory Role of Neuropeptides in the Cornea. Biomedicines 2022; 10:1985. [PMID: 36009532 PMCID: PMC9406019 DOI: 10.3390/biomedicines10081985] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/21/2022] Open
Abstract
The transparency of the cornea along with its dense sensory innervation and resident leukocyte populations make it an ideal tissue to study interactions between the nervous and immune systems. The cornea is the most densely innervated tissue of the body and possesses both immune and vascular privilege, in part due to its unique repertoire of resident immune cells. Corneal nerves produce various neuropeptides that have a wide range of functions on immune cells. As research in this area expands, further insights are made into the role of neuropeptides and their immunomodulatory functions in the healthy and diseased cornea. Much remains to be known regarding the details of neuropeptide signaling and how it contributes to pathophysiology, which is likely due to complex interactions among neuropeptides, receptor isoform-specific signaling events, and the inflammatory microenvironment in disease. However, progress in this area has led to an increase in studies that have begun modulating neuropeptide activity for the treatment of corneal diseases with promising results, necessitating the need for a comprehensive review of the literature. This review focuses on the role of neuropeptides in maintaining the homeostasis of the ocular surface, alterations in disease settings, and the possible therapeutic potential of targeting these systems.
Collapse
Affiliation(s)
- Sudan Puri
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Departments of Immunology and Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Cornea Service, Tufts New England Eye Center, Boston, MA 02111, USA
| |
Collapse
|
8
|
Safinia N, Vaikunthanathan T, Lechler RI, Sanchez‐Fueyo A, Lombardi G. Advances in Liver Transplantation: where are we in the pursuit of transplantation tolerance? Eur J Immunol 2021; 51:2373-2386. [PMID: 34375446 PMCID: PMC10015994 DOI: 10.1002/eji.202048875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/07/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022]
Abstract
Liver transplantation is the ultimate treatment option for end-stage liver disease. Breakthroughs in surgical practice and immunosuppression have seen considerable advancements in survival after transplantation. However, the intricate management of immunosuppressive regimens, balancing desired immunological quiescence while minimizing toxicity has proven challenging. Diminishing improvements in long-term morbidity and mortality have been inextricably linked with the protracted use of these medications. As such, there is now enormous interest to devise protocols that will allow us to minimize or completely withdraw immunosuppressants after transplantation. Immunosuppression withdrawal trials have proved the reality of tolerance following liver transplantation, however, without intervention will only occur after several years at the risk of potential cumulative immunosuppression-related morbidity. Focus has now been directed at accelerating this phenomenon through tolerance-inducing strategies. In this regard, efforts have seen the use of regulatory cell immunotherapy. Here we focus particularly on regulatory T cells, discussing preclinical data that propagated several clinical trials of adoptive cell therapy in liver transplantation. Furthermore, we describe efforts to further optimize the specificity and survival of regulatory cell therapy guided by concurrent immunomonitoring studies and the development of novel technologies including chimeric antigen receptors and co-administration of low-dose IL-2.
Collapse
Affiliation(s)
- Niloufar Safinia
- Division of Transplantation Immunology & Mucosal BiologyKing's College LondonLondonUK
| | | | - Robert Ian Lechler
- Division of Transplantation Immunology & Mucosal BiologyKing's College LondonLondonUK
| | | | - Giovanna Lombardi
- Division of Transplantation Immunology & Mucosal BiologyKing's College LondonLondonUK
| |
Collapse
|
9
|
Zou F, Qiu Y, Huang Y, Zou H, Cheng X, Niu Q, Luo A, Sun J. Effects of short-chain fatty acids in inhibiting HDAC and activating p38 MAPK are critical for promoting B10 cell generation and function. Cell Death Dis 2021; 12:582. [PMID: 34099635 PMCID: PMC8184914 DOI: 10.1038/s41419-021-03880-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023]
Abstract
B10 cells are regulatory B cells capable of producing IL-10 for maintaining immune homeostasis. Dysregulation of B10 cells occurs in autoimmune and inflammatory diseases. Modulation or adoptive transfer of B10 cells is a promising therapeutic strategy. The short-chain fatty acids (SCFAs), the metabolites of microbiota, play a critical role in maintaining immune homeostasis and are the potential drugs for the modulation of B10 cells. It is not clear whether and how SCFAs upregulate the frequency of B10 cells. Here, we found that SCFAs could promote murine and human B10 cell generation in vitro. Upregulation of B10 cells by butyrate or pentanoate was also observed in either healthy mice, mice with dextran sodium sulfate (DSS)-induced colitis, or mice with collagen-induced arthritis. Moreover, SCFA treatment could ameliorate clinical scores of colitis and arthritis. Adoptive transfer of B cells pretreated with butyrate showed more alleviation of DSS-induced colitis than those without butyrate. A further study demonstrates that SCFAs upregulate B10 cells in a manner dependent on their histone deacetylase (HDAC) inhibitory activity and independent of the G-protein-coupled receptor pathway. Transcriptomic analysis indicated that the MAPK signaling pathway was enriched in B10 cells treated with butyrate. A study with inhibitors of ERK, JNK, and p38 MAPK demonstrated that activating p38 MAPK by butyrate is critical for the upregulation of B10 cells. Moreover, HDAC inhibitor has similar effects on B10 cells. Our study sheds light on the mechanism underlying B10 cell differentiation and function and provides a potential therapeutic strategy with SCFAs and HDAC inhibitors for inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Fagui Zou
- grid.12981.330000 0001 2360 039XGuanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055 China ,grid.484195.5Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 China
| | - Yi Qiu
- grid.12981.330000 0001 2360 039XGuanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055 China ,grid.484195.5Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 China ,grid.12981.330000 0001 2360 039XZhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080 China
| | - Yilian Huang
- grid.411847.f0000 0004 1804 4300School of Nursing, Guangdong Pharmaceutical University, Guangzhou, 510006 China
| | - Hang Zou
- grid.12981.330000 0001 2360 039XGuanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055 China ,grid.484195.5Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 China
| | - Xiao Cheng
- grid.12981.330000 0001 2360 039XGuanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055 China ,grid.484195.5Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 China
| | - Qingru Niu
- grid.12981.330000 0001 2360 039XGuanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055 China ,grid.484195.5Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 China
| | - Aoxiang Luo
- grid.411847.f0000 0004 1804 4300School of Nursing, Guangdong Pharmaceutical University, Guangzhou, 510006 China
| | - Jianbo Sun
- grid.12981.330000 0001 2360 039XGuanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055 China ,grid.484195.5Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 China
| |
Collapse
|
10
|
Mohseni YR, Tung SL, Dudreuilh C, Lechler RI, Fruhwirth GO, Lombardi G. The Future of Regulatory T Cell Therapy: Promises and Challenges of Implementing CAR Technology. Front Immunol 2020; 11:1608. [PMID: 32793236 PMCID: PMC7393941 DOI: 10.3389/fimmu.2020.01608] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Cell therapy with polyclonal regulatory T cells (Tregs) has been translated into the clinic and is currently being tested in transplant recipients and patients suffering from autoimmune diseases. Moreover, building on animal models, it has been widely reported that antigen-specific Tregs are functionally superior to polyclonal Tregs. Among various options to confer target specificity to Tregs, genetic engineering is a particularly timely one as has been demonstrated in the treatment of hematological malignancies where it is in routine clinical use. Genetic engineering can be exploited to express chimeric antigen receptors (CAR) in Tregs, and this has been successfully demonstrated to be robust in preclinical studies across various animal disease models. However, there are several caveats and a number of strategies should be considered to further improve on targeting, efficacy and to understand the in vivo distribution and fate of CAR-Tregs. Here, we review the differing approaches to confer antigen specificity to Tregs with emphasis on CAR-Tregs. This includes an overview and discussion of the various approaches to improve CAR-Treg specificity and therapeutic efficacy as well as addressing potential safety concerns. We also discuss different imaging approaches to understand the in vivo biodistribution of administered Tregs. Preclinical research as well as suitability of methodologies for clinical translation are discussed.
Collapse
MESH Headings
- Animals
- Antigens/immunology
- Bioengineering
- Humans
- Immunomodulation
- Immunotherapy, Adoptive/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Cell Antigen Receptor Specificity
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Yasmin R. Mohseni
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Sim L. Tung
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Caroline Dudreuilh
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Robert I. Lechler
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Gilbert O. Fruhwirth
- Imaging Therapies and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| |
Collapse
|
11
|
Abstract
B cells are typically characterized by their ability to produce antibodies, function as secondary antigen-present cells, and produce various immunoregulatory cytokines. The regulatory B (Breg)-cell population is now widely accepted as an important modulatory component of the immune system that suppresses inflammation. Recent studies indicate that Breg-cell populations are small under physiological conditions but expand substantially in both human patients and murine models of chronic inflammatory diseases, autoimmune diseases, infection, transplantation, and cancer. Almost all B-cell subsets can be induced to form Breg cells. In addition, there are unique Breg-cell subsets such as B10 and Tim-1+ B cells. Immunoregulatory function may be mediated by production of cytokines such as IL-10 and TGF-β and ensuing suppression of T cells, by direct cell-cell interactions, and (or) by altering the immune microenvironment. In this chapter, we describe in detail the discovery of Breg cells, their phenotypes, differentiation, function, contributions to disease, and therapeutic potential.
Collapse
Affiliation(s)
- Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, No. 138, Yi Xue Yuan Rd, 226, Shanghai, 200032, China
| | - Ying Fu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, No. 138, Yi Xue Yuan Rd, 226, Shanghai, 200032, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, No. 138, Yi Xue Yuan Rd, 226, Shanghai, 200032, China.
| |
Collapse
|
12
|
Downing I, Macdonald SL, Atkinson APM, Turner ML, Kilpatrick DC. Drug modification of LPS-stimulated human monocyte-derived dendritic cells. Br J Biomed Sci 2019. [DOI: 10.1080/09674845.2012.12069139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- I. Downing
- SNBTS, National Science Laboratory, Ellen's Glen Road, Edinburgh, Scotland, UK
| | - S. L. Macdonald
- SNBTS, National Science Laboratory, Ellen's Glen Road, Edinburgh, Scotland, UK
| | - A. P. M. Atkinson
- SNBTS, National Science Laboratory, Ellen's Glen Road, Edinburgh, Scotland, UK
| | - M. L. Turner
- SNBTS, National Science Laboratory, Ellen's Glen Road, Edinburgh, Scotland, UK
| | - D. C. Kilpatrick
- SNBTS, National Science Laboratory, Ellen's Glen Road, Edinburgh, Scotland, UK
| |
Collapse
|
13
|
Castillo J, Wu E, Lowe C, Srinivasan S, McCord R, Wagle MC, Jayakar S, Edick MG, Eastham-Anderson J, Liu B, Hutchinson KE, Jones W, Stokes MP, Tarighat SS, Holcomb T, Glibicky A, Romero FA, Magnuson S, Huang SMA, Plaks V, Giltnane JM, Lackner MR, Mounir Z. CBP/p300 Drives the Differentiation of Regulatory T Cells through Transcriptional and Non-Transcriptional Mechanisms. Cancer Res 2019; 79:3916-3927. [PMID: 31182547 DOI: 10.1158/0008-5472.can-18-3622] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/21/2019] [Accepted: 06/03/2019] [Indexed: 11/16/2022]
Abstract
Regulatory T cells (Treg) are immunosuppressive and negatively impact response to cancer immunotherapies. CREB-binding protein (CBP) and p300 are closely related acetyltransferases and transcriptional coactivators. Here, we evaluate the mechanisms by which CBP/p300 regulate Treg differentiation and the consequences of CBP/p300 loss-of-function mutations in follicular lymphoma. Transcriptional and epigenetic profiling identified a cascade of transcription factors essential for Treg differentiation. Mass spectrometry analysis showed that CBP/p300 acetylates prostacyclin synthase, which regulates Treg differentiation by altering proinflammatory cytokine secretion by T and B cells. Reduced Treg presence in tissues harboring CBP/p300 loss-of-function mutations was observed in follicular lymphoma. Our findings provide novel insights into the regulation of Treg differentiation by CBP/p300, with potential clinical implications on alteration of the immune landscape. SIGNIFICANCE: This study provides insights into the dynamic role of CBP/p300 in the differentiation of Tregs, with potential clinical implications in the alteration of the immune landscape in follicular lymphoma.
Collapse
Affiliation(s)
- Joseph Castillo
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Esther Wu
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Christopher Lowe
- Department of Bioanalytical Sciences, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Shrividhya Srinivasan
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Ron McCord
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Marie-Claire Wagle
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Sangeeta Jayakar
- Department of Research Pathology, Genentech, Inc., South San Francisco, California
| | | | | | - Bonnie Liu
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Katherine E Hutchinson
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Wendell Jones
- Q Solutions-EA Genomics, Morrisville, North Carolina
| | | | - Somayeh S Tarighat
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Thomas Holcomb
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Andrew Glibicky
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - F Anthony Romero
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California
| | - Steven Magnuson
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California
| | - Shih-Min A Huang
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Vicki Plaks
- Department of Bioanalytical Sciences, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Jennifer M Giltnane
- Department of Research Pathology, Genentech, Inc., South San Francisco, California
| | - Mark R Lackner
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Zineb Mounir
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California.
| |
Collapse
|
14
|
Mancusi A, Alvarez M, Piccinelli S, Velardi A, Pierini A. TNFR2 signaling modulates immunity after allogeneic hematopoietic cell transplantation. Cytokine Growth Factor Rev 2019; 47:54-61. [PMID: 31122819 DOI: 10.1016/j.cytogfr.2019.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor-α (TNF-α) signaling through TNF receptor 2 (TNFR2) plays a complex immune regulatory role in allogeneic hematopoietic cell transplantation (HCT). TNF-α is rapidly released in the circulation after the conditioning regimen with chemotherapy and/or radiotherapy. It activates the function of donor alloreactive T cells and donor Natural Killer cells and promotes graft versus tumor effects. However, donor alloreactive T cells also attack host tissues and cause graft versus host disease (GVHD), a life-threatening complication of HCT. Indeed, anti-TNF-α therapy has been used to treat steroid-refractory GVHD. Recent studies have highlighted another role for TNFR2 signaling, as it enhances the function of immune cells with suppressive properties, in particular CD4+Foxp3+ regulatory T cells (Tregs). Various clinical trials are employing Treg-based treatments to prevent or treat GVHD. The present review will discuss the effects of TNFR2 signaling in the setting of allogeneic HCT, the implications for the use of anti-TNF-α therapy to treat GVHD and the clinical perspectives of strategies that specifically target this pathway.
Collapse
Affiliation(s)
- Antonella Mancusi
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, 06132, Italy
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Sara Piccinelli
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, 06132, Italy
| | - Andrea Velardi
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, 06132, Italy
| | - Antonio Pierini
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, 06132, Italy.
| |
Collapse
|
15
|
da Silva JMC, Azevedo ADN, Barbosa RPDS, Teixeira MP, Vianna TAG, Fittipaldi J, Cabral VR, Paiva LSD. Ouabain Decreases Regulatory T Cell Number in Mice by Reducing IL-2 Secretion. Neuroimmunomodulation 2019; 26:188-197. [PMID: 31412342 DOI: 10.1159/000501720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/24/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Ouabain (OUA) is a cardiotonic glycoside originally extracted from African plants. It has also been described as an endogenous component in mammals, being released in stress situations mainly by the adrenal gland. OUA has been reported to be capable of inhibiting mitogen-induced lymphocyte proliferation and also affects B and T lymphocytes. OBJECTIVES The aim of this work is to show the effects of OUA in peripheral T lymphocytes. METHODS In the in vivo experiments, mice were injected intraperitoneally for 3 consecutive days with RPMI medium (control group) or 0.56 mg/kg of OUA diluted in RPMI medium (OUA group). On the fourth day, spleen or mesenteric lymph nodes were removed. RESULTS OUA significantly reduced the number of CD4+ T lymphocytes in the spleen, especially regulatory T cells (Tregs). In vitro OUA did not inhibit the proliferation of CD4+T lymphocytes stimulated with anti-CD3 neither was able to induce the apoptosis of CD4+ nor Tregs. There was no increase in the number or percentage of T lymphocytes in the mesenteric lymph nodes, suggesting that there was no preferential accumulation of these cells in this organ. Secretion of IL-2 by activated T lymphocytes was decreased by the OUA, explaining at least in part the reduction of Tregs, since this cytokine is involved in the peripheral conversion and maintenance of Tregs. CONCLUSION The impact of this reduction in autoimmune diseases, allergy and cancer as well as the potential use of OUA as a therapeutic approach in tumor treatment still needs more investigation.
Collapse
Affiliation(s)
- Joyle Moreira Carvalho da Silva
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós Graduação em Patologia Universidade Federal Fluminense, Niterói, Brazil
| | - Augusto das Neves Azevedo
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | | | - Mariana Pires Teixeira
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós Graduação em Patologia Universidade Federal Fluminense, Niterói, Brazil
| | | | - Juliana Fittipaldi
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Vinicius Ribeiro Cabral
- Faculdade de Educação, Departamento de Fundamentos Pedagógicos, Universidade Federal Fluminense, Niterói, Brazil
| | - Luciana Souza de Paiva
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil,
- Programa de Pós Graduação em Patologia Universidade Federal Fluminense, Niterói, Brazil,
| |
Collapse
|
16
|
Kumar S, Leigh ND, Cao X. The Role of Co-stimulatory/Co-inhibitory Signals in Graft-vs.-Host Disease. Front Immunol 2018; 9:3003. [PMID: 30627129 PMCID: PMC6309815 DOI: 10.3389/fimmu.2018.03003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective immunotherapeutic approach for various hematologic and immunologic ailments. Despite the beneficial impact of allo-HCT, its adverse effects cause severe health concerns. After transplantation, recognition of host cells as foreign entities by donor T cells induces graft-vs.-host disease (GVHD). Activation, proliferation and trafficking of donor T cells to target organs and tissues are critical steps in the pathogenesis of GVHD. T cell activation is a synergistic process of T cell receptor (TCR) recognition of major histocompatibility complex (MHC)-anchored antigen and co-stimulatory/co-inhibitory signaling in the presence of cytokines. Most of the currently used therapeutic regimens for GVHD are based on inhibiting the allogeneic T cell response or T-cell depletion (TCD). However, the immunosuppressive drugs and TCD hamper the therapeutic potential of allo-HCT, resulting in attenuated graft-vs.-leukemia (GVL) effect as well as increased vulnerability to infection. In view of the drawback of overbroad immunosuppression, co-stimulatory, and co-inhibitory molecules are plausible targets for selective modulation of T cell activation and function that can improve the effectiveness of allo-HCT. Therefore, this review collates existing knowledge of T cell co-stimulation and co-inhibition with current research that may have the potential to provide novel approaches to cure GVHD without sacrificing the beneficial effects of allo-HCT.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nicholas D Leigh
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Xuefang Cao
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.,Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
17
|
Kuebler WM, Bonnet S, Tabuchi A. Inflammation and autoimmunity in pulmonary hypertension: is there a role for endothelial adhesion molecules? (2017 Grover Conference Series). Pulm Circ 2018; 8:2045893218757596. [PMID: 29480134 PMCID: PMC5865459 DOI: 10.1177/2045893218757596] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While pulmonary hypertension (PH) has traditionally not been considered as a disease that is directly linked to or, potentially, even caused by inflammation, a rapidly growing body of evidence has demonstrated the accumulation of a variety of inflammatory and immune cells in PH lungs, in and around the wall of remodeled pulmonary resistance vessels and in the vicinity of plexiform lesions, respectively. Concomitantly, abundant production and release of various inflammatory mediators has been documented in both PH patients and experimental models of PH. While these findings unequivocally demonstrate an inflammatory component in PH, they have fueled an intense and presently ongoing debate as to the nature of this inflammatory aspect: is it a mere bystander of or response to the actual disease process, or is it a pathomechanistic contributor or potentially even a trigger of endothelial injury, smooth muscle hypertrophy and hyperplasia, and the resulting lung vascular remodeling? In this review, we will discuss the present evidence for an inflammatory component in PH disease with a specific focus on the potential role of the endothelium in this scenario and highlight future avenues of experimental investigation which may lead to novel therapeutic interventions.
Collapse
Affiliation(s)
- Wolfgang M Kuebler
- 1 Charite Universitatsmedizin Berlin Institut fur Physiologie, Berlin, Germany
| | | | - Arata Tabuchi
- 1 Charite Universitatsmedizin Berlin Institut fur Physiologie, Berlin, Germany
| |
Collapse
|
18
|
Yiwen Z, Shilin G, Yingshi C, Lishi S, Baohong L, Chao L, Linghua L, Ting P, Hui Z. Efficient generation of antigen-specific CTLs by the BAFF-activated human B Lymphocytes as APCs: a novel approach for immunotherapy. Oncotarget 2018; 7:77732-77748. [PMID: 27780916 PMCID: PMC5363617 DOI: 10.18632/oncotarget.12792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023] Open
Abstract
Efficient antigen presentation is indispensable for cytotoxic T lymphocyte (CTL)-mediated immunotherapy. B-lymphocytes propagated with CD40L have been developed as antigen-presenting cells (APCs), but this capacity needs further optimization. Here, we aimed to expand human B-lymphocytes on a large scale while maintaining their antigen-presenting ability by using both CD40L and B-cell activating factor (BAFF). The addition of BAFF enhanced the expansion efficiency and prolonged the culture time without causing apoptosis of the expanded B-cells. This method thus provided an almost unlimited source of cellular adjuvant to achieve sufficient expansion of CTLs in cases where several rounds of stimulation are required. We also showed that the addition of BAFF significantly enhanced the expression of major costimulatory molecules, CD80 and CD86. Subsequently, the antigen-presenting ability of the B-lymphocytes also increased. Consequently, these B-lymphocytes showed robust CTL responses to inhibit tumor growth after tumor-specific peptide pulses. A similar method induced potent antigen-specific CTL responses, which effectively eradicated human immunodeficiency virus type 1 (HIV-1) latency in CD4 T-lymphocytes isolated from patients receiving suppressive anti-retroviral therapy (ART). Together, our findings indicate that potent antigen-specific CTLs can be generated using BAFF-activated B-lymphocytes as APCs ex vivo. This approach can be applied for CTL-mediated immunotherapy in patients with cancers or chronic viral infections.
Collapse
Affiliation(s)
- Zhang Yiwen
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Gao Shilin
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Chen Yingshi
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Su Lishi
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Luo Baohong
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Liu Chao
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Li Linghua
- Department of Infectious Diseases, Guangzhou 8th People's Hospital, Guangzhou, Guangdong, 510080, China
| | - Pan Ting
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhang Hui
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
19
|
Chien CH, Chiang BL. Regulatory T cells induced by B cells: a novel subpopulation of regulatory T cells. J Biomed Sci 2017; 24:86. [PMID: 29151021 PMCID: PMC5694621 DOI: 10.1186/s12929-017-0391-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/03/2017] [Indexed: 11/10/2022] Open
Abstract
Regulatory T cells play a crucial role in the homeostasis of the immune response. In addition to CD4+Foxp3+ regulatory T cells, several subsets of Foxp3- regulatory T cells, such as T helper 3 (Th3) cells and type 1 regulatory T (Tr1) cells, have been described in mice and human. Accumulating evidence shows that naïve B cells contribute to tolerance and are able to promote regulatory T cell differentiation. Naïve B cells can convert CD4+CD25- T cells into CD25+Foxp3- regulatory T cells, named Treg-of-B cells by our group. Treg-of-B cells express LAG3, ICOS, GITR, OX40, PD1, and CTLA4 and secrete IL-10. Intriguingly, B-T cell-cell contact but not IL-10 is essential for Treg-of-B cells induction. Moreover, Treg-of-B cells possess both IL-10-dependent and IL-10-independent inhibitory functions. Treg-of-B cells exert suppressive activities in antigen-specific and non-antigen-specific manners in vitro and in vivo. Here, we review the phenotype and function of Foxp3+ regulatory T cells, Th3 cells, Tr1 cells, and Treg-of-B cells.
Collapse
Affiliation(s)
- Chien-Hui Chien
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei City, 10048, Taiwan, Republic of China
| | - Bor-Luen Chiang
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei City, 10048, Taiwan, Republic of China. .,Department of Medical Research, National Taiwan University Hospital, Taipei City, 10002, Taiwan, Republic of China.
| |
Collapse
|
20
|
Su KY, Watanabe A, Yeh CH, Kelsoe G, Kuraoka M. Efficient Culture of Human Naive and Memory B Cells for Use as APCs. THE JOURNAL OF IMMUNOLOGY 2016; 197:4163-4176. [PMID: 27815447 DOI: 10.4049/jimmunol.1502193] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 08/30/2016] [Indexed: 12/27/2022]
Abstract
The ability to culture and expand B cells in vitro has become a useful tool for studying human immunity. A limitation of current methods for human B cell culture is the capacity to support mature B cell proliferation. We developed a culture method to support the efficient activation and proliferation of naive and memory human B cells. This culture supports extensive B cell proliferation, with ∼103-fold increases following 8 d in culture and 106-fold increases when cultures are split and cultured for 8 more days. In culture, a significant fraction of naive B cells undergo isotype switching and differentiate into plasmacytes. Culture-derived (CD) B cells are readily cryopreserved and, when recovered, retain their ability to proliferate and differentiate. Significantly, proliferating CD B cells express high levels of MHC class II, CD80, and CD86. CD B cells act as APCs and present alloantigens and microbial Ags to T cells. We are able to activate and expand Ag-specific memory B cells; these cultured cells are highly effective in presenting Ag to T cells. We characterized the TCR repertoire of rare Ag-specific CD4+ T cells that proliferated in response to tetanus toxoid (TT) presented by autologous CD B cells. TCR Vβ usage by TT-activated CD4+ T cells differs from resting and unspecifically activated CD4+ T cells. Moreover, we found that TT-specific TCR Vβ usage by CD4+ T cells was substantially different between donors. This culture method provides a platform for studying the BCR and TCR repertoires within a single individual.
Collapse
Affiliation(s)
- Kuei-Ying Su
- Department of Immunology, Duke University, Durham, NC 27710.,Tzu Chi Medical Center, Hualien 970, Taiwan; and
| | - Akiko Watanabe
- Department of Immunology, Duke University, Durham, NC 27710
| | - Chen-Hao Yeh
- Department of Immunology, Duke University, Durham, NC 27710
| | - Garnett Kelsoe
- Department of Immunology, Duke University, Durham, NC 27710; .,Human Vaccine Institute, Duke University, Durham, NC 27710
| | | |
Collapse
|
21
|
Santos PDA, Lorena VMBD, Fernandes ÉDS, Sales IRF, Nascimento WRCD, Gomes YDM, Albuquerque MCPDA, Costa VMA, Souza VMOD. Gestation and breastfeeding in schistosomotic mothers differently modulate the immune response of adult offspring to postnatal Schistosoma mansoni infection. Mem Inst Oswaldo Cruz 2016; 111:83-92. [PMID: 26872339 PMCID: PMC4750447 DOI: 10.1590/0074-02760150293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/06/2016] [Indexed: 01/05/2023] Open
Abstract
Schistosoma mansoni antigens in the early life alter homologous and
heterologous immunity during postnatal infections. We evaluate the immunity to
parasite antigens and ovalbumin (OA) in adult mice born/suckled by schistosomotic
mothers. Newborns were divided into: born (BIM), suckled (SIM) or born/suckled (BSIM)
in schistosomotic mothers, and animals from noninfected mothers (control). When
adults, the mice were infected and compared the hepatic granuloma size and
cellularity. Some animals were OA + adjuvant immunised. We evaluated hypersensitivity
reactions (HR), antibodies levels (IgG1/IgG2a) anti-soluble egg antigen and
anti-soluble worm antigen preparation, and anti-OA, cytokine production, and
CD4+FoxP3+T-cells by splenocytes. Compared to control group,
BIM mice showed a greater quantity of granulomas and collagen deposition, whereas SIM
and BSIM presented smaller granulomas. BSIM group exhibited the lowest levels of
anti-parasite antibodies. For anti-OA immunity, immediate HR was suppressed in all
groups, with greater intensity in SIM mice accompanied of the remarkable level of
basal CD4+FoxP3+T-cells. BIM and SIM groups produced less
interleukin (IL)-4 and interferon (IFN)-g. In BSIM, there was higher
production of IL-10 and IFN-g, but lower levels of IL-4 and
CD4+FoxP3+T-cells. Thus, pregnancy in schistosomotic mothers
intensified hepatic fibrosis, whereas breastfeeding diminished granulomas in
descendants. Separately, pregnancy and breastfeeding could suppress heterologous
immunity; however, when combined, the responses could be partially restored in
infected descendants.
Collapse
Affiliation(s)
- Patrícia d'Emery Alves Santos
- Setor de Imunologia, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | | | - Érica de Souza Fernandes
- Setor de Imunologia, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - Iana Rafaela Fernandes Sales
- Setor de Imunologia, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | | | | | | | - Vlaudia Maria Assis Costa
- Setor de Imunologia, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | | |
Collapse
|
22
|
Enlarged colitogenic T cell population paradoxically supports colitis prevention through the B-lymphocyte-dependent peripheral generation of CD4(+)Foxp3(+) Treg cells. Sci Rep 2016; 6:28573. [PMID: 27353032 PMCID: PMC4926115 DOI: 10.1038/srep28573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/03/2016] [Indexed: 01/07/2023] Open
Abstract
Intestinal inflammation can be induced by the reconstitution of T/B cell-deficient mice with low numbers of CD4+ T lymphocytes depleted of CD25+Foxp3+ regulatory T cells (Treg). Using RAG-knockout mice as recipients of either splenocytes exclusively depleted of CD25+ cells or FACS-purified CD4+CD25−Foxp3− T cells, we found that the augmentation of potentially colitogenic naïve T cell numbers in the inoculum was unexpectedly beneficial for the suppression of colon disease and maintenance of immune homeostasis. Protection against T cell-mediated colitis correlated with a significant increment in the frequency of peripherally-induced CD4+CD25+Foxp3+ T (pTreg) cells, especially in the mesenteric lymph nodes, an effect that required the presence of B cells and CD4+CD25−Foxp3+ cells in physiological proportions. Our findings support a model whereby the interplay between B lymphocytes and a diversified naïve T cell repertoire is critical for the generation of CD4+CD25+Foxp3+ pTreg cells and colitis suppression.
Collapse
|
23
|
Sicard A, Koenig A, Graff-Dubois S, Dussurgey S, Rouers A, Dubois V, Blanc P, Chartoire D, Errazuriz-Cerda E, Paidassi H, Taillardet M, Morelon E, Moris A, Defrance T, Thaunat O. B Cells Loaded with Synthetic Particulate Antigens: A Versatile Platform To Generate Antigen-Specific Helper T Cells for Cell Therapy. NANO LETTERS 2016; 16:297-308. [PMID: 26650819 DOI: 10.1021/acs.nanolett.5b03801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Adoptive cell therapy represents a promising approach for several chronic diseases. This study describes an innovative strategy for biofunctionalization of nanoparticles, allowing the generation of synthetic particulate antigens (SPAg). SPAg activate polyclonal B cells and vectorize noncognate proteins into their endosomes, generating highly efficient stimulators for ex vivo expansion of antigen-specific CD4+ T cells. This method also allows harnessing the ability of B cells to polarize CD4+ T cells into effectors or regulators.
Collapse
Affiliation(s)
- Antoine Sicard
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
- Edouard Herriot Hospital , Transplantation, Nephrology and Clinical Immunology Department, 69003 Lyon, France
| | - Alice Koenig
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
- Edouard Herriot Hospital , Transplantation, Nephrology and Clinical Immunology Department, 69003 Lyon, France
| | - Stéphanie Graff-Dubois
- Sorbonne University , UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Center for Immunology and Microbial Infections - CIMI-Paris, F-75013, Paris, France
| | - Sébastien Dussurgey
- SFR Biosciences, UMS344/US8, Inserm, CNRS, Claude Bernard Lyon-1 University, Ecole Normale Supérieure , 69007 Lyon, France
| | - Angéline Rouers
- Sorbonne University , UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Center for Immunology and Microbial Infections - CIMI-Paris, F-75013, Paris, France
| | - Valérie Dubois
- French National Blood Service (EFS) , 69007 Lyon, France
| | - Pascal Blanc
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
| | - Dimitri Chartoire
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
| | | | - Helena Paidassi
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
| | - Morgan Taillardet
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
| | - Emmanuel Morelon
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
- Edouard Herriot Hospital , Transplantation, Nephrology and Clinical Immunology Department, 69003 Lyon, France
| | - Arnaud Moris
- Sorbonne University , UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Center for Immunology and Microbial Infections - CIMI-Paris, F-75013, Paris, France
| | - Thierry Defrance
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
| | - Olivier Thaunat
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
- Edouard Herriot Hospital , Transplantation, Nephrology and Clinical Immunology Department, 69003 Lyon, France
| |
Collapse
|
24
|
Durand J, Chiffoleau E. B cells with regulatory properties in transplantation tolerance. World J Transplant 2015; 5:196-208. [PMID: 26722647 PMCID: PMC4689930 DOI: 10.5500/wjt.v5.i4.196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/19/2015] [Accepted: 09/30/2015] [Indexed: 02/05/2023] Open
Abstract
Induction of tolerance remains a major goal in transplantation. Indeed, despite potent immunosuppression, chronic rejection is still a real problem in transplantation. The humoral response is an important mediator of chronic rejection, and numerous strategies have been developed to target either B cells or plasma cells. However, the use of anti-CD20 therapy has highlighted the beneficial role of subpopulation of B cells, termed regulatory B cells. These cells have been characterized mainly in mice models of auto-immune diseases but emerging literature suggests their role in graft tolerance in transplantation. Regulatory B cells seem to be induced following inflammation to restrain excessive response. Different phenotypes of regulatory B cells have been described and are functional at various differentiation steps from immature to plasma cells. These cells act by multiple mechanisms such as secretion of immuno-suppressive cytokines interleukin-10 (IL-10) or IL-35, cytotoxicity, expression of inhibitory receptors or by secretion of non-inflammatory antibodies. Better characterization of the development, phenotype and mode of action of these cells seems urgent to develop novel approaches to manipulate the different B cell subsets and the response to the graft in a clinical setting.
Collapse
|
25
|
Nogueira JDS, Canto FBD, Nunes CFCG, Vianna PHO, Paiva LDS, Nóbrega A, Bellio M, Fucs R. Enhanced renewal of regulatory T cells in relation to CD4(+) conventional T lymphocytes in the peripheral compartment. Immunology 2015; 147:221-39. [PMID: 26572097 DOI: 10.1111/imm.12555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/16/2015] [Accepted: 11/06/2015] [Indexed: 12/16/2022] Open
Abstract
CD4(+) Foxp3(+) regulatory T (Treg) cells are necessary for the maintenance of self-tolerance and T-cell homeostasis. This population is kept at stable frequencies in secondary lymphoid organs for the majority of the lifetime, despite permanent thymic emigration or in the face of thymic involution. Continuous competition is expected to occur between recently thymus-emigrated and resident Treg cells (either natural or post-thymically induced). In the present work, we analysed the renewal dynamics of Treg cells compared with CD4(+) Foxp3- conventional T cells (Tconv), using protocols of single or successive T-cell transfers into syngeneic euthymic or lymphopenic (nu/nu or RAG2(-/-)) mice, respectively. Our results show a higher turnover for Treg cells in the peripheral compartment, compared with Tconv cells, when B cell-sufficient euthymic or nude hosts are studied. This increased renewal within the Treg pool, shown by the greater replacement of resident Treg cells by donor counterparts, correlates with augmented rates of proliferation and is not modified following temporary environmental perturbations induced by inflammatory state or microbiota alterations. Notably, the preferential substitution of Treg lymphocytes was not observed in RAG2(-/-) hosts. We showed that limited B-cell replenishment in the RAG2(-/-) hosts decisively contributed to the altered peripheral T-cell homeostasis. Accordingly, weekly transfers of B cells to RAG2(-/-) hosts rescued the preferential substitution of Treg lymphocytes. Our study discloses a new aspect of T-cell homeostasis that depends on the presence of B lymphocytes to regulate the relative incorporation of recently arrived Treg and Tconv cells in the peripheral compartment.
Collapse
Affiliation(s)
- Jeane de Souza Nogueira
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio Barrozo do Canto
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Fraga Cabral Gomes Nunes
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Henrique Oliveira Vianna
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana de Souza Paiva
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Alberto Nóbrega
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Bellio
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rita Fucs
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Durand J, Huchet V, Merieau E, Usal C, Chesneau M, Remy S, Heslan M, Anegon I, Cuturi MC, Brouard S, Chiffoleau E. Regulatory B Cells with a Partial Defect in CD40 Signaling and Overexpressing Granzyme B Transfer Allograft Tolerance in Rodents. THE JOURNAL OF IMMUNOLOGY 2015; 195:5035-44. [PMID: 26432892 DOI: 10.4049/jimmunol.1500429] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/10/2015] [Indexed: 01/29/2023]
Abstract
Emerging knowledge regarding B cells in organ transplantation has demonstrated that these cells can no longer be taken as mere generators of deleterious Abs but can also act as beneficial players. We previously demonstrated in a rat model of cardiac allograft tolerance induced by short-term immunosuppression an accumulation in the blood of B cells overexpressing inhibitory molecules, a phenotype also observed in the blood of patients that spontaneously develop graft tolerance. In this study, we demonstrated the presence in the spleen of regulatory B cells enriched in the CD24(int)CD38(+)CD27(+)IgD(-)IgM(+/low) subpopulation, which are able to transfer donor-specific tolerance via IL-10 and TGF-β1-dependent mechanisms and to suppress in vitro TNF-α secretion. Following anti-CD40 stimulation, IgD(-)IgM(+/low) B cells were blocked in their plasma cell differentiation pathway, maintained high expression of the inhibitory molecules CD23 and Bank1, and upregulated Granzyme B and Irf4, two molecules described as highly expressed by regulatory B cells. Interestingly, these B cells recognized specifically a dominant donor Ag, suggesting restricted specificity that could lead to a particular B cell response. Regulatory B cells were not required for induction of tolerance and appeared following Foxp3(+)CD4(+)CD25(+) regulatory T cells, suggesting cooperation with regulatory T cells for their expansion. Nevertheless, following transfer to new recipients, these B cells migrated to the allograft, kept their regulatory profile, and promoted local accumulation of Foxp3(+)CD4(+)CD25(+) regulatory T cells. Mechanisms of regulatory B cells and their cell therapy potential are important to decipher in experimental models to pave the way for future developments in the clinic.
Collapse
Affiliation(s)
- Justine Durand
- INSERM, Unité 1064, 44000 Nantes, France; Institut de Transplantation et de Recherche en Transplantation Urologie Nephrologie, Centre Hospitalier Universitaire de Nantes, 44000 Nantes, France; and Faculté de Médecine, Université de Nantes, 44000 Nantes, France
| | - Virginie Huchet
- INSERM, Unité 1064, 44000 Nantes, France; Institut de Transplantation et de Recherche en Transplantation Urologie Nephrologie, Centre Hospitalier Universitaire de Nantes, 44000 Nantes, France; and Faculté de Médecine, Université de Nantes, 44000 Nantes, France
| | - Emmanuel Merieau
- INSERM, Unité 1064, 44000 Nantes, France; Institut de Transplantation et de Recherche en Transplantation Urologie Nephrologie, Centre Hospitalier Universitaire de Nantes, 44000 Nantes, France; and Faculté de Médecine, Université de Nantes, 44000 Nantes, France
| | - Claire Usal
- INSERM, Unité 1064, 44000 Nantes, France; Institut de Transplantation et de Recherche en Transplantation Urologie Nephrologie, Centre Hospitalier Universitaire de Nantes, 44000 Nantes, France; and Faculté de Médecine, Université de Nantes, 44000 Nantes, France
| | - Melanie Chesneau
- INSERM, Unité 1064, 44000 Nantes, France; Institut de Transplantation et de Recherche en Transplantation Urologie Nephrologie, Centre Hospitalier Universitaire de Nantes, 44000 Nantes, France; and Faculté de Médecine, Université de Nantes, 44000 Nantes, France
| | - Severine Remy
- INSERM, Unité 1064, 44000 Nantes, France; Institut de Transplantation et de Recherche en Transplantation Urologie Nephrologie, Centre Hospitalier Universitaire de Nantes, 44000 Nantes, France; and Faculté de Médecine, Université de Nantes, 44000 Nantes, France
| | - Michele Heslan
- INSERM, Unité 1064, 44000 Nantes, France; Institut de Transplantation et de Recherche en Transplantation Urologie Nephrologie, Centre Hospitalier Universitaire de Nantes, 44000 Nantes, France; and Faculté de Médecine, Université de Nantes, 44000 Nantes, France
| | - Ignacio Anegon
- INSERM, Unité 1064, 44000 Nantes, France; Institut de Transplantation et de Recherche en Transplantation Urologie Nephrologie, Centre Hospitalier Universitaire de Nantes, 44000 Nantes, France; and Faculté de Médecine, Université de Nantes, 44000 Nantes, France
| | - Maria-Cristina Cuturi
- INSERM, Unité 1064, 44000 Nantes, France; Institut de Transplantation et de Recherche en Transplantation Urologie Nephrologie, Centre Hospitalier Universitaire de Nantes, 44000 Nantes, France; and Faculté de Médecine, Université de Nantes, 44000 Nantes, France
| | - Sophie Brouard
- INSERM, Unité 1064, 44000 Nantes, France; Institut de Transplantation et de Recherche en Transplantation Urologie Nephrologie, Centre Hospitalier Universitaire de Nantes, 44000 Nantes, France; and Faculté de Médecine, Université de Nantes, 44000 Nantes, France
| | - Elise Chiffoleau
- INSERM, Unité 1064, 44000 Nantes, France; Institut de Transplantation et de Recherche en Transplantation Urologie Nephrologie, Centre Hospitalier Universitaire de Nantes, 44000 Nantes, France; and Faculté de Médecine, Université de Nantes, 44000 Nantes, France
| |
Collapse
|
27
|
Safinia N, Scotta C, Vaikunthanathan T, Lechler RI, Lombardi G. Regulatory T Cells: Serious Contenders in the Promise for Immunological Tolerance in Transplantation. Front Immunol 2015; 6:438. [PMID: 26379673 PMCID: PMC4553385 DOI: 10.3389/fimmu.2015.00438] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/12/2015] [Indexed: 01/12/2023] Open
Abstract
Regulatory T cells (Tregs) play an important role in immunoregulation and have been shown in animal models to promote transplantation tolerance and curb autoimmunity following their adoptive transfer. The safety and potential therapeutic efficacy of these cells has already been reported in Phase I trials of bone-marrow transplantation and type I diabetes, the success of which has motivated the broadened application of these cells in solid-organ transplantation. Despite major advances in the clinical translation of these cells, there are still key questions to be addressed to ensure that Tregs attest their reputation as ideal candidates for tolerance induction. In this review, we will discuss the unique traits of Tregs that have attracted such fame in the arena of tolerance induction. We will outline the protocols used for their ex vivo expansion and discuss the future directions of Treg cell therapy. In this regard, we will review the concept of Treg heterogeneity, the desire to isolate and expand a functionally superior Treg population and report on the effect of differing culture conditions. The relevance of Treg migratory capacity will also be discussed together with methods of in vivo visualization of the infused cells. Moreover, we will highlight key advances in the identification and expansion of antigen-specific Tregs and discuss their significance for cell therapy application. We will also summarize the clinical parameters that are of importance, alongside cell manufacture, from the choice of immunosuppression regimens to the number of injections in order to direct the success of future efficacy trials of Treg cell therapy. Years of research in the field of tolerance have seen an accumulation of knowledge and expertise in the field of Treg biology. This perpetual progression has been the driving force behind the many successes to date and has put us now within touching distance of our ultimate success, immunological tolerance.
Collapse
Affiliation(s)
- Niloufar Safinia
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| | - Cristiano Scotta
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| | - Trishan Vaikunthanathan
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| | - Robert I Lechler
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| | - Giovanna Lombardi
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| |
Collapse
|
28
|
Lu FT, Yang W, Wang YH, Ma HD, Tang W, Yang JB, Li L, Ansari AA, Lian ZX. Thymic B cells promote thymus-derived regulatory T cell development and proliferation. J Autoimmun 2015; 61:62-72. [PMID: 26071985 DOI: 10.1016/j.jaut.2015.05.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 01/10/2023]
Abstract
Thymic CD4(+) FoxP3(+) regulatory T (Treg) cells are critical for the development of immunological tolerance and immune homeostasis and requires contributions of both thymic dendritic and epithelial cells. Although B cells have been reported to be present within the thymus, there has not hitherto been a definition of their role in immune cell development and, in particular, whether or how they contribute to the Treg cellular thymic compartment. Herein, using both phenotypic and functional approaches, we demonstrate that thymic B cells contribute to the maintenance of thymic Treg cells and, using an in vitro culture system, demonstrate that thymic B cells contribute to the size of the thymic Treg compartment via cell-cell MHC II contact and the involvement of two independent co-stimulatory pathways that include interactions between the CD40/CD80/CD86 co-stimulatory molecules. Our data also suggest that thymic B cells promote the generation of thymic Treg cell precursors (pre-Treg cells), but not the conversion of FoxP3(+) Treg cells from pre-Treg cells. In addition, thymic B cells directly promote the proliferation of thymic Treg cells that is MHC II contact dependent with a minimal if any role for co-stimulatory molecules including CD40/CD80/CD86. Both pathways are independent of TGFβ. In conclusion, we rigorously define the critical role of thymic B cells in the development of thymic Treg cells from non-Treg to precursor stage and in the proliferation of mature thymic Treg cells.
Collapse
Affiliation(s)
- Fang-Ting Lu
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Wei Yang
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yin-Hu Wang
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Hong-Di Ma
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Wei Tang
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Jing-Bo Yang
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Liang Li
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Aftab A Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Zhe-Xiong Lian
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Innovation Center for Cell Signaling Network, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230026, China.
| |
Collapse
|
29
|
MS risk allele rs1883832T is associated with decreased mRNA expression of CD40. J Mol Neurosci 2015; 56:540-5. [PMID: 25600834 DOI: 10.1007/s12031-015-0490-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/05/2015] [Indexed: 12/25/2022]
Abstract
CD40-CD40L interactions mediate T-dependent B cell response and efficient T cell priming. Therefore, genes encoding these molecules are attractive candidates for studies on autoimmune diseases, such as multiple sclerosis (MS), in which activated T and B cells are involved. Thus, we analyzed CD40 and CD40L mRNA expression in whole blood samples from MS patients and controls. Additionally, we examined the effect of three SNPs of CD40 (rs1883832C>T, rs11569343C>G, and rs752118C>T) and two SNPs of CD40L (rs3092923T>C and rs3092952A>G) on their mRNA expression. Our results showed that the rs1883832C>T SNP affects CD40 gene expression. Our analysis revealed that individuals possessing CT and TT genotypes (predisposing to MS) had decreased level of CD40 mRNA in comparison to those with CC. Moreover, we demonstrated the potential role of impaired CD40-CD40L interaction in developing of multiple sclerosis.
Collapse
|
30
|
Wang Y, Han X. B Cells with Regulatory Function in Human Diseases. AUTOIMMUNE DISEASES AND THERAPEUTIC APPROACHES : OPEN ACCESS 2014; 1:107. [PMID: 26973880 PMCID: PMC4788385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Yuhua Wang
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA, USA
| | - Xiaozhe Han
- Corresponding Author: Xiaozhe Han, The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, USA; Tel: 617-892-8447; Fax: 617-892-8612;
| |
Collapse
|
31
|
Lu Q, Yu M, Shen C, Chen X, Feng T, Yao Y, Li J, Li H, Tu W. Negligible immunogenicity of induced pluripotent stem cells derived from human skin fibroblasts. PLoS One 2014; 9:e114949. [PMID: 25503995 PMCID: PMC4263724 DOI: 10.1371/journal.pone.0114949] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/16/2014] [Indexed: 12/29/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have potential applications in cell replacement therapy and regenerative medicine. However, limited information is available regarding the immunologic features of iPSCs. In this study, expression of MHC and T cell co-stimulatory molecules in hiPSCs, and the effects on activation, proliferation and cytokine production in allogeneic human peripheral blood mononuclear cells were examined. We found that no-integrate hiPSCs had no MHC-II and T cell co-stimulatory molecules expressions but had moderate level of MHC-I and HLA-G expressions. In contrast to human skin fibroblasts (HSFs) which significantly induced allogeneic T cell activation and proliferation, hiPSCs failed to induce allogeneic CD45+ lymphocyte and CD8+ T cell activation and proliferation but could induce a low level of allogeneic CD4+ T cell proliferation. Unlike HSFs which induced allogeneic lymphocytes to produce high levels of IFN-γ, TNF-α and IL-17, hiPSCs only induced allogeneic lymphocytes to produce IL-2 and IL-10, and promote IL-10-secreting regulatory T cell (Treg) generation. Our study suggests that the integration-free hiPSCs had low or negligible immunogenicity, which may result from their induction of IL-10-secreting Treg.
Collapse
Affiliation(s)
- Qiao Lu
- The Joint Research Center of West China Second University Hospital of Sichuan University and Faculty of Medicine of the University of Hong Kong, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Pediatrics, University Hospital of Hubei University for Nationalities, Enshi, Hubei, 445000, China
| | - Meixing Yu
- The Joint Research Center of West China Second University Hospital of Sichuan University and Faculty of Medicine of the University of Hong Kong, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chongyang Shen
- The Joint Research Center of West China Second University Hospital of Sichuan University and Faculty of Medicine of the University of Hong Kong, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoping Chen
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ting Feng
- The Joint Research Center of West China Second University Hospital of Sichuan University and Faculty of Medicine of the University of Hong Kong, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yongchao Yao
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jinrong Li
- The Joint Research Center of West China Second University Hospital of Sichuan University and Faculty of Medicine of the University of Hong Kong, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hong Li
- The Joint Research Center of West China Second University Hospital of Sichuan University and Faculty of Medicine of the University of Hong Kong, Sichuan University, Chengdu, Sichuan, 610041, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- * E-mail: (HL); (WT)
| | - Wenwei Tu
- The Joint Research Center of West China Second University Hospital of Sichuan University and Faculty of Medicine of the University of Hong Kong, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- * E-mail: (HL); (WT)
| |
Collapse
|
32
|
Tian J, Zhu T, Liu J, Guo Z, Cao X. Platelets promote allergic asthma through the expression of CD154. Cell Mol Immunol 2014. [PMID: 25418472 DOI: 10.1038/cmi.2014.111.[epubaheadofprint]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Platelet activation is associated with multiple immune responses and the pathogenesis of various immune-related diseases. However, the exact role and the underlying mechanism of platelets in the progression of allergic asthma remain largely unclear. In this study, we demonstrate that during antigen sensitization, platelets can be activated by ovalbumin (OVA) aerosol via the upregulation of CD154 (CD40L) expression. Platelet transfer promoted allergic asthma progression by inducing more severe leukocyte infiltration and lung inflammation, elevated IgE production and strengthened T helper 2 (Th2) responses in asthma-induced mice. Accordingly, platelet depletion compromised allergic asthma progression. Cd154-deficient platelets failed to promote asthma development, indicating the requirement of CD154 for platelets to promote asthma progression. The mechanistic study showed that platelets inhibited the induction of Foxp3(+) regulatory T cells both in vivo and in vitro at least partially through CD154, providing an explanation for the increase of Th2 responses by platelet transfer. Our study reveals the previously unknown role of platelet CD154 in the promotion of asthma progression by polarizing Th2 responses and inhibiting regulatory T-cell generation and thus provides a potential clue for allergic disease interventions.
Collapse
Affiliation(s)
- Jun Tian
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Tianyi Zhu
- Department of Respiration, General Hospital of Shenyang Military Region, Shenyang, China
| | - Juan Liu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Zhenhong Guo
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| |
Collapse
|
33
|
Platelets promote allergic asthma through the expression of CD154. Cell Mol Immunol 2014; 12:700-7. [PMID: 25418472 DOI: 10.1038/cmi.2014.111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/12/2014] [Accepted: 10/13/2014] [Indexed: 01/13/2023] Open
Abstract
Platelet activation is associated with multiple immune responses and the pathogenesis of various immune-related diseases. However, the exact role and the underlying mechanism of platelets in the progression of allergic asthma remain largely unclear. In this study, we demonstrate that during antigen sensitization, platelets can be activated by ovalbumin (OVA) aerosol via the upregulation of CD154 (CD40L) expression. Platelet transfer promoted allergic asthma progression by inducing more severe leukocyte infiltration and lung inflammation, elevated IgE production and strengthened T helper 2 (Th2) responses in asthma-induced mice. Accordingly, platelet depletion compromised allergic asthma progression. Cd154-deficient platelets failed to promote asthma development, indicating the requirement of CD154 for platelets to promote asthma progression. The mechanistic study showed that platelets inhibited the induction of Foxp3(+) regulatory T cells both in vivo and in vitro at least partially through CD154, providing an explanation for the increase of Th2 responses by platelet transfer. Our study reveals the previously unknown role of platelet CD154 in the promotion of asthma progression by polarizing Th2 responses and inhibiting regulatory T-cell generation and thus provides a potential clue for allergic disease interventions.
Collapse
|
34
|
Santos PDA, Lorena VMB, Fernandes É, Sales IRF, Albuquerque MCP, Gomes Y, Costa VMA, Souza VMO. Maternal schistosomiasis alters costimulatory molecules expression in antigen-presenting cells from adult offspring mice. Exp Parasitol 2014; 141:62-7. [PMID: 24657585 DOI: 10.1016/j.exppara.2014.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/20/2014] [Accepted: 03/12/2014] [Indexed: 01/11/2023]
Abstract
Adult offspring of Schistosoma mansoni-infected mice showed alterations in immunity to a heterologous antigen, ovalbumin (OA). Prior breastfeeding induced increased production of anti-OA antibodies, while pregnancy impaired it. Here, we investigated the expression of costimulatory molecules on antigen-presenting cells (APCs) of the adult offspring of S. mansoni-infected mothers in response to OA. Newborn mice were divided into three groups: animals Born Infected Mothers (BIM) suckled by non-infected mothers; animals from non-infected mothers Suckled Infected Mothers (SIM); and another group of mice born from and suckled by non-infected mothers (CONTROL). The adult offspring were immunized with subcutaneous OA+adjuvant, and 3-8days following immunization, double labeling was performed (CD45R/B220 or CD11c and CD80, CD86, CD40 or HLA-DR) on spleen cells. In comparison to the CONTROL group, an early increased frequency of CD40+/CD80+ B cells was observed in SIM mice (p<0.001/p<0.05), but no alteration of CD11c+ cells was observed. In contrast, in BIM mice, the frequency of CD86+/CD11c+ cells (p<0.05) and CD40+/CD80+/CD86+ B cells (p<0.01/p<0.01/p<0.05) was drastically reduced. In conclusion, previous suckling by S. mansoni-infected mothers enabled improved antigen presentation by B cells in adult offspring, whereas gestation in these mothers imprinted offspring with weak antigen presentation by APCs during the immune response to a non-related antigen.
Collapse
Affiliation(s)
- Patrícia d'Emery Alves Santos
- Laboratory of Immunology, Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Érica Fernandes
- Laboratory of Immunology, Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, PE, Brazil
| | - Iana Rafaela Fernandes Sales
- Laboratory of Immunology, Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, PE, Brazil
| | - Mônica Camelo Pessoa Albuquerque
- Laboratory of Immunology, Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, PE, Brazil; Department of Tropical Medicine, Health Sciences Center, Federal University of Pernambuco, Recife, PE, Brazil
| | - Yara Gomes
- Aggeu Magalhães Research Center (CPqAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE, Brazil
| | - Vlaudia Maria Assis Costa
- Laboratory of Immunology, Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, PE, Brazil; Department of Tropical Medicine, Health Sciences Center, Federal University of Pernambuco, Recife, PE, Brazil
| | - Valdênia Maria Oliveira Souza
- Laboratory of Immunology, Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, PE, Brazil; Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
35
|
Landwehr-Kenzel S, Issa F, Luu SH, Schmück M, Lei H, Zobel A, Thiel A, Babel N, Wood K, Volk HD, Reinke P. Novel GMP-compatible protocol employing an allogeneic B cell bank for clonal expansion of allospecific natural regulatory T cells. Am J Transplant 2014; 14:594-606. [PMID: 24467477 DOI: 10.1111/ajt.12629] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/13/2013] [Indexed: 01/25/2023]
Abstract
The adoptive transfer of natural regulatory T cells (nTreg) is a new option to reshape undesired immune reactivity in autoimmunity and transplantation toward "tolerance." The first clinical trials using adoptive transfer of polyclonal nTreg demonstrated safety and hints of efficacy. However, the low frequencies of antigen-specific cells among the pool of polyclonal nTreg and their broad antigen nonspecific suppression are limitations of this approach regarding efficacy and safety. Recently, the isolation and expansion of (allo)antigen-specific nTreg have successfully been achieved by using Treg-specific activation markers but the yield is relatively low. Here, we describe a novel good manufacturing practice (GMP)-compatible expansion protocol of alloantigen-specific nTreg based on the stimulation of nTreg by allogeneic activated B cells. Their functionality and specificity are superior compared to polyclonal nTreg both in vitro and in vivo. Employing an allogeneic B cell bank, designed to cover the majority of HLA types, allows fast GMP-compliant manufacturing for donor-specific nTreg for clinical application in organ and stem cell transplantation. TCR repertoire analyses by next generation sequencing revealed impressive expansion by several log-steps of even very low-abundance alloantigen-specific nTreg clones. This novel method offers a simple approach for expanding antigen-specific nTreg and is characterized by high replicability and easy transferability to full GMP standards.
Collapse
Affiliation(s)
- S Landwehr-Kenzel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Department of Pediatric Pulmonology and Immunology, Charité University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu ZQ, Wu Y, Song JP, Liu X, Liu Z, Zheng PY, Yang PC. Tolerogenic CX3CR1+ B cells suppress food allergy-induced intestinal inflammation in mice. Allergy 2013; 68:1241-8. [PMID: 24033604 DOI: 10.1111/all.12218] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND B lymphocytes are an important cell population of the immune regulation; their role in the regulation of food allergy has not been fully understood yet. OBJECTIVE This study aims to investigate the role of a subpopulation of tolerogenic B cells (TolBC) in the generation of regulatory T cells (Treg) and in the suppression of food allergy-induced intestinal inflammation in mice. METHODS The intestinal mucosa-derived CD5+ CD19+ CX3CR1+ TolBCs were characterized by flow cytometry; a mouse model of intestinal T helper (Th)2 inflammation was established to assess the immune regulatory role of this subpopulation of TolBCs. RESULTS A subpopulation of CD5+ CD19+ CX3CR1+ B cells was detected in the mouse intestinal mucosa. The cells also expressed transforming growth factor (TGF)-β and carried integrin alpha v beta 6 (αvβ6). Exposure to recombinant αvβ6 and anti-IgM antibody induced naive B cells to differentiate into the TGF-β-producing TolBCs. Coculturing this subpopulation of TolBCs with Th0 cells generated CD4+ CD25+ Foxp3+ Tregs. Adoptive transfer with the TolBCs markedly suppressed the food allergy-induced intestinal Th2 pattern inflammation in mice. CONCLUSIONS CD5+ CD19+ CX3CR1+ TolBCs are capable of inducing Tregs in the intestine and suppress food allergy-related Th2 pattern inflammation in mice.
Collapse
Affiliation(s)
- Z.-Q. Liu
- Department of Gastroenterology; Second Hospital; Zhengzhou University; Zhengzhou; China
| | - Y. Wu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University and Institute of Allergy & Immunology; Shenzhen Key Laboratory of Allergy & Immunology; Shenzhen University School of Medicine; Shenzhen; China
| | - J.-P. Song
- State Key Laboratory of Cardiovascular Disease; Fuwai Hospital; National Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing; China
| | - X. Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University and Institute of Allergy & Immunology; Shenzhen Key Laboratory of Allergy & Immunology; Shenzhen University School of Medicine; Shenzhen; China
| | - Z. Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University and Institute of Allergy & Immunology; Shenzhen Key Laboratory of Allergy & Immunology; Shenzhen University School of Medicine; Shenzhen; China
| | - P.-Y. Zheng
- Department of Gastroenterology; Second Hospital; Zhengzhou University; Zhengzhou; China
| | - P.-C. Yang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University and Institute of Allergy & Immunology; Shenzhen Key Laboratory of Allergy & Immunology; Shenzhen University School of Medicine; Shenzhen; China
| |
Collapse
|
37
|
Zheng J, Liu Y, Liu Y, Liu M, Xiang Z, Lam KT, Lewis DB, Lau YL, Tu W. Human CD8+ regulatory T cells inhibit GVHD and preserve general immunity in humanized mice. Sci Transl Med 2013; 5:168ra9. [PMID: 23325802 DOI: 10.1126/scitranslmed.3004943] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Graft-versus-host disease (GVHD) is a lethal complication of allogeneic bone marrow transplantation (BMT). Immunosuppressive agents are currently used to control GVHD but may cause general immune suppression and limit the effectiveness of BMT. Adoptive transfer of regulatory T cells (T(regs)) can prevent GVHD in rodents, suggesting a therapeutic potential of T(regs) for GVHD in humans. However, the clinical application of T(reg)-based therapy is hampered by the low frequency of human T(regs) and the lack of a reliable model to test their therapeutic effects in vivo. Recently, we successfully generated human alloantigen-specific CD8(hi) T(regs) in a large scale from antigenically naïve precursors ex vivo using allogeneic CD40-activated B cells as stimulators. We report a human allogeneic GVHD model established in humanized mice to mimic GVHD after BMT in humans. We demonstrate that ex vivo-induced CD8(hi) T(regs) controlled GVHD in an allospecific manner by reducing alloreactive T cell proliferation as well as decreasing inflammatory cytokine and chemokine secretion within target organs through a CTLA-4-dependent mechanism in humanized mice. These CD8(hi) T(regs) induced long-term tolerance effectively without compromising general immunity and graft-versus-tumor activity. Our results support testing of human CD8(hi) T(regs) in GVHD in clinical trials.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chan PL, Zheng J, Liu Y, Lam KT, Xiang Z, Mao H, Liu Y, Qin G, Lau YL, Tu W. TLR5 signaling enhances the proliferation of human allogeneic CD40-activated B cell induced CD4hiCD25+ regulatory T cells. PLoS One 2013; 8:e67969. [PMID: 23844139 PMCID: PMC3700901 DOI: 10.1371/journal.pone.0067969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/23/2013] [Indexed: 01/07/2023] Open
Abstract
Although diverse functions of different toll-like receptors (TLR) on human natural regulatory T cells have been demonstrated recently, the role of TLR-related signals on human induced regulatory T cells remain elusive. Previously our group developed an ex vivo high-efficient system in generating human alloantigen-specific CD4hiCD25+ regulatory T cells from naïve CD4+CD25− T cells using allogeneic CD40-activated B cells as stimulators. In this study, we investigated the role of TLR5-related signals on the generation and function of these novel CD4hiCD25+ regulatory T cells. It was found that induced CD4hiCD25+ regulatory T cells expressed an up-regulated level of TLR5 compared to their precursors. The blockade of TLR5 using anti-TLR5 antibodies during the co-culture decreased CD4hiCD25+ regulatory T cells proliferation by induction of S phase arrest. The S phase arrest was associated with reduced ERK1/2 phosphorylation. However, TLR5 blockade did not decrease the CTLA-4, GITR and FOXP3 expressions, and the suppressive function of CD4hiCD25+ regulatory T cells. In conclusion, we discovered a novel function of TLR5-related signaling in enhancing the proliferation of CD4hiCD25+ regulatory T cells by promoting S phase progress but not involved in the suppressive function of human CD40-activated B cell-induced CD4hiCD25+ regulatory T cells, suggesting a novel role of TLR5-related signals in the generation of induced regulatory T cells.
Collapse
Affiliation(s)
- Ping-Lung Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Jian Zheng
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Yinping Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Kwok-Tai Lam
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Zheng Xiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Huawei Mao
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Yuan Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Gang Qin
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
39
|
Horch M, Nguyen VH. Regulatory T-cell immunotherapy for allogeneic hematopoietic stem-cell transplantation. Ther Adv Hematol 2013; 3:29-44. [PMID: 23556110 DOI: 10.1177/2040620711422266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
From mouse studies to recently published clinical trials, evidence has accumulated on the potential use of regulatory T cells (Treg) in preventing and treating graft-versus-host disease following hematopoietic-cell transplantation (HCT). However, controversies remain as to the phenotype and stability of various Treg subsets and their respective roles in vivo, the requirement of antigen-specificity of Treg to reduce promiscuous suppression, and the molecular mechanisms by which Treg suppress, particularly in humans. In this review, we discuss recent findings that support a heterogeneous population of human Treg, address advances in understanding how Treg function in the context of HCT, and present data on recent clinical trials that highlight the feasibility and limitations on Treg immunotherapy for graft-versus-host disease.
Collapse
|
40
|
Néron S, Roy A, Dumont N. Large-scale in vitro expansion of polyclonal human switched-memory B lymphocytes. PLoS One 2012; 7:e51946. [PMID: 23284827 PMCID: PMC3524102 DOI: 10.1371/journal.pone.0051946] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/12/2012] [Indexed: 12/03/2022] Open
Abstract
Polyclonal preparations of therapeutic immunoglobulins, namely intravenous immunoglobulins (IVIg), are essential in the treatment of immunodeficiency and are increasingly used for the treatment of autoimmune and inflammatory diseases. Currently, patients’ accessibility to IVIg depends exclusively upon volunteer blood donations followed by the fractionation of pooled human plasma obtained from thousands of individuals. Presently, there are no in vitro cell culture procedures allowing the preparation of polyclonal human antibodies. All in vitro human therapeutic antibodies that are currently generated are based on monoclonal antibodies, which are mostly issued from genetic engineering or single cell antibody technologies. Here, we describe an in vitro cell culture system, using CD40-CD154 interactions, that leads to a 1×106-fold expansion of switched memory B lymphocytes in approximately 50 days. These expanded cells secrete polyclonal IgG, which distribution into IgG1, IgG2, IgG3 and IgG4 is similar to that of normal human serum. Such in vitro generated IgG showed relatively low self-reactivity since they interacted moderately with only 24 human antigens among a total of 9484 targets. Furthermore, up to one liter of IgG secreting cells can be produced in about 40 days. This experimental model, providing large-scale expansion of human B lymphocytes, represents a critical step toward the in vitro production of polyclonal human IgG and a new method for the ex vivo expansion of B cells for therapeutic purposes.
Collapse
Affiliation(s)
- Sonia Néron
- Héma-Québec, Ingénierie Cellulaire, Recherche et Développement, Québec, Québec, Canada.
| | | | | |
Collapse
|
41
|
Dendritic and T cell response to influenza is normal in the patients with X-linked agammaglobulinemia. J Clin Immunol 2012; 32:421-9. [PMID: 22289994 PMCID: PMC3350625 DOI: 10.1007/s10875-011-9639-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 12/20/2011] [Indexed: 12/22/2022]
Abstract
Introduction Influenza virus is a potential cause of severe disease in the immunocompromised. X-linked agammaglobulinemia (XLA) is a primary immunodeficiency characterized by the lack of immunoglobulin, B cells, and plasma cells, secondary to mutation in Bruton’s tyrosine kinase (Btk) gene. Btk is expressed in both B and dendritic cells (DC). However, little is known about the immune response of DC and T cells to influenza virus in XLA patients. Methods The in vitro maturation and antigen presenting function of monocyte-derived immature DC (imDC) from 12 XLA patients and 23 age-matched normal controls in response to influenza virus were examined. Influenza virus-specific CD4 and CD8 T cell responses in the patients and controls were further determined after administration of inactivated trivalent influenza vaccine. Results imDC from XLA patients had normal maturation based on major histocompatibility complex (MHC)-I, MHC-II, CD83 and CD86 expression, and interferon (IFN)-α and interleukin-12 production upon influenza virus stimulation. They also had a normal capacity to induce allogeneic T cell proliferation in response to influenza virus. TIV was well tolerated in XLA patients. Influenza virus-specific CD4+IFN-γ+ and CD8+ IFN-γ+ T cells and HLA-A2/M158–66-tetramer+ CTLs could be induced by TIV in XLA patients, and the levels and duration of maintaining these virus-specific cells in XLA patients are comparable to that in normal controls. Conclusion We demonstrated for the first time that XLA patients have fully competent DC and T cell immune responses to influenza virus. TIV is safe and could be an option for providing T cell-mediated protection against influenza virus infection in XLA patients.
Collapse
|
42
|
Giannoukakis N, Trucco M. A role for tolerogenic dendritic cell-induced B-regulatory cells in type 1 diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 2012; 19:279-87. [PMID: 22760513 DOI: 10.1097/med.0b013e328355461b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW To review the important recent findings on the nature, characteristics and function of novel populations of immunosuppressive B-lymphocytes (Bregs) and their possible role as a regulatory cell population, potentially responsive to dendritic cells, in preventing and possibly controlling type 1 diabetes mellitus. RECENT FINDINGS Although almost all of the experimental work in immunosuppressive B-lymphocyte biology has focused on their role in arthritis and experimental inflammatory bowel disease, only recently has a role for Bregs in the regulation of type 1 diabetes been looked at more extensively. IL-10-producing Bregs are of significant interest, more so because of their potential modulation by tolerogenic dendritic cells. Additionally, novel populations have been discovered that could also be relevant in the regulation of diabetes autoimmunity. The unexpected discovery of a novel population of Bregs, whose frequency was upregulated in our phase I clinical trial of tolerogenic autologous dendritic cell administration in humans, opens a new frontier for basic and translational research into these novel cell populations. SUMMARY Bregs are a recently rediscovered population of suppressive lymphocytes whose activation, differentiation and function could be sensitive to tolerogenic dendritic cell networks. Modulation of these dendritic cell networks, or the Bregs directly, offers novel options to attenuate and reverse type 1 diabetes autoimmunity as a possible cure for the disease.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
43
|
Wood KJ, Bushell A, Hester J. Regulatory immune cells in transplantation. Nat Rev Immunol 2012; 12:417-30. [DOI: 10.1038/nri3227] [Citation(s) in RCA: 340] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Tanizawa K, Handa T, Nagai S, Ito I, Kubo T, Ito Y, Watanabe K, Aihara K, Mishima M, Izumi T. A CD40 single-nucleotide polymorphism affects the lymphocyte profiles in the bronchoalveolar lavage of Japanese patients with sarcoidosis. ACTA ACUST UNITED AC 2012; 78:442-5. [PMID: 22077624 DOI: 10.1111/j.1399-0039.2011.01783.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
CD40 plays a critical role in adaptive immunity, and alveolar macrophages in patients with sarcoidosis express higher levels of CD40. This study investigated the association of rs1883832, a functional single-nucleotide polymorphism in the CD40 gene with susceptibility to sarcoidosis and phenotypes of sarcoidosis. Genotyping of rs1883832 in 175 Japanese patients with sarcoidosis and 150 age- and sex-matched controls revealed no significant difference between the genotypes of the patient and control groups (CC/CT/TT, 32.8/52.0/14.7% in the patients; 37.3/48.0/14.7% in the controls, P = 0.66; allele C, 59.1% in the patients, 61.3% in the controls, P = 0.57). T-cell and CD4+ cell counts in the bronchoalveolar lavage fluid were significantly higher in the TT genotype group than in the CC and CT genotype group.
Collapse
Affiliation(s)
- K Tanizawa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Characterization of human B cells in umbilical cord blood-transplanted NOD/SCID mice. Transpl Immunol 2012; 26:156-62. [DOI: 10.1016/j.trim.2011.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 12/05/2011] [Accepted: 12/07/2011] [Indexed: 11/21/2022]
|
46
|
Teichmann LL, Kashgarian M, Weaver CT, Roers A, Müller W, Shlomchik MJ. B cell-derived IL-10 does not regulate spontaneous systemic autoimmunity in MRL.Fas(lpr) mice. THE JOURNAL OF IMMUNOLOGY 2011; 188:678-85. [PMID: 22156495 DOI: 10.4049/jimmunol.1102456] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cells contribute to the pathogenesis of chronic autoimmune disorders, like systemic lupus erythematosus (SLE), via multiple effector functions. However, B cells are also implicated in regulating SLE and other autoimmune syndromes via release of IL-10. B cells secreting IL-10 were termed "Bregs" and were proposed as a separate subset of cells, a concept that remains controversial. The balance between pro- and anti-inflammatory effects could determine the success of B cell-targeted therapies for autoimmune disorders; therefore, it is pivotal to understand the significance of B cell-secreted IL-10 in spontaneous autoimmunity. By lineage-specific deletion of Il10 from B cells, we demonstrated that B cell-derived IL-10 is ineffective in suppressing the spontaneous activation of self-reactive B and T cells during lupus. Correspondingly, severity of organ disease and survival rates in mice harboring Il10-deficient B cells are unaltered. Genetic marking of cells that transcribe Il10 illustrated that the pool of IL-10-competent cells is dominated by CD4 T cells and macrophages. IL-10-competent cells of the B lineage are rare in vivo and, among them, short-lived plasmablasts have the highest frequency, suggesting an activation-driven, rather than lineage-driven, phenotype. Putative Breg phenotypic subsets, such as CD1d(hi)CD5(+) and CD21(hi)CD23(hi) B cells, are not enriched in Il10 transcription. These genetic studies demonstrated that, in a spontaneous model of murine lupus, IL-10-dependent B cell regulation does not restrain disease and, thus, the pathogenic effects of B cells are not detectably counterbalanced by their IL-10-dependent regulatory functions.
Collapse
Affiliation(s)
- Lino L Teichmann
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Confirmation of clinical tolerance requires the cessation of immunosuppressive drugs, which evoke immune reactivation and allograft rejection in all but the rare individuals who successfully transition into a state of operational transplantation tolerance. Therefore, the safe conduct of trials in transplantation tolerance requires two conditions: a sensitive and reliable means to identify individuals still being maintained on immunosuppression who are most likely to exhibit tolerance after immunosuppression is withdrawn and a noninvasive means that assesses the quality or robustness of the tolerant (TOL) state. Two recent studies attempting to identify a gene signature in peripheral blood of spontaneously TOL kidney transplant recipients made the unexpected observation that TOL, but not immune-suppressed transplant recipients, exhibited enriched B cells and B-cell transcripts in their blood. In concert with the emerging appreciation of a specialized subset of regulatory B cells (Bregs) that possess immune-modulatory function, these observations raise the possibility that Bregs play a critical role in the maintenance of tolerance to renal allografts in transplant patients. This review summarizes these recent findings and speculates on the relationship of Bregs to the maintenance of transplantation tolerance.
Collapse
Affiliation(s)
- A S Chong
- Department of Surgery, Section of Transplantation, The University of Chicago, IL, USA.
| | | |
Collapse
|
48
|
Experimental models of B cell tolerance in transplantation. Semin Immunol 2011; 24:77-85. [PMID: 21925896 DOI: 10.1016/j.smim.2011.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 08/24/2011] [Indexed: 12/21/2022]
Abstract
The use of conventional immunosuppression has successfully improved short-term allograft survival, however, long-term allograft survival has remained static and is complicated by serious side effects secondary to the long-term use of immunosuppressive agents. Immunological tolerance is the ultimate goal of organ transplantation, however it is an infrequent event in humans. Accordingly, over the past several decades, there has been a push to fully understand both the cellular and molecular mechanisms that play a role in the induction and maintenance of tolerance, with recent data implicating B cells and donor specific alloantibody as a barrier to and potential mediator of allograft tolerance. The study of B cells and alloantibody in transplant tolerance has evolved over recent years from using rodent models to non-human primate models. This review will discuss the role of B cells and alloantibody as antagonists and facilitators of transplantation tolerance, and highlight the experimental models developed for elucidating the mechanisms of B cell tolerance to alloantigen.
Collapse
|
49
|
Néron S, Roy A, Dumont N, Dussault N. Effective in vitro expansion of CD40-activated human B lymphocytes in a defined bovine protein-free medium. J Immunol Methods 2011; 371:61-9. [PMID: 21723869 DOI: 10.1016/j.jim.2011.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 11/30/2022]
Abstract
CD40-CD154 interaction is used to culture human B lymphocytes, which are now viewed as effectors to potentially promote T lymphocyte response against malignant cells in cell-based therapy. Currently, the media used, based on bovine serum, are raising concerns for patient safety in such therapy. In this study, we have investigated whether human B lymphocytes could be cultured in the absence of bovine serum. Blood CD19(+) B lymphocytes were activated using interaction through CD40 in medium containing defined animals or human proteins and lipids, and were monitored during short-term periods (≤15 days). Conventional stem-cell medium and a medium containing human albumin instead of bovine albumin were tested. We observed that the response of B lymphocytes appeared influenced by lot-to-lot variability in low density lipoproteins (LDL). Nevertheless, B lymphocyte proliferation and secretion in serum-free and bovine protein-free media were quite similar to that of cells cultured in medium containing FBS. Our results show that CD40-activated B lymphocytes can be cultured for up to 15 days in a serum-free medium containing human albumin, LDL, α-tocopherol and chemically-defined lipids.
Collapse
Affiliation(s)
- Sonia Néron
- Héma-Québec, Ingénierie cellulaire, Recherche et développement, Québec (Québec), Canada.
| | | | | | | |
Collapse
|
50
|
Self-antigen presentation by mouse B cells results in regulatory T-cell induction rather than anergy or clonal deletion. Blood 2011; 118:984-91. [PMID: 21652680 DOI: 10.1182/blood-2011-02-336115] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple mechanisms operate to ensure T-cell tolerance toward self-antigens. Three main processes have been described: clonal deletion, anergy, and deviation to CD4(+) regulatory T cells (Tregs) that suppress autoreactive T cells that have escaped the first 2 mechanisms. Although it is accepted that dendritic cells (DCs) and B cells contribute in maintaining T-cell tolerance to self-antigens, their relative contribution and the processes involved under physiologic conditions remain only partially characterized. In this study, we used different transgenic mouse models to obtain chimeras where a neo self-antigen is expressed by thymic epithelium and/or by DCs or B cells. We found that expression of cognate ligand in the thymus enhances antigen-specific FoxP3(+) cells independently of whether the self-antigen is expressed on thymic epithelium or only on DCs, but not on B cells. On the contrary, self-antigen expression by B cells was very efficient in inducing FoxP3(+) cells in the periphery, whereas self-antigen expression by DC led mainly to deletion and anergy of antigen-specific FoxP3(-) cells. The results presented in this study underline the role of B cells in Treg induction and may have important implications in clinical protocols aimed at the peripheral expansion of Tregs in patients.
Collapse
|