1
|
Laha D, Grant R, Mishra P, Nilubol N. The Role of Tumor Necrosis Factor in Manipulating the Immunological Response of Tumor Microenvironment. Front Immunol 2021; 12:656908. [PMID: 33986746 PMCID: PMC8110933 DOI: 10.3389/fimmu.2021.656908] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is an intricate system within solid neoplasms. In this review, we aim to provide an updated insight into the TME with a focus on the effects of tumor necrosis factor-α (TNF-α) on its various components and the use of TNF-α to improve the efficiency of drug delivery. The TME comprises the supporting structure of the tumor, such as its extracellular matrix and vasculature. In addition to cancer cells and cancer stem cells, the TME contains various other cell types, including pericytes, tumor-associated fibroblasts, smooth muscle cells, and immune cells. These cells produce signaling molecules such as growth factors, cytokines, hormones, and extracellular matrix proteins. This review summarizes the intricate balance between pro-oncogenic and tumor-suppressive functions that various non-tumor cells within the TME exert. We focused on the interaction between tumor cells and immune cells in the TME that plays an essential role in regulating the immune response, tumorigenesis, invasion, and metastasis. The multifunctional cytokine, TNF-α, plays essential roles in diverse cellular events within the TME. The uses of TNF-α in cancer treatment and to facilitate cancer drug delivery are discussed. The effects of TNF-α on tumor neovasculature and tumor interstitial fluid pressure that improve treatment efficacy are summarized.
Collapse
Affiliation(s)
| | | | | | - Naris Nilubol
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
2
|
Terashima-Hasegawa M, Ashino T, Kawazoe Y, Shiba T, Manabe A, Numazawa S. Inorganic polyphosphate protects against lipopolysaccharide-induced lethality and tissue injury through regulation of macrophage recruitment. Biochem Pharmacol 2018; 159:96-105. [PMID: 30472240 DOI: 10.1016/j.bcp.2018.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/21/2018] [Indexed: 01/14/2023]
Abstract
Sepsis is an etiologically complex and often fatal inflammatory process involving a multitude of cytokine signaling pathways. Tumor necrosis factor α (TNFα) acts as a central regulator of the acute-phase inflammatory response by recruiting immune cells, including circulating monocyte/macrophages, to sites of infection or tissue damage. Inorganic polyphosphate (polyP), a linear polymer of orthophosphate residues, has been found in almost all cells and tissues, but its functions in immunity remain largely unknown. In this study, we show that pre- or post-treatment of mice with polyP150 (average chain length of 150 phosphate residues) markedly increases survival from lipopolysaccharide (LPS)-induced shock and inhibits macrophage recruitment to the liver and lungs, resulting in protection against tissue injury. In accord with these in vivo results, pretreatment of cultured peritoneal macrophages with polyP150 inhibited chemotaxis and actin polarization in response to TNFα. PolyP150 also inhibited phosphorylation of stress-activated protein kinases c-Jun N-terminal kinase (JNK) and p38, two downstream signaling molecules of the TNFα cascade, thereby preventing cyclooxygenase-2 gene expression by macrophages. These findings suggest that polyP150 inhibits recruitment of macrophages into organs by regulating the TNFα-JNK/p38 pathway, which may, in turn, protect against multi-organ dysfunction and lethality induced by LPS. Our findings identify polyP regulation as a novel therapeutic target for sepsis.
Collapse
Affiliation(s)
- Mikako Terashima-Hasegawa
- Division of Aesthetic Dentistry and Clinical Cariology, Department of Conservative Dentistry, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo 145-8515, Japan
| | - Takashi Ashino
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Yumi Kawazoe
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Regenetiss Inc., 1-7-20 Higashi, Kunitachi-shi, Tokyo 186-0002, Japan
| | - Toshikazu Shiba
- Division of Aesthetic Dentistry and Clinical Cariology, Department of Conservative Dentistry, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo 145-8515, Japan; Regenetiss Inc., 1-7-20 Higashi, Kunitachi-shi, Tokyo 186-0002, Japan
| | - Atsufumi Manabe
- Division of Aesthetic Dentistry and Clinical Cariology, Department of Conservative Dentistry, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo 145-8515, Japan
| | - Satoshi Numazawa
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
3
|
Sheng Y, Li F, Qin Z. TNF Receptor 2 Makes Tumor Necrosis Factor a Friend of Tumors. Front Immunol 2018; 9:1170. [PMID: 29892300 PMCID: PMC5985372 DOI: 10.3389/fimmu.2018.01170] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/09/2018] [Indexed: 12/23/2022] Open
Abstract
Tumor necrosis factor (TNF) is widely accepted as a tumor-suppressive cytokine via its ubiquitous receptor TNF receptor 1 (TNFR1). The other receptor, TNFR2, is not only expressed on some tumor cells but also on suppressive immune cells, including regulatory T cells and myeloid-derived suppressor cells. In contrast to TNFR1, TNFR2 diverts the tumor-inhibiting TNF into a tumor-advocating factor. TNFR2 directly promotes the proliferation of some kinds of tumor cells. Also activating immunosuppressive cells, it supports immune escape and tumor development. Hence, TNFR2 may represent a potential target of cancer therapy. Here, we focus on expression and role of TNFR2 in the tumor microenvironment. We summarize the recent progress in understanding how TNFR2-dependent mechanisms promote carcinogenesis and tumor growth and discuss the potential value of TNFR2 in cancer treatment.
Collapse
Affiliation(s)
- Yuqiao Sheng
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Deng J, Liu X, Rong L, Ni C, Li X, Yang W, Lu Y, Yan X, Qin C, Zhang L, Qin Z. IFNγ-responsiveness of endothelial cells leads to efficient angiostasis in tumours involving down-regulation of Dll4. J Pathol 2014; 233:170-82. [PMID: 24615277 DOI: 10.1002/path.4340] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 12/16/2023]
Abstract
Although IFNγ is regarded as a key cytokine in angiostatic response, our poor understanding of its effective cellular target drastically limits its clinical trials against angiogenesis-related disorders. Here, we investigated the effect of IFNγ on endothelial cells (ECs) and possible molecular mechanisms in angiostasis. By employing Tie2(IFNγR) mice, in which IFNγR expression was reconstituted under the control of Tie2 promoter in IFNγR-deficient mice, we found that the response of ECs to IFNγ was highly effective in inhibiting blood supply and retarding tumour growth. Interestingly, the expression of IFNγR on Tie2(-) cells did not inhibit, but promoted tumour growth in control wild-type mice. Mechanism studies showed that IFNγ reacting on ECs down-regulated the delta-like ligand 4 (Dll4)/Notch signalling pathway. Accordingly, overexpression of Dll4 in human ECs diminished the effect of IFNγ on ECs. This study demonstrates that the action of IFNγ on ECs, but not other cells, is highly effective for tumour angiostasis, which involves down-regulating Dll4. It provides insights for EC-targeted angiostatic therapy in treating angiogenesis-associated disorders in the clinic.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Calcium-Binding Proteins
- Cell Line, Tumor
- Down-Regulation
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gene Expression Regulation, Neoplastic
- Human Umbilical Vein Endothelial Cells/metabolism
- Human Umbilical Vein Endothelial Cells/pathology
- Humans
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Interferon-gamma/metabolism
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, SCID
- Mice, Transgenic
- Neoplasms/blood supply
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Neovascularization, Pathologic
- Pericytes/metabolism
- Pericytes/pathology
- Promoter Regions, Genetic
- Receptor, TIE-2/genetics
- Receptors, Interferon/genetics
- Receptors, Interferon/metabolism
- Signal Transduction
- Time Factors
- Transfection
- Tumor Burden
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Jingjing Deng
- Key Laboratory of Protein and Peptide Pharmaceuticals; Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of the Chinese Academy of Sciences, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|