1
|
Ding S, Alexander E, Liang H, Kulchar RJ, Singh R, Herzog RW, Daniell H, Leong KW. Synthetic and Biogenic Materials for Oral Delivery of Biologics: From Bench to Bedside. Chem Rev 2025; 125:4009-4068. [PMID: 40168474 DOI: 10.1021/acs.chemrev.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
The development of nucleic acid and protein drugs for oral delivery has lagged behind their production for conventional nonoral routes. Over the past decade, the evolution of DNA- and RNA-based technologies combined with the innovation of state-of-the-art delivery vehicles for nucleic acids has brought rapid advancements to the biopharmaceutical field. Nucleic acid therapies have the potential to achieve long-lasting effects, or even cures, by inhibiting or editing genes, which is not possible with conventional small-molecule drugs. However, challenges and limitations must be addressed before these therapies can provide cures for chronic conditions and rare diseases, rather than only offering temporary relief. Nucleic acids and proteins face premature degradation in the acidic, enzyme-rich stomach environment and are rapidly cleared by the liver. To overcome these challenges, various delivery vehicles have been developed to transport therapeutic compounds to the intestines, where the active compounds are released and gut microbiota and mucosal immune system also play an important role. This review provides a comprehensive overview of the promises and pitfalls associated with the oral route of administration of biologics, current delivery systems, applications of orally delivered therapeutics, and the challenges and considerations for translation of nucleic acid and protein therapeutics into clinical practice.
Collapse
Affiliation(s)
- Suwan Ding
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Elena Alexander
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Huiyi Liang
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Rachel J Kulchar
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Rahul Singh
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| |
Collapse
|
2
|
Kossard S, Sharifi S, Calvey L. Utilizing PRAME Expression and a Meta-Analytic Framework for iSALT to Explore Atypical Late-Onset Nevi of the Elderly and Their Relationship With Lentiginous and Nested Nevoid Melanomas. Am J Dermatopathol 2024; 46:825-832. [PMID: 39412342 PMCID: PMC11573072 DOI: 10.1097/dad.0000000000002847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND In contrast to early-onset dysplastic nevi, late-onset atypical nevi of the elderly are more often precursors to distinctive nevoid melanomas. PReferentially expressed Antigen in MElanoma (PRAME) immunohistochemistry was applied to delineate the nevoid aspect of late-onset oncogenic nevoid pathway. Inducible Skin-Associated Lymphoid Tissue, regulatory T-cell mesenchymal hubs, has emerged as a translational tool and was used to define nevoid oncogenesis within a dynamic meta-analytic pathway. METHODS PRAME immunohistochemistry was applied after designating a histopathologic diagnosis. Late-onset atypical nested lentiginous nevus, lentiginous nested melanoma, and hypercellular nested nevoid melanoma were the diagnostic categories. A positive PRAME for melanoma was set at 75% percentage labeling.A wide-ranging published evidence-based database was incorporated to develop a meta-analytic framework for oncogenic nevogenesis. This combined inducible Skin-Associated Lymphoid Tissue incorporating the pleiotropic functions of regulatory T cells regulating immunity and gene regulatory epigenetics as principal modulators. RESULTS Concordant-negative PRAME expression was present in 64 of 81 (79%) atypical nested lentiginous nevi, concordant-positive PRAME expression occurred in 54 of 75 (72%) nevoid lentiginous and nested melanomas, and 18 of 23 (78%) nevoid hypercellular nested melanomas. CONCLUSIONS PRAME expression confirmed the existence of a late-onset oncogenic nevoid pathway that can be defined by histopathology. Subsequent meta-analysis data linked to the meta-analytic framework revealed that PRAME is an epigenetic surrogate antigen expressed because of repression of retinoic acid receptor signaling, preventing ligand-induced retinoic acid cellular differentiation, growth arrest, and apoptosis, and promoting melanoma growth and survival for melanomas. PRAME is only a single antigen within a highly complex dynamic framework that governs nevoid oncogenesis. Significantly, the retinoic acid/retinoic acid receptor complex has been shown to modulate the immunosuppressive arm of regulatory T cells underpinning immune tolerance and is pertinent to the broad framework but is not linked to PRAME expression in this arm.
Collapse
Affiliation(s)
- Steven Kossard
- Kossard Dermatopathologists, Laverty Pathology, Macquarie Park, NSW, Australia
| | | | | |
Collapse
|
3
|
Liu T, Ran C, Zhao D, Yang F, Guo Q, Yang J, Zhang X. Mesenchymal stem cells and their exosomes mitigate osteoarthritis by restoring the balance between proinflammatory Teffs and Tregs. FRONTIERS IN AGING 2024; 5:1509014. [PMID: 39629263 PMCID: PMC11611854 DOI: 10.3389/fragi.2024.1509014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Osteoarthritis (OA) is a degenerative joint disease caused by chronic inflammation that damages articular cartilage. In addition to the wear and tear of joints, aberrant remodelling driven by a significant presence of inflammatory mediators within the joint is one of the key mechanisms in the pathogenesis of OA. Among these factors, hyperactivation of Teffs subsets plays a crucial role in promoting this pathological process. The immune imbalance between proinflammatory CD4+ effector T cells (proinflammatory Teffs) and Tregs could be a crucial factor in the pathogenesis of OA. Therefore, correcting the imbalance of Tregs/proinflammatory Teffs may slow or inhibit the occurrence and development of OA, which could be a potential target for the treatment of OA. Mesenchymal stem cells (MSCs) possess anti-inflammatory and immunomodulatory properties, regulating both adaptive and innate immunity through mechanisms involving soluble factors such as IDO, PGE2, and TGF-β, as well as cell-to-cell contact and exosomes. Correcting the imbalance between Tregs and proinflammatory Teffs may be one of the mechanisms of MSCs in the treatment of OA. Therefore, this review aims to summarize the relationship between OA and the immune imbalance between Tregs and proinflammatory Teffs, the immunoregulatory role of Tregs in OA, and the role of MSCs and their exosomes in correcting the imbalance between Tregs and proinflammatory Teffs.
Collapse
Affiliation(s)
- Tianhao Liu
- Zhongshan Clinical College, Dalian University, Dalian, Liaoning, China
| | - Chunxiao Ran
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Dewei Zhao
- Zhongshan Clinical College, Dalian University, Dalian, Liaoning, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Fan Yang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Qiang Guo
- Zhongshan Clinical College, Dalian University, Dalian, Liaoning, China
| | - Jiahui Yang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xiuzhi Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
4
|
Amimo JO, Michael H, Chepngeno J, Jung K, Raev SA, Paim FC, Lee MV, Damtie D, Vlasova AN, Saif LJ. Maternal immunization and vitamin A sufficiency impact sow primary adaptive immunity and passive protection to nursing piglets against porcine epidemic diarrhea virus infection. Front Immunol 2024; 15:1397118. [PMID: 38812505 PMCID: PMC11133611 DOI: 10.3389/fimmu.2024.1397118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/24/2024] [Indexed: 05/31/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes a highly contagious enteric disease with major economic losses to swine production worldwide. Due to the immaturity of the neonatal piglet immune system and given the high virulence of PEDV, improving passive lactogenic immunity is the best approach to protect suckling piglets against the lethal infection. We tested whether oral vitamin A (VA) supplementation and PEDV exposure of gestating and lactating VA-deficient (VAD) sows would enhance their primary immune responses and boost passive lactogenic protection against the PEDV challenge of their piglets. We demonstrated that PEDV inoculation of pregnant VAD sows in the third trimester provided higher levels of lactogenic protection of piglets as demonstrated by >87% survival rates of their litters compared with <10% in mock litters and that VA supplementation to VAD sows further improved the piglets' survival rates to >98%. We observed significantly elevated PEDV IgA and IgG antibody (Ab) titers and Ab-secreting cells (ASCs) in VA-sufficient (VAS)+PEDV and VAD+VA+PEDV sows, with the latter maintaining higher Ab titers in blood prior to parturition and in blood and milk throughout lactation. The litters of VAD+VA+PEDV sows also had the highest serum PEDV-neutralizing Ab titers at piglet post-challenge days (PCD) 0 and 7, coinciding with higher PEDV IgA ASCs and Ab titers in the blood and milk of their sows, suggesting an immunomodulatory role of VA in sows. Thus, sows that delivered sufficient lactogenic immunity to their piglets provided the highest passive protection against the PEDV challenge. Maternal immunization during pregnancy (± VA) and VA sufficiency enhanced the sow primary immune responses, expression of gut-mammary gland trafficking molecules, and passive protection of their offspring. Our findings are relevant to understanding the role of VA in the Ab responses to oral attenuated vaccines that are critical for successful maternal vaccination programs against enteric infections in infants and young animals.
Collapse
Affiliation(s)
- Joshua O. Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Husheem Michael
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Juliet Chepngeno
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Kwonil Jung
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Sergei A. Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Francine C. Paim
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Marcia V. Lee
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Debasu Damtie
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
Liu J, Zhang B, Zhang G, Shang D. Reprogramming of regulatory T cells in inflammatory tumor microenvironment: can it become immunotherapy turning point? Front Immunol 2024; 15:1345838. [PMID: 38449875 PMCID: PMC10915070 DOI: 10.3389/fimmu.2024.1345838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Overcoming the immunosuppressive tumor microenvironment and identifying widely used immunosuppressants with minimal side effects are two major challenges currently hampering cancer immunotherapy. Regulatory T cells (Tregs) are present in almost all cancer tissues and play an important role in preserving autoimmune tolerance and tissue homeostasis. The tumor inflammatory microenvironment causes the reprogramming of Tregs, resulting in the conversion of Tregs to immunosuppressive phenotypes. This process ultimately facilitates tumor immune escape or tumor progression. However, current systemic Treg depletion therapies may lead to severe autoimmune toxicity. Therefore, it is crucial to understand the mechanism of Treg reprogramming and develop immunotherapies that selectively target Tregs within tumors. This article provides a comprehensive review of the potential mechanisms involved in Treg cell reprogramming and explores the application of Treg cell immunotherapy. The interference with reprogramming pathways has shown promise in reducing the number of tumor-associated Tregs or impairing their function during immunotherapy, thereby improving anti-tumor immune responses. Furthermore, a deeper understanding of the mechanisms that drive Treg cell reprogramming could reveal new molecular targets for future treatments.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guolin Zhang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Zhang C, Li Y, Yu Y, Li Z, Xu X, Talifu Z, Liu W, Yang D, Gao F, Wei S, Zhang L, Gong H, Peng R, Du L, Li J. Impact of inflammation and Treg cell regulation on neuropathic pain in spinal cord injury: mechanisms and therapeutic prospects. Front Immunol 2024; 15:1334828. [PMID: 38348031 PMCID: PMC10859493 DOI: 10.3389/fimmu.2024.1334828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Spinal cord injury is a severe neurological trauma that can frequently lead to neuropathic pain. During the initial stages following spinal cord injury, inflammation plays a critical role; however, excessive inflammation can exacerbate pain. Regulatory T cells (Treg cells) have a crucial function in regulating inflammation and alleviating neuropathic pain. Treg cells release suppressor cytokines and modulate the function of other immune cells to suppress the inflammatory response. Simultaneously, inflammation impedes Treg cell activity, further intensifying neuropathic pain. Therefore, suppressing the inflammatory response while enhancing Treg cell regulatory function may provide novel therapeutic avenues for treating neuropathic pain resulting from spinal cord injury. This review comprehensively describes the mechanisms underlying the inflammatory response and Treg cell regulation subsequent to spinal cord injury, with a specific focus on exploring the potential mechanisms through which Treg cells regulate neuropathic pain following spinal cord injury. The insights gained from this review aim to provide new concepts and a rationale for the therapeutic prospects and direction of cell therapy in spinal cord injury-related conditions.
Collapse
Affiliation(s)
- Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Yan Li
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
| | - Yan Yu
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
| | - Zehui Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Zuliyaer Talifu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Wubo Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Song Wei
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Liang Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Run Peng
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
Wu D, Khan FA, Zhang K, Pandupuspitasari NS, Negara W, Guan K, Sun F, Huang C. Retinoic acid signaling in development and differentiation commitment and its regulatory topology. Chem Biol Interact 2024; 387:110773. [PMID: 37977248 DOI: 10.1016/j.cbi.2023.110773] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Retinoic acid (RA), the derivative of vitamin A/retinol, is a signaling molecule with important implications in health and disease. It is a well-known developmental morphogen that functions mainly through the transcriptional activity of nuclear RA receptors (RARs) and, uncommonly, through other nuclear receptors, including peroxisome proliferator-activated receptors. Intracellular RA is under spatiotemporally fine-tuned regulation by synthesis and degradation processes catalyzed by retinaldehyde dehydrogenases and P450 family enzymes, respectively. In addition to dictating the transcription architecture, RA also impinges on cell functioning through non-genomic mechanisms independent of RAR transcriptional activity. Although RA-based differentiation therapy has achieved impressive success in the treatment of hematologic malignancies, RA also has pro-tumor activity. Here, we highlight the relevance of RA signaling in cell-fate determination, neurogenesis, visual function, inflammatory responses and gametogenesis commitment. Genetic and post-translational modifications of RAR are also discussed. A better understanding of RA signaling will foster the development of precision medicine to improve the defects caused by deregulated RA signaling.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
8
|
Maseda D, Manfredo-Vieira S, Payne AS. T cell and bacterial microbiota interaction at intestinal and skin epithelial interfaces. DISCOVERY IMMUNOLOGY 2023; 2:kyad024. [PMID: 38567051 PMCID: PMC10917213 DOI: 10.1093/discim/kyad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/28/2023] [Accepted: 11/24/2023] [Indexed: 04/04/2024]
Abstract
Graphical Abstract.
Collapse
Affiliation(s)
- Damian Maseda
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Silvio Manfredo-Vieira
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Peng L, Chen L, Wan J, Liu W, Lou S, Shen Z. Single-cell transcriptomic landscape of immunometabolism reveals intervention candidates of ascorbate and aldarate metabolism, fatty-acid degradation and PUFA metabolism of T-cell subsets in healthy controls, psoriasis and psoriatic arthritis. Front Immunol 2023; 14:1179877. [PMID: 37492568 PMCID: PMC10363747 DOI: 10.3389/fimmu.2023.1179877] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
Introduction The modulation of immunometabolic pathways is emerging as a promising therapeutic target for immune-mediated diseases. However, the immunometabolic features of psoriatic disease and the potential targets for immunometabolic intervention in the different T-cell subsets involved in its pathogenesis remain unclear. Methods In this study, we analyzed circulating blood single-cell data from healthy controls (HC), psoriasis (PSO), and psoriatic arthritis (PSA) patients, and revealed their metabolic features of T-cell subsets: CD4+ central memory T cells (TCMs), CD8+ effective memory T cells (TEMs), regulatory T cells (Tregs), mucosal-associated invariant T cells (MAITs ), and γδ T cells. Pearson test was performed to determine the linkages between differential metabolic and inflammatory pathways. Based on these results, we also analyzed the potential impacts of biological antibodies on differential metabolic pathways by comparing the immunometabolism differences between PSA patients without and with biological treatment. Results Our results suggest that upregulation of ascorbate and aldarate metabolism, as well as fatty acid degradation, may enhance the immune suppression of Tregs. Enhanced metabolism of alpha-linolenic acid, linoleic acid, and arachidonic acid may inhibit the pro-inflammatory functions of CD4+ TCMs and CD8+ TEMs in PSO and PSA, and protect the immune suppression of Tregs in PSA. We propose that supporting ascorbic acid and fatty acid metabolic pathways may be an adjunctive reprogramming strategy with adalimumab and etanercept therapy. Discussion These findings not only provide insights into immunometabolism characteristics of psoriatic disease, but also offer preliminary options for the auxiliary treatment of psoriasis.
Collapse
Affiliation(s)
- Lu Peng
- Department of Dermatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ling Chen
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianji Wan
- Department of Dermatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenqi Liu
- Department of Dermatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuang Lou
- Department of Dermatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhu Shen
- Department of Dermatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
11
|
Shiratori H, Oguchi H, Isobe Y, Han KH, Sen A, Yakebe K, Takahashi D, Fukushima M, Arita M, Hase K. Gut microbiota-derived lipid metabolites facilitate regulatory T cell differentiation. Sci Rep 2023; 13:8903. [PMID: 37264064 DOI: 10.1038/s41598-023-35097-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/12/2023] [Indexed: 06/03/2023] Open
Abstract
Commensal bacteria-derived metabolites are critical in regulating the host immune system. Although the impact of gut microbiota-derived hydrophilic metabolites, such as short-chain fatty acids, on immune cell functions and development has been well documented, the immunomodulatory effects of gut microbiota-derived lipids are still of interest. Here, we report that lipid extracts from the feces of specific-pathogen-free (SPF), but not germ-free (GF), mice showed regulatory T (Treg)-cell-inducing activity. We conducted RP-HPLC-based fractionation and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based lipidome profiling and identified two bioactive lipids, 9,10-dihydroxy-12Z-octadecenoic acid (9,10-DiHOME) and all-trans retinoic acid (atRA), with Treg-inducing activity in vitro. The luminal abundance of 9,10-DiHOME in the large intestine was significantly decreased by dextran sulfate sodium (DSS)-induced colitis, indicating that 9,10-DiHOME may be a potential biomarker of colitis. These observations implied that commensal bacteria-derived lipophilic metabolites might contribute to Treg development in the large intestine.
Collapse
Affiliation(s)
- Hiroaki Shiratori
- Division of Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy, and Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, 105-8512, Japan
| | - Hiroyuki Oguchi
- Division of Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy, and Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, 105-8512, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan
| | - Yosuke Isobe
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, 105-8512, Japan
| | - Kyu-Ho Han
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Akira Sen
- Division of Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy, and Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, 105-8512, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan
| | - Kyosuke Yakebe
- Division of Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy, and Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, 105-8512, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy, and Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, 105-8512, Japan
| | - Michihiro Fukushima
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan.
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, 105-8512, Japan.
| | - Koji Hase
- Division of Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy, and Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, 105-8512, Japan.
- The Institute of Fermentation Sciences (IFeS), Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, 960-1296, Japan.
- International Research and Development Centre for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
12
|
McBride DA, Kerr MD, Johnson WT, Nguyen A, Zoccheddu M, Yao M, Prideaux EB, Dorn NC, Wang W, Svensson MN, Bottini N, Shah NJ. Immunomodulatory Microparticles Epigenetically Modulate T Cells and Systemically Ameliorate Autoimmune Arthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202720. [PMID: 36890657 PMCID: PMC10104670 DOI: 10.1002/advs.202202720] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/09/2023] [Indexed: 05/10/2023]
Abstract
Disease modifying antirheumatic drugs (DMARDs) have improved the prognosis of autoimmune inflammatory arthritides but a large fraction of patients display partial or nonresponsiveness to front-line DMARDs. Here, an immunoregulatory approach based on sustained joint-localized release of all-trans retinoic acid (ATRA), which modulates local immune activation and enhances disease-protective T cells and leads to systemic disease control is reported. ATRA imprints a unique chromatin landscape in T cells, which is associated with an enhancement in the differentiation of naïve T cells into anti-inflammatory regulatory T cells (Treg ) and suppression of Treg destabilization. Sustained release poly-(lactic-co-glycolic) acid (PLGA)-based biodegradable microparticles encapsulating ATRA (PLGA-ATRA MP) are retained in arthritic mouse joints after intra-articular (IA) injection. IA PLGA-ATRA MP enhance migratory Treg which in turn reduce inflammation and modify disease in injected and uninjected joints, a phenotype that is also reproduced by IA injection of Treg . PLGA-ATRA MP reduce proteoglycan loss and bone erosions in the SKG and collagen-induced arthritis mouse models of autoimmune arthritis. Strikingly, systemic disease modulation by PLGA-ATRA MP is not associated with generalized immune suppression. PLGA-ATRA MP have the potential to be developed as a disease modifying agent for autoimmune arthritis.
Collapse
Affiliation(s)
- David A. McBride
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCA92093USA
- Chemical Engineering ProgramUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Matthew D. Kerr
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCA92093USA
- Chemical Engineering ProgramUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Wade T. Johnson
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Anders Nguyen
- Department of Rheumatology and Inflammation ResearchSahlgrenska AcademyInstitute of MedicineUniversity of GothenburgGothenburg41346Sweden
| | - Martina Zoccheddu
- Department of MedicineDivision of RheumatologyAllergy and ImmunologyUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Mina Yao
- Department of Chemistry and BiochemistryUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Edward B. Prideaux
- Department of Chemistry and BiochemistryUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Nicholas C. Dorn
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCA92093USA
- Chemical Engineering ProgramUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Wei Wang
- Department of Chemistry and BiochemistryUniversity of CaliforniaLa JollaSan DiegoCA92093USA
- Department of Cellular and Molecular MedicineUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Mattias N.D. Svensson
- Department of Rheumatology and Inflammation ResearchSahlgrenska AcademyInstitute of MedicineUniversity of GothenburgGothenburg41346Sweden
| | - Nunzio Bottini
- Department of MedicineDivision of RheumatologyAllergy and ImmunologyUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Nisarg J. Shah
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCA92093USA
- Chemical Engineering ProgramUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| |
Collapse
|
13
|
Carey ST, Bridgeman C, Jewell CM. Biomaterial Strategies for Selective Immune Tolerance: Advances and Gaps. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205105. [PMID: 36638260 PMCID: PMC10015875 DOI: 10.1002/advs.202205105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Indexed: 05/03/2023]
Abstract
Autoimmunity and allergies affect a large number of people across the globe. Current approaches to these diseases target cell types and pathways that drive disease, but these approaches are not cures and cannot differentiate between healthy cells and disease-causing cells. New immunotherapies that induce potent and selective antigen-specific tolerance is a transformative goal of emerging treatments for autoimmunity and serious allergies. These approaches offer the potential of halting-or even reversing-disease, without immunosuppressive side effects. However, translating successful induction of tolerance to patients is unsuccessful. Biomaterials offer strategies to direct and maximize immunological mechanisms of tolerance through unique capabilities such as codelivery of small molecules or signaling molecules, controlling signal density in key immune tissues, and targeting. While a growing body of work in this area demonstrates success in preclinical animal models, these therapies are only recently being evaluated in human trials. This review will highlight the most recent advances in the use of materials to achieve antigen-specific tolerance and provide commentary on the current state of the clinical development of these technologies.
Collapse
Affiliation(s)
- Sean T. Carey
- University of Maryland Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Christopher Bridgeman
- University of Maryland Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Christopher M. Jewell
- University of Maryland Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
- US Department of Veterans AffairsVA Maryland Health Care SystemBaltimoreMD21201USA
- Robert E. Fischell Institute for Biomedical DevicesCollege ParkMD20742USA
- Department of Microbiology and ImmunologyUniversity of Maryland Medical SchoolBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Cancer CenterBaltimoreMD21201USA
| |
Collapse
|
14
|
Regulatory T cells (Tregs) in liver fibrosis. Cell Death Discov 2023; 9:53. [PMID: 36759593 PMCID: PMC9911787 DOI: 10.1038/s41420-023-01347-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
The ability of the human liver to both synthesize extracellular matrix(ECM), as well as regulate fibrogenesis, are integral functions to maintaining homoeostasis. Chronic liver injury stimulates fibrogenesis in response to the imbalance between ECM accumulation and fibrosis resolution. Liver disease that induces fibrogenesis is associated with multiple risk factors like hepatitis infection, schistosomiasis, alcohol, certain drugs, toxicants and emerging aetiology like diabetes and obesity. The activation of hepatic stellate cells (HSCs), whose function is to generate and accumulate ECM, is a pivotal event in liver fibrosis. Simultaneously, HSCs selectively promote regulatory T-cells (Tregs) in an interleukin-2-dependent pattern that displays a dual relationship. On the one hand, Tregs can protect HSCs from NK cell attack, while on the other hand, they demonstrate an inhibitory effect on HSCs. This paper reviews the dual role of Tregs in liver fibrogenesis which includes its promotion of immunosuppression, as well as its activation of fibrosis. In particular, the balance between Tregs and the Th17 cell population, which produce interleukin (IL)-17 and IL-22, is explored to demonstrate their key role in maintaining homoeostasis and immunoregulation. The contradictory roles of Tregs in liver fibrosis in different immune microenvironments and molecular pathways need to be better understood if they are to be deployed to manage this disease.
Collapse
|
15
|
Laukova M, Glatman Zaretsky A. Regulatory T cells as a therapeutic approach for inflammatory bowel disease. Eur J Immunol 2023; 53:e2250007. [PMID: 36562391 PMCID: PMC10107179 DOI: 10.1002/eji.202250007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/20/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Foxp3+ T regulatory (Treg) cells suppress inflammation and are essential for maintaining tissue homeostasis. A growing appreciation of tissue-specific Treg functions has built interest in leveraging the endogenous suppressive mechanisms of these cells into cellular therapeutics in organ-specific diseases. Notably, Treg cells play a critical role in maintaining the intestinal environment. As a barrier site, the gut requires Treg cells to mediate interactions with the microbiota, support barrier integrity, and regulate the immune system. Without fully functional Treg cells, intestinal inflammation and microbial dysbiosis ensue. Thus, there is a particular interest in developing Treg cellular therapies for intestinal inflammatory disease, such as inflammatory bowel disease (IBD). This article reviews some of the critical pathways that are dysregulated in IBD, Treg cell mechanisms of suppression, and the efforts and approaches in the field to develop these cells as a cellular therapy for IBD.
Collapse
|
16
|
Silalahi ER, Wibowo N, Prasmusinto D, Djuwita R, Rengganis I, Mose JC. Decidual dendritic cells 10 and CD4 +CD25 +FOXP3 regulatory T cell in preeclampsia and their correlation with nutritional factors in pathomechanism of immune rejection in pregnancy. J Reprod Immunol 2022; 154:103746. [PMID: 36108422 DOI: 10.1016/j.jri.2022.103746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Immune intolerance is thought to be the underlying cause of immune rejection to fetus in preeclampsia. Decidual dendritic cell-10 (DC-10) and T regulator cell (Treg) play important role to create tolerogenic environment during pregnancy. However, their roles on the specific pathomechanism of preeclampsia along with various nutritional factors have not been widely studied. AIM To determine the number of DC-10 and Treg in preeclampsia and their correlations with decidual nutritional factors. METHOD This was a cross-sectional study among early onset preeclampsia (EOPE), late onset preeclampsia (LOPE), and normotensive (NT) pregnancies. Decidual specimens were obtained by curettage after caesarean section. The number of DC-10 and Treg cells were counted using flow cytometry. The levels of nutritional factors (zinc, retinol, all-trans retinoic acid, vitamin D) were determined using ICP-MS and LC-MS method. RESULT A total of 14 subjects for each group were included in the study. The DC-10 was significantly lower in both EOPE and LOPE compared to NT (p < 0.001). Treg cells were significantly higher in EOPE compare to NT (p = 0.015). There was a moderate correlation between zinc level and DC-10 (p = 0.011) and a strong correlation between retinol level and DC-10 (p = 0.002) in the NT group. A moderate correlation was found between vitamin D level and Treg cells in the NT group (p = 0.026). CONCLUSION There was a lower number of DC-10 and higher number of Treg cells in early preeclampsia. There was no correlation between DC-10 and Treg number with decidual nutritional factors in preeclampsia.
Collapse
Affiliation(s)
- Eva Roria Silalahi
- Doctoral Program in Medical Sciences, Faculty of Medicine, Universitas Indonesia, Indonesia.
| | - Noroyono Wibowo
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Indonesia
| | - Damar Prasmusinto
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Indonesia
| | - Ratna Djuwita
- Department of Epidemiology, Faculty of Public Health, Universitas Indonesia, Indonesia
| | - Iris Rengganis
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Indonesia
| | - Johanes C Mose
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjadjaran - Hasan Sadikin Hospital, Indonesia
| |
Collapse
|
17
|
Behl T, Kaur D, Sehgal A, Singla RK, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bungau S. Therapeutic insights elaborating the potential of retinoids in Alzheimer’s disease. Front Pharmacol 2022; 13:976799. [PMID: 36091826 PMCID: PMC9453874 DOI: 10.3389/fphar.2022.976799] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) is perceived with various pathophysiological characteristics such oxidative stress, senile plaques, neuroinflammation, altered neurotransmission immunological changes, neurodegenerative pathways, and age-linked alterations. A great deal of studies even now are carried out for comprehensive understanding of pathological processes of AD, though many agents are in clinical trials for the treatment of AD. Retinoids and retinoic acid receptors (RARs) are pertinent to such attributes of the disease. Retinoids support the proper functioning of the immunological pathways, and are very potent immunomodulators. The nervous system relies heavily on retinoic acid signaling. The disruption of retinoid signaling relates to several pathogenic mechanisms in the normal brain. Retinoids play critical functions in the neuronal organization, differentiation, and axonal growth in the normal functioning of the brain. Disturbed retinoic acid signaling causes inflammatory responses, mitochondrial impairment, oxidative stress, and neurodegeneration, leading to Alzheimer’s disease (AD) progression. Retinoids interfere with the production and release of neuroinflammatory chemokines and cytokines which are located to be activated in the pathogenesis of AD. Also, stimulating nuclear retinoid receptors reduces amyloid aggregation, lowers neurodegeneration, and thus restricts Alzheimer’s disease progression in preclinical studies. We outlined the physiology of retinoids in this review, focusing on their possible neuroprotective actions, which will aid in elucidating the critical function of such receptors in AD pathogenesis.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- *Correspondence: Tapan Behl, ; Simona Bungau,
| | - Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rajeev K. Singla
- Institutes for Sytems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
- *Correspondence: Tapan Behl, ; Simona Bungau,
| |
Collapse
|
18
|
Yan Y, Huang L, Liu Y, Yi M, Chu Q, Jiao D, Wu K. Metabolic profiles of regulatory T cells and their adaptations to the tumor microenvironment: implications for antitumor immunity. J Hematol Oncol 2022; 15:104. [PMID: 35948909 PMCID: PMC9364625 DOI: 10.1186/s13045-022-01322-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Characterized by the expression of the critical transcription factor forkhead box protein P3, regulatory T (Treg) cells are an essential part of the immune system, with a dual effect on the pathogenesis of autoimmune diseases and cancer. Targeting Tregs to reestablish the proinflammatory and immunogenic tumor microenvironment (TME) is an increasingly attractive strategy for cancer treatment and has been emphasized in recent years. However, attempts have been significantly hindered by the subsequent autoimmunity after Treg ablation owing to systemic loss of their suppressive capacity. Cellular metabolic reprogramming is acknowledged as a hallmark of cancer, and emerging evidence suggests that elucidating the underlying mechanisms of how intratumoral Tregs acquire metabolic fitness and superior immunosuppression in the TME may contribute to clinical benefits. In this review, we discuss the common and distinct metabolic profiles of Tregs in peripheral tissues and the TME, as well as the differences between Tregs and other conventional T cells in their metabolic preferences. By focusing on the critical roles of different metabolic programs, such as glycolysis, oxidative phosphorylation, fatty acid oxidation, fatty acid synthesis, and amino acid metabolism, as well as their essential regulators in modulating Treg proliferation, migration, and function, we hope to provide new insights into Treg cell-targeted antitumor immunotherapies.
Collapse
Affiliation(s)
- Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yiming Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
19
|
Hippen KL, Hefazi M, Larson JH, Blazar BR. Emerging translational strategies and challenges for enhancing regulatory T cell therapy for graft-versus-host disease. Front Immunol 2022; 13:926550. [PMID: 35967386 PMCID: PMC9366169 DOI: 10.3389/fimmu.2022.926550] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 02/03/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative therapy for many types of cancer. Genetic disparities between donor and host can result in immune-mediated attack of host tissues, known as graft versus host disease (GVHD), a major cause of morbidity and mortality following HSCT. Regulatory CD4+ T cells (Tregs) are a rare cell type crucial for immune system homeostasis, limiting the activation and differentiation of effector T cells (Teff) that are self-reactive or stimulated by foreign antigen exposure. Adoptive cell therapy (ACT) with Treg has demonstrated, first in murine models and now in patients, that prophylactic Treg infusion can also suppress GVHD. While clinical trials have demonstrated Treg reduce severe GVHD occurrence, several impediments remain, including Treg variability and practical need for individualized Treg production for each patient. Additionally, there are challenges in the use of in vitro expansion techniques and in achieving in vivo Treg persistence in context of both immune suppressive drugs and in lymphoreplete patients being treated for GVHD. This review will focus on 3 main translational approaches taken to improve the efficacy of tTreg ACT in GVHD prophylaxis and development of treatment options, following HSCT: genetic modification, manipulating TCR and cytokine signaling, and Treg production protocols. In vitro expansion for Treg ACT presents a multitude of approaches for gene modification to improve efficacy, including: antigen specificity, tissue targeting, deletion of negative regulators/exhaustion markers, resistance to immunosuppressive drugs common in GVHD treatment. Such expansion is particularly important in patients without significant lymphopenia that can drive Treg expansion, enabling a favorable Treg:Teff ratio in vivo. Several potential therapeutics have also been identified that enhance tTreg stability or persistence/expansion following ACT that target specific pathways, including: DNA/histone methylation status, TCR/co-stimulation signaling, and IL-2/STAT5 signaling. Finally, this review will discuss improvements in Treg production related to tissue source, Treg subsets, therapeutic approaches to increase Treg suppression and stability during tTreg expansion, and potential for storing large numbers of Treg from a single production run to be used as an off-the-shelf infusion product capable of treating multiple recipients.
Collapse
Affiliation(s)
- Keli L. Hippen
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, MN, United States
| | - Mehrdad Hefazi
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - Jemma H. Larson
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, MN, United States
| | - Bruce R. Blazar
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, MN, United States
| |
Collapse
|
20
|
Riaz F, Wei P, Pan F. Fine-tuning of regulatory T cells is indispensable for the metabolic steatosis-related hepatocellular carcinoma: A review. Front Cell Dev Biol 2022; 10:949603. [PMID: 35912096 PMCID: PMC9337771 DOI: 10.3389/fcell.2022.949603] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
The majority of chronic hepatic diseases are caused by nutritional imbalance. These nutritional inequities include excessive intake of alcohol and fat, which causes alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD), respectively. The pathogenesis of hepatic diseases is mainly dependent on oxidative stress, autophagy, DNA damage, and gut microbiota and their metabolites. These factors influence the normal physiology of the liver and impact the hepatic microenvironment. The hepatic microenvironment contains several immune cells and inflammatory cytokines which interact with each other and contribute to the progression of chronic hepatic diseases. Among these immune cells, Foxp3+ CD4+ regulatory T cells (Tregs) are the crucial subset of CD4+ T cells that create an immunosuppressive environment. This review emphasizes the function of Tregs in the pathogenesis of ALD and NAFLD and their role in the progression of NAFLD-associated hepatocellular carcinoma (HCC). Briefly, Tregs establish an immunosuppressive landscape in the liver by interacting with the innate immune cells and gut microbiota and their metabolites. Meanwhile, with the advancement of steatosis, these Tregs inhibit the proliferation, activation and functions of other cytotoxic T cells and support the progression of simple steatosis to HCC. Briefly, it can be suggested that targeting Tregs can act as a favourable prognostic indicator by modulating steatosis and insulin resistance during the pathogenesis of hepatic steatosis and NAFLD-associated HCC.
Collapse
Affiliation(s)
- Farooq Riaz
- Center for Cancer Immunology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ping Wei
- Center for Cancer Immunology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Chongqing Key Laboratory of Pediatrics, Department of otolaryngology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Fan Pan
- Center for Cancer Immunology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Fan Pan,
| |
Collapse
|
21
|
Gürbüz M, Aktaç Ş. Understanding the role of vitamin A and its precursors in the immune system. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Sidell N, Kane MA. Actions of Retinoic Acid in the Pathophysiology of HIV Infection. Nutrients 2022; 14:nu14081611. [PMID: 35458172 PMCID: PMC9029687 DOI: 10.3390/nu14081611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/05/2023] Open
Abstract
The vitamin A metabolite all-trans retinoic acid (RA) plays a key role in tissue homeostasis and mucosal immunity. RA is produced by gut-associated dendritic cells, which are among the first cells encountered by HIV. Acute HIV infection results in rapid reduction of RA levels and dysregulation of immune cell populations whose identities and function are largely controlled by RA. Here, we discuss the potential link between the roles played by RA in shaping intestinal immune responses and the manifestations and pathogenesis of HIV-associated enteropathy and similar conditions observed in SIV-infected non-human primate models. We also present data demonstrating the ability of RA to enhance the activation of replication-competent viral reservoirs from subjects on suppressive anti-retroviral therapy. The data suggest that retinoid supplementation may be a useful adjuvant for countering the pathologic condition of the gastro-intestinal tract associated with HIV infection and as part of a strategy for reactivating viral reservoirs as a means of depleting latent viral infection.
Collapse
Affiliation(s)
- Neil Sidell
- Department of Obstetrics and Gynecology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (N.S.); (M.A.K.)
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
- Correspondence: (N.S.); (M.A.K.)
| |
Collapse
|
23
|
Carey ST, Gammon JM, Jewell CM. Biomaterial-enabled induction of pancreatic-specific regulatory T cells through distinct signal transduction pathways. Drug Deliv Transl Res 2021; 11:2468-2481. [PMID: 34611846 PMCID: PMC8581478 DOI: 10.1007/s13346-021-01075-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
Autoimmune diseases-where the immune system mistakenly targets self-tissue-remain hindered by non-specific therapies. For example, even molecularly specific monoclonal antibodies fail to distinguish between healthy cells and self-reactive cells. An experimental therapeutic approach involves delivery of self-molecules targeted by autoimmunity, along with immune modulatory signals to produce regulatory T cells (TREG) that selectively stop attack of host tissue. Much has been done to increase the efficiency of signal delivery using biomaterials, including encapsulation in polymer microparticles (MPs) to allow for co-delivery and cargo protection. However, less research has compared particles encapsulating drugs that target different TREG inducing pathways. In this paper, we use poly (lactic-co-glycolide) (PLGA) to co-encapsulate type 1 diabetes (T1D)-relevant antigen and 3 distinct TREG-inducing molecules - rapamycin (Rapa), all-trans retinoic acid (atRA), and butyrate (Buty) - that target the mechanistic target of Rapa (mTOR), the retinoid pathway, and histone deacetylase (HDAC) inhibition, respectively. We show all formulations are effectively taken up by antigen presenting cells (APCs) and that antigen-containing formulations are able to induce proliferation in antigen-specific T cells. Further, atRA and Rapa MP formulations co-loaded with antigen decrease APC activation levels, induce TREG differentiation, and reduce inflammatory cytokines in pancreatic-reactive T cells.
Collapse
Affiliation(s)
- Sean T Carey
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Joshua M Gammon
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
- US Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, 21201, USA.
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, 20742, USA.
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201, USA.
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, 21201, USA.
| |
Collapse
|
24
|
Sarohan AR, Kızıl M, İnkaya AÇ, Mahmud S, Akram M, Cen O. A novel hypothesis for COVID-19 pathogenesis: Retinol depletion and retinoid signaling disorder. Cell Signal 2021; 87:110121. [PMID: 34438017 PMCID: PMC8380544 DOI: 10.1016/j.cellsig.2021.110121] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023]
Abstract
The SARS-CoV-2 virus has caused a worldwide COVID-19 pandemic. In less than a year and a half, more than 200 million people have been infected and more than four million have died. Despite some improvement in the treatment strategies, no definitive treatment protocol has been developed. The pathogenesis of the disease has not been clearly elucidated yet. A clear understanding of its pathogenesis will help develop effective vaccines and drugs. The immunopathogenesis of COVID-19 is characteristic with acute respiratory distress syndrome and multiorgan involvement with impaired Type I interferon response and hyperinflammation. The destructive systemic effects of COVID-19 cannot be explained simply by the viral tropism through the ACE2 and TMPRSS2 receptors. In addition, the recently identified mutations cannot fully explain the defect in all cases of Type I interferon synthesis. We hypothesize that retinol depletion and resulting impaired retinoid signaling play a central role in the COVID-19 pathogenesis that is characteristic for dysregulated immune system, defect in Type I interferon synthesis, severe inflammatory process, and destructive systemic multiorgan involvement. Viral RNA recognition mechanism through RIG-I receptors can quickly consume a large amount of the body's retinoid reserve, which causes the retinol levels to fall below the normal serum levels. This causes retinoid insufficiency and impaired retinoid signaling, which leads to interruption in Type I interferon synthesis and an excessive inflammation. Therefore, reconstitution of the retinoid signaling may prove to be a valid strategy for management of COVID-19 as well for some other chronic, degenerative, inflammatory, and autoimmune diseases.
Collapse
Affiliation(s)
- Aziz Rodan Sarohan
- Department of Obstetrics and Gynecology, Medicina Plus Medical Center, 75. Yıl Mah., İstiklal Cad. 1305 Sk., No: 16 Sultangazi, İstanbul, Turkey.
| | - Murat Kızıl
- Department of Chemistry, Faculty of Science, Dicle University. Diyarbakır, Turkey
| | - Ahmet Çağkan İnkaya
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey
| | - Shokhan Mahmud
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Muhammad Akram
- Department of Eastern Medicine Government College, University Faisalabad, Pakistan
| | - Osman Cen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America; Department of Natural Sciences and Engineering, John Wood College, Quincy, IL, United States of America
| |
Collapse
|
25
|
Li S, Lei Y, Lei J, Li H. All‑trans retinoic acid promotes macrophage phagocytosis and decreases inflammation via inhibiting CD14/TLR4 in acute lung injury. Mol Med Rep 2021; 24:868. [PMID: 34676874 PMCID: PMC8554390 DOI: 10.3892/mmr.2021.12508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/18/2021] [Indexed: 12/22/2022] Open
Abstract
Acute lung injury (ALI) is a common clinical emergency and all-trans retinoic acid (ATRA) can alleviate organ injury. Therefore, the present study investigated the role of ATRA in ALI. Lipopolysaccharide (LPS)-induced ALI rats were treated with ATRA and the arterial partial pressure of oxygen (PaO2), lung wet/dry weight (W/D) ratio and protein content in the bronchial alveolar lavage fluid (BALF) were measured to evaluate the effect of ATRA on ALI rats. Alveolar macrophages were isolated from the BALF. The phagocytic function of macrophages was detected using the chicken erythrocyte phagocytosis method and flow cytometry. The viability of macrophages was measured using a Cell Counting Kit-8 assay, and apoptosis was analyzed using a TUNEL assay and flow cytometry. The expression levels of Toll-like receptor 4 (TLR4) and cluster of differentiation (CD)14 on the macrophage membrane were detected by immunofluorescence staining. The protein levels of TLR4, CD14, phosphorylated (p)-65, p65, p-IκBα and IκBα were analyzed using western blotting. The concentrations of IL-6, IL-1β and macrophage inflammatory protein-2 in the plasma of rats were detected by ELISA. Macrophages were treated with IAXO-102 (TLR4 inhibitor) to verify the involvement of CD14/TLR4 in the effect of ATRA on ALI. ATRA provided protection against LPS-induced ALI, as evidenced by the increased PaO2 and reduced lung W/D ratio and protein content in the BALF. ATRA enhanced macrophage phagocytosis and viability and reduced apoptosis and inflammation in ALI rats. Mechanically, ATRA inhibited CD14 and TLR4 expression and NF-κB pathway activation. ATRA enhanced macrophage phagocytosis and reduced inflammation by inhibiting the CD14/TLR4-NF-κB pathway in LPS-induced ALI. In summary, ATRA inactivated the NF-κB pathway by inhibiting the expression of CD14/TLR4 receptor in the alveolar macrophages of rats, thus enhancing the phagocytic function of macrophages in ALI rats, improving the activity of macrophages, inhibiting apoptosis, reducing the levels of inflammatory factors, and consequently playing a protective role in ALI model rats. This study may offer novel insights for the clinical management of ALI.
Collapse
Affiliation(s)
- Shuangxue Li
- Department of Respiratory and Critical Care Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Yuansheng Lei
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jieyun Lei
- Department of Cardiology, Taiyuan Central Hospital, Taiyuan, Shanxi 030009, P.R. China
| | - Hui Li
- Department of Gynecology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
26
|
Hofbauer Cells Spread Listeria monocytogenes among Placental Cells and Undergo Pro-Inflammatory Reprogramming while Retaining Production of Tolerogenic Factors. mBio 2021; 12:e0184921. [PMID: 34399615 PMCID: PMC8406333 DOI: 10.1128/mbio.01849-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pregnant women are highly susceptible to infection by the bacterial pathogen Listeria monocytogenes, leading to miscarriage, premature birth, and neonatal infection. L. monocytogenes is thought to breach the placental barrier by infecting trophoblasts at the maternal/fetal interface. However, the fate of L. monocytogenes within chorionic villi and how infection reaches the fetus are unsettled. Hofbauer cells (HBCs) are fetal placental macrophages and the only leukocytes residing in healthy chorionic villi, forming a last immune barrier protecting fetal blood from infection. Little is known about the HBCs’ antimicrobial responses to pathogens. Here, we studied L. monocytogenes interaction with human primary HBCs. Remarkably, despite their M2 anti-inflammatory phenotype at basal state, HBCs phagocytose and kill non-pathogenic bacteria like Listeria innocua and display low susceptibility to infection by L. monocytogenes. However, L. monocytogenes can exploit HBCs to spread to surrounding placental cells. Transcriptomic analyses by RNA sequencing revealed that HBCs undergo pro-inflammatory reprogramming upon L. monocytogenes infection, similarly to macrophages stimulated by the potent M1-polarizing agents lipopolysaccharide (LPS)/interferon gamma (IFN-γ). Infected HBCs also express pro-inflammatory chemokines known to promote placental infiltration by maternal leukocytes. However, HBCs maintain the expression of a collection of tolerogenic genes and secretion of tolerogenic cytokines, consistent with their tissue homeostatic role in prevention of fetal rejection. In conclusion, we propose a previously unrecognized model in which HBCs promote the spreading of L. monocytogenes among placental cells and transition to a pro-inflammatory state likely to favor innate immune responses, while maintaining the expression of tolerogenic factors known to prevent maternal anti-fetal adaptive immunity.
Collapse
|
27
|
Lu J, Li P, Du X, Liu Y, Zhang B, Qi F. Regulatory T cells induce transplant immune tolerance. Transpl Immunol 2021; 67:101411. [PMID: 34020045 DOI: 10.1016/j.trim.2021.101411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 01/03/2023]
Abstract
Organ transplantation is the preferred treatment option for end-stage organ failure. Although immunosuppressants are effective for preventing the occurrence of acute rejection, they also cause a series of side effects in transplant recipients. To improve the quality of patient survival, a new therapeutic strategy that has fewer side effects than current immunosuppressive regimens and can induce allograft immune tolerance and effectively prevent transplant rejection is needed. In this context, regulatory T cells (Tregs) are considered to be promising research targets. With the increasing understanding of the immunomodulatory role of Tregs, the use of Treg-based cellular therapies has shifted from prevention/treatment of autoimmune diseases to clinical trials for organ transplantation. This review describes the phenotype and in vitro expansion of Tregs and the mechanisms by which they exert immunomodulatory effects in transplantation immunity, highlights recent clinical trial data on Treg-based cellular therapies in transplantation, and describes future directions and limitations.
Collapse
Affiliation(s)
- Jian Lu
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China; Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui 230022, China.
| | - Peiyuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| | - Xuezhi Du
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| | - Yanhong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| | - Baotong Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| |
Collapse
|
28
|
Miura S, Watanabe Y, Saigusa R, Yamashita T, Nakamura K, Hirabayashi M, Miyagawa T, Yoshizaki A, Trojanowska M, Sato S, Asano Y. Fli1 deficiency suppresses RALDH1 activity of dermal dendritic cells and related induction of regulatory T cells: a possible role in scleroderma. Arthritis Res Ther 2021; 23:137. [PMID: 33964960 PMCID: PMC8106158 DOI: 10.1186/s13075-021-02520-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/26/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Aldehyde dehydrogenase 1 family member A1 (RALDH1)-producing dermal dendritic cells (DCs), a conventional DC subset regulating skin fibrosis, are decreased in the involved skin of patients with systemic sclerosis (SSc). In this study, we investigated the contribution of Fli1 deficiency, a potential predisposing factor of SSc, to the phenotypical alteration of RALDH1-producing dermal DCs by using SSc model mice and SSc skin samples. METHODS Bleomycin (BLM)-induced skin fibrosis was generated with Fli1+/- and wild-type mice. The proportions of DC and CD4+ T cell subsets were determined by flow cytometry in the dermis of BLM-treated mice. Fli1 expression in dermal DCs was evaluated by immunofluorescence with skin samples of SSc and healthy control subjects. RESULTS RALDH activity of dermal DCs was significantly decreased in BLM-treated Fli1+/- mice compared with BLM-treated wild-type mice, whereas the proportion of CD103-CD11b- dermal DCs, a major DC subset producing RALDH1 in response to BLM injection, was comparable between groups. Relevant to this finding, the proportion of regulatory T cells (Tregs) in the dermis was decreased in BLM-treated Fli1+/- mice relative to BLM-treated wild-type mice, while the proportions of Th1, Th2 and Th17 cells were unaltered. In the involved skin of SSc patients, Fli1 was downregulated in CD11c+ cells, including dermal DCs. CONCLUSIONS Fli1 deficiency inhibits RALDH1 activity of CD103-CD11b- dermal DCs and related induction of Tregs in BLM-treated mice. Considering Fli1 reduction in SSc dermal DCs, Fli1deficiency may impair the dermal DC-Treg system, contributing to the development of skin fibrosis in SSc.
Collapse
Affiliation(s)
- Shunsuke Miura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yusuke Watanabe
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Ryosuke Saigusa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takashi Yamashita
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kouki Nakamura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Megumi Hirabayashi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takuya Miyagawa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Maria Trojanowska
- Arthritis Center, Boston University School of Medicine, Boston, MA, USA
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
29
|
Xydia M, Rahbari R, Ruggiero E, Macaulay I, Tarabichi M, Lohmayer R, Wilkening S, Michels T, Brown D, Vanuytven S, Mastitskaya S, Laidlaw S, Grabe N, Pritsch M, Fronza R, Hexel K, Schmitt S, Müller-Steinhardt M, Halama N, Domschke C, Schmidt M, von Kalle C, Schütz F, Voet T, Beckhove P. Common clonal origin of conventional T cells and induced regulatory T cells in breast cancer patients. Nat Commun 2021; 12:1119. [PMID: 33602930 PMCID: PMC7893042 DOI: 10.1038/s41467-021-21297-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Regulatory CD4+ T cells (Treg) prevent tumor clearance by conventional T cells (Tconv) comprising a major obstacle of cancer immune-surveillance. Hitherto, the mechanisms of Treg repertoire formation in human cancers remain largely unclear. Here, we analyze Treg clonal origin in breast cancer patients using T-Cell Receptor and single-cell transcriptome sequencing. While Treg in peripheral blood and breast tumors are clonally distinct, Tconv clones, including tumor-antigen reactive effectors (Teff), are detected in both compartments. Tumor-infiltrating CD4+ cells accumulate into distinct transcriptome clusters, including early activated Tconv, uncommitted Teff, Th1 Teff, suppressive Treg and pro-tumorigenic Treg. Trajectory analysis suggests early activated Tconv differentiation either into Th1 Teff or into suppressive and pro-tumorigenic Treg. Importantly, Tconv, activated Tconv and Treg share highly-expanded clones contributing up to 65% of intratumoral Treg. Here we show that Treg in human breast cancer may considerably stem from antigen-experienced Tconv converting into secondary induced Treg through intratumoral activation.
Collapse
Affiliation(s)
- Maria Xydia
- RCI Regensburg Centre for Interventional Immunology, University and Department of Hematology/Oncology, University Medical Centre of Regensburg, Regensburg, Germany.
- Translational Immunology Department, German Cancer Research Centre, Heidelberg, Germany.
| | - Raheleh Rahbari
- The Cancer, Ageing and Somatic Mutation Program, Wellcome Sanger Institute, Hinxton, UK
| | - Eliana Ruggiero
- Translational Oncology Department, National Centre for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Iain Macaulay
- The Cancer, Ageing and Somatic Mutation Program, Wellcome Sanger Institute, Hinxton, UK
- Technical Development, Earlham Institute, Norwich, UK
| | - Maxime Tarabichi
- The Cancer, Ageing and Somatic Mutation Program, Wellcome Sanger Institute, Hinxton, UK
- The Francis Crick Institute, London, UK
| | - Robert Lohmayer
- RCI Regensburg Centre for Interventional Immunology, University and Department of Hematology/Oncology, University Medical Centre of Regensburg, Regensburg, Germany
- Institute for Theoretical Physics, University of Regensburg, Regensburg, Germany
| | - Stefan Wilkening
- Translational Oncology Department, National Centre for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Tillmann Michels
- RCI Regensburg Centre for Interventional Immunology, University and Department of Hematology/Oncology, University Medical Centre of Regensburg, Regensburg, Germany
| | - Daniel Brown
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Sebastiaan Vanuytven
- The Francis Crick Institute, London, UK
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
| | - Svetlana Mastitskaya
- Medical Oncology Department, National Centre for Tumor Diseases, Heidelberg, Germany
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Sean Laidlaw
- The Cancer, Ageing and Somatic Mutation Program, Wellcome Sanger Institute, Hinxton, UK
| | - Niels Grabe
- Medical Oncology Department, National Centre for Tumor Diseases, Heidelberg, Germany
- Hamamatsu Tissue Imaging and Analysis Centre, BIOQUANT, University of Heidelberg, Heidelberg, Germany
| | - Maria Pritsch
- Translational Immunology Department, German Cancer Research Centre, Heidelberg, Germany
| | - Raffaele Fronza
- Translational Oncology Department, National Centre for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Klaus Hexel
- Flow Cytometry Core Facility, German Cancer Research Centre, Heidelberg, Germany
| | - Steffen Schmitt
- Flow Cytometry Core Facility, German Cancer Research Centre, Heidelberg, Germany
| | - Michael Müller-Steinhardt
- German Red Cross (DRK Blood Donation Service in Baden-Württemberg-Hessen) and Institute for Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Niels Halama
- Medical Oncology Department, National Centre for Tumor Diseases, Heidelberg, Germany
- Hamamatsu Tissue Imaging and Analysis Centre, BIOQUANT, University of Heidelberg, Heidelberg, Germany
| | - Christoph Domschke
- Department of Gynecology and Obstetrics, University Hospital of Heidelberg, Heidelberg, Germany
| | - Manfred Schmidt
- Translational Oncology Department, National Centre for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Christof von Kalle
- Translational Oncology Department, National Centre for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
- Clinical Study Centre, Charité/BIH, Berlin, Germany
| | - Florian Schütz
- Department of Gynecology and Obstetrics, University Hospital of Heidelberg, Heidelberg, Germany
| | - Thierry Voet
- The Cancer, Ageing and Somatic Mutation Program, Wellcome Sanger Institute, Hinxton, UK
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
| | - Philipp Beckhove
- RCI Regensburg Centre for Interventional Immunology, University and Department of Hematology/Oncology, University Medical Centre of Regensburg, Regensburg, Germany.
- Translational Immunology Department, German Cancer Research Centre, Heidelberg, Germany.
| |
Collapse
|
30
|
Shojadoost B, Alizadeh M, Taha-Abdelaziz K, Shoja Doost J, Astill J, Sharif S. In Ovo Inoculation of Vitamin A Modulates Chicken Embryo Immune Functions. J Interferon Cytokine Res 2021; 41:20-28. [PMID: 33471614 DOI: 10.1089/jir.2020.0212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vitamin A mediates many important biological functions in humans and animals. Presence of vitamin A receptors on immune system cells emphasizes their role in immune functions. To assess the effects of in ovo inoculation of vitamin A on the immune system of chicken embryos, 18 days old embryonated eggs were inoculated with 3 different concentrations of retinoic acid (the active form of vitamin A) at 30, 90, and 270 μmol/egg via the amniotic sac. After 6, 18, and 24 h, the spleen and bursa of the embryos were collected for RNA extraction and real-time polymerase chain reaction. The results were dose dependant. After 24 h, inoculation with 270 μmol/egg downregulated relative expression of interferon IFN-α, IFN-β, IFN-γ, interleukin (IL)-1β, IL-2, CXCLi2, IL-12, and IL-13 compared to control in the spleen, indicating an anti-inflammatory effect at this concentration. In comparison, 90 μmol/egg induced greater expressions of the above genes at the same timepoint compared to the 270 μmol. The results of this study indicate that in ovo inoculation of vitamin A can modulate immune functions of the chicken embryo, which might be beneficial for induction of immune responses by in ovo vaccines.
Collapse
Affiliation(s)
- Bahram Shojadoost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Khaled Taha-Abdelaziz
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
- Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Janan Shoja Doost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| |
Collapse
|
31
|
Szymański Ł, Skopek R, Palusińska M, Schenk T, Stengel S, Lewicki S, Kraj L, Kamiński P, Zelent A. Retinoic Acid and Its Derivatives in Skin. Cells 2020; 9:E2660. [PMID: 33322246 PMCID: PMC7764495 DOI: 10.3390/cells9122660] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/29/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022] Open
Abstract
The retinoids are a group of compounds including vitamin A and its active metabolite all-trans-retinoic acid (ATRA). Retinoids regulate a variety of physiological functions in multiple organ systems, are essential for normal immune competence, and are involved in the regulation of cell growth and differentiation. Vitamin A derivatives have held promise in cancer treatment and ATRA is used in differentiation therapy of acute promyelocytic leukemia (APL). ATRA and other retinoids have also been successfully applied in a variety of dermatological conditions such as skin cancer, psoriasis, acne, and ichthyosis. Moreover, modulation of retinoic acid receptors and retinoid X (or rexinoid) receptors function may affect dermal cells. The studies using complex genetic models with various combinations of retinoic acid receptors (RARs) and retinoid X (or rexinoid) receptors (RXRs) indicate that retinoic acid and its derivatives have therapeutic potential for a variety of serious dermatological disorders including some malignant conditions. Here, we provide a synopsis of the main advances in understanding the role of ATRA and its receptors in dermatology.
Collapse
Affiliation(s)
- Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Postępu 36A, 05-552 Magdalenka, Poland; (Ł.S.); (R.S.); (M.P.)
| | - Rafał Skopek
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Postępu 36A, 05-552 Magdalenka, Poland; (Ł.S.); (R.S.); (M.P.)
| | - Małgorzata Palusińska
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Postępu 36A, 05-552 Magdalenka, Poland; (Ł.S.); (R.S.); (M.P.)
| | - Tino Schenk
- Department of Hematology/Oncology, Clinic of Internal Medicine II, Jena University Hospital, 07747 Jena, Germany;
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine Jena (CMB), Jena University Hospital, 07747 Jena, Germany
| | - Sven Stengel
- Department of Internal Medicine IV, Division of Gastroenterology, Hepatology and Infectious Disease, Jena University Hospital, Friedrich Schiller University of Jena, 07747 Jena, Germany;
| | - Sławomir Lewicki
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Department of Medicine, Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities, 26-600 Radom, Poland
| | - Leszek Kraj
- Department of Oncology, Medical University of Warsaw, 01-163 Warsaw, Poland;
| | - Paweł Kamiński
- Department of Gynecology and Oncological Gynecology, Military Institute of Medicine, 01-163 Warsaw, Poland;
| | - Arthur Zelent
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Postępu 36A, 05-552 Magdalenka, Poland; (Ł.S.); (R.S.); (M.P.)
| |
Collapse
|
32
|
Bertolini TB, Biswas M, Terhorst C, Daniell H, Herzog RW, Piñeros AR. Role of orally induced regulatory T cells in immunotherapy and tolerance. Cell Immunol 2020; 359:104251. [PMID: 33248367 DOI: 10.1016/j.cellimm.2020.104251] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/30/2020] [Accepted: 11/01/2020] [Indexed: 12/24/2022]
Abstract
Oral antigen administration to induce regulatory T cells (Treg) takes advantage of regulatory mechanisms that the gastrointestinal tract utilizes to promote unresponsiveness against food antigens or commensal microorganisms. Recently, antigen-based oral immunotherapies (OITs) have shown efficacy as treatment for food allergy and autoimmune diseases. Similarly, OITs appear to prevent anti-drug antibody responses in replacement therapy for genetic diseases. Intestinal epithelial cells and microbiota possibly condition dendritic cells (DC) toward a tolerogenic phenotype that induces Treg via expression of several mediators, e.g. IL-10, transforming growth factor-β, retinoic acid. Several factors, such as metabolites derived from microbiota or diet, impact the stability and expansion of these induced Treg, which include, but are not limited to, FoxP3+ Treg, LAP+ Treg, and/or Tr1 cells. Here, we review various orally induced Treg, their plasticity and cooperation between the Treg subsets, as well as underlying mechanisms controlling their induction and role in oral tolerance.
Collapse
Affiliation(s)
- Thais B Bertolini
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Annie R Piñeros
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
33
|
Miao Y, He L, Qi X, Lin X. Injecting Immunosuppressive M2 Macrophages Alleviates the Symptoms of Periodontitis in Mice. Front Mol Biosci 2020; 7:603817. [PMID: 33195441 PMCID: PMC7645063 DOI: 10.3389/fmolb.2020.603817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is the second most common oral disease affecting tooth-supporting structures. The tissue damage is mainly initiated by the excessive secretion of proinflammatory cytokines by immune cells. Macrophages are a type of antigen-presenting cells that influence the adaptive immunity function. We used a unique set of cytokines, i.e., a combination of IL-4, IL-13, and IL-10, to stimulate macrophages into a subset of M2 polarization cells that express much higher levels of ARG-1, CD206, and PDL-2 genes. The cells’ anti-inflammatory potential was tested with mixed-lymphocyte reaction assay, which showed that this subset of macrophages could increase IL-2 secretion and suppress IL-17, IL-6, and TNF-α secretion by splenocytes. The gram-negative bacterial species Porphyromonas gingivalis was used to initiate an inflammatory process in murine periodontal tissues. In the meantime, cell injection therapy was used to dampen the excessive immune reaction and suppress osteoclast differentiation during periodontitis. Maxilla was collected and analyzed for osteoclast formation. The results indicated that mice in the cell injection group exhibited less osteoclast activity within the periodontal ligament region than in the periodontitis group. Moreover, the injection of M2 macrophages sustained the regulatory population ratio. Therefore, the M2 macrophages induced under the stimulation of IL-4, IL-13, and IL-10 combined had tremendous immune modulation ability. Injecting these cells into local periodontal tissue could effectively alleviate the symptom of periodontitis.
Collapse
Affiliation(s)
- Yibin Miao
- Department of Stomatology, Shengjing Hospital of China Medical University, Liaoning, China
| | - Liuting He
- Department of Stomatology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiaoyu Qi
- Shenyang Medical College, Liaoning, China
| | - Xiaoping Lin
- Department of Stomatology, Shengjing Hospital of China Medical University, Liaoning, China
| |
Collapse
|
34
|
Fatty acid-binding protein 5 limits ILC2-mediated allergic lung inflammation in a murine asthma model. Sci Rep 2020; 10:16617. [PMID: 33024217 PMCID: PMC7538993 DOI: 10.1038/s41598-020-73935-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022] Open
Abstract
Dietary obesity is regarded as a problem worldwide, and it has been revealed the strong linkage between obesity and allergic inflammation. Fatty acid-binding protein 5 (FABP5) is expressed in lung cells, such as alveolar epithelial cells (ECs) and alveolar macrophages, and plays an important role in infectious lung inflammation. However, we do not know precise mechanisms on how lipid metabolic change in the lung affects allergic lung inflammation. In this study, we showed that Fabp5−/− mice exhibited a severe symptom of allergic lung inflammation. We sought to examine the role of FABP5 in the allergic lung inflammation and demonstrated that the expression of FABP5 acts as a novel positive regulator of ST2 expression in alveolar ECs to generate retinoic acid (RA) and supports the synthesis of RA from type II alveolar ECs to suppress excessive activation of innate lymphoid cell (ILC) 2 during allergic lung inflammation. Furthermore, high-fat diet (HFD)-fed mice exhibit the downregulation of FABP5 and ST2 expression in the lung tissue compared with normal diet (ND)-fed mice. These phenomena might be the reason why obese people are more susceptible to allergic lung inflammation. Thus, FABP5 is potentially a therapeutic target for treating ILC2-mediated allergic lung inflammation.
Collapse
|
35
|
Yang J, Wei P, Barbi J, Huang Q, Yang E, Bai Y, Nie J, Gao Y, Tao J, Lu Y, Xie C, Hou X, Ren J, Wu X, Meng J, Zhang Y, Fu J, Kou W, Gao Y, Chen Z, Liang R, Tsun A, Li D, Guo W, Zhang S, Zheng S, Niu J, Galardy P, Tong X, Shi G, Li H, Pan F, Li B. The deubiquitinase USP44 promotes Treg function during inflammation by preventing FOXP3 degradation. EMBO Rep 2020; 21:e50308. [PMID: 32644293 PMCID: PMC7507386 DOI: 10.15252/embr.202050308] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022] Open
Abstract
The transcription factor forkhead box P3 (FOXP3) is essential for the development of regulatory T cells (Tregs) and their function in immune homeostasis. Previous studies have shown that in natural Tregs (nTregs), FOXP3 can be regulated by polyubiquitination and deubiquitination. However, the molecular players active in this pathway, especially those modulating FOXP3 by deubiquitination in the distinct induced Treg (iTreg) lineage, remain unclear. Here, we identify the ubiquitin-specific peptidase 44 (USP44) as a novel deubiquitinase for FOXP3. USP44 interacts with and stabilizes FOXP3 by removing K48-linked ubiquitin modifications. Notably, TGF-β induces USP44 expression during iTreg differentiation. USP44 co-operates with USP7 to stabilize and deubiquitinate FOXP3. Tregs genetically lacking USP44 are less effective than their wild-type counterparts, both in vitro and in multiple in vivo models of inflammatory disease and cancer. These findings suggest that USP44 plays an important role in the post-translational regulation of Treg function and is thus a potential therapeutic target for tolerance-breaking anti-cancer immunotherapy.
Collapse
|
36
|
Type 2 inflammation suppression by T-regulatory cells attenuates the eosinophil recruitment in mucosa of chronic sinusitis. Clin Sci (Lond) 2020; 134:123-138. [PMID: 31922185 DOI: 10.1042/cs20190388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/18/2019] [Accepted: 01/10/2020] [Indexed: 11/17/2022]
Abstract
Type 2 inflammation and eosinophilic infiltration are prominent pathologic features of chronic rhinosinusitis with nasal polyps (CRSwNP). The purpose of the present study was to determine the roles of Tregs in controlling type 2 inflammation and inhibiting eosinophilic infiltration in CRSwNP. A total of 134 nasal polyps, 67 ostiomeatal complex from chronic rhinosinusitis (CRS) and 62 normal nasal tissues from controls were collected to study the enumeration and function of Tregs cells and the expressions of cytokine profiles via immunofluorescence staining, flow cytometry, qRT-PCR, ELISA, and/or H&E staining. The effects of Tregs on type2 and type3 inflammations were determined in an eosinophilic chronic sinusitis (ECRS) mice model. It was confirmed that the CRSwNP displayed the features of Th2 and Th17 cells-mediated inflammation, accompanying by an increased level of eosinophilic infiltration and the eosinophil cationic protein (ECP), with a decreased frequency of Treg cells. Furthermore, the percentages of CD4+CD25+CD127lowTreg and CD4+CD25+Foxp3+Treg were only decreased in the polyps of CRSwNP but not in the paired peripheral blood. The CRSwNP possessed the decreased Nrp1+Tregs, Helios+Treg, and low TGF-β and interleukin (IL)-10 expressions in Tregs. The ECRS mice showed similar inflammatory characteristics to CRSwNP patients. The adoptive transfer of CD4+CD25+Foxp3+ Treg cells significantly decreased the inflammatory cytokines, eosinophilic chemotactic factors in the mucosa of the ECRS mice without alteration of the immune balance in the peripheral blood and spleen. In conclusion, CRSwNP showed high type 2 and type3 inflammation and defective Tregs. The induced regulatory T cell (iTreg) may correct the imbalance between immune tolerance and effect via limiting the eosinophil recruitment of mucosa in CRSwNP.
Collapse
|
37
|
Zavvar M, Assadiasl S, Zargaran S, Akhtari M, Poopak B, Dinarvand R, Fatahi Y, Tayebi L, Soleimanifar N, Nicknam MH. Adoptive Treg cell-based immunotherapy: Frontier therapeutic aspects in rheumatoid arthritis. Immunotherapy 2020; 12:933-946. [PMID: 32635779 DOI: 10.2217/imt-2020-0071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The major current focus on treating rheumatoid arthritis is to put an end to long-term treatments and instead, specifically block widespread immunosuppression by developing antigen-specific tolerance, while also permitting an intact immune response toward other antigens to occur. There have been promising preclinical findings regarding adoptive Treg cells immunotherapy with a critically responsible function in the prevention of autoimmunity, tissue repair and regeneration, which make them an attractive candidate to develop effective therapeutic approaches to achieve this interesting concept in many human immune-mediated diseases, such as rheumatoid arthritis. Ex vivo or invivo manipulation protocols are not only utilized to correct Treg cells defect, but also to benefit from their specific immunosuppressive properties by identifying specific antigens that are expressed in the inflamedjoint. The methods able to address these deficiencies can be considered as a target for immunity interventions to restore appropriate immune function.
Collapse
Affiliation(s)
- Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Assadiasl
- Molecular Immunology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Zargaran
- Faculty of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Akhtari
- Department of Cell & Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Behzad Poopak
- Department of Hematology, Faculty of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Narjes Soleimanifar
- Molecular Immunology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Molecular Immunology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Xiao N, Hu Y, Juan L. Comprehensive Analysis of Differentially Expressed lncRNAs in Gastric Cancer. Front Cell Dev Biol 2020; 8:557. [PMID: 32695786 PMCID: PMC7338654 DOI: 10.3389/fcell.2020.00557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/11/2020] [Indexed: 01/26/2023] Open
Abstract
Gastric cancer (GC) is the fourth most common malignant tumor. The mechanism underlying GC occurrence and development remains unclear. Previous studies have indicated that long non-coding RNAs (lncRNAs) are significantly associated with gastric cancer, but a systematic understanding of the role of lncRNAs in gastric cancer is lacking. In recent years, with the development of next-generation sequencing technology, tens of thousands of lncRNAs have been discovered. However, a large number of unannotated lncRNAs remain unidentified in different tissues, including potential gastric cancer-related lncRNAs. In this study, RNA sequencing (RNA-seq) data from 16 samples of eight gastric cancer patients were obtained and analyzed. A total of 1,854 previously unannotated lncRNAs were identified by ab initio assembly, and 520 differentially expressed lncRNAs were validated in the TCGA expression dataset. Methylation and copy number variation (CNV) array data from the same sample were integrated in the analysis. Changes in DNA methylation levels and CNVs may be responsible for the differential expression of 91 lncRNAs. Differentially expressed lncRNAs were enriched in coexpressed clusters of genes related to functions such as cell signaling, cell cycle, immune response, metabolic processes, angiogenesis, and regulation of retinoic acid (RA) receptors. Finally, a differentially expressed lncRNA, AC004510.3, was identified as a potential biomarker for the prediction of the overall survival of gastric cancer patients.
Collapse
Affiliation(s)
- Nan Xiao
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yang Hu
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| | - Liran Juan
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
39
|
Rogovskii V. Modulation of Inflammation-Induced Tolerance in Cancer. Front Immunol 2020; 11:1180. [PMID: 32676076 PMCID: PMC7333343 DOI: 10.3389/fimmu.2020.01180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Vladimir Rogovskii
- Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
40
|
Campione E, Cosio T, Lanna C, Mazzilli S, Ventura A, Dika E, Gaziano R, Dattola A, Candi E, Bianchi L. Predictive role of vitamin A serum concentration in psoriatic patients treated with IL-17 inhibitors to prevent skin and systemic fungal infections. J Pharmacol Sci 2020; 144:52-56. [PMID: 32565006 DOI: 10.1016/j.jphs.2020.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
The use of biological drugs in psoriasis is replacing traditional therapies due to their specific mechanism and limited side effects. However, the use of Interleukin 17 inhibitors and the modification of its cytokine pathway could favor the risk of fungal infections. All-trans retinoic acid is an active metabolite of vitamin A with anti-inflammatory and immunoregulatory properties through its capacity to stimulate both innate and adaptive immunity and to its effects on proliferation, differentiation and apoptosis in a variety of immune cells. Furthermore, it has been recently discovered that All-trans retinoic acid has a direct fungistatic effect against Candida and Aspergillus Fumigatus. On the basis of these new insights, in the current review, we suggest that the evaluation of serum level of All-trans retinoic acid or vitamin A should be considered as a predictive marker for the development of fungal infections among psoriatic patients treated with Interleukin 17 inhibitors. In clinical practice, vitamin A test could be added in the routine hospital diagnostic management for a better selection of psoriatic patients eligible to Interleukin 17 inhibitors.
Collapse
Affiliation(s)
- Elena Campione
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Terenzio Cosio
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Caterina Lanna
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sara Mazzilli
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Emi Dika
- Dermatology Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Roberta Gaziano
- Microbiology Section, Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Annunziata Dattola
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Luca Bianchi
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
41
|
Luo Y, Xue Y, Wang J, Dang J, Fang Q, Huang G, Olsen N, Zheng SG. Negligible Effect of Sodium Chloride on the Development and Function of TGF-β-Induced CD4 + Foxp3 + Regulatory T Cells. Cell Rep 2020; 26:1869-1879.e3. [PMID: 30759396 PMCID: PMC6948355 DOI: 10.1016/j.celrep.2019.01.066] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 12/05/2018] [Accepted: 01/16/2019] [Indexed: 12/18/2022] Open
Abstract
High-salt diets inhibit the suppressive function of thymus-derived natural regulatory T cells (tTreg). Transforming growth factor β (TGF-β)-induced ex vivo regulatory T cells (iTreg) comprise another Treg subset that exhibits similarities and differences with tTreg. Here, we demonstrate that iTregs are completely stable and fully functional under high salt conditions. High salt does not influence the development, differentiation, and functional activities of iTreg but affects Foxp3 stability and function of tTreg in vitro and in vivo. In addition, high salt does not significantly change the transcription profiles of the iTreg signature or pro-inflammatory genes. Therefore, we conclude that iTreg, unlike tTreg, are stable and functional in the presence of high salt. Our findings provide additional evidence that iTreg may have different biological features from tTreg and suggest a greater potential for clinical utility in patients with autoimmune diseases, in which the complicated role of environmental factors, including diet, must be considered.
Collapse
Affiliation(s)
- Yang Luo
- Department of Clinical Immunology, Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou, China; Division of Rheumatology, Department of Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Youqiu Xue
- Department of Clinical Immunology, Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou, China; Division of Rheumatology, Department of Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Julie Wang
- Division of Rheumatology, Department of Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Junlong Dang
- Department of Clinical Immunology, Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou, China
| | - Qiannan Fang
- Department of Clinical Immunology, Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou, China
| | - Gonghua Huang
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Nancy Olsen
- Division of Rheumatology, Department of Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Song Guo Zheng
- Division of Rheumatology, Department of Medicine, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
42
|
Wu W, Xiao Z, Chen Y, Deng Y, Zeng D, Liu Y, Huang F, Wang J, Liu Y, Bellanti JA, Rong L, Zheng SG. CD39 Produced from Human GMSCs Regulates the Balance of Osteoclasts and Osteoblasts through the Wnt/β-Catenin Pathway in Osteoporosis. Mol Ther 2020; 28:1518-1532. [PMID: 32304668 PMCID: PMC7264439 DOI: 10.1016/j.ymthe.2020.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/14/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is a disease in which the density and quality of bone are reduced, causing bones to become weak and so brittle that a fall or even mild stresses can cause a fracture. Current drug treatment consists mainly of antiresorptive agents that are unable to stimulate new bone formation. Our recent studies have defined a critical role of gingiva-derived mesenchymal stem cells (GMSCs) in attenuating autoimmune arthritis through inhibition of osteoclast formation and activities, but it remains to be ruled out whether the administration of GMSCs to patients with osteoporosis could also regulate osteoblasts and eventually affect bone formation and protection. With the use of an ovariectomized mouse model, we here demonstrated that adoptive transfer of GMSCs regulated the balance of osteoclasts and osteoblasts, eventually contributing to dynamic bone formation. Validation by RNA sequencing (RNA-seq), single-cell sequencing, revealed a unique population of CD39+ GMSC that plays an important role in promoting bone formation. We further demonstrated that CD39 produced from GMSC exerted its osteogenic capacity through the Wnt/β-catenin pathway. Our results not only establish a previously unidentified role and mechanism of GMSC for bone promotion but also a potential therapeutic target for management of patients with osteoporosis and other bone loss conditions.
Collapse
Affiliation(s)
- Wenbin Wu
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zexiu Xiao
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ye Chen
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA
| | - Yanan Deng
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Donglan Zeng
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yan Liu
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Feng Huang
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Julie Wang
- Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA
| | - Yanying Liu
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing 100044, China
| | - Joseph A Bellanti
- Departments of Pediatrics and Microbiology-Immunology and the International Center for Interdisciplinary Studies of Immunology (ICISI), Georgetown University Medical Center, Washington, DC 20057, USA
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
43
|
Fang Q, Deng Y, Liang R, Mei Y, Hu Z, Wang J, Sun J, Zhang X, Bellanti JA, Zheng SG. CD19 +CD24 hiCD38 hi regulatory B cells: a potential immune predictive marker of severity and therapeutic responsiveness of hepatitis C. Am J Transl Res 2020; 12:889-900. [PMID: 32269721 PMCID: PMC7137049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES Hepatitis C virus (HCV) infection is associated with abnormal immune responses. Since regulatory T (Tregs) and B (Bregs) cells modulate the progression of infectious diseases, this study aimed at examining how these cells are involved with the development of HCV infection. METHODS The frequencies of circulating Bregs and Tregs were characterized using flow cytometry. Both the association and dynamic changes of these cells with related clinical parameters were analyzed after Direct-Acting Antiviral (DAA) agent treatments. Additionally, both regulatory B and T and naïve B and T cells were sorted and stimulated with healthy or HCV sera in vitro. RESULTS Bregs frequency in HCV-infected patients increased significantly and were positively correlated with levels of sera HCV RNA load, Alanine aminotransferase (AST) and total bilirubin (TBILI). Additionally, the increased Bregs returned to normal levels after DAA treatment. However, Tregs increased markedly in patients with HCV-cirrhosis and were significantly associated with Aspartate aminotransferase to Platelet Ratio Index (APRI) and Fibrosis 4 (FIB-4) scores. Furthermore, HCV sera doesn't expand either Tregs or Bregs, however, it does induce the IL-10 expression in B cells although it fails to induce FOXP3 expression in CD4+ T cells. CONCLUSIONS Increased Bregs not only may be associated with poor viral eradication and liver injury but also may provide a predictive marker of HCV disease therapeutic efficacy following DAA-treatment. HCV sera may selectively induce Bregs. Tregs probably do not control disease status in the early stages but may contribute to the progression of liver fibrosis in the late stages of HCV infection.
Collapse
Affiliation(s)
- Qiannan Fang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510060, Guangdong, China
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical CenterColumbus, OH 43210, United States
| | - Yanan Deng
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510060, Guangdong, China
| | - Rongzhen Liang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510060, Guangdong, China
| | - Yongyu Mei
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510060, Guangdong, China
| | - Zhaoxia Hu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510060, Guangdong, China
| | - Julie Wang
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical CenterColumbus, OH 43210, United States
| | - Jianbo Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen UniversityGuangzhou 510060, Guangdong, China
| | - Xiaohong Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510060, Guangdong, China
| | - Joseph A Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical CenterWashington, DC, United States
| | - Song Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical CenterColumbus, OH 43210, United States
| |
Collapse
|
44
|
Xu W, Zhou W, Wang H, Liang S. Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:45-84. [PMID: 32085888 DOI: 10.1016/bs.apcsb.2019.12.001] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Periodontitis is an infection-driven inflammatory disease, which is characterized by gingival inflammation and bone loss. Periodontitis is associated with various systemic diseases, including cardiovascular, respiratory, musculoskeletal, and reproductive system related abnormalities. Recent theory attributes the pathogenesis of periodontitis to oral microbial dysbiosis, in which Porphyromonas gingivalis acts as a critical agent by disrupting host immune homeostasis. Lipopolysaccharide, proteases, fimbriae, and some other virulence factors are among the strategies exploited by P. gingivalis to promote the bacterial colonization and facilitate the outgrowth of the surrounding microbial community. Virulence factors promote the coaggregation of P. gingivalis with other bacteria and the formation of dental biofilm. These virulence factors also modulate a variety of host immune components and subvert the immune response to evade bacterial clearance or induce an inflammatory environment. In this chapter, our focus is to discuss the virulence factors of periodontal pathogens, especially P. gingivalis, and their roles in regulating immune responses during periodontitis progression.
Collapse
Affiliation(s)
- Weizhe Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Wei Zhou
- Department of Endodontics, Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, Pudong, China
| | - Huizhi Wang
- VCU Philips Institute for Oral Health Research, Department of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University School of Dentistry, Richmond, VA, United States
| | - Shuang Liang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| |
Collapse
|
45
|
|
46
|
Li H, Deng Y, Liang J, Huang F, Qiu W, Zhang M, Long Y, Hu X, Lu Z, Liu W, Zheng SG. Mesenchymal stromal cells attenuate multiple sclerosis via IDO-dependent increasing the suppressive proportion of CD5+ IL-10+ B cells. Am J Transl Res 2019; 11:5673-5688. [PMID: 31632539 PMCID: PMC6789281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Multiple sclerosis (MS), one of the autoimmune and inflammatory diseases, is a major cause of neurological disability worldwide. The existing clinical treatments are not curable, and better treatments are urgently needed. Mesenchymal stromal cells (MSCs) have shown promise for treating MS, but the favorable effects and mechanism of MSC therapy on MS are still not fully understood. In this study, we analyzed the phenotypic feature of peripheral blood mononuclear cells (PBMCs) in MS patients and found that the patients exhibited an increase in the frequency of B cells, but a markedly decrease in frequency of CD5+ and IL-10+ B cells compared to healthy controls. Infusion of MSCs exhibited a significant therapeutic effect on the experimental autoimmune encephalomyelitis (EAE) mice, infiltration of mononuclear cells and demyelination of the spinal cords were both reduced in CNS of the mice, the frequency of CD5+ IL-10+ B cells in the mice was significantly increased. Additionally, when PBMCs or B cells from MS patients were co-cultured with MSCs, the frequency of CD5+ IL-10+ B cells also increased, the proliferative and immunosuppressive capacity of CD5+ B cells were significantly enhanced while the apoptosis ratio of this cellular subset significantly decreased. Moreover, those effects could be eliminated while the indoleamine 2,3-dioxygenase (IDO) inhibitor, D/L-1MT, was added to the co-cultured cells. In summary, this study suggests that MSCs can control EAE via IDO pathway to promote the proportion and function of CD5+ IL-10+ B cells, providing a promise to treat patients with MS in the clinical setting.
Collapse
Affiliation(s)
- Huijuan Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510630, Guangdong, China
- Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510630, Guangdong, China
| | - Yinan Deng
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510630, Guangdonng, China
| | - Jinliang Liang
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510630, Guangdonng, China
| | - Feng Huang
- Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510630, Guangdong, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510630, Guangdong, China
| | - Min Zhang
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510630, Guangdonng, China
| | - Youming Long
- Department of Neurology, The 2nd Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510260, Guangdong, China
| | - Xueqiang Hu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510630, Guangdong, China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510630, Guangdong, China
| | - Wei Liu
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510630, Guangdonng, China
| | - Song Guo Zheng
- Division of Rheumatology and Immunology, The Ohio State University College of MedicineColumbus, OH 43210, USA
| |
Collapse
|
47
|
Cai W, Wang J, Hu M, Chen X, Lu Z, Bellanti JA, Zheng SG. All trans-retinoic acid protects against acute ischemic stroke by modulating neutrophil functions through STAT1 signaling. J Neuroinflammation 2019; 16:175. [PMID: 31472680 PMCID: PMC6717357 DOI: 10.1186/s12974-019-1557-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/12/2019] [Indexed: 01/10/2023] Open
Abstract
Background and purpose Regulation of neural inflammation is considered as a vital therapeutic target in ischemic stroke. All-trans retinoic acid (atRA), a potent immune modulator, has raised interest in the field of stroke therapy. However, the immunological mechanisms for atRA-mediated neuroprotection remain elusive. The current study evaluated the impact of atRA on post-stroke neural inflammation and elucidated the mechanisms involved in the regulation of related neutrophil functions. Methods atRA was prophylactically administered to mice 1 day before transient middle cerebral artery occlusion (tMCAO, 1 h) and repeated daily immediately after reperfusion for 3 days. Stroke outcomes, neutrophil polarization, and formation of neutrophil extracellular traps (NETs) in the stroke lesion were assessed. Neutrophil depletion was induced with anti-Ly6G antibodies. Primary neutrophil cultures were used to explore the mechanisms of atRA treatment. Results Prophylactic atRA treatment reduced infarct volumes and neurological deficits at 1 day after tMCAO. Post-stroke neural inflammation was attenuated and neutrophil accumulation in lesion was downregulated. atRA treatment skewed neutrophil toward N2 phenotype which facilitated its clearance by macrophage and inhibited NETs formation. The functions of neutrophil were indispensable in the protective effects of atRA and were associated with suppression to STAT1 signaling by atRA. Administration of atRA after stroke still provided efficient protection to cerebral ischemia. Conclusion atRA displays potent therapeutic efficacy in ischemic stroke by attenuating neural inflammation. Treatment of atRA impeded neutrophil accumulation, favored N2 polarization, and forbade NETs formation in ischemic lesion. STAT1 signaling played a decisive role in the mechanisms of atRA-afforded regulation to neutrophil. Electronic supplementary material The online version of this article (10.1186/s12974-019-1557-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Cai
- Center of Clinical Immunology, Center for Mental and Neurological Disorders and Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China.,Department of Neurology, Center for Mental and Neurological Disorders and Diseases, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Julie Wang
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43201, USA
| | - Mengyan Hu
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Xiao Chen
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Zhengqi Lu
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| | - Joseph A Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Song Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43201, USA.
| |
Collapse
|
48
|
Zhang X, Zeng D, Huang F, Wang J. A protocol for isolation and culture of mesenchymal stem cells from human gingival tissue. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2019; 8:21-26. [PMID: 31497379 PMCID: PMC6726972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Human gingiva-derived mesenchymal stem cells (GMSCs) have been considered to be a better source of MSCs for cell therapy in some immunological diseases. We describe a protocol for isolation and culture of mesenchymal stem cells (MSCs) from human gingival tissue in detail, which provides a methodology to help clinical researches and clinical trial. GMSCs are generally isolated from a remnant or discarded tissue following a routine dental procedure, then cultured in complete culture medium at 37°C in a humidified tissue culture incubator with 5% CO2 and 95% O2. Non-adherent cells are removed after 48~72 h and the fresh medium is replaced. When primary cultures become 80%~90% confluent, the plastic-adherent cells are treated with 0.25% trypsin-EDTA and subcultured. A purified population of GMSCs can be obtained 2-3 weeks after the initiation of culture.
Collapse
Affiliation(s)
- Ximei Zhang
- Department of Clinical Immunology, The Third Affiliated Hospital at The Sun Yat-sen UniversityGuangzhou 510630, China
- Department of Internal Medicine, The Ohio State University Wexner Medical CenterColumbus 43210, Ohio, United States
| | - Donglan Zeng
- Department of Clinical Immunology, The Third Affiliated Hospital at The Sun Yat-sen UniversityGuangzhou 510630, China
| | - Feng Huang
- Department of Clinical Immunology, The Third Affiliated Hospital at The Sun Yat-sen UniversityGuangzhou 510630, China
| | - Julie Wang
- Department of Internal Medicine, The Ohio State University Wexner Medical CenterColumbus 43210, Ohio, United States
| |
Collapse
|
49
|
Zhu X, Wang Y, Jiang Q, Jiang H, Lu J, Wang Y, Kong Y, Chang Y, Xu L, Peng J, Hou M, Huang X, Zhang X. All- trans retinoic acid protects mesenchymal stem cells from immune thrombocytopenia by regulating the complement-interleukin-1β loop. Haematologica 2019; 104:1661-1675. [PMID: 30679324 PMCID: PMC6669169 DOI: 10.3324/haematol.2018.204446] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
Enhanced peripheral complement activation has long been considered as one of the major pathogenic elements of immune thrombocytopenia. A dysfunctional bone marrow microenvironment, especially with regards to mesenchymal stem cells, has been observed in patients with immune thrombocytopenia. However, the potential role of the complement system in the dysfunctional bone marrow microenvironment remains poorly understood. In this study, bone marrow samples from patients with immune thrombocytopenia were divided into two groups based on whether or not complement components were deposited on the surfaces of their mesenchymal stem cells. The mesenchymal cells from the group with complement deposition were less numerous, dysfunctional, had a reduced capacity to proliferate, and showed increased apoptosis as well as abnormal secretion of interleukin-1β and C-X-C motif chemokine ligand 12. In vitro treatment with all-trans retinoic acid increased the number and improved the function of the complement-positive bone marrow mesenchymal stem cells by upregulating DNA hypermethylation of the interleukin-1β promoter. In vivo studies showed that all-trans retinoic acid could rescue the impaired mesenchymal stem cells to support the thrombopoietic niche in both patients with immune thrombocytopenia and a murine model of this disease. Taken together, these results indicate that impairment of mesenchymal stem cells, mediated by the complement-interleukin-1β loop, plays a role in the pathogenesis of immune thrombocytopenia. All-trans retinoic acid represents a promising therapeutic approach in patients with immune thrombocytopenia through its effect of repairing mesenchymal stem cell impairment.
Collapse
Affiliation(s)
- Xiaolu Zhu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Yanan Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Jin Lu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Yazhe Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Yingjun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Lanping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| |
Collapse
|
50
|
Mohsenzadegan M, Peng RW, Roudi R. Dendritic cell/cytokine-induced killer cell-based immunotherapy in lung cancer: What we know and future landscape. J Cell Physiol 2019; 235:74-86. [PMID: 31222740 DOI: 10.1002/jcp.28977] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Abstract
Multiple modalities for lung cancer therapy have emerged in the past decade, whereas their clinical applications and survival-beneficiary is little known. Vaccination with dendritic cells (DCs) or DCs/cytokine-induced killer (CIK) cells has shown limited success in the treatment of patients with advanced non-small-cell lung cancer. To evaluate and overcome these limitations in further studies, in the present review, we sum up recent progress about DCs or DCs/CIKs-based approaches for preclinical and clinical trials in patients with lung cancer and discuss some of the limited therapeutic success. Moreover, this review highlights the need to focus future studies on the development of new approaches for successful immunotherapy in patients with lung cancer.
Collapse
Affiliation(s)
- Monireh Mohsenzadegan
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|