1
|
Wu W, Cheng Z, Nan Y, Pan G, Wang Y. L-selectin Promotes Migration, Invasion and Inflammatory Response of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis via NF-kB Signaling Pathway. Inflammation 2025:10.1007/s10753-025-02242-3. [PMID: 39821520 DOI: 10.1007/s10753-025-02242-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease characterized by chronic inflammation of the synovium and progressive joint damage. Fibroblast-like synoviocytes (FLSs) exhibit excessive proliferative and aggressive phenotypes and play a major role in the pathophysiology of RA. Previous studies have confirmed the pathologic role of L-selectin in cell adhesion and migration. In rheumatoid arthritis models, L-selectin regulates leukocyte homing, which leads to joint inflammation. Moreover, in L-selectin knockout mice, there is a reduction in joint inflammation. However, the associations of L-selectin with FLSs in RA remain unclear. This study aims to reveal the effect of L-selectin on RA-FLSs and to investigate the molecular mechanism of L-selectin in RA. Our findings indicated that L-selectin was significantly expressed in RA synovial tissues and RA-FLSs. L-selectin silencing reduced RA-FLSs migration and invasion and attenuated the secretion of pro-inflammatory cytokines TNF-α, IL-1β and IL-6 in vitro. Moreover, investigations into mechanisms revealed that L-selectin activated the nuclear factor kappa-B (NF-κB) signaling pathway while blocking this signaling pathway could compromise the effects of L-selectin. Finally, in vivo experiments with a collagen-induced arthritis rat model revealed that silencing L-selectin alleviated inflammatory infiltration of the synovium and cartilage destruction, and validated the NF-κB signaling pathways findings observed in vitro. In summary, we show that L-selectin enhances the migration and invasion of RA-FLSs through the activation of NF-κB signaling pathways, ultimately worsening the progression of RA.
Collapse
Affiliation(s)
- Weijie Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
- Department of Orthopaedics, Affiliated Nantong Hospital of Shanghai University, The Six People's Hospital of Nantong, Nantong, 226001, Jiangsu, China
| | - Zhen Cheng
- Department of Orthopaedics (Sports Medicine), Yancheng Third People's Hospital, Yancheng, 224000, Jiangsu, China
| | - Yunyi Nan
- Department of Pain Medicine, Yueqing People's Hospital, Affiliated Yueqing Hospital of Wenzhou Medical University, Wenzhou, 325600, Zhejiang, China
| | - Gang Pan
- Department of Orthopaedics, Affiliated Nantong Hospital of Shanghai University, The Six People's Hospital of Nantong, Nantong, 226001, Jiangsu, China.
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
2
|
Yue L, Li N, Ye X, Xiu Y, Wang B. Polymethoxylated flavones for modulating signaling pathways in inflammation. Int Immunopharmacol 2024; 143:113522. [PMID: 39515044 DOI: 10.1016/j.intimp.2024.113522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/18/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Aberrant signaling pathways play a crucial role in the pathogenesis of various diseases, including inflammatory disorders and autoimmune conditions. Polymethoxylated flavones (PMFs), a class of natural compounds found in citrus fruits, have obtained increasing attention for their potential therapeutic effects in modulating inflammatory responses. Although significant progress has been made in the pharmacological research of PMFs, the mechanisms by which they modulate signaling pathways to treat inflammation have not been systematically reviewed or analyzed. To address this gap in the literature, this review explores the mechanisms underlying the anti-inflammatory properties of PMFs and their prospects as drugs for treating inflammatory diseases. We discuss the molecular targets and signaling pathways through which PMFs exert their anti-inflammatory effects, including NF-κB pathway, PI3K/Akt pathway, MAPK pathway, Nrf2 pathway, and regulation of inflammatory cytokine production. Furthermore, we highlight preclinical studies evaluating the efficacy of PMFs in various inflammatory conditions, such as rheumatoid arthritis (RA), inflammatory bowel disease (IBD), and osteoarthritis (OA). Despite promising findings, challenges remain in optimizing the pharmacokinetic properties and therapeutic efficacy of PMFs for clinical use. Future research directions include elucidating the structure-activity relationships of PMFs, developing novel delivery strategies, and conducting large-scale clinical trials to validate their efficacy and safety profiles. Overall, PMFs represent a promising class of natural compounds with potential applications as anti-inflammatory drugs, offering novel therapeutic opportunities for managing inflammatory diseases.
Collapse
Affiliation(s)
- Lixia Yue
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Ning Li
- Shenzhen Research Institute, the Hong Kong University of Science and Technology, Shenzhen 518054, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanfeng Xiu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Tavares de Sousa H, Ferreira M, Gullo I, Rocha AM, Pedro A, Leitão D, Oliveira C, Carneiro F, Magro F. Fibrosis-related Transcriptome Unveils a Distinctive Remodelling Matrix Pattern in Penetrating Ileal Crohn's Disease. J Crohns Colitis 2024; 18:1741-1752. [PMID: 38700484 DOI: 10.1093/ecco-jcc/jjae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND AND AIMS Stricturing [B2] and penetrating [B3] ileal Crohn's disease have been reported to present similar levels of histopathological transmural fibrosis. This study aimed to compare the fibrosis-related transcriptomic profiles of penetrating and stricturing ileal Crohn's disease. METHODS Using Nanostring technology and comparative bioinformatics, we analysed the expression of 787 fibrosis-related genes in 36 ileal surgical specimens, 12 B2 and 24 B3, the latter including 12 cases with associated stricture[s] [B3s] and 12 without [B3o]. Quality control of extracted RNA was performed according to Nanostring parameters and principal component analysis for the distribution analysis. For the selection of the differentially expressed genes, a p-adjusted <0.05 and fold change ≤-1.5 or ≥1.5 were adopted. Quantitative polymerase chain reaction (qPCR) and immunohistochemistry analyses were used to validate selected differentially expressed genes. RESULTS We included 34 patients with B2 and B3 phenotypes, balanced for age at diagnosis, age at surgery, gender, Crohn's disease localisation, perianal disease, and therapy. Inflammation and fibrosis histopathological scoring were similar in all cases. B2 and B3 groups showed a very good clustering regarding 30 significantly differentially expressed genes, all being remarkably upregulated in B3. More than half of these genes were involved in Crohn's disease fibrogenesis, and eight differentially expressed genes were so in other organs. The most significantly active biological processes and pathways in penetrating disease were response to TGFβ and matrix organisation and degradation, as validated by immunohistochemistry. CONCLUSIONS Despite the histopathological similarities in fibrosis between stricturing and penetrating ileal Crohn's disease, their fibrosis-related transcriptomic profiles are distinct. Penetrating disease exhibits a distinctive transcriptomic landscape related to enhanced matrix remodelling.
Collapse
Affiliation(s)
- Helena Tavares de Sousa
- Gastroenterology Department, Algarve University Hospital Center [CHUA], Portimão, Portugal
- ABC-Algarve Biomedical Center, University of Algarve, Faro, Portugal
| | - Marta Ferreira
- Computer Science Department, Faculty of Sciences, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
| | - Irene Gullo
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto [FMUP], Porto, Portugal
| | - Ana Mafalda Rocha
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
| | - Ana Pedro
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
| | - Dina Leitão
- Department of Pathology, Faculty of Medicine of the University of Porto [FMUP], Porto, Portugal
| | - Carla Oliveira
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal
| | - Fátima Carneiro
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto [FMUP], Porto, Portugal
| | - Fernando Magro
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine of the University of Porto [FMUP], Portugal
- Department of Gastroenterology, São João University Hospital Center, Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Bidooki SH, Navarro MA, Fernandes SCM, Osada J. Thioredoxin Domain Containing 5 (TXNDC5): Friend or Foe? Curr Issues Mol Biol 2024; 46:3134-3163. [PMID: 38666927 PMCID: PMC11049379 DOI: 10.3390/cimb46040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
This review focuses on the thioredoxin domain containing 5 (TXNDC5), also known as endoplasmic reticulum protein 46 (ERp46), a member of the protein disulfide isomerase (PDI) family with a dual role in multiple diseases. TXNDC5 is highly expressed in endothelial cells, fibroblasts, pancreatic β-cells, liver cells, and hypoxic tissues, such as cancer endothelial cells and atherosclerotic plaques. TXNDC5 plays a crucial role in regulating cell proliferation, apoptosis, migration, and antioxidative stress. Its potential significance in cancer warrants further investigation, given the altered and highly adaptable metabolism of tumor cells. It has been reported that both high and low levels of TXNDC5 expression are associated with multiple diseases, such as arthritis, cancer, diabetes, brain diseases, and infections, as well as worse prognoses. TXNDC5 has been attributed to both oncogenic and tumor-suppressive features. It has been concluded that in cancer, TXNDC5 acts as a foe and responds to metabolic and cellular stress signals to promote the survival of tumor cells against apoptosis. Conversely, in normal cells, TXNDC5 acts as a friend to safeguard cells against oxidative and endoplasmic reticulum stress. Therefore, TXNDC5 could serve as a viable biomarker or even a potential pharmacological target.
Collapse
Affiliation(s)
- Seyed Hesamoddin Bidooki
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Centre National de la Recherche Scientifique (CNRS), Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - María A. Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Susana C. M. Fernandes
- Centre National de la Recherche Scientifique (CNRS), Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Jesus Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
5
|
Jiao M, Zhang Y, Song X, Xu B. The role and mechanism of TXNDC5 in disease progression. Front Immunol 2024; 15:1354952. [PMID: 38629066 PMCID: PMC11019510 DOI: 10.3389/fimmu.2024.1354952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Thioredoxin domain containing protein-5 (TXNDC5), also known as endothelial protein-disulfide isomerase (Endo-PDI), is confined to the endoplasmic reticulum through the structural endoplasmic reticulum retention signal (KDEL), is a member of the PDI protein family and is highly expressed in the hypoxic state. TXNDC5 can regulate the rate of disulfide bond formation, isomerization and degradation of target proteins through its function as a protein disulfide isomerase (PDI), thereby altering protein conformation, activity and improving protein stability. Several studies have shown that there is a significant correlation between TXNDC5 gene polymorphisms and genetic susceptibility to inflammatory diseases such as rheumatoid, fibrosis and tumors. In this paper, we detail the expression characteristics of TXNDC5 in a variety of diseases, summarize the mechanisms by which TXNDC5 promotes malignant disease progression, and summarize potential therapeutic strategies to target TXNDC5 for disease treatment.
Collapse
Affiliation(s)
- Mingxia Jiao
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Province Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yeyong Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China
| | - Xie Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bing Xu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Province Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
6
|
Zhang L, Lin Y, Xu X, Liu H, Wang X, Pan J. Telotristat Etiprate alleviates rheumatoid arthritis by targeting LGALS3 and affecting MAPK signaling. Intractable Rare Dis Res 2023; 12:45-57. [PMID: 36873667 PMCID: PMC9976094 DOI: 10.5582/irdr.2022.01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023] Open
Abstract
Rheumatoid arthritis (RA) is one of the most widespread chronic immune-mediated inflammatory diseases characterized by continuous erosion of bone and cartilage by synovial hyperplasia. Telotristat Etiprate is an inhibitor of tryptophan hydroxylase, a rate-limiting enzyme in the biosynthesis of serotonin. Telotristat Etiprate can be used in the treatment of carcinoid syndrome. The purpose of this study was to explore the effect of Telotristat Etiprate on RA and its mechanism. We investigated Telotristat Etiprate in collagen-induced arthritis (CIA) model mice and in rheumatoid arthritis synovial fibroblasts (RASFs). Results showed that Telotristat Etiprate had anti-inflammatory effects both in vitro and in vivo, can inhibit the invasion and migration of cells, inhibit the formation of pannus, and induce cell apoptosis. Transcriptome sequencing (RNA-seq) and mass spectrometry analysis showed that Galectins-3 (LGALS3) could be a newly identified target of Telotristat Etiprate, affecting the phosphorylation of the MAPK signaling pathway through UBE2L6, thereby improving RA.
Collapse
Affiliation(s)
| | | | | | | | | | - Jihong Pan
- Address correspondence to:Jihong Pan, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Ji'nan 250062, China. E-mail:
| |
Collapse
|
7
|
Sharma AR, Lee YH, Lee SS. Recent advancements of miRNAs in the treatment of bone diseases and their delivery potential. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 4:100150. [PMID: 36691422 PMCID: PMC9860349 DOI: 10.1016/j.crphar.2022.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Advances in understanding miRNAs as endogenous posttranscriptional regulatory units have projected them as novel therapeutics for several untreatable diseases. miRNAs are endogenous non-coding small single-stranded RNA molecules (20-24 nucleotides) with specific gene regulatory functions like repression of mRNA translation by degrading mRNAs. Emerging evidence suggests the role of miRNAs in various stages of bone growth and development. Undoubtedly, due to their critical role in bone remodeling, miRNAs might be projected as a novel approach to treating bone-related diseases. However, the instability associated with miRNAs in their complex environment, such as degradation by nucleases, is a concern. Thus, recent attention is being paid to maintaining the miRNAs' safety and efficacy in the cells. Various efficient delivery systems and chemical modifications of miRNAs are being developed to make them a potential therapeutic option for bone diseases. Here, we have tried to recapitulate the recent advances in the role of miRNAs in bone disease, along with the potential delivery systems for their efficient delivery to the cells.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- Corresponding author. Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do, 24252, South Korea.
| | | | - Sang-Soo Lee
- Corresponding author. Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do, 24252, South Korea.
| |
Collapse
|
8
|
Wang X, Li H, Chang X. The role and mechanism of TXNDC5 in diseases. Eur J Med Res 2022; 27:145. [PMID: 35934705 PMCID: PMC9358121 DOI: 10.1186/s40001-022-00770-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/20/2022] [Indexed: 01/20/2023] Open
Abstract
Thioredoxin domain-containing protein 5 (TXNDC5) is a member of the protein disulfide isomerase (PDI) family. It can promote the formation and rearrangement of disulfide bonds, ensuring proper protein folding. TXNDC5 has three Trx-like domains, which can act independently to introduce disulfide bonds rapidly and disorderly. TXNDC5 is abnormally expressed in various diseases, such as cancer, rheumatoid arthritis (RA), etc. It can protect cells from oxidative stress, promote cell proliferation, inhibit apoptosis and promote the progression of disease. Aberrant expression of TXNDC5 in different diseases suggests its role in disease diagnosis. In addition, targeting TXNDC5 in the treatment of diseases has shown promising application prospects. This article reviews the structure and function of TXNDC5 as well as its role and mechanism in cancer, RA and other diseases.
Collapse
Affiliation(s)
- Xueling Wang
- Medical Research Center of The Affiliated Hospital of Qingdao University, No 1677 Wutaishan Road, Huangdao District, Qingdao, China
| | - Haoran Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qingdao University, No 16 Jiangsu Road, Qingdao, China
| | - Xiaotian Chang
- Medical Research Center of The Affiliated Hospital of Qingdao University, No 1677 Wutaishan Road, Huangdao District, Qingdao, China.
| |
Collapse
|
9
|
MicroRNAs (miRNAs) in Cardiovascular Complications of Rheumatoid Arthritis (RA): What Is New? Int J Mol Sci 2022; 23:ijms23095254. [PMID: 35563643 PMCID: PMC9101033 DOI: 10.3390/ijms23095254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/08/2023] Open
Abstract
Rheumatoid Arthritis (RA) is among the most prevalent and impactful rheumatologic chronic autoimmune diseases (AIDs) worldwide. Within a framework that recognizes both immunological activation and inflammatory pathways, the exact cause of RA remains unclear. It seems however, that RA is initiated by a combination between genetic susceptibility, and environmental triggers, which result in an auto-perpetuating process. The subsequently, systemic inflammation associated with RA is linked with a variety of extra-articular comorbidities, including cardiovascular disease (CVD), resulting in increased mortality and morbidity. Hitherto, vast evidence demonstrated the key role of non-coding RNAs such as microRNAs (miRNAs) in RA, and in RA-CVD related complications. In this descriptive review, we aim to highlight the specific role of miRNAs in autoimmune processes, explicitly on their regulatory roles in the pathogenesis of RA, and its CV consequences, their main role as novel biomarkers, and their possible role as therapeutic targets.
Collapse
|
10
|
miR-573 rescues endothelial dysfunction during dengue infection under PPARγ regulation. J Virol 2022; 96:e0199621. [PMID: 35108097 DOI: 10.1128/jvi.01996-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Early prognosis of abnormal vasculopathy is essential for effective clinical management of severe dengue patients. An exaggerated interferon (IFN) response and release of vasoactive factors from endothelial cells cause vasculopathy. This study shows that dengue 2 (DENV2) infection of human umbilical vein endothelial cells (HUVEC) results in differentially regulated miRNAs important for endothelial function. miR-573 was significantly down-regulated in DENV2-infected HUVEC due to decreased Peroxisome Proliferator Activator Receptor Gamma (PPARγ) activity. Restoring miR-573 expression decreased endothelial permeability by suppressing the expression of vasoactive angiopoietin 2 (ANGPT2). We also found that miR-573 suppressed the proinflammatory IFN response through direct downregulation of toll like receptor 2 (TLR2) expression. Our study provides a novel insight into miR-573 mediated regulation of endothelial function during DENV2 infection which can be further translated into a potential therapeutic and prognostic agent for severe dengue patients. IMPORTANCE: We need to identify molecular factors which can predict the onset of endothelial dysfunction in dengue patients. Increase in endothelial permeability during severe dengue infections is poorly understood. In this study we focus on factors which regulate endothelial function and are dysregulated during DENV2 infection. We show that miR-573 rescues endothelial permeability and is downregulated during DENV2 infection in endothelial cells. This finding can have diagnostic as well as therapeutic applications.
Collapse
|
11
|
Zhang Y, Ge L, Song G, Zhang R, Li S, Shi H, Zhang H, Li Y, Pan J, Wang L, Han J. Azithromycin alleviates the severity of rheumatoid arthritis by targeting the UPR component GRP78. Br J Pharmacol 2021; 179:1201-1219. [PMID: 34664264 DOI: 10.1111/bph.15714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Azithromycin (AZM) is a macrolide antibiotic with well-described anti-inflammatory properties. This study aimed to substantiate the treatment potential of AZM in rheumatoid arthritis (RA). EXPERIMENTAL APPROACH Gene expression profiles were collected by RNA sequencing, and the effects of AZM were assessed in functional assays. In vitro and in vivo assays were performed to examine the effects of AZM-mediated blockade of glucose-regulated protein 78 (GRP78). Assays to define the anti-inflammatory activity of AZM using fibroblast-like synoviocytes (FLSs) from RA patients and collagen-induced arthritis (CIA) in DBA/1 mice were performed. Identification and characterization of the binding of AZM to GRP78 was performed using drug affinity responsive target stability assays, proteomics and cellular thermal shift assays. AZM-mediated inhibition of GRP78 and the dependence of the antiarthritic activity of AZM on GRP78 were assessed. KEY RESULTS AZM reduced proinflammatory factor production, cell migration, invasion and chemoattraction and enhanced apoptosis, thereby reducing the deleterious inflammatory response of RA FLSs in vitro. AZM ameliorated the severity of CIA lesions as efficiently as the anti-tumour necrosis factor (anti-TNF) biological agent etanercept (ETC). Transcriptional analyses suggested that AZM treatment impairs signalling cascades associated with cholesterol and lipid biosynthetic processes. GRP78 was identified as a novel target of AZM. AZM-mediated activation of the unfolded protein response (UPR) via the inhibition of GRP78 activity is required not only for inducing the expression of C/EBP-homologous protein (ChOP) but also for the activating sterol-regulatory element binding protein (SREBP) and its targeted genes involved in cholesterol and lipid biosynthetic processes. Furthermore, deletion of GRP78 abolished the antiarthritic activity of AZM. CONCLUSION AND IMPLICATIONS These findings confirmed that AZM is a therapeutic drug for RA treatment.
Collapse
Affiliation(s)
- Yongli Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Luna Ge
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Guanhua Song
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Ruojia Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shufeng Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Haojun Shi
- The second clinical medical college, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongchang Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yi Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jihong Pan
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Lin Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jinxiang Han
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
12
|
S1P Increases VEGF Production in Osteoblasts and Facilitates Endothelial Progenitor Cell Angiogenesis by Inhibiting miR-16-5p Expression via the c-Src/FAK Signaling Pathway in Rheumatoid Arthritis. Cells 2021; 10:cells10082168. [PMID: 34440937 PMCID: PMC8393529 DOI: 10.3390/cells10082168] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis is a critical process in the formation of new capillaries and a key participant in rheumatoid arthritis (RA) pathogenesis. Vascular endothelial growth factor (VEGF) stimulation of endothelial progenitor cells (EPCs) facilitates angiogenesis and the progression of RA. Phosphorylation of sphingosine kinase 1 (SphK1) produces sphingosine-1-phosphate (S1P), which increases inflammatory cytokine production, although the role of S1P in RA angiogenesis is unclear. In this study, we evaluated the impact of S1P treatment on VEGF-dependent angiogenesis in osteoblast-like cells (MG-63 cells) and the significance of SphK1 short hairpin RNA (shRNA) on S1P production in an in vivo model. We found significantly higher levels of S1P and VEGF expression in synovial fluid from RA patients compared with those with osteoarthritis by ELISA analysis. Treating MG-63 cells with S1P increased VEGF production, while focal adhesion kinase (FAK) and Src siRNAs and inhibitors decreased VEGF production in S1P-treated MG-63 cells. Conditioned medium from S1P-treated osteoblasts significantly increased EPC tube formation and migration by inhibiting miR-16-5p synthesis via proto-oncogene tyrosine-protein kinase src (c-Src) and FAK signaling in chick chorioallantoic membrane (CAM) and Matrigel plug assays. Infection with SphK1 shRNA reduced angiogenesis, articular swelling and cartilage erosion in the ankle joints of mice with collagen-induced arthritis (CIA). S1P appears to have therapeutic potential in RA treatment.
Collapse
|
13
|
Wang Q, Chu P, Yu X, Li J, Zhang W, Gong M. ZFAS1 knockdown inhibits fibroblast-like synoviocyte proliferation, migration, invasion and inflammation, and promotes apoptosis via miR-3926/FSTL1 in rheumatoid arthritis. Exp Ther Med 2021; 22:914. [PMID: 34306188 DOI: 10.3892/etm.2021.10346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by joint disorders. Long non-coding RNA zinc finger antisense 1 (ZFAS1) is aberrantly expressed in numerous human diseases, including RA. The present study aimed to investigate the functions and underlying mechanisms of ZFAS1 in RA. Reverse transcription-quantitative PCR was performed to determine the expression levels of ZFAS1, microRNA (miR)-3926 and follistatin-like protein 1 (FSTL1). MTT assay, flow cytometric analysis and Transwell assay were performed to examine the proliferation, apoptosis, migration and invasion of fibroblast-like synoviocytes (FLSs), respectively. Western blotting was employed to measure the protein expression levels of cleaved caspase-3, interleukin (IL)-6, IL-1β, tumor necrosis factor-α and FSTL1. Dual-luciferase reporter assay was performed to verify the interaction between miR-3926 and ZFAS1 or FSTL1. The results demonstrated that ZFAS1 and FSTL1 were upregulated, and miR-3926 was downregulated in RA synovial tissues and RA-FLSs. ZFAS1 knockdown suppressed cell proliferation, migration, invasion and inflammatory cytokine production, and induced apoptosis in RA-FLSs. ZFAS1 acted as a sponge for miR-3926, and ZFAS1 overexpression abolished the impact of miR-3926 on the development of RA-FLSs. FSTL1 was a direct target of miR-3926, and the effect of FSTL1 knockdown on the progression of RA-FLSs was rescued by miR-3926 inhibition. Furthermore, ZFAS1 regulated FSTL1 expression levels via sponging miR-3926 in RA-FLSs. In conclusion, ZFAS1 knockdown inhibited RA-FLS proliferation, migration, invasion and inflammatory cytokine production, and induced apoptosis in RA via the miR-3926/FSTL1 axis.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Traumatic Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of Joint Sports Medicine, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Peigang Chu
- Department of Joint Sports Medicine, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Xia Yu
- Department of Nuclear Medicine, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Jun Li
- Department of Joint Sports Medicine, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Wenzheng Zhang
- Department of Joint Sports Medicine, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Mingzhi Gong
- Department of Traumatic Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
14
|
Wang Y, Wu H, Deng R, Dai XJ, Bu YH, Sun MH, Zhang H, Wang MD, Wang RH. Geniposide downregulates the VEGF/SphK1/S1P pathway and alleviates angiogenesis in rheumatoid arthritis in vivo and in vitro. Phytother Res 2021; 35:4347-4362. [PMID: 34152633 DOI: 10.1002/ptr.7130] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022]
Abstract
The VEGF/SphK1/S1P pathway is closely related to angiogenesis in rheumatoid arthritis (RA), but the precise underlying mechanisms are unclear at present. Here, we explored the involvement of the VEGF/SphK1/S1P cascade in RA models and determined the effects of GE intervention. Our results showed abnormal expression of proteins related to this pathway in RA synovial tissue. Treatment with GE effectively regulated the signal axis, inhibited angiogenesis, and alleviated RA symptoms. In vitro, TNF-ɑ enhanced the VEGF/SphK1/S1P pathway in a co-culture model of fibroblast-like synoviocytes (FLS) and vascular endothelial cells (VEC). GE induced downregulation of VEGF in FLS, restored the dynamic balance of pro-/antiangiogenic factors, and suppressed SphK1/S1P signaling in VEC, resulting in lower proliferation activity, migration ability, tube formation ability, and S1P secretion ability of VEC cells. Additionally, SphK1-specific small interfering RNA (siRNA) blocked the VEGF/SphK1/S1P cascade, which can effectively alleviate the stimulatory effect of FLS on VEC and further enhanced the therapeutic effect of GE. Taken together, our results demonstrate that GE suppresses the VEGF/SphK1/S1P pathway and alleviates the stimulation of VEC by FLS, thereby preventing angiogenesis and promoting therapeutic effects against RA.
Collapse
Affiliation(s)
- Yan Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| | - Hong Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China
| | - Ran Deng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| | - Xue-Jing Dai
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| | - Yan-Hong Bu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| | - Ming-Hui Sun
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| | - Heng Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| | - Meng-Die Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| | - Rong-Hui Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| |
Collapse
|
15
|
Zhang Y, Zhang R, Ge L, Wang L. Exosome-derived TXNDC5 is Required for the Inflammatory Progression of Rheumatoid Arthritis Fibroblast-like Synoviocytes. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2021; 000:000-000. [DOI: 10.14218/erhm.2021.00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Zhang H, Ma H, Zhang W, Duan D, Zhu G, Cao W, Liu B. Increased Expression of Sema3C Indicates a Poor Prognosis and Is Regulated by miR-142-5p in Glioma. Biol Pharm Bull 2020; 43:639-648. [PMID: 32238705 DOI: 10.1248/bpb.b19-00818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sema3C has been reported to promote glioma stem cells self-renewal and glioblastoma growth. However, the prognostic value and the regulatory mechanism for its abnormal expression in glioma remain poorly understood. In the current study, the immunohistochemistry results demonstrated that Sema3C was overexpressed in 169 of 216 (78.2%) interpretable glioma patients compared with 3 of 15 (20.0%) interpretable non-neoplastic brain cases (p = 0.0001). Sema3C overexpression was significantly associated with histologic type (p = 0.008), high Ki67 labeling index (p = 0.02), tumor grade (p = 0.002) and wild type IDH1 (p = 0.0001). Importantly, its overexpression predicts the shorter overall survival of glioma patients (p = 0.0017), especially the ones with high grade (p = 0.0124). Functionally, Sema3C silencing significantly reduced the proliferation and invasion of glioma cells, indicating an oncogenic role of Sema3C in glioma in vitro. To elucidate the reason accounting for its overexpression, it is identified miR-142-5p as a tumor suppressor that directly targets Sema3C in glioma cells. miR-142-5p and Sema3C were co-regulators of epithelial-mesenchymal transition. Clinically, miR-142-5p expression was conversely related with Sema3C expression in glioma samples. Together, we identified that Sema3C could promote the progression of glioma and its expression was negatively regulated by miR-142-5p in vitro. Thus, the miR-142-5p-Sema3C axis plays importantly in glioma and holds potential to be therapeutic targets as well.
Collapse
Affiliation(s)
- Haidong Zhang
- Department of Neurology, Jining NO.1 People's Hospital
| | - Hui Ma
- Department of Neurology, Jining NO.1 People's Hospital
| | - Wenling Zhang
- Department of Neurology, Jining NO.1 People's Hospital
| | - Deyi Duan
- Department of Neurology, Jining NO.1 People's Hospital
| | - Guangting Zhu
- Department of Neurology, Jining NO.1 People's Hospital
| | - Wei Cao
- Department of Neurology, Jining NO.1 People's Hospital
| | - Bin Liu
- Department of Neurology, Jining NO.1 People's Hospital
| |
Collapse
|
17
|
Han J, Wan M, Ma Z, Hu C, Yi H. Prediction of Targets of Curculigoside A in Osteoporosis and Rheumatoid Arthritis Using Network Pharmacology and Experimental Verification. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5235-5250. [PMID: 33273808 PMCID: PMC7705647 DOI: 10.2147/dddt.s282112] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022]
Abstract
Purpose Network pharmacology is considered to be the next-generation drug development model that uses bioinformatics to predict and identify multiple drug targets and interactions in diseases. Here, network pharmacology was used to investigate the mechanism by which Curculigoside A (CA) acts in rheumatoid arthritis (RA) and osteoporosis. Methods First, TCMSP and SwissADME were applied to predict the druggability of CA. Then, potential targets were identified from overlapping data in SwissTarget and TargetNet, and targets were analyzed using Genemania and DAVID6.8 to obtain information about the GO and KEGG pathways. Ultimately, the drug-target-pathway network was identified after using Cytoscape 3.0 for visualization. Besides, qPCR was used to validate the predicted five major genes targets (EGFR, MAP2K1, MMP2, FGFR1, and MCL1). Results The results of TCMSP and SwissADME demonstrated that CA exhibits good druggability; 26 potential protein targets were classified by SwissTarget and TargetNet. The results of Genemania and DAVID6.8 indicated that CA probably caused anti-osteoporosis and anti-RA effects by regulating some biological pathways, especially nitrogen metabolism, estrogen signaling pathway, Rap1 signaling pathway, and PI3K/Akt signaling pathway. Besides, the result of Cytoscape 3.0 showed that the 26 targets participate in osteoporosis and RA-related pathways, metabolism, and other physiological processes. In vitro induced inflammation cell model experiments, the qPCR results showed that CA pretreatment significantly decreased the expression of EGFR, MAP2K1, MMP2, FGFR1, and MCL1 genes. Conclusion These results suggested that network pharmacology may provide possible mechanism of how CA exerts therapeutic effects in osteoporosis and RA.
Collapse
Affiliation(s)
- Jiawen Han
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin 130031, People's Republic of China.,Key Laboratory of Organ Regeneration and Transplantation Ministry of Education, Changchun, Jilin 130021, People's Republic of China
| | - Minjie Wan
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin 130031, People's Republic of China.,Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin 130031, People's Republic of China.,Key Laboratory of Organ Regeneration and Transplantation Ministry of Education, Changchun, Jilin 130021, People's Republic of China
| | - Cong Hu
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin 130031, People's Republic of China.,Key Laboratory of Organ Regeneration and Transplantation Ministry of Education, Changchun, Jilin 130021, People's Republic of China.,Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin 130031, People's Republic of China.,Key Laboratory of Organ Regeneration and Transplantation Ministry of Education, Changchun, Jilin 130021, People's Republic of China
| |
Collapse
|
18
|
Lu Q, Wang J, Zhang X, Tian R, Qiao L, Ge L, Pan J, Wang L. TXNDC5 protects synovial fibroblasts of rheumatoid arthritis from the detrimental effects of endoplasmic reticulum stress. Intractable Rare Dis Res 2020; 9:23-29. [PMID: 32201671 PMCID: PMC7062600 DOI: 10.5582/irdr.2019.01139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
TXNDC5 is an endoplasmic reticulum (ER)-resident chaperone that protects the endothelium from secondary effects of ER stress. Previous studies by the current authors identified TXNDC5 as a key pathological factor in promoting the inflammatory phenotype of fibroblast-like synoviocytes (FLSs) from rheumatoid arthritis (RA). However, its activity in RA FLSs under ER stress remains unclear. The current study found that TXNDC5 is responsive to ER stress in RA FLSs since its expression was induced by ER stress at both the endogenous and secretory level. A functional study indicated that silencing TXNDC5 reduced the viability of RA FLSs more markedly in the presence of ER stressors. In contrast, rhTXNDC5 attenuated a decrease in cell viability as a result of ER stress. Moreover, silencing TXNDC5 attenuated the induction of IL-6 and IL-8 from RA FLSs in response to ER stress. In addition, rhTXNDC5 induced a greater increase in VEGF production during ER stress. These findings confirm the pro-survival and pro-inflammation roles of TXNDC5 under ER stress in RA FLSs. TXNDC5 appears to act as a mediator linking ER stress and inflammation of RA.
Collapse
Affiliation(s)
- Qiqi Lu
- School of Medicine and Life Sciences, University of Ji'nan-Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Jinguang Wang
- Department of Orthopedics, Dezhou People's Hospital, Dezhou, Shandong, China
| | - Xiumei Zhang
- Graduate Education Centre of the Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Ruisong Tian
- Shandong Medicinal Biotechnology Centre, Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Key Lab for Biotechnology Drugs of the Ministry of Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Li Qiao
- College of Clinical Medicine, Shandong University, Ji'nan, Shandong, China
| | - Luna Ge
- Shandong Medicinal Biotechnology Centre, Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Key Lab for Biotechnology Drugs of the Ministry of Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Jihong Pan
- Shandong Medicinal Biotechnology Centre, Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Key Lab for Biotechnology Drugs of the Ministry of Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Lin Wang
- Shandong Medicinal Biotechnology Centre, Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Key Lab for Biotechnology Drugs of the Ministry of Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| |
Collapse
|
19
|
Evangelatos G, Fragoulis GE, Koulouri V, Lambrou GI. MicroRNAs in rheumatoid arthritis: From pathogenesis to clinical impact. Autoimmun Rev 2019; 18:102391. [PMID: 31520804 DOI: 10.1016/j.autrev.2019.102391] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
Abstract
Over the last decade, many epigenetic mechanisms that contribute in the pathogenesis of autoimmune disorders have been revealed. MicroRNAs (miRNAs) are small, non-coding, RNA molecules that bind to messenger RNAs and disrupt the transcription of target genes. Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease in which a plethora of epigenetic changes take place. Current research on RA epigenetics has focused mainly on miRNAs. Genetic variance of some miRNA genes, especially miR-499, might predispose an individual to RA development. Additionally, altered expression of many miRNAs has been discovered in several cells, tissues and body fluids in patients with RA. MiRNAs expression also differs depending on disease's stage and activity. Serum miR-22 and miR-103a might predict RA development in susceptible individuals (pre-RA), while serum miR-16, miR-24, miR-125a and miR-223 levels are altered in early RA (disease duration <12 months) patients compared to established RA or healthy individuals. Moreover, serum miR-223 levels have been associated with RA activity and disease relapse. What is more, serum levels of several miRNAs, including miR-125b and miR-223, could be used to predict response to RA treatment. Finally, miRNA analogs or antagonists have been used as therapeutic regimens in experimental arthritis models and have demonstrated promising results. In conclusion, the research on the miRNA alterations in RA sheds light to several aspects of RA pathogenesis, introduces new biomarkers for RA diagnosis and treatment response prediction and offers the opportunity to discover new, targeted drugs for patients with RA.
Collapse
Affiliation(s)
- Gerasimos Evangelatos
- Rheumatology Department, 417 Army Share Fund Hospital (NMTS), Athens, Greece; Postgraduate Program "Metabolic Bone Diseases", School of Medicine, National and Kapodistrian University of Athens, Greece.
| | - George E Fragoulis
- Rheumatology Unit, First Department of Propaedeutic Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| | - Vassiliki Koulouri
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - George I Lambrou
- Postgraduate Program "Metabolic Bone Diseases", School of Medicine, National and Kapodistrian University of Athens, Greece; Choremeio Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
20
|
Zakeri Z, Salmaninejad A, Hosseini N, Shahbakhsh Y, Fadaee E, Shahrzad MK, Fadaei S. MicroRNA and exosome: Key players in rheumatoid arthritis. J Cell Biochem 2019; 120:10930-10944. [PMID: 30825220 DOI: 10.1002/jcb.28499] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 01/24/2023]
Abstract
Rheumatoid arthritis (RA) is known as one of important autoimmune disorders which can lead to joint pain and damage throughout body. Given that internal (ie, genetic and epigenetic alterations) and external factors (ie, lifestyle changes, age, hormones, smoking, stress, and obesity) involved in RA pathogenesis. Increasing evidence indicated that cellular and molecular alterations play critical roles in the initiation and progression of RA. Among various targets and molecular signaling pathways, microRNAs (miRNAs) and their regulatory networks have key roles in the RA pathogenesis. It has been showed that deregulation of many miRNAs involved in different stages of RA. Hence, identification of miRNAs and their signaling pathways in RA, could contribute to new knowledge which help to better treatment of patients with RA. Besides miRNAs, exosomes have been emerged as key messengers in RA pathogenesis. Exsosomes are nanocarriers which could be released from various cells and lead to changing of behaviors recipient cells via targeting their cargos (eg, proteins, messenger RNAs, miRNAs, long noncoding RNAs, DNAs). Here, we summarized several miRNAs involved in RA pathogenesis. Moreover, we highlighted the roles of exosomes in RA pathogenesis.
Collapse
Affiliation(s)
- Zahra Zakeri
- Labafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nayyerehalsadat Hosseini
- Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yas Shahbakhsh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elyas Fadaee
- Faculty of Medicine, Islamic Azad University of Najafabad, Najafabad, Iran
| | - Mohammad Karim Shahrzad
- Shohada Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine, Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Wang S, Wang L, Wu C, Sun S, Pan JH. E2F2 directly regulates the STAT1 and PI3K/AKT/NF-κB pathways to exacerbate the inflammatory phenotype in rheumatoid arthritis synovial fibroblasts and mouse embryonic fibroblasts. Arthritis Res Ther 2018; 20:225. [PMID: 30286793 PMCID: PMC6235203 DOI: 10.1186/s13075-018-1713-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/04/2018] [Indexed: 11/30/2022] Open
Abstract
Background Expression of E2F transcription factor 2 (E2F2), a transcription factor related to the cell cycle, is abnormally high in rheumatoid arthritis synovial fibroblasts (RASFs). Deregulated expression of E2F2 leads to abnormal production of proinflammatory cytokines, such as interleukin (IL)-1α, IL-1β, and tumor necrosis factor (TNF)-α in RASFs. However, the underlying mechanism by which E2F2 regulates expression of IL-1α, IL-1β, and TNF-α has not been fully elucidated. This study aimed to elucidate this mechanism and confirm the pathological roles of E2F2 in rheumatoid arthritis (RA). Methods E2f2 knockout (KO) and wild-type (WT) mice were injected with collagen to induce RA. Cytokine production was assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Western blot and qRT-PCR were performed to evaluate the effect of E2F2 on signaling pathway activity. Chromatin immunoprecipitation (ChIP)-PCR and luciferase assays were used to detect the transcriptional activity of target genes of E2F2. Nuclear translocation of STAT1 and p65 were assayed by Western blot, co-immunoprecipitation (co-IP), and immunofluorescence experiments. Results The occurrence and severity of collagen-induced arthritis were decreased in E2f2-KO mice compared with WT mice. The expression of IL-1α, IL-1β, and TNF-α was also suppressed in mouse embryonic fibroblasts (MEFs) from E2f2-KO mice and RASFs with E2F2 knocked down. Mechanistically, we found that E2F2 can upregulate the expression of STAT1 and MyD88 through direct binding to their promoters, facilitate the formation of STAT1/MyD88 complexes, and consequently activate AKT. However, silencing STAT1/MyD88 or inactivating AKT significantly attenuated the induction of IL-1α, IL-1β, and TNF-α caused by the introduction of E2F2. Conclusions This study confirms the pathological role of E2F2 in RA and found that the E2F2-STAT1/MyD88-Akt axis is closely related with the inflammatory phenotype in RASFs.
Collapse
Affiliation(s)
- Shiguan Wang
- Medical and Life Science College, University of Jinan, Jinan, 250062, Shandong, China.,Shandong Medicinal Biotechnology Centre, Jingshi Road, Jinan, 250000, Shandong, China.,Key Lab for Biotechnology Drugs of Ministry of Health, Jinan, 250000, Shandong, China
| | - Lin Wang
- Shandong Medicinal Biotechnology Centre, Jingshi Road, Jinan, 250000, Shandong, China.,Key Lab for Biotechnology Drugs of Ministry of Health, Jinan, 250000, Shandong, China.,Key Lab for Rare & Uncommon Diseases, Jinan, 250000, Shandong, China
| | - Changshun Wu
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250000, Shandong, China
| | - Shui Sun
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250000, Shandong, China
| | - Ji-Hong Pan
- Shandong Medicinal Biotechnology Centre, Jingshi Road, Jinan, 250000, Shandong, China. .,Key Lab for Biotechnology Drugs of Ministry of Health, Jinan, 250000, Shandong, China. .,Key Lab for Rare & Uncommon Diseases, Jinan, 250000, Shandong, China.
| |
Collapse
|
22
|
Sujitha S, Dinesh P, Rasool M. Berberine modulates ASK1 signaling mediated through TLR4/TRAF2 via upregulation of miR-23a. Toxicol Appl Pharmacol 2018; 359:34-46. [PMID: 30240693 DOI: 10.1016/j.taap.2018.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 02/06/2023]
Abstract
The current study was designed to explore the underlying therapeutic effect of berberine (BBR), an alkaloid compound against LPS (1 μg/ml)/TNFα (10 ng/ml) mediated apoptosis signal-regulating kinase 1 (ASK1) signaling in RAW 264.7 macrophages and adjuvant-induced arthritic synovial macrophages (AA-SM) with relation to miR-23a levels. LPS and TNFα stimulation abrogated the expression of miR-23a resulting in TLR4/TRAF2 mediated ASK1 activation and downstream phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). BBR (25-75 μM) treatment ameliorated the gene expression levels of TLR4, TRAF2, TNFα, IL-6, and IL-23 through the upregulation of miR-23a. Subsequently, BBR suppressed the levels of TLR4/TRAF2 mediated phosphorylation of ASK1/p38 and attenuated the expression of various pro-inflammatory cytokines (TNFα, IL-6 & IL-23) in RAW 264.7 macrophages and AA-SM cells. BBR was able to counteract these factors through activation of miR-23a levels in LPS/TNFα stimulated RAW 264.7 macrophages and AA-SM cells. NQDI1 (30 μM) treatment inhibited ASK1 activation resulting in basal levels of miR-23a, owing to the conclusion that ASK1 activation downregulates miR-23a levels inside the cells. Overall, our current findings predict that BBR is a potential candidate for therapeutic targeting of TLR4/TRAF2 mediated ASK1 activation in inflammatory and in RA pathogenesis possibly through post-transcriptional gene silencing via upregulation of miR-23a.
Collapse
Affiliation(s)
- Sali Sujitha
- Immunopathology Lab, School of Bio Sciences and Technology, VIT University, Vellore 632 014, Tamil Nadu, India
| | - Palani Dinesh
- Immunopathology Lab, School of Bio Sciences and Technology, VIT University, Vellore 632 014, Tamil Nadu, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, VIT University, Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
23
|
Jadideslam G, Ansarin K, Sakhinia E, Alipour S, Pouremamali F, Khabbazi A. The MicroRNA-326: Autoimmune diseases, diagnostic biomarker, and therapeutic target. J Cell Physiol 2018; 233:9209-9222. [PMID: 30078204 DOI: 10.1002/jcp.26949] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 06/13/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are uniquely regulated in healthy, inflamed, activated, cancerous, or other cells and tissues of a pathological state. Many studies confirm that immune dysregulation and autoimmune diseases with inflammation are correlated with various miRNA expression changes in targeted tissues and cells in innate or adaptive immunity. In this review, we will explain the history and classification of epigenetic changes. Next, we will describe the role of miRNAs changes, especially mir-326 in autoimmunity, autoinflammatory, and other pathological conditions. A systematic search of MEDLINE, Embase, and Cochrane Library was presented for all related studies from 1899 to 2017 with restrictions in the English language. In recent years, researchers have concentrated on mostly those roles of miRNA that are correlated with the inflammatory and anti-inflammatory process. Latest studies have proposed a fundamental pathogenic role in cancers and autoinflammatory diseases. Studies have described the role of microRNAs in autoimmunity and autoinflammatory diseases, cancers, and so on. The miRNA-326 expression plays a significant role in autoimmune and other types of diseases.
Collapse
Affiliation(s)
- Golamreza Jadideslam
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran.,Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran.,Department of Medical Genetics, Faculty of Medicine and Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Alipour
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran
| | - Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran
| |
Collapse
|
24
|
Wang X, Si X, Sun J, Yue L, Wang J, Yu Z. miR-522 Modulated the Expression of Proinflammatory Cytokines and Matrix Metalloproteinases Partly via Targeting Suppressor of Cytokine Signaling 3 in Rheumatoid Arthritis Synovial Fibroblasts. DNA Cell Biol 2018; 37:405-415. [PMID: 29394098 DOI: 10.1089/dna.2017.4008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Xin Wang
- Department of Endocrine and Rheumatology, The Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Xuwei Si
- Department of Endocrine and Rheumatology, The Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Jiaying Sun
- Department of Endocrine and Rheumatology, The Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Lixia Yue
- Department of Endocrine and Rheumatology, The Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Jiajia Wang
- Department of Endocrine and Rheumatology, The Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Zhongming Yu
- Department of Endocrine and Rheumatology, The Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| |
Collapse
|
25
|
Chen L, Kong G, Zhang C, Dong H, Yang C, Song G, Guo C, Wang L, Yu H. MicroRNA-432 functions as a tumor suppressor gene through targeting E2F3 and AXL in lung adenocarcinoma. Oncotarget 2018; 7:20041-53. [PMID: 26942465 PMCID: PMC4991437 DOI: 10.18632/oncotarget.7884] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 01/31/2016] [Indexed: 12/28/2022] Open
Abstract
Abnormal proliferation and drug resistance are the hallmarks of lung adenocarcinoma (LAD). Dispite the advances in diagnosis and therapy, the 5-year survival remains low. Increasing studies regarding its pathological mechanism have been focused on microRNA (miRNA) due to its nodal regulatory properties. This study aims to characterize the expression of miR-432 in LAD and investigate its effects on the proliferation and sensitivity of lung cancer cells to cisplatin. Here, we report that downregulation of miR-432 in LAD tissues was correlated with a higher clinical stage (p = 0.03) and poor prognosis (p = 0.036). Additionally, miR-432 expression was negative correlated with high Ki67 labeling index (p = 0.016) in our cohorts. Functionally, over-expression of miR-432 inhibits cell proliferation through arresting cell cycle and sensitizes tumor cells to cisplatin. Mechanistically, miR-432 functions by directly targeting E2F3 and AXL, and they, in turn, mediate the regulation of miR-432 towards cell proliferation and cisplatin sensitivity. Importantly, miR-432 levels are negatively correlated with the levels of E2F3 and AXL in human LAD tissues. These results demonstrated that miR-432 functions as a tumor-suppressive miRNA and may represent a prognostic parameter and therapeutic target for LAD.
Collapse
Affiliation(s)
- Ling Chen
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Guangming Kong
- Emergency Department, Qingdao Municipal Hospital, Qingdao, China
| | - Chuantao Zhang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongyan Dong
- Department of Pathology, Linyi People's Hospital, Linyi, China
| | - Cuicui Yang
- Department of Pathology, Linyi People's Hospital, Linyi, China
| | - Guanhua Song
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Chengye Guo
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Lin Wang
- Research Center for Medicinal Biotechnology, Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong Academy of Medical Sciences, Jinan, China
| | - Hongsheng Yu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
26
|
Li H, Guan SB, Lu Y, Wang F. MiR-140-5p inhibits synovial fibroblasts proliferation and inflammatory cytokines secretion through targeting TLR4. Biomed Pharmacother 2017; 96:208-214. [DOI: 10.1016/j.biopha.2017.09.079] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/11/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022] Open
|
27
|
Sujitha S, Rasool M. MicroRNAs and bioactive compounds on TLR/MAPK signaling in rheumatoid arthritis. Clin Chim Acta 2017; 473:106-115. [DOI: 10.1016/j.cca.2017.08.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/15/2017] [Accepted: 08/20/2017] [Indexed: 12/17/2022]
|
28
|
Hussain N, Zhu W, Jiang C, Xu J, Wu X, Geng M, Hussain S, Cai Y, Xu K, Xu P, Han Y, Sun J, Meng L, Lu S. Down-regulation of miR-10a-5p in synoviocytes contributes to TBX5-controlled joint inflammation. J Cell Mol Med 2017; 22:241-250. [PMID: 28782180 PMCID: PMC5742673 DOI: 10.1111/jcmm.13312] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/19/2017] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs are considered to play critical roles in the pathogenesis of human inflammatory arthritis, including rheumatoid arthritis (RA). The purpose of this study was to determine the relationship between miR‐10a‐5p and TBX5 in synoviocytes and evaluate their contribution to joint inflammation. The expression of miR‐10a‐5p and TBX5 in the synovium of RA and human synovial sarcoma cell line SW982 stimulated by IL‐1β was determined by RT‐qPCR and Western blotting. The direct interaction between miR‐10a‐5p and TBX5 3′UTR was determined by dual‐luciferase reporter assay in HeLa cells. Mimics and inhibitors of miR‐10a‐5p were transfected into SW982 cells. TBX5 was overexpressed by plasmid transfection or knocked down by RNAi. Proinflammatory cytokines and TLR3 and MMP13 expressions were determined by RT‐qPCR and Western blotting. Down‐regulated expression of miR‐10a‐5p and up‐regulation of TBX5 in human patients with RA were found compared to patients with OA. IL‐1β could reduce miR‐10a‐5p and increase TBX5 expression in SW982 cells in vitro. The direct target relationship between miR‐10a‐5p and 3′UTR of TBX5 was confirmed by luciferase reporter assay. Alterations of miR‐10‐5p after transfection with its mimic and inhibitor caused the related depression and re‐expression of TBX5 and inflammatory factors in SW982 cells. Overexpression of TBX5 after pCMV3‐TBX5 plasmid transfection significantly promoted the production of TLR3, MMP13 and various inflammatory cytokines, while this effect was rescued after knocking down of TBX5 with its specific siRNA. We conclude that miR‐10a‐5p in a relation with TBX5 regulates joint inflammation in arthritis, which would serve as a diagnostic and therapeutic target for RA treatment.
Collapse
Affiliation(s)
- Nazim Hussain
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Wenhua Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Congshan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Jing Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Xiaoying Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Manman Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Safdar Hussain
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Yongsong Cai
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ke Xu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Peng Xu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yan Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Jian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Liesu Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| |
Collapse
|
29
|
Tavasolian F, Abdollahi E, Rezaei R, Momtazi-Borojeni AA, Henrotin Y, Sahebkar A. Altered Expression of MicroRNAs in Rheumatoid Arthritis. J Cell Biochem 2017; 119:478-487. [PMID: 28598026 DOI: 10.1002/jcb.26205] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/08/2017] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis is one of the most common types of inflammatory joint diseases. Women, smokers, and people with positive family history are more susceptible to this disease. Diagnostic criteria include at least one swollen joint that has not been caused by other diseases. MicroRNAs are non-coding RNAs that are evolutionarily conserved and have a length of 18-25 nucleotides. MicroRNAs control gene expression at the post-transcriptional level via promoting mRNA degradation or translational repression. Recognition of alterations in microRNA status and their respective targets, may offer an opportunity to better identify the pathways that are involved in the etiopathogenesis of autoimmune diseases. It has been suggested that microRNAs may serve as potential biomarkers for both diagnosis and prognosis of autoimmune diseases. Here, we review the available evidence on the deregulations of microRNA expression in rheumatoid arthritis. More precisely, this review focuses on the microRNA involved in T cell regulation and gives perspectives on the use of this microRNA as biomarkers of diagnosis, prognosis, or intervention efficacy. J. Cell. Biochem. 119: 478-487, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Faculty of Medicine, Tarbiat Modares University of Medical Science, Tehran, Iran
| | - Elham Abdollahi
- Student Research Committee, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Ramin Rezaei
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Nanotechnology Research Center, Department of Medical Biotechnology, Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yves Henrotin
- Bone and Cartilage Research Unit, Arthropôle Liege, University of Liege, Liege, Belgium.,Department of Physical Therapy and Rehabilitation, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Wang L, Dong H, Song G, Zhang R, Pan J, Han J. TXNDC5 synergizes with HSC70 to exacerbate the inflammatory phenotype of synovial fibroblasts in rheumatoid arthritis through NF-κB signaling. Cell Mol Immunol 2017; 15:685-696. [PMID: 28603283 DOI: 10.1038/cmi.2017.20] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/20/2022] Open
Abstract
The upregulated expression of thioredoxin domain-containing protein 5 (TXNDC5) is associated with rheumatoid arthritis in patients and model mice. However, the underlying mechanism by which TXNDC5 influences the pathological activation of rheumatoid arthritis synovial fibroblasts (RASFs) remains unknown. In this study, we show that TXNDC5 expression in RASFs and their cytokine production are significantly upregulated in response to LPS, TNF-α and IL-6, but suppressed by transfection with TXNDC5-siRNA. TXNDC5 is further validated as the direct target of NF-κB signaling. Mechanistically, TXNDC5 directly interacts with heat shock cognate 70 protein (HSC70) to sequester it in the cytoplasm, and HSC70 silencing exerts the same effects as TXNDC5 on the biological activity of RASFs (for example, decreased cell viability, invasion and cytokine production). Furthermore, HSC70 activates NF-κB signaling by destabilizing IκBβ protein in the absence of LPS or facilitating its nuclear translocation in the presence of LPS. Importantly, TXNDC5 can also regulate the activity of NF-κB signaling in a HSC70-IκBβ-dependent manner. Taken together, by linking HSC70 and NF-κB signaling, TXNDC5 plays a pro-inflammatory role in RASFs, highlighting a potential approach to treat RA by blocking the TXNDC5/HSC70 interaction.
Collapse
Affiliation(s)
- Lin Wang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China, Shandong.,Research Center for Medicinal Biotechnology, Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong, Academy of Medical Sciences, Jinan, China, Shandong
| | - Hongyan Dong
- Department of Pathology, Linyi People's Hospital, Linyi, China
| | - Guanhua Song
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China, Shandong
| | - Rui Zhang
- Research Center for Medicinal Biotechnology, Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong, Academy of Medical Sciences, Jinan, China, Shandong
| | - Jihong Pan
- Research Center for Medicinal Biotechnology, Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong, Academy of Medical Sciences, Jinan, China, Shandong
| | - Jinxiang Han
- Research Center for Medicinal Biotechnology, Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong, Academy of Medical Sciences, Jinan, China, Shandong.
| |
Collapse
|
31
|
Wang L, Song G, Zheng Y, Tan W, Pan J, Zhao Y, Chang X. Expression of Semaphorin 4A and its potential role in rheumatoid arthritis. Arthritis Res Ther 2015; 17:227. [PMID: 26303122 PMCID: PMC4549119 DOI: 10.1186/s13075-015-0734-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/31/2015] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Semaphorin 4A (Sema4A) plays critical roles in many physiological and pathological processes including neuronal development, angiogenesis, immune response regulation, autoimmunity, and infectious diseases. The present study aimed to investigate its expression and biological activity in rheumatoid arthritis (RA). METHODS RNA and protein were isolated from synovial tissues in RA and osteoarthritis (OA) patients. Treatment with recombinant human Sema4A (rhSema4A) or small interfering RNA (siRNA) was applied to examine its effect on the biological activity of synovial fibroblasts of RA (RASFs). Expression of Sema4A and NF-κB were measured by quantitative RT-PCR (qRT-PCR) and Western blot after lipopolysaccharide (LPS) stimulation. Chromatin immunoprecipitation (ChIP) and siRNA targeting p50 and p60 were applied to detect the regulation of Nuclear factor kappa (NF-κB) on Sema4A. Sema4A, interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) secretion were measured by ELISA-based assays. RESULTS Increased levels of Sema4A were detected in the synovial tissue and fluid of patients with RA compared with those with OA. Furthermore, synovial fluid level of Sema4A correlated with Disease Activity Score (DAS) in RA. Treatment with rhSema4A promoted invasion of RASFs by upregulating the expression of Matrix metallopeptidase3 (MMP3), MMP9, alpha-smooth muscle actin(α-SMA), and Vimentin, and exacerbated inflammation by promoting the production of IL-6 in RASFs, as well as IL-1β and TNF-α in THP-1 cells. The induction of IL-6 and TNF-α by Sema4A was confirmed at the protein level in fluid samples from patients with RA. Knock-down experiments showed the participation of Plexin B1 towards rhSema4A in the induction of cytokines. In addition, LPS stimulation induced Sema4A expression in RASFs in an NF-κB-dependent manner, and rhSema4A treatment could also activate NF-κB signaling. CONCLUSIONS These findings suggest an NF-κB-dependent modulation of Sema4A in the immune response. Further, increased expression of Sema4A is required to promote inflammation of RA.
Collapse
Affiliation(s)
- Lin Wang
- Research Center for Medicinal Biotechnology, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Academy of Medicinal Sciences, Jinan, China.
| | - Guanhua Song
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China.
| | - Yabing Zheng
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jingshi Road 16766, Jinan, Shandong, 250014, People's Republic of China.
| | - Weiwei Tan
- Department of Pathology, Shandong University Medical School, Jinan, China.
| | - Jihong Pan
- Research Center for Medicinal Biotechnology, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Academy of Medicinal Sciences, Jinan, China.
| | - Yu Zhao
- Research Center for Medicinal Biotechnology, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Academy of Medicinal Sciences, Jinan, China.
| | - Xiaotian Chang
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jingshi Road 16766, Jinan, Shandong, 250014, People's Republic of China.
| |
Collapse
|