1
|
Abstract
As medical and pharmacological technology advances, new and complex modalities of disease treatment that are more personalized and targeted are being developed. Often these modalities must be validated in the presence of critical components of the human biological system. Given the incongruencies between murine and human biology, as well as the human-tropism of certain drugs and pathogens, the selection of animal models that accurately recapitulate the intricacies of the human biological system becomes more salient for disease modeling and preclinical testing. Immunodeficient mice engrafted with functional human tissues (so-called humanized mice), which allow for the study of physiologically relevant disease mechanisms, have thus become an integral aspect of biomedical research. This review discusses the recent advancements and applications of humanized mouse models on human immune system and liver humanization in modeling human diseases, as well as how they can facilitate translational medicine.
Collapse
Affiliation(s)
- Weijian Ye
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ,
| |
Collapse
|
2
|
Luo S, Lin H, Zhu L, Chen HT, Yang S, Li J, Liu M, Zheng L, Wu C. Optimized Intracellular Staining Reveals Heterogeneous Cytokine Production Ability of Murine and Human Hematopoietic Stem and Progenitor Cells. Front Immunol 2021; 12:654094. [PMID: 33936078 PMCID: PMC8079767 DOI: 10.3389/fimmu.2021.654094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/23/2021] [Indexed: 01/03/2023] Open
Abstract
Under stress conditions, hematopoietic stem and progenitor cells (HSPCs) can translate danger signals into a plethora of cytokine signals. These cytokines, or more precisely their combination, instruct HSPCs to modify the magnitude and composition of hematopoietic output in response to the threat, but investigations into the heterogeneous cytokine expression and regulatory mechanisms are hampered by the technical difficulty of measuring cytokine levels in HSPCs at the single-cell level. Here, we optimized a flow cytometry-based method for the simultaneous assessment of multiple intracellular cytokines in HSPCs. By selecting an optimal combination of cytokine restimulation reagents, protein transport inhibitors, and culture supplements, an optimized restimulation protocol for intracellular staining was developed. Using this method, we successfully examined expression levels of granulocyte/macrophage colony-stimulating factor (GM-CSF), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in murine and human HSPC subsets under steady-state or different stress conditions. Different cytokine expression patterns were observed, suggesting distinct regulatory modes of cytokine production dependent on the HSPC subset, cytokine, disease, organ, and species. Collectively, this technical advance may help to obtain a better understanding of the nature of HSPC heterogeneity on the basis of differential cytokine production.
Collapse
Affiliation(s)
- Shufeng Luo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Huiling Lin
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lan Zhu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hai-Tian Chen
- First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Siqian Yang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jinheng Li
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Mingyu Liu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Limin Zheng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chong Wu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
3
|
Qin Y, Fang K, Lu N, Hu Y, Tian Z, Zhang C. Interferon gamma inhibits the differentiation of mouse adult liver and bone marrow hematopoietic stem cells by inhibiting the activation of notch signaling. Stem Cell Res Ther 2019; 10:210. [PMID: 31311586 PMCID: PMC6636148 DOI: 10.1186/s13287-019-1311-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The paradigm of hematopoietic stem and progenitor cells (HSPCs) has become accepted ever since the discovery of adult mouse liver hematopoietic stem cells and their multipotent characteristics that give rise to all blood cells. However, differences between bone marrow (BM) and liver hematopoietic stem cells and the hematopoietic microenvironment remain poorly understood. In addition, the regulation of the liver hematopoietic system remains unknown. METHODS Clone formation assays were used to confirm that the proliferation of adult mouse liver and bone marrow HSPCs. Model mice with different interferon gamma (IFN-γ) levels and a co-culture system were used to detect the differentiation of liver HSPCs. The γ-secretase inhibitor (GSI) and the JAK/STAT inhibitor ruxolitinib and cell culture assays were used to explore the molecular mechanism by which IFN-γ impairs HSPC proliferation and differentiation. RESULTS The colony-forming activity of liver and bone marrow HSPCs was inhibited by IFN-γ. Model mice with different IFN-γ levels showed that the differentiation of liver HSPCs was impaired by IFN-γ. Using a co-culture system comprising liver HSPCs, we found that IFN-γ inhibited the development of liver hematopoietic stem cells into γδT cells. We then demonstrated that IFN-γ might impair liver HSPC differentiation by inhibiting the activation of the notch signaling via the JAK/STAT signaling pathway. CONCLUSIONS IFN-γ inhibited the proliferation of liver-derived HSPCs. IFN-γ also impaired the differentiation of long-term hematopoietic stem cells (LT-HSCs) into short-term hematopoietic stem cells (ST-HSCs) and multipotent progenitors (MPPs) and the process from LSK (Lineage-Sca-1+c-Kit+) cells to γδT cells. Importantly, we proposed that IFN-γ might inhibit the activation of notch signaling through the JAK/STAT signaling pathway and thus impair the differentiation process of mouse adult liver and BM hematopoietic stem cells.
Collapse
Affiliation(s)
- Yuhong Qin
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Keke Fang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Yuan Hu
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Cai Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
4
|
Meng D, Qin Y, Lu N, Fang K, Hu Y, Tian Z, Zhang C. Kupffer Cells Promote the Differentiation of Adult Liver Hematopoietic Stem and Progenitor Cells into Lymphocytes via ICAM-1 and LFA-1 Interaction. Stem Cells Int 2019; 2019:4848279. [PMID: 31354839 PMCID: PMC6636495 DOI: 10.1155/2019/4848279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
It has been reported that the adult liver contains hematopoietic stem and progenitor cells (HSPCs), which are associated with long-term hematopoietic reconstitution activity. Hepatic hematopoiesis plays an important role in the generation of cells involved in liver diseases. However, how the progenitors differentiate into functional myeloid cells and lymphocytes in the liver microenvironment remains unknown. In the present study, HSPC transplantation experiments were used to confirm that adult murine liver HSPCs differentiate into both myeloid cells and lymphocytes (preferentially T cells) compared with bone marrow HSPCs. Using a coculture system comprised of kupffer cells and HSPCs, we found that kupffer cells promote adult liver HSPCs to primarily generate T cells and B cells. We then demonstrated that kupffer cells can also promote HSPC expansion. A blockade of intercellular cell adhesion molecule-1 (ICAM-1) in a liver HSPC and kupffer cell coculture system impaired the adhesion, expansion, and differentiation of HSPCs. These results suggest a critical role of kupffer cells in the maintenance and promotion of adult mouse liver hematopoiesis. These findings provide important insight into understanding liver extramedullary hematopoiesis and its significance, particularly under the state of some liver diseases, such as hepatitis, nonalcoholic fatty liver disease (NAFLD), and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Deping Meng
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 Shandong, China
| | - Yuhong Qin
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 Shandong, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Shandong University, Jinan, 250012 Shandong, China
| | - Keke Fang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 Shandong, China
| | - Yuan Hu
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 Shandong, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, 230027 Anhui, China
| | - Cai Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 Shandong, China
| |
Collapse
|
5
|
Guo J, Li Y, Shan Y, Shu C, Wang F, Wang X, Zheng G, He J, Hu Z, Yang YG. Humanized mice reveal an essential role for human hepatocytes in the development of the liver immune system. Cell Death Dis 2018; 9:667. [PMID: 29867111 PMCID: PMC5986801 DOI: 10.1038/s41419-018-0720-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
The liver is an immunological organ with a distinct immune cell profile. Although the composition and function of liver immune cells have been widely investigated, the mechanisms regulating the development and homeostasis of the specialized immune system, especially in humans, remain largely unknown. Herein, we address this question in humanized mice (hu-mice) that were constructed by transplantation of human fetal thymus and CD34+ hematopoietic stem/progenitor cells in immunodeficient mice with or without autologous human hepatocyte engraftment. Although the levels of human immune cell reconstitution in peripheral blood and spleen were comparable between hu-mice with and without human hepatocyte engraftment, the former group showed that human immune cell reconstitution in the liver was significantly improved. Notably, human immune cells, including Kupffer cells, dendritic cells and natural killer cells, were shown to be closely colocalized with human hepatocytes in the liver. Human hepatocytes engrafted in the mouse liver were found to produce IL-3, IL-15, GM-CSF, M-CSF, MCP-1, CXCL-1 and CXCL-10, which are known to be important for immune cell development, differentiation, tissue migration and retention, and have no or poor cross-reaction between humans and mice. Furthermore, human hepatocytes were able to support human immune cell survival and expansion in an in vitro co-culture assay. This study demonstrates an essential role for hepatocytes in the development and maintenance of the liver immune cell profile. The hu-mouse model with human autologous immune cell and hepatocyte reconstitution has potential for use in studies of the pathogenesis of liver immune disorders such as hepatotropic virus infections.
Collapse
Affiliation(s)
- Jinglong Guo
- Institute of Translational Medicine, The First Hospital, Jilin University, 130061, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, 130061, Changchun, China
- International Center of Future Science, Jilin University, 130012, Changchun, China
| | - Yang Li
- Institute of Translational Medicine, The First Hospital, Jilin University, 130061, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, 130061, Changchun, China
- International Center of Future Science, Jilin University, 130012, Changchun, China
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Yanhong Shan
- Institute of Translational Medicine, The First Hospital, Jilin University, 130061, Changchun, China
| | - Chang Shu
- Institute of Translational Medicine, The First Hospital, Jilin University, 130061, Changchun, China
| | - Feng Wang
- Institute of Translational Medicine, The First Hospital, Jilin University, 130061, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, 130061, Changchun, China
- International Center of Future Science, Jilin University, 130012, Changchun, China
| | - Xue Wang
- Institute of Translational Medicine, The First Hospital, Jilin University, 130061, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, 130061, Changchun, China
- International Center of Future Science, Jilin University, 130012, Changchun, China
| | - Ge Zheng
- Hepatopancreatobiliary Surgery Department, The Second Hospital, Jilin University, 130041, Changchun, China
| | - Jin He
- Institute of Translational Medicine, The First Hospital, Jilin University, 130061, Changchun, China
| | - Zheng Hu
- Institute of Translational Medicine, The First Hospital, Jilin University, 130061, Changchun, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, 130061, Changchun, China.
- International Center of Future Science, Jilin University, 130012, Changchun, China.
| | - Yong-Guang Yang
- Institute of Translational Medicine, The First Hospital, Jilin University, 130061, Changchun, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, 130061, Changchun, China.
- International Center of Future Science, Jilin University, 130012, Changchun, China.
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA.
| |
Collapse
|