1
|
Guthmiller JJ, Lan LYL, Fernández-Quintero ML, Han J, Utset HA, Bitar DJ, Hamel NJ, Stovicek O, Li L, Tepora M, Henry C, Neu KE, Dugan HL, Borowska MT, Chen YQ, Liu STH, Stamper CT, Zheng NY, Huang M, Palm AKE, García-Sastre A, Nachbagauer R, Palese P, Coughlan L, Krammer F, Ward AB, Liedl KR, Wilson PC. Polyreactive Broadly Neutralizing B cells Are Selected to Provide Defense against Pandemic Threat Influenza Viruses. Immunity 2020; 53:1230-1244.e5. [PMID: 33096040 PMCID: PMC7772752 DOI: 10.1016/j.immuni.2020.10.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/14/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022]
Abstract
Polyreactivity is the ability of a single antibody to bind to multiple molecularly distinct antigens and is a common feature of antibodies induced upon pathogen exposure. However, little is known about the role of polyreactivity during anti-influenza virus antibody responses. By analyzing more than 500 monoclonal antibodies (mAbs) derived from B cells induced by numerous influenza virus vaccines and infections, we found mAbs targeting conserved neutralizing influenza virus hemagglutinin epitopes were polyreactive. Polyreactive mAbs were preferentially induced by novel viral exposures due to their broad viral binding breadth. Polyreactivity augmented mAb viral binding strength by increasing antibody flexibility, allowing for adaption to imperfectly conserved epitopes. Lastly, we found affinity-matured polyreactive B cells were typically derived from germline polyreactive B cells that were preferentially selected to participate in B cell responses over time. Together, our data reveal that polyreactivity is a beneficial feature of antibodies targeting conserved epitopes.
Collapse
Affiliation(s)
- Jenna J Guthmiller
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Linda Yu-Ling Lan
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Monica L Fernández-Quintero
- Center for Molecular Biosciences Innsbruck, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Henry A Utset
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Dalia J Bitar
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Natalie J Hamel
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Olivia Stovicek
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Lei Li
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Micah Tepora
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Carole Henry
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Karlynn E Neu
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Haley L Dugan
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Marta T Borowska
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Yao-Qing Chen
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Sean T H Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Nai-Ying Zheng
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Min Huang
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Anna-Karin E Palm
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Microbiology and Immunology and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Klaus R Liedl
- Center for Molecular Biosciences Innsbruck, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Patrick C Wilson
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
2
|
Townsend CL, Laffy JMJ, Wu YCB, Silva O'Hare J, Martin V, Kipling D, Fraternali F, Dunn-Walters DK. Significant Differences in Physicochemical Properties of Human Immunoglobulin Kappa and Lambda CDR3 Regions. Front Immunol 2016; 7:388. [PMID: 27729912 PMCID: PMC5037968 DOI: 10.3389/fimmu.2016.00388] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/14/2016] [Indexed: 11/25/2022] Open
Abstract
Antibody variable regions are composed of a heavy and a light chain, and in humans, there are two light chain isotypes: kappa and lambda. Despite their importance in receptor editing, the light chain is often overlooked in the antibody literature, with the focus being on the heavy chain complementarity-determining region (CDR)-H3 region. In this paper, we set out to investigate the physicochemical and structural differences between human kappa and lambda light chain CDR regions. We constructed a dataset containing over 29,000 light chain variable region sequences from IgM-transcribing, newly formed B cells isolated from human bone marrow and peripheral blood. We also used a published human naïve dataset to investigate the CDR-H3 properties of heavy chains paired with kappa and lambda light chains and probed the Protein Data Bank to investigate the structural differences between kappa and lambda antibody CDR regions. We found that kappa and lambda light chains have very different CDR physicochemical and structural properties, whereas the heavy chains with which they are paired do not differ significantly. We also observed that the mean CDR3 N nucleotide addition in the kappa, lambda, and heavy chain gene rearrangements are correlated within donors but can differ between donors. This indicates that terminal deoxynucleotidyl transferase may work with differing efficiencies between different people but the same efficiency in the different classes of immunoglobulin chain within one person. We have observed large differences in the physicochemical and structural properties of kappa and lambda light chain CDR regions. This may reflect different roles in the humoral immune response.
Collapse
Affiliation(s)
| | - Julie M J Laffy
- Randall Division of Cell and Molecular Biophysics, King's College London , London , UK
| | | | | | - Victoria Martin
- Department of Immunobiology, King's College London , London , UK
| | - David Kipling
- Division of Cancer and Genetics, School of Medicine, Cardiff University , Cardiff , UK
| | - Franca Fraternali
- Randall Division of Cell and Molecular Biophysics, King's College London , London , UK
| | - Deborah K Dunn-Walters
- Department of Immunobiology, King's College London, London, UK; Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
3
|
Cho MJ, Lo ASY, Mao X, Nagler AR, Ellebrecht CT, Mukherjee EM, Hammers CM, Choi EJ, Sharma PM, Uduman M, Li H, Rux AH, Farber SA, Rubin CB, Kleinstein SH, Sachais BS, Posner MR, Cavacini LA, Payne AS. Shared VH1-46 gene usage by pemphigus vulgaris autoantibodies indicates common humoral immune responses among patients. Nat Commun 2014; 5:4167. [PMID: 24942562 PMCID: PMC4120239 DOI: 10.1038/ncomms5167] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/20/2014] [Indexed: 12/13/2022] Open
Abstract
Pemphigus vulgaris (PV) is a potentially fatal blistering disease caused by autoantibodies (autoAbs) against desmoglein 3 (Dsg3). Here, we clone anti-Dsg3 antibodies (Abs) from four PV patients and identify pathogenic VH1-46 autoAbs from all four patients. Unexpectedly, VH1-46 autoAbs had relatively few replacement mutations. We reverted antibody somatic mutations to their germline sequences to determine the requirement of mutations for autoreactivity. Three of five VH1-46 germline-reverted Abs maintain Dsg3 binding, compared with zero of five non-VH1-46 germline-reverted Abs. Site-directed mutagenesis of VH1-46 Abs demonstrates that acidic amino-acid residues introduced by somatic mutation or heavy chain VDJ recombination are necessary and sufficient for Dsg3 binding. Our data suggest that VH1-46 autoantibody gene usage is commonly found in PV because VH1-46 Abs require few to no mutations to acquire Dsg3 autoreactivity, which may favour their early selection. Common VH gene usage indicates common humoral immune responses, even among unrelated patients.
Collapse
Affiliation(s)
- Michael Jeffrey Cho
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Agnes S Y Lo
- Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Xuming Mao
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Arielle R Nagler
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christoph T Ellebrecht
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Eric M Mukherjee
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christoph M Hammers
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Eun-Jung Choi
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Preety M Sharma
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mohamed Uduman
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Hong Li
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ann H Rux
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sara A Farber
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Courtney B Rubin
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Steven H Kleinstein
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Bruce S Sachais
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marshall R Posner
- The Tisch Cancer Institute, Mount Sinai Medical Center, New York, New York 10029, USA
| | - Lisa A Cavacini
- The Tisch Cancer Institute, Mount Sinai Medical Center, New York, New York 10029, USA
| | - Aimee S Payne
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|