1
|
Kojima ML, Hoppe C, Giraldez AJ. The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nat Rev Genet 2025; 26:245-267. [PMID: 39587307 PMCID: PMC11928286 DOI: 10.1038/s41576-024-00792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/27/2024]
Abstract
A fertilized egg is initially transcriptionally silent and relies on maternally provided factors to initiate development. For embryonic development to proceed, the oocyte-inherited cytoplasm and the nuclear chromatin need to be reprogrammed to create a permissive environment for zygotic genome activation (ZGA). During this maternal-to-zygotic transition (MZT), which is conserved in metazoans, transient totipotency is induced and zygotic transcription is initiated to form the blueprint for future development. Recent technological advances have enhanced our understanding of MZT regulation, revealing common themes across species and leading to new fundamental insights about transcription, mRNA decay and translation.
Collapse
Affiliation(s)
- Mina L Kojima
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hoppe
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Liu Y, Tao W, Wu S, Zhang Y, Nie H, Hou Z, Zhang J, Yang Z, Chen ZJ, Wang J, Lu F, Wu K. Maternal mRNA deadenylation is defective in in vitro matured mouse and human oocytes. Nat Commun 2024; 15:5550. [PMID: 38956014 PMCID: PMC11219934 DOI: 10.1038/s41467-024-49695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
Oocyte in vitro maturation is a technique in assisted reproductive technology. Thousands of genes show abnormally high expression in in vitro maturated metaphase II (MII) oocytes compared to those matured in vivo in bovines, mice, and humans. The mechanisms underlying this phenomenon are poorly understood. Here, we use poly(A) inclusive RNA isoform sequencing (PAIso-seq) for profiling the transcriptome-wide poly(A) tails in both in vivo and in vitro matured mouse and human oocytes. Our results demonstrate that the observed increase in maternal mRNA abundance is caused by impaired deadenylation in in vitro MII oocytes. Moreover, the cytoplasmic polyadenylation of dormant Btg4 and Cnot7 mRNAs, which encode key components of deadenylation machinery, is impaired in in vitro MII oocytes, contributing to reduced translation of these deadenylase machinery components and subsequently impaired global maternal mRNA deadenylation. Our findings highlight impaired maternal mRNA deadenylation as a distinct molecular defect in in vitro MII oocytes.
Collapse
Affiliation(s)
- Yusheng Liu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wenrong Tao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
| | - Shuang Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yiwei Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Hu Nie
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenzhen Hou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
| | - Jingye Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
| | - Zhen Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong, 250012, China
| | - Jiaqiang Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Keliang Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China.
| |
Collapse
|
3
|
Yang W, Ma Y, Jin J, Ren P, Zhou H, Xu S, Zhang Y, Hu Z, Rong Y, Dai Y, Zhang Y, Zhang S. Cyclophosphamide Exposure Causes Long-Term Detrimental Effect of Oocytes Developmental Competence Through Affecting the Epigenetic Modification and Maternal Factors' Transcription During Oocyte Growth. Front Cell Dev Biol 2021; 9:682060. [PMID: 34164401 PMCID: PMC8215553 DOI: 10.3389/fcell.2021.682060] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Cyclophosphamide (CTX) is widely used in various cancer therapies and in immunosuppression, and patients can still have babies after CTX chemotherapy. CTX directly causes primordial follicle loss with overactivation and DNA damage-induced apoptosis. Previous studies have shown that maternal exposure to CTX before conception increases the incidence of birth abnormalities and alters the methylation of genes in the oocytes of offspring. Mice were treated with a single dose of CTX (100 mg/kg) at post-natal day 21 and sacrificed 47 days later when primordial follicles surviving chemotherapy developed to the antral stage. Acute DNA damage and acceleration of the activation of primordial follicles after CTX treatment were repaired within several days, but the remaining follicle numbers remarkably decrease. Although partial surviving primordial follicle were developed to mature oocyte, oocyte quality hemostasis was impaired exhibiting aberrant meiosis progression, abnormal spindle and aneuploidy, mitochondrial dysfunction and increased endoplasmic reticulum stress. Thereafter, embryo development competency significantly decreased with fewer blastocyst formation after CTX exposure. CTX treatment resulted in alteration of DNA methylations and histone modifications in fully grown GV oocytes. Single-cell RNA-seq revealed CTX treatment suppressed multiple maternal genes’ transcription including many methyltransferases and maternal factor YAP1, which probably accounts for low quality of CTX-repaired oocyte. In vitro addition of lysophosphatidic acid (LPA) to embryo culture media to promote YAP1 nuclear localization improved CTX-repaired embryo developmental competence. This study provides evidence for the consistent toxic effect of CTX exposure during follicle development, and provide a new mechanism and new insights into future clinical interventions for fertility preservation.
Collapse
Affiliation(s)
- Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Department of Obstetrics and Gynecology, Hangzhou, China
| | - Yerong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Department of Obstetrics and Gynecology, Hangzhou, China
| | - Jiamin Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Department of Obstetrics and Gynecology, Hangzhou, China
| | - Peipei Ren
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Department of Obstetrics and Gynecology, Hangzhou, China
| | - Hanjing Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Department of Obstetrics and Gynecology, Hangzhou, China
| | - Shiqian Xu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Department of Obstetrics and Gynecology, Hangzhou, China
| | - Yingyi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Department of Obstetrics and Gynecology, Hangzhou, China
| | - Zhanhong Hu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Department of Obstetrics and Gynecology, Hangzhou, China
| | - Yan Rong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Department of Obstetrics and Gynecology, Hangzhou, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Department of Obstetrics and Gynecology, Hangzhou, China
| | - Yinli Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Department of Obstetrics and Gynecology, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Department of Obstetrics and Gynecology, Hangzhou, China
| |
Collapse
|
4
|
Zhao LW, Fan HY. Revisiting poly(A)-binding proteins: Multifaceted regulators during gametogenesis and early embryogenesis. Bioessays 2021; 43:e2000335. [PMID: 33830517 DOI: 10.1002/bies.202000335] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022]
Abstract
Post-transcriptional regulation faces a distinctive challenge in gametes. Transcription is limited when the germ cells enter the division phase due to condensed chromatin, while gene expression during gamete maturation, fertilization, and early cleavage depends on existing mRNA post-transcriptional coordination. The dynamics of the 3'-poly(A) tail play crucial roles in defining mRNA fate. The 3'-poly(A) tail is covered with poly(A)-binding proteins (PABPs) that help to mediate mRNA metabolism and recent work has shed light on the number and function of germ cell-specific expressed PABPs. There are two structurally different PABP groups distinguished by their cytoplasmic and nuclear localization. Both lack catalytic activity but are coupled with various roles through their interaction with multifunctional partners during mRNA metabolism. Here, we present a synopsis of PABP function during gametogenesis and early embryogenesis and describe both conventional and current models of the functions and regulation of PABPs, with an emphasis on the physiological significance of how germ cell-specific PABPs potentially affect human fertility.
Collapse
Affiliation(s)
- Long-Wen Zhao
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Brevini TAL, Pennarossa G, Gandolfi F. A 3D approach to reproduction. Theriogenology 2020; 150:2-7. [PMID: 31973966 DOI: 10.1016/j.theriogenology.2020.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 02/07/2023]
Abstract
For over a century, 2D cell culture has been extensively used for all the different research fields. However, this in vitro system does not allow to reproduce the natural structures of the original tissue, causing several changes and, in most cases, the loss of cell-to-cell communications and cell-to-extracellular matrix interactions. Based on this, during the last years, novel 3D platforms, able to mimic the in vivo milieu, are being developed. The advantages of the use of 3D models are: the reduction of the gap between cell culture and physiological environment; imitation of the specific architecture; partially maintenance of the mechanical and biochemical cues of the original tissue. Currently, 3D systems are used in a broad range of studies, including the field of reproduction, where they have been applied to promote maturation of follicles and oocytes and embryo culture. Here, we review 2D and 3D cell culture methods, discussing advantages and limitations of these techniques. We report the fundamental mechanisms involved in cell ability to perceive and respond to mechanical cues and their role in transmitting signals to and between cells and in regulating intracellular signaling pathways. In particular, we focus on the main effectors of the Hippo pathway, Yes-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (TAZ), describing their behavior and function in oocytes and embryos. Lastly, we provide an overall perspective of the most recent 3D technologies developed in the field of reproduction, describing how their use may revolutionize the understanding of cellular behavior and provide novel tools, useful in reproductive technologies and livestock production.
Collapse
Affiliation(s)
- Tiziana A L Brevini
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133, Milan, Italy.
| | - Georgia Pennarossa
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133, Milan, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy University of Milan, Via Celoria 12, 20133, Milan, Italy
| |
Collapse
|
6
|
Liu H, Muhammad T, Guo Y, Li M, Sha Q, Zhang C, Liu H, Zhao S, Zhao H, Zhang H, Du Y, Sun K, Liu K, Lu G, Guo X, Sha J, Fan H, Gao F, Chen Z. RNA-Binding Protein IGF2BP2/IMP2 is a Critical Maternal Activator in Early Zygotic Genome Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900295. [PMID: 31406667 PMCID: PMC6685478 DOI: 10.1002/advs.201900295] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/10/2019] [Indexed: 05/29/2023]
Abstract
A number of genes involved in zygotic genome activation (ZGA) have been identified, but the RNA-binding maternal factors that are directly related to ZGA in mice remain unclear. The present study shows that maternal deletion of Igf 2bp2 (also commonly known as Imp2) in mouse embryos causes early embryonic developmental arrest in vitro at the 2-cell-stage. Transcriptomics and proteomics analyses of 2-cell-stage embryos in mice reveal that deletion of IMP2 downregulates the expression of Ccar1 and Rps14, both of which are required for early embryonic developmental competence. IGF2, a target of IMP2, when added in culture media, increases the proportion of wild-type embryos that develop successfully to the blastocyst stage: from 29% in untreated controls to 65% (50 × 10-9 m IGF2). Furthermore, in an experiment related to embryo transfer, foster mothers receiving IGF2-treated embryos deliver more pups per female than females who receive untreated control embryos. In clinically derived human oocytes, the addition of IGF2 to the culture media significantly enhances the proportion of embryos that develop successfully. Collectively, the findings demonstrate that IMP2 is essential for the regulation and activation of genes known to be involved in ZGA and reveal the potential embryonic development-related utility of IGF2 for animal biotechnology and for assisted reproduction in humans.
Collapse
|
7
|
Wang YK, Yu XX, Liu YH, Li X, Liu XM, Wang PC, Liu S, Miao JK, Du ZQ, Yang CX. Reduced nucleic acid methylation impairs meiotic maturation and developmental potency of pig oocytes. Theriogenology 2018; 121:160-167. [PMID: 30165304 DOI: 10.1016/j.theriogenology.2018.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/26/2018] [Accepted: 08/07/2018] [Indexed: 12/26/2022]
Abstract
Oocyte meiosis is a complex process coordinated by multiple endocrinal and molecular circuits. Recently, N6-methyladenosine (m6A) epigenetic modification on RNA is revealed to be important for meiotic maturation. However, the molecular mechanism of how m6A modification exerts its effect on oocyte maturation is largely unknown. Here, we showed that endogenous m6A writers (Mettl3 and Wtap) and eraser (Fto) elevated their transcript levels during meiotic maturation of pig oocytes. From germinal vesicle (GV) to metaphase II (MII) stages, global m6A level significantly increased, and existed mostly in ooplasm. Methyl donor (betaine, 16 mM) treatment of porcine cumulus-oocyte complexes (COCs) during in vitro maturation (IVM) significantly boosted nucleic acid m6A level within oocytes, but unchanged meiotic process and oocyte subsequent development. By contrast, methylation inhibitor (cycloleucine, 20 mM) reduced nucleic acid m6A level, and significantly decreased the germinal vesicle breakdown (GVBD) rate, the extrusion rate of the first polar body, and the cleavage and blastocyst rates of parthenotes. In addition, in cycloleucine-treated oocytes Wtap increased but Lin28 decreased their abundances significantly, along with the higher incidence of spindle defects and chromosome misalignment. Furthermore, pT161-CDK1 protein level in pig oocytes was confirmed to be decreased after cycloleucine treatment for 24 h. Taken together, chemical induced reduction of nucleic acid m6A methylation during pig oocyte meiosis could impair meiotic maturation and subsequent development potency, possibly through down-regulating pluripotency marker Lin28 mRNA abundance and disturbing MPF-regulated chromosome/spindle organization.
Collapse
Affiliation(s)
- Yan-Kui Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Xiao-Xia Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yun-Hua Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Xuan Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Xiao-Man Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Pei-Chao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Shuai Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Jia-Kun Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zhi-Qiang Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Cai-Xia Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
8
|
Wang HH, Chang TY, Lin WC, Wei KC, Shin JW. GADD45A plays a protective role against temozolomide treatment in glioblastoma cells. Sci Rep 2017; 7:8814. [PMID: 28821714 PMCID: PMC5562912 DOI: 10.1038/s41598-017-06851-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive cancers. Despite recent advances in multimodal therapies, high-grade glioma remains fatal. Temozolomide (TMZ) is an alkylating agent used worldwide for the clinical treatment of GBM; however, the innate and acquired resistance of GBM limits its application. Here, we found that TMZ inhibited the proliferation and induced the G2/M arrest of GBM cells. Therefore, we performed microarrays to identify the cell cycle- and apoptosis-related genes affected by TMZ. Notably, GADD45A was found to be up-regulated by TMZ in both cell cycle and apoptosis arrays. Furthermore, GADD45A knockdown (GADD45Akd) enhanced the cell growth arrest and cell death induced by TMZ, even in natural (T98) and adapted (TR-U373) TMZ-resistant cells. Interestingly, GADD45Akd decreased the expression of O6-methylguanine-DNA methyltransferase (MGMT) in TMZ-resistant cells (T98 and TR-U373). In MGMT-deficient/TMZ-sensitive cells (U87 and U373), GADD45Akd decreased TMZ-induced TP53 expression. Thus, in this study, we investigated the genes influenced by TMZ that were important in GBM therapy, and revealed that GADD45A plays a protective role against TMZ treatment which may through TP53-dependent and MGMT-dependent pathway in TMZ-sensitive and TMZ-resistant GBM, respectively. This protective role of GADD45A against TMZ treatment may provide a new therapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- Hsiao-Han Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsuey-Yu Chang
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chen Lin
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuo-Chen Wei
- Departments of Neurosurgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Jyh-Wei Shin
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
9
|
Li X, Wang YK, Song ZQ, Du ZQ, Yang CX. Dimethyl Sulfoxide Perturbs Cell Cycle Progression and Spindle Organization in Porcine Meiotic Oocytes. PLoS One 2016; 11:e0158074. [PMID: 27348312 PMCID: PMC4922549 DOI: 10.1371/journal.pone.0158074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/09/2016] [Indexed: 12/01/2022] Open
Abstract
Meiotic maturation of mammalian oocytes is a precisely orchestrated and complex process. Dimethyl sulfoxide (DMSO), a widely used solvent, drug, and cryoprotectant, is capable of disturbing asymmetric cytokinesis of oocyte meiosis in mice. However, in pigs, DMSO’s effect on oocyte meiosis still remains unknown. We aimed to evaluate if DMSO treatment will affect porcine oocyte meiosis and the underlying molecular changes as well. Interestingly, we did not observe the formation of the large first polar body and symmetric division for porcine oocytes treated with DMSO, contrary to findings reported in mice. 3% DMSO treatment could inhibit cumulus expansion, increase nuclear abnormality, disturb spindle organization, decrease reactive oxygen species level, and elevate mitochondrial membrane potential of porcine oocytes. There was no effect on germinal vesicle breakdown rate regardless of DMSO concentration. 3% DMSO treatment did not affect expression of genes involved in spindle organization (Bub1 and Mad2) and apoptosis (NF-κB, Pten, Bcl2, Caspase3 and Caspase9), however, it significantly decreased expression levels of pluripotency genes (Oct4, Sox2 and Lin28) in mature oocytes. Therefore, we demonstrated that disturbed cumulus expansion, chromosome alignment, spindle organization and pluripotency gene expression could be responsible for DMSO-induced porcine oocyte meiotic arrest and the lower capacity of subsequent embryo development. Our results provide new insights on DMSO’s effect on porcine oocyte meiosis and raise safety concerns over DMSO’s usage on female reproduction in both farm animals and humans.
Collapse
Affiliation(s)
- Xuan Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yan-Kui Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zhi-Qiang Song
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zhi-Qiang Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- * E-mail: (CXY); (ZQD)
| | - Cai-Xia Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- * E-mail: (CXY); (ZQD)
| |
Collapse
|
10
|
Oocyte-expressed yes-associated protein is a key activator of the early zygotic genome in mouse. Cell Res 2016; 26:275-87. [PMID: 26902285 PMCID: PMC4783469 DOI: 10.1038/cr.2016.20] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 12/20/2022] Open
Abstract
In early mammalian embryos, the genome is transcriptionally quiescent until the zygotic genome activation (ZGA) which occurs 2-3 days after fertilization. Despite a long-standing effort, maternal transcription factors regulating this crucial developmental event remain largely elusive. Here, using maternal and paternal mouse models of Yap1 deletion, we show that maternally accumulated yes-associated protein (YAP) in oocyte is essential for ZGA. Maternal Yap1-knockout embryos exhibit a prolonged two-cell stage and develop into the four-cell stage at a much slower pace than the wild-type controls. Transcriptome analyses identify YAP target genes in early blastomeres; two of which, Rpl13 and Rrm2, are required to mediate maternal YAP's effect in conferring developmental competence on preimplantation embryos. Furthermore, the physiological YAP activator, lysophosphatidic acid, can substantially improve early development of wild-type, but not maternal Yap1-knockout embryos in both oviduct and culture. These observations provide insights into the mechanisms of ZGA, and suggest potentials of YAP activators in improving the developmental competence of cultured embryos in assisted human reproduction and animal biotechnology.
Collapse
|
11
|
Hosseini SM, Dufort I, Nieminen J, Moulavi F, Ghanaei HR, Hajian M, Jafarpour F, Forouzanfar M, Gourbai H, Shahverdi AH, Nasr-Esfahani MH, Sirard MA. Epigenetic modification with trichostatin A does not correct specific errors of somatic cell nuclear transfer at the transcriptomic level; highlighting the non-random nature of oocyte-mediated reprogramming errors. BMC Genomics 2016; 17:16. [PMID: 26725231 PMCID: PMC4698792 DOI: 10.1186/s12864-015-2264-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 12/01/2015] [Indexed: 12/27/2022] Open
Abstract
Background The limited duration and compromised efficiency of oocyte-mediated reprogramming, which occurs during the early hours following somatic cell nuclear transfer (SCNT), may significantly interfere with epigenetic reprogramming, contributing to the high incidence of ill/fatal transcriptional phenotypes and physiological anomalies occurring later during pre- and post-implantation events. A potent histone deacetylase inhibitor, trichostatin A (TSA), was used to understand the effects of assisted epigenetic modifications on transcriptional profiles of SCNT blastocysts and to identify specific or categories of genes affected. Results TSA improved the yield and quality of in vitro embryo development compared to control (CTR-NT). Significance analysis of microarray results revealed that of 37,238 targeted gene transcripts represented on the microarray slide, a relatively small number of genes were differentially expressed in CTR-NT (1592 = 4.3 %) and TSA-NT (1907 = 5.1 %) compared to IVF embryos. For both SCNT groups, the majority of downregulated and more than half of upregulated genes were common and as much as 15 % of all deregulated transcripts were located on chromosome X. Correspondence analysis clustered CTR-NT and IVF transcriptomes close together regardless of the embryo production method, whereas TSA changed SCNT transcriptome to a very clearly separated cluster. Ontological classification of deregulated genes using IPA uncovered a variety of functional categories similarly affected in both SCNT groups with a preponderance of genes required for biological processes. Examination of genes involved in different canonical pathways revealed that the WNT and FGF pathways were similarly affected in both SCNT groups. Although TSA markedly changed epigenetic reprogramming of donor cells (DNA-methylation, H3K9 acetylation), reconstituted oocytes (5mC, 5hmC), and blastocysts (DNA-methylation, H3K9 acetylation), these changes did not recapitulate parallel marked changes in chromatin remodeling, and nascent mRNA and OCT4-EGFP expression of TSA-NT vs. CRT-NT embryos. Conclusions The results obtained suggest that despite the extensive reprogramming of donor cells that occurred by the blastocyst stage, SCNT-specific errors are of a non-random nature in bovine and are not responsive to epigenetic modifications by TSA. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2264-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sayyed Morteza Hosseini
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. .,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Isabelle Dufort
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Julie Nieminen
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Fariba Moulavi
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Hamid Reza Ghanaei
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mahdi Hajian
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Farnoosh Jafarpour
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mohsen Forouzanfar
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Hamid Gourbai
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Abdol Hossein Shahverdi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. .,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Marc-André Sirard
- Centre de Recherche en Biologie de la Reproduction, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
12
|
Proteomes of animal oocytes: what can we learn for human oocytes in the in vitro fertilization programme? BIOMED RESEARCH INTERNATIONAL 2014; 2014:856907. [PMID: 24804254 PMCID: PMC3996292 DOI: 10.1155/2014/856907] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/13/2014] [Indexed: 12/18/2022]
Abstract
Oocytes are crucial cells for mammalian reproduction, yet the molecular principles underlying oocyte development are only partially understood. Therefore, contemporary proteomic approaches have been used increasingly to provide new insights into oocyte quality and maturation in various species such as mouse, pig, and cow. Especially, animal studies have helped in elucidating the molecular status of oocytes during in vitro maturation and other procedures of assisted reproduction. The aim of this review is to summarize the literature on mammalian oocyte proteome and secretome research in the light of natural and assisted reproduction and on lessons to be learned for human oocytes, which have so far remained inaccessible for proteome analysis.
Collapse
|
13
|
Liu H, Yin FX, Bai CL, Shen QY, Wei ZY, Li XX, Liang H, Bou S, Li GP. TFIIB co-localizes and interacts with α-tubulin during oocyte meiosis in the mouse and depletion of TFIIB causes arrest of subsequent embryo development. PLoS One 2013; 8:e80039. [PMID: 24244602 PMCID: PMC3828216 DOI: 10.1371/journal.pone.0080039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/27/2013] [Indexed: 11/19/2022] Open
Abstract
TFIIB (transcription factor IIB) is a transcription factor that provides a bridge between promoter-bound TFIID and RNA polymerase II, and it is a target of various transcriptional activator proteins that stimulate the pre-initiation complex assembly. The localization and/or attachment matrix of TFIIB in the cytoplast is not well understood. This study focuses on the function of TFIIB and its interrelationship with α-tubulins in a mouse model. During oocyte maturation TFIIB distributes throughout the entire nucleus of the germinal vesicle (GV). After progression to GV breakdown (GVBD), TFIIB and α-tubulin co-localize and accumulate in the vicinity of the condensed chromosomes. During the MII stage, the TFIIB signals are more concentrated at the equatorial plate and the kinetochores. Colcemid treatment of oocytes disrupts the microtubule (MT) system, although the TFIIB signals are still present with the altered MT state. Injection of oocytes with TFIIB antibodies and siRNAs causes abnormal spindle formation and irregular chromosome alignment. These findings suggest that TFIIB dissociates from the condensed chromatids and then tightly binds to microtubules from GVBD to the MII phase. The assembly and disassembly of TFIIB may very well be associated with and driven by microtubules. TFIIB maintains its contact with the α-tubulins and its co-localization forms a unique distribution pattern. Depletion of Tf2b in oocytes results in a significant decrease in TFIIB expression, although polar body extrusion does not appear to be affected. Knockdown of Tf2b dramatically affects subsequent embryo development with more than 85% of the embryos arrested at the 2-cell stage. These arrested embryos still maintain apparently normal morphology for at least 96h without any obvious degeneration. Analysis of the effects of TFIIB in somatic cells by co-transfection of BiFC plasmids pHA-Tf2b and pFlag-Tuba1α further confirms a direct interaction between TFIIB and α-tubulins.
Collapse
Affiliation(s)
- Hui Liu
- The Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner mongolia University, Hohhot, China
| | - Feng-Xia Yin
- The Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner mongolia University, Hohhot, China
| | - Chun-Ling Bai
- The Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner mongolia University, Hohhot, China
| | - Qi-Yuan Shen
- The Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner mongolia University, Hohhot, China
| | - Zhu-Ying Wei
- The Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner mongolia University, Hohhot, China
| | - Xin-Xin Li
- The Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner mongolia University, Hohhot, China
| | - Hao Liang
- The Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner mongolia University, Hohhot, China
| | - Shorgan Bou
- The Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner mongolia University, Hohhot, China
| | - Guang-Peng Li
- The Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner mongolia University, Hohhot, China
| |
Collapse
|
14
|
Xia X, Cai H, Qin S, Xu C. Histone acetylase inhibitor curcumin impairs mouse spermiogenesis-an in vitro study. PLoS One 2012; 7:e48673. [PMID: 23144926 PMCID: PMC3492465 DOI: 10.1371/journal.pone.0048673] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/28/2012] [Indexed: 11/18/2022] Open
Abstract
In the previous study, we unraveled the unique “erasure strategy” during the mouse spermiogenesis. Chromatin associated proteins sequentially disassociated from the spermatid chromosome, which led to the termination of transcription in elongating spermatids. By this process, a relatively naïve paternal chromatin was generated, which might be essential for the zygotic development. We supposed the regulation of histone acetylation played an important role throughout this “erasure” process. In order to verify this hypothesis, we treated mouse spermatids in vitro by histone acetylase (HAT) inhibitor Curcumin. Our results showed an inhibiting effect of Curcumin on the growth of germ cell line in a dose-dependent manner. Accordingly, the apoptosis of primary haploid spermtids was increased by Curcumin treatment. As expected, the acetylated histone level was downregulated. Furthermore, we found the transcription in spermatids ceased in advance, the dynamics of chromatin associated factors was disturbed by Curcumin treatment. The regulation of histone acetylation should be one of the core reprogramming mechanisms during the spermiogenesis. The reproductive toxicity of Curcumin needs to be thoroughly investigated, which is crucial for its further clinical application.
Collapse
Affiliation(s)
- Xiaoyu Xia
- Department of Histology & Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
| | - Heng Cai
- Department of Histology & Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
| | - Shixiao Qin
- Department of Histology & Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
| | - Chen Xu
- Department of Histology & Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
15
|
Reich A, Klatsky P, Carson S, Wessel G. The transcriptome of a human polar body accurately reflects its sibling oocyte. J Biol Chem 2011; 286:40743-9. [PMID: 21953461 DOI: 10.1074/jbc.m111.289868] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Improved methods are needed to reliably and accurately evaluate oocyte quality prior to fertilization and transfer into the woman of human embryos created through in vitro fertilization (IVF). All oocytes that are retrieved and matured in culture are exposed to sperm with little in the way of evaluating the oocyte quality. Furthermore, embryos created through IVF are currently evaluated for developmental potential by morphology, a criterion lacking in quantitation and accuracy. With the recent successes in oocyte vitrification and storage, clear metrics are needed to determine oocyte quality prior to fertilizing. The first polar body (PB) is extruded from the oocyte before fertilization and can be biopsied without damaging the oocyte. Here, we tested the hypothesis that the PB transcriptome is representative of that of the oocyte. Polar body biopsy was performed on metaphase II (MII) oocytes followed by single-cell transcriptome analysis of the oocyte and its sibling PB. Over 12,700 unique mRNAs and miRNAs from the oocyte samples were compared with the 5,431 mRNAs recovered from the sibling PBs (5,256 shared mRNAs or 97%, including miRNAs). The results show that human PBs reflect the oocyte transcript profile and suggests that mRNA detection and quantification through high-throughput quantitative PCR could result in the first molecular diagnostic for gene expression in MII oocytes. This could allow for both oocyte ranking and embryo preferences in IVF applications.
Collapse
Affiliation(s)
- Adrian Reich
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
16
|
Klatsky PC, Wessel GM, Carson SA. Detection and quantification of mRNA in single human polar bodies: a minimally invasive test of gene expression during oogenesis. Mol Hum Reprod 2010; 16:938-43. [PMID: 20837506 DOI: 10.1093/molehr/gaq077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Proteins and mRNA produced in oogenesis support embryonic development until the zygotic transition, 3 days after fertilization. Since polar bodies can be biopsied with little if any harm to the oocyte, we tested the hypothesis that mRNA originating from expression in the meiotic oocyte is present and detectable in a single polar body prior to insemination. Human oocytes were obtained from patients undergoing controlled ovarian hyperstimulation and intracytoplasmic sperm injection. Immature oocytes were cultured overnight and inspected the following day for maturation. Metaphase II oocytes underwent polar body biopsy followed by reverse transcription without RNA isolation. Sibling oocytes were similarly prepared. Complementary DNA from all samples were pre-amplified over 15 cycles for candidate genes using selective primers. Real-time PCR was performed to detect and quantify relative single-cell gene expression. Polar body mRNA was detected in 11 of 12 candidate genes. Transcripts that were present in greater abundance in the oocyte were more likely to be detected in qPCR replicates from single polar bodies. Pre-amplification of cDNA synthesized without RNA isolation can facilitate the quantitative detection of mRNA in single human polar bodies.
Collapse
Affiliation(s)
- Peter C Klatsky
- Division of Reproductive Endocrinology and Infertility, Women and Infants Hospital, Alpert School of Medicine, Brown University, 101 Dudley Street, Providence, RI 02905, USA.
| | | | | |
Collapse
|
17
|
Egli D, Eggan K. Recipient cell nuclear factors are required for reprogramming by nuclear transfer. Development 2010; 137:1953-63. [PMID: 20463036 DOI: 10.1242/dev.046151] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nuclear transfer allows the reprogramming of somatic cells to totipotency. The cell cycle state of the donor and recipient cells, as well as their extent of differentiation, have each been cited as important determinants of reprogramming success. Here, we have used donor and recipient cells at various cell cycle and developmental stages to investigate the importance of these parameters. We found that many stages of the cell cycle were compatible with reprogramming as long as a sufficient supply of essential nuclear factors, such as Brg1, were retained in the recipient cell following enucleation. Consistent with this conclusion, the increased efficiency of reprogramming when using donor nuclei from embryonic cells could be explained, at least in part, by reintroduction of embryonic nuclear factors along with the donor nucleus. By contrast, cell cycle synchrony between the donor nucleus and the recipient cell was not required at the time of transfer, as long as synchrony was reached by the first mitosis. Our findings demonstrate the remarkable flexibility of the reprogramming process and support the importance of nuclear transcriptional regulators in mediating reprogramming.
Collapse
Affiliation(s)
- Dieter Egli
- The Howard Hughes Medical Institute, Stowers Medical Institute, Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.
| | | |
Collapse
|
18
|
Aston KI, Li GP, Hicks BA, Sessions BR, Davis AP, Rickords LF, Stevens JR, White KL. Abnormal levels of transcript abundance of developmentally important genes in various stages of preimplantation bovine somatic cell nuclear transfer embryos. Cell Reprogram 2010; 12:23-32. [PMID: 20132010 DOI: 10.1089/cell.2009.0042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Based on microarray data comparing gene expression of fibroblast donor cells and bovine somatic cell nuclear transfer (SCNT) and in vivo produced (AI) blastocysts, a group of genes including several transcription factors was selected for evaluation of transcript abundance. Using SYBR green-based real-time polymerase chain reaction (Q-PCR) the levels of POU domain class 5 transcription factor (Oct4), snail homolog 2 (Snai2), annexin A1 (Anxa1), thrombospondin (Thbs), tumor-associated calcium signal transducer 1 (Tacstd1), and transcription factor AP2 gamma (Tfap2c) were evaluated in bovine fibroblasts, oocytes, embryos 30 min postfusion (SCNT), 12 h postfertilization/activation, as well as two-cell, four-cell, eight-cell, morula, and blastocyst-stage in vitro fertilized (IVF) and SCNT embryos. For every gene except Oct4, levels of transcript were indistinguishable between IVF and SCNT embryos at the blastocyst stage; however, in many cases levels of these genes during stages prior to blastocyst differed significantly. Altered levels of gene transcripts early in development likely have developmental consequences downstream. These results indicate that experiments evaluating gene expression differences between control and SCNT blastocysts may underestimate the degree of difference between clones and controls, and further offer insights into the dynamics of transcript regulation following SCNT.
Collapse
Affiliation(s)
- Kenneth I Aston
- Department of Animal, Dairy, and Veterinary Sciences and Center for Integrated Biosystems, Utah State University, Logan, Utah 84322-4815, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Fulka H, Novakova Z, Mosko T, Fulka J. The inability of fully grown germinal vesicle stage oocyte cytoplasm to transcriptionally silence transferred transcribing nuclei. Histochem Cell Biol 2009; 132:457-68. [DOI: 10.1007/s00418-009-0625-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2009] [Indexed: 01/27/2023]
|
20
|
Aston K, Li G, Hicks B, Sessions B, Davis A, Winger Q, Rickords L, Stevens J, White K. Global gene expression analysis of bovine somatic cell nuclear transfer blastocysts and cotyledons. Mol Reprod Dev 2009; 76:471-82. [DOI: 10.1002/mrd.20962] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Rupprecht S, Lipps HJ. Cell cycle dependent histone dynamics of an episomal non-viral vector. Gene 2009; 439:95-101. [PMID: 19306916 DOI: 10.1016/j.gene.2009.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 03/11/2009] [Accepted: 03/12/2009] [Indexed: 01/12/2023]
Abstract
Non-viral episomal vectors are regarded as attractive alternatives to currently used virus-based vectors in gene therapy. In addition, they represent a minimal model system to study the epigenetic control of basic nuclear processes, such as transcription, replication and nuclear retention. Here we analyze the dynamics of histone modifications during the cell cycle of the episomally replicating vector pEPI-eGFP. The histone code of pEPI-eGFP was compared to its integrating counterpart pGFP-C1. We found that pEPI-eGFP is preferentially associated with histone modifications typical for active chromatin, while pGFP-C1 is mostly decorated with repressive histone modifications. During interphase the distribution of histone modification on pEPI-eGFP is very non-dynamic; the S/MAR shows the highest concentration of active histone modifications. However, they are specifically removed during mitosis and this may correlate with the association and co-segregation of pEPI with the host chromosomes during cell division.
Collapse
Affiliation(s)
- Sina Rupprecht
- Institute of Cell Biology, University Witten/Herdecke, Stockumer Str. 10, D 58453 Witten, FRG
| | | |
Collapse
|
22
|
Zheng J, Xia X, Ding H, Yan A, Hu S, Gong X, Zong S, Zhang Y, Sheng HZ. Erasure of the paternal transcription program during spermiogenesis: the first step in the reprogramming of sperm chromatin for zygotic development. Dev Dyn 2008; 237:1463-76. [PMID: 18386827 DOI: 10.1002/dvdy.21499] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Male germ cells possess a unique epigenetic program and express a male-specific transcription profile. However, when its chromatin is passed onto the zygote, it expresses an transcription/epigenetic program characteristic of the zygote. The mechanism underlying this reprogramming process is not understood at present. In this study, we show that an extensive range of chromatin factors (CFs), including essential transcription factors and regulators, remodeling factors, histone deacetylases, heterochromatin-binding proteins, and topoisomerases, were removed from chromatin during spermiogenesis. This process will erase the paternal epigenetic program to generate a relatively naive chromatin, which is likely to be essential for installation of the zygotic developmental program after fertilization. We have also showed that transcription termination in male germ cells was temporally correlated with CF dissociation. A genome-wide CF dissociation will inevitably disassemble the transcription apparatus and regulatory mechanism and lead to transcription silence. Based on data presented in this and previous studies (Sun et al., Cell Research [2007] 17:117-134), we propose that paternal-zygotic transcription reprogramming begins with a genome-wide CF dissociation to erase the existing transcription program in later stages of spermatogenesis. This will be followed by assembling of the zygotic equivalent after fertilization. The transcription/epigenetic program of the male germ cell is transformed into a zygotic one using an erase-and-rebuild strategy similar to that used in the maternal-zygotic transition. It is also noted that transcription is terminated long after meiosis is completed and before chromatin becomes highly condensed during spermatogenesis. The temporal order of these events suggests that transcription silence does not have to be coupled to meiosis or chromatin condensation.
Collapse
Affiliation(s)
- Junke Zheng
- Center for Developmental Biology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Li F, Cao H, Zhang Q, Li R, Chen X, Fang Z, Xue K, Chen DY, Sheng HZ. Activation of Human Embryonic Gene Expression in Cytoplasmic Hybrid Embryos Constructed between Bovine Oocytes and Human Fibroblasts. CLONING AND STEM CELLS 2008; 10:297-305. [PMID: 18578590 DOI: 10.1089/clo.2007.0084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Feng Li
- Center for Developmental Biology, Xnhua Hospital, School of Medicine, Shanghai Jiao Tong University, People's Republic of China
| | - Henhua Cao
- Laboratory of Embryo Engineering, Shengneng Group, City of Linyi, Shandong Province, China
| | - Quanjun Zhang
- Laboratory of Embryo Engineering, Shengneng Group, City of Linyi, Shandong Province, China
| | - Ruichang Li
- Laboratory of Embryo Engineering, Shengneng Group, City of Linyi, Shandong Province, China
| | - Xuejin Chen
- Center for Developmental Biology, Xnhua Hospital, School of Medicine, Shanghai Jiao Tong University, People's Republic of China
| | - Zhengfu Fang
- Center for Developmental Biology, Xnhua Hospital, School of Medicine, Shanghai Jiao Tong University, People's Republic of China
| | - Ke Xue
- Center for Developmental Biology, Xnhua Hospital, School of Medicine, Shanghai Jiao Tong University, People's Republic of China
| | - Da Yuan Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hui Z. Sheng
- Center for Developmental Biology, Xnhua Hospital, School of Medicine, Shanghai Jiao Tong University, People's Republic of China
| |
Collapse
|
24
|
Zheng J, Xia X, Ding H, Yan A, Hu S, Gong X, Zong S, Zhang Y, Sheng HZ. Erasure of the paternal transcription program during spermiogenesis: The first step in the reprogramming of sperm chromatin for zygotic development. Dev Dyn 2008. [DOI: 10.1002/dvdy.21647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
25
|
Egli D, Birkhoff G, Eggan K. Mediators of reprogramming: transcription factors and transitions through mitosis. Nat Rev Mol Cell Biol 2008; 9:505-16. [PMID: 18568039 DOI: 10.1038/nrm2439] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is thought that most cell types of the human body share the same genetic information as that contained in the zygote from which they originate. Consistent with this view, animal cloning studies demonstrated that the intact genome of a differentiated cell can be reprogrammed to support the development of an entire organism and allow the production of pluripotent stem cells. Recent progress in reprogramming research now points to an important role for transcription factors in the establishment and the maintenance of cellular phenotypes, and to cell division as a mediator of transitions between different states of gene expression.
Collapse
Affiliation(s)
- Dieter Egli
- The Stowers Medical Institute, Harvard Stem Cell Institute and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
26
|
PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet 2008; 40:411-20. [PMID: 18311137 DOI: 10.1038/ng.99] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 01/22/2008] [Indexed: 01/20/2023]
Abstract
In eukaryotes, Suv39h H3K9 trimethyltransferases are required for pericentric heterochromatin formation and function. In early mouse preimplantation embryos, however, paternal pericentric heterochromatin lacks Suv39h-mediated H3K9me3 and downstream marks. Here we demonstrate Ezh2-independent targeting of maternally provided polycomb repressive complex 1 (PRC1) components to paternal heterochromatin. In Suv39h2 maternally deficient zygotes, PRC1 also associates with maternal heterochromatin lacking H3K9me3, thereby revealing hierarchy between repressive pathways. In Rnf2 maternally deficient zygotes, the PRC1 complex is disrupted, and levels of pericentric major satellite transcripts are increased at the paternal but not the maternal genome. We conclude that in early embryos, Suv39h-mediated H3K9me3 constitutes the dominant maternal transgenerational signal for pericentric heterochromatin formation. In absence of this signal, PRC1 functions as the default repressive back-up mechanism. Parental epigenetic asymmetry, also observed along cleavage chromosomes, is resolved by the end of the 8-cell stage--concurrent with blastomere polarization--marking the end of the maternal-to-embryonic transition.
Collapse
|
27
|
Shi LH, Ai JS, Ouyang YC, Huang JC, Lei ZL, Wang Q, Yin S, Han ZM, Sun QY, Chen DY. Trichostatin A and nuclear reprogramming of cloned rabbit embryos. J Anim Sci 2008; 86:1106-13. [PMID: 18245503 DOI: 10.2527/jas.2007-0718] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To investigate the influence of histone deacetylases on nuclear reprogramming after nuclear transfer, we treated the cloned embryos with a histone deacetylase inhibitor, Trichostatin A (TSA). In the present study, global changes in acetylation of histone H3-lysine 14, histone H4-lysine 12, and histone H4-lysine 5 were studied in rabbit in vivo fertilized embryos, somatic cell nuclear transfer (SCNT) embryos, and TSA-treated SCNT embryos. From the pronuclear to the morula stage, the deacetylation-reacetylation changes in acetylation of histone H3-lysine 14 and histone H4-lysine 12 occurred in both fertilized embryos and TSA-treated cloned embryos; however, the distribution pattern in untreated cloned embryos failed to display such changes. More interesting, the signal of acetylation of histone H4-lysine 12 in cloned embryos was detected in both the inner cell mass and the trophectoderm, whereas TSA-treated cloned embryos showed the same staining pattern as fertilized embryos and the staining was limited to the inner cell mass. The histone acetylation pattern of TSA-treated SCNT embryos appeared to be more similar to that of normal embryos, indicating that TSA could improve nuclear reprogramming after nuclear transfer.
Collapse
Affiliation(s)
- L H Shi
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gao T, Zheng J, Xing F, Fang H, Sun F, Yan A, Gong X, Ding H, Tang F, Sheng HZ. Nuclear reprogramming: the strategy used in normal development is also used in somatic cell nuclear transfer and parthenogenesis. Cell Res 2007; 17:135-50. [PMID: 17287828 DOI: 10.1038/cr.2007.2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) and parthenogenesis are alternative forms of reproduction and development, building new life cycles on differentiated somatic cell nuclei and duplicated maternal chromatin, respectively. In the preceding paper (Sun F, et al., Cell Res 2007; 17:117-134.), we showed that an "erase-and-rebuild" strategy is used in normal development to transform the maternal gene expression profile to a zygotic one. Here, we investigate if the same strategy also applies to SCNT and parthenogenesis. The relationship between chromatin and chromatin factors (CFs) during SCNT and parthenogenesis was examined using immunochemical and GFP-fusion protein assays. Results from these studies indicated that soon after nuclear transfer, a majority of CFs dissociated from somatic nuclei and were redistributed to the cytoplasm of the egg. The erasure process in oogenesis is recaptured during the initial phase in SCNT. Most CFs entered pseudo-pronuclei shortly after their formation. In parthenogenesis, all parthenogenotes underwent normal oogenesis, and thus had removed most CFs from chromosomes before the initiation of development. The CFs were subsequently re-associated with female pronuclei in time and sequence similar to that in fertilized embryos. Based on these data, we conclude that the "erase-and-rebuild" process observed in normal development also occurs in SCNT and in parthenogenesis, albeit in altered fashions. The process is responsible for transcription reprogramming in these procedures. The "erase" process in SCNT is compressed and the efficiency is compromised, which likely contribute to the developmental defects often observed in nuclear transfer (nt) embryos. Furthermore, results from this study indicated that the cytoplasm of an egg contains most, if not all, essential components for assembling the zygotic program and can assemble them onto appropriate diploid chromatin of distinct origins.
Collapse
Affiliation(s)
- Tianlong Gao
- Program for Graduation Studies, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|