1
|
G C B, Du P, Zhang Y, Yang L, Dong F. Bcl-xL is important for the antiapoptotic activity of Gfi1 and is upregulated by Gfi1 through hemgn. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:1046-1058. [PMID: 40262274 PMCID: PMC12123215 DOI: 10.1093/jimmun/vkae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/16/2024] [Indexed: 04/24/2025]
Abstract
Gfi1 is a transcriptional repressor that plays a critical role in hematopoiesis. Gfi1 represses its target genes primarily through interacting with the histone demethylase LSD1 via its SNAG domain. A major function of Gfi1 is to inhibit DNA damage-induced apoptosis through its involvement in post-translational modifications and subsequent inhibition of p53 protein, and in PRMT1-dependent methylation of MRE11 and 53BP1, which is necessary for these proteins to function in DNA repair. We show here that Gfi1 inhibited apoptosis induced not only by DNA damage but also by growth factor withdrawal, inhibitory cytokine TGF-β and MYC activation. We further demonstrate that Gfi1 upregulated the expression of the pro-survival Bcl-2 family member Bcl-xL in a manner that was independent of p53. Bcl-xL overexpression partially rescued the hypersensitivity to DNA damage of Gfi1-knocked down leukemic cells and Gfi1-deficient mouse primary bone marrow (BM) cells. In contrast, Bcl-xL knockdown partially abolished the protective effect of Gfi1 on DNA damage-induced apoptosis. Notably, interaction with LSD1 was required and sufficient for Gfi1-mediaed upregulation of Bcl-xL, suggesting that Gfi1 may augment Bcl-xL expression by an indirect mechanism. We further demonstrate that Bcl-xL upregulation by Gfi1 was dependent on Hemgn upregulation, which results from Gfi1-mediated repression of PU.1. Our data reveal a novel mechanism by which Gfi1 inhibits apoptosis.
Collapse
Affiliation(s)
- Binod G C
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Pei Du
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Yangyang Zhang
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Li Yang
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Fan Dong
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
2
|
Yang H, Ibrahim MM, Zhang S, Sun Y, Chang J, Qi H, Yang S. Targeting post-stroke neuroinflammation with Salvianolic acid A: molecular mechanisms and preclinical evidence. Front Immunol 2024; 15:1433590. [PMID: 39139557 PMCID: PMC11319147 DOI: 10.3389/fimmu.2024.1433590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Salvianolic acid A (SalA), a bioactive compound extracted from Salvia miltiorrhiza, has garnered considerable interest for its potential in ameliorating the post-stroke neuroinflammation. This review delineates the possible molecular underpinnings of anti-inflammatory and neuroprotective roles of SalA, offering a comprehensive analysis of its therapeutic efficacy in preclinical studies of ischemic stroke. We explore the intricate interplay between post-stroke neuroinflammation and the modulatory effects of SalA on pro-inflammatory cytokines, inflammatory signaling pathways, the peripheral immune cell infiltration through blood-brain barrier disruption, and endothelial cell function. The pharmacokinetic profiles of SalA in the context of stroke, characterized by enhanced cerebral penetration post-ischemia, makes it particularly suitable as a therapeutic agent. Preliminary clinical findings have demonstrated that salvianolic acids (SA) has a positive impact on cerebral perfusion and neurological deficits in stroke patients, warranting further investigation. This review emphasizes SalA as a potential anti-inflammatory agent for the advancement of innovative therapeutic approaches in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hongchun Yang
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Muhammad Mustapha Ibrahim
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Siyu Zhang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yao Sun
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Qi
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Shilun Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Zhang Z, Xiang S, Cui R, Peng H, Mridul R, Xiang M. ILP-2: A New Bane and Therapeutic Target for Human Cancers. Front Oncol 2022; 12:922596. [PMID: 35814477 PMCID: PMC9260022 DOI: 10.3389/fonc.2022.922596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Inhibitor of apoptosis protein-related-like protein-2 (ILP-2), also known as BIRC-8, is a member of the inhibitor of apoptosis protein (IAPs) family, which mainly encodes the negative regulator of apoptosis. It is selectively overexpressed in a variety of human tumors and can help tumor cells evade apoptosis, promote tumor cell growth, increase tumor cell aggressiveness, and appears to be involved in tumor cell resistance to chemotherapeutic drugs. Several studies have shown that downregulation of ILP-2 expression increases apoptosis, inhibits metastasis, reduces cell growth potential, and sensitizes tumor cells to chemotherapeutic drugs. In addition, ILP-2 inhibits apoptosis in a unique manner; it does not directly inhibit the activity of caspases but induces apoptosis by cooperating with other apoptosis-related proteins. Here, we review the current understanding of the various roles of ILP-2 in the apoptotic cascade and explore the use of interfering ILP-2, and the combination of related anti-tumor agents, as a novel strategy for cancer therapy.
Collapse
Affiliation(s)
- Zhiliang Zhang
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Siqi Xiang
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Ruxia Cui
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Hang Peng
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Roy Mridul
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Mingjun Xiang
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| |
Collapse
|
4
|
Gossypol Treatment Restores Insufficient Apoptotic Function of DFF40/CAD in Human Glioblastoma Cells. Cancers (Basel) 2021; 13:cancers13215579. [PMID: 34771741 PMCID: PMC8583586 DOI: 10.3390/cancers13215579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor and almost all patients die because of relapses. GBM-derived cells undergo cell death without nuclear fragmentation upon treatment with different apoptotic agents. Nuclear dismantling determines the point-of-no-return in the apoptotic process. DFF40/CAD is the main endonuclease implicated in apoptotic nuclear disassembly. To be properly activated, DFF40/CAD should reside in the cytosol. However, the endonuclease is poorly expressed in the cytosol and remains cumulated in the nucleus of GBM cells. Here, by employing commercial and non-commercial patient-derived GBM cells, we demonstrate that the natural terpenoid aldehyde gossypol prompts DFF40/CAD-dependent nuclear fragmentation. A comparative analysis between gossypol- and staurosporine-treated cells evidenced that levels of neither caspase activation nor DNA damage were correlated with the ability of each compound to induce nuclear fragmentation. Deconvoluted confocal images revealed that DFF40/CAD was almost completely excluded from the nucleus early after the staurosporine challenge. However, gossypol-treated cells maintained DFF40/CAD in the nucleus for longer times, shaping a ribbon-like structure piercing the nuclear fragments and building a network of bridged masses of compacted chromatin. Therefore, GBM cells can fragment their nuclei if treated with the adequate insult, making the cell death process irreversible.
Collapse
|
5
|
Dey A, Perveen H, Khandare AL, Banerjee A, Maiti S, Jana S, Chakraborty AK, Chattopadhyay S. Arsenic-induced uterine apoptotic damage is protected by ethyl acetate fraction of Camellia sinensis (green tea) via Bcl-2-BAX through NF-κB regulations in Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41095-41108. [PMID: 33774797 DOI: 10.1007/s11356-021-13457-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
The non-invasive treatment strategy is indispensable to overcome the side effects of conventional treatment with chelating agents against arsenic. Presence of catechins and flavonoids in Camellia sinensis have potential antioxidant properties and other beneficial effects. The aim of the study was to explore the curative potential role of Camellia sinensis against uterine damages produced by sodium arsenite in mature albino rats. A dose of 10 mg of Camellia sinensis ethyl acetate (CS-EA) fraction/100 gm body weight was provided to the sodium arsenite-treated rats (10 mg/Kg body weight). LC-MS analysis was used for the detection of active component in CS-EA fraction. Enzymatic antioxidants analysis carried out by reproducible native gel technique. Hormones and some pro and anti-inflammatory markers were detected by ELISA, PCR, and western blot techniques respectively. Immunostaining was performed for the detection of estradiol receptor alpha. LC-MS analysis of CS-EA fraction ensured the presence of active tea polyphenol and tea catechin of which highest peak of epigallocatechin-3 gallate (EGCG) was obtained in this study. Significant elevations of lipid peroxidation end products followed by the diminution of antioxidant enzymes activities were noted in arsenicated rats which were capably retrieved by the treatment of CS-EA fraction. Post-treatment with CS-EA fraction meaningfully improved gonadotrophins and estradiol signalling in association with a highly expressing estradiol receptor-α (ERα) in the ovary and uterus followed by the maintenance of normal utero-ovarian histoarchitecture in arsenic fed rats. CS-EA fractioned treated group overturned the sodium arsenite driven higher expression of pro-inflammatory cytokines and proapoptotic markers along with a low level of anti apoptotic Bcl-2 expression and comparatively lower NF-κB signalling in the uterus via regulating IKK β kinase mostly by EGCG of CS-EA fraction. However, ethyl acetate fraction of Camellia sinensis played a critical role in minimizing arsenic-mediated uterine hypo-function.
Collapse
Affiliation(s)
- Arindam Dey
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics Division, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Hasina Perveen
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics Division, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Arjun L Khandare
- Food Safety, ICMR National Institute of Nutrition, Hyderabad, India
| | - Amrita Banerjee
- Department of Biochemistry and Biotechnology, Oriental Institute of Science and Technology, Midnapore, India
| | - Smarajit Maiti
- Department of Biochemistry and Biotechnology, Oriental Institute of Science and Technology, Midnapore, India
| | - Suryashis Jana
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics Division, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Asit Kumar Chakraborty
- Department of Biochemistry and Biotechnology, Oriental Institute of Science and Technology, Midnapore, India
| | - Sandip Chattopadhyay
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics Division, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India.
| |
Collapse
|
6
|
Wang S, Zhang Z, Wei S, He F, Li Z, Wang HH, Huang Y, Nie Z. Near-infrared light-controllable MXene hydrogel for tunable on-demand release of therapeutic proteins. Acta Biomater 2021; 130:138-148. [PMID: 34082094 DOI: 10.1016/j.actbio.2021.05.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022]
Abstract
Precise delivery of therapeutic protein drugs that specifically modulate desired cellular responses is critical in clinical practice. However, the spatiotemporal regulation of protein drugs release to manipulate the target cell population in vivo remains a huge challenge. Herein, we have rationally developed an injectable and Near-infrared (NIR) light-responsive MXene-hydrogel composed of Ti3C2, agarose, and protein that enables flexibly and precisely control the release profile of protein drugs to modulate cellular behaviors with high spatiotemporal precision remotely. As a proof-of-concept study, we preloaded hepatic growth factor (HGF) into the MXene@hydrogel (MXene@agarose/HGF) to activate the c-Met-mediated signaling by NIR light. We demonstrated NIR light-instructed cell diffusion, migration, and proliferation at the user-defined localization, further promoting angiogenesis and wound healing in vivo. Our approach's versatility was validated by preloading tumor necrotic factor-α (TNF-α) into the composite hydrogel (MXene@agarose/TNF-α) to promote the pro-apoptotic signaling pathway, achieving the NIR light-induced programmed cell deaths (PCD) of tumor spheroids. Taking advantage of the deep-tissue penetrative NIR light, we could eradicate the deep-seated tumors in a xenograft model exogenously. Therefore, the proposed MXene-hydrogel provides the impetus for developing therapeutic synthetic materials for light-controlled drug release under thick tissue, which will find promising applications in regenerative medicine and tumor therapy. STATEMENT OF SIGNIFICANCE: Current stimuli-responsive hydrogels for therapeutic proteins delivery mainly depend on self-degradation, passive diffusion, or the responsiveness to cues relevant to diseases. However, it remains challenging to spatiotemporally deliver protein-based drugs to manipulate the target cell population in vivo in an "on-demand" manner. Therefore, we have rationally constructed an injectable and Near-infrared (NIR) light-responsive composite hydrogel by embedding Ti3C2 MXene and protein drugs within an agarose hydrogel to enable the remote control of protein drugs delivery with high spatiotemporal precision. The NIR light-controlled release of the growth factor or cytokine has been carried out to regulate receptor-mediated cellular behaviors under deep tissue for skin wound healing or cancer therapy. This system will provide the potential for precision medicine through the development of intelligent drug delivery systems.
Collapse
Affiliation(s)
- Song Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China
| | - Zhenhua Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China
| | - Shaohua Wei
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China
| | - Fang He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China
| | - Zhu Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China
| | - Hong-Hui Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China.
| | - Yan Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China.
| |
Collapse
|
7
|
A Rational Insight into the Effect of Dimethyl Sulfoxide on TNF-α Activity. Int J Mol Sci 2020; 21:ijms21249450. [PMID: 33322533 PMCID: PMC7763846 DOI: 10.3390/ijms21249450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Direct inhibition of tumor necrosis factor-alpha (TNF-α) action is considered a promising way to prevent or treat TNF-α-associated diseases. The trimeric form of TNF-α binds to its receptor (TNFR) and activates the downstream signaling pathway. The interaction of TNF-α with molecular-grade dimethyl sulfoxide (DMSO) in an equal volumetric ratio renders TNF-α inert, in this state, TNF-α fails to activate TNFR. Here, we aimed to examine the inhibition of TNF-α function by various concentrations of DMSO. Its higher concentration led to stronger attenuation of TNF-α-induced cytokine secretion by fibroblasts, and of their death. We found that this inhibition was mediated by a perturbation in the formation of the functional TNF-α trimer. Molecular dynamics simulations revealed a transient interaction between DMSO molecules and the central hydrophobic cavity of the TNF-α homodimer, indicating that a brief interaction of DMSO with the TNF-α homodimer may disrupt the formation of the functional homotrimer. We also found that the sensitizing effect of actinomycin D on TNF-α-induced cell death depends upon the timing of these treatments and on the cell type. This study will help to select an appropriate concentration of DMSO as a working solvent for the screening of water-insoluble TNF-α inhibitors.
Collapse
|
8
|
Puckett DL, Alquraishi M, Alani D, Chahed S, Donohoe D, Voy B, Whelan J, Bettaieb A. Zyflamend induces apoptosis in pancreatic cancer cells via modulation of the JNK pathway. Cell Commun Signal 2020; 18:126. [PMID: 32795297 PMCID: PMC7427957 DOI: 10.1186/s12964-020-00609-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Background Current pharmacological therapies and treatments targeting pancreatic neuroendocrine tumors (PNETs) have proven ineffective, far too often. Therefore, there is an urgent need for alternative therapeutic approaches. Zyflamend, a combination of anti-inflammatory herbal extracts, that has proven to be effective in various in vitro and in vivo cancer platforms, shows promise. However, its effects on pancreatic cancer, in particular, remain largely unexplored. Methods In the current study, we investigated the effects of Zyflamend on the survival of beta-TC-6 pancreatic insulinoma cells (β-TC6) and conducted a detailed analysis of the underlying molecular mechanisms. Results Herein, we demonstrate that Zyflamend treatment decreased cell proliferation in a dose-dependent manner, concomitant with increased apoptotic cell death and cell cycle arrest at the G2/M phase. At the molecular level, treatment with Zyflamend led to the induction of ER stress, autophagy, and the activation of c-Jun N-terminal kinase (JNK) pathway. Notably, pharmacological inhibition of JNK abrogated the pro-apoptotic effects of Zyflamend. Furthermore, Zyflamend exacerbated the effects of streptozotocin and adriamycin-induced ER stress, autophagy, and apoptosis. Conclusion The current study identifies Zyflamend as a potential novel adjuvant in the treatment of pancreatic cancer via modulation of the JNK pathway. Video abstract
Collapse
Affiliation(s)
- Dexter L Puckett
- Department of Nutrition, University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN, 37996-0840, USA
| | - Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN, 37996-0840, USA
| | - Dina Alani
- Department of Nutrition, University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN, 37996-0840, USA
| | - Samah Chahed
- Department of Nutrition, University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN, 37996-0840, USA
| | - Dallas Donohoe
- Department of Nutrition, University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN, 37996-0840, USA
| | - Brynn Voy
- Tennessee Agricultural Experiment Station, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996-0840, USA.,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996-0840, USA
| | - Jay Whelan
- Department of Nutrition, University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN, 37996-0840, USA.,Tennessee Agricultural Experiment Station, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996-0840, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN, 37996-0840, USA. .,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996-0840, USA. .,Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996-0840, USA.
| |
Collapse
|
9
|
Rezazadeh S, Yang D, Tombline G, Simon M, Regan SP, Seluanov A, Gorbunova V. SIRT6 promotes transcription of a subset of NRF2 targets by mono-ADP-ribosylating BAF170. Nucleic Acids Res 2019; 47:7914-7928. [PMID: 31216030 DOI: 10.1093/nar/gkz528] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/22/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022] Open
Abstract
SIRT6 is critical for activating transcription of Nuclear factor (erythroid-derived 2)-like 2 (NRF2) responsive genes during oxidative stress. However, while the mechanism of SIRT6-mediated silencing is well understood, the mechanism of SIRT6-mediated transcriptional activation is unknown. Here, we employed SIRT6 separation of function mutants to reveal that SIRT6 mono-ADP-ribosylation activity is required for transcriptional activation. We demonstrate that SIRT6 mono-ADP-ribosylation of BAF170, a subunit of BAF chromatin remodeling complex, is critical for activation of a subset of NRF2 responsive genes upon oxidative stress. We show that SIRT6 recruits BAF170 to enhancer region of the Heme oxygenase-1 locus and promotes recruitment of RNA polymerase II. Furthermore, SIRT6 mediates the formation of the active chromatin 10-kb loop at the HO-1 locus, which is absent in SIRT6 deficient tissue. These results provide a novel mechanism for SIRT6-mediated transcriptional activation, where SIRT6 mono-ADP-ribosylates and recruits chromatin remodeling proteins to mediate the formation of active chromatin loop.
Collapse
Affiliation(s)
| | - David Yang
- University of Rochester, Rochester, NY 14627, USA
| | | | | | - Sean P Regan
- University of Rochester, Rochester, NY 14627, USA
| | | | | |
Collapse
|
10
|
Selimovic D, Wahl RU, Ruiz E, Aslam R, Flanagan TW, Hassan SY, Santourlidis S, Haikel Y, Friedlander P, Megahed M, Kandil E, Hassan M. Tumor necrosis factor-α triggers opposing signals in head and neck squamous cell carcinoma and induces apoptosis via mitochondrial- and non-mitochondrial-dependent pathways. Int J Oncol 2019; 55:1324-1338. [PMID: 31638203 DOI: 10.3892/ijo.2019.4900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/21/2018] [Indexed: 11/06/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains one of the most common malignancies worldwide. Although the treatment outcomes of HNSCC have improved in recent years, the prognosis of patients with advanced-stage disease remains poor. Current treatment strategies for HNSCC include surgery as a primary therapy, while radio-, chemo-, and biotherapeutics can be applied as second-line therapy. Although tumor necrosis factor-α (TNF-α) is a potent tumor suppressor cytokine, the stimulation of opposing signals impairs its clinical utility as an anticancer agent. The aim of this study was to elucidate the mechanisms regulating TNF-α‑induced opposing signals and their biological consequences in HNSCC cell lines. We determined the molecular mechanisms of TNF-α-induced opposing signals in HNSCC cells. Our in vitro analysis indicated that one of these signals triggers apoptosis, while the other induces both apoptosis and cell survival. The TNF-α-induced survival of HNSCC cells is mediated by the TNF receptor-associated factor 2 (TRAF2)/nuclear factor (NF)-κB-dependent pathway, while TNF-α-induced apoptosis is mediated by mitochondrial and non-mitochondrial-dependent mechanisms through FADD-caspase-8-caspase-3 and ASK-JNK-p53-Noxa pathways. The localization of Noxa protein to both the mitochondria and endoplasmic reticulum (ER) was found to cause mitochondrial dysregulation and ER stress, respectively. Using inhibitory experiments, we demonstrated that the FADD‑caspase-8‑caspase-3 pathway, together with mitochondrial dysregulation and ER stress-dependent pathways, are essential for the modulation of apoptosis, and the NF-κB pathway is essential for the modulation of anti-apoptotic effects/cell survival during the exposure of HNSCC cells to TNF-α. Our data provide insight into the mechanisms of TNF-α-induced opposing signals in HNSCC cells and may further help in the development of novel therapeutic approaches with which to minimize the systemic toxicity of TNF-α.
Collapse
Affiliation(s)
- Denis Selimovic
- INSERM UMR 1121, University of Strasbourg, 67000 Strasbourg, France
| | - Renate U Wahl
- Clinic of Dermatology, University Hospital οf Aachen, 52074 Aachen, Germany
| | - Emmanuelle Ruiz
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Rizwan Aslam
- Department of Otolaryngology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Thomas W Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | | | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, University Hospital of Düsseldorf, Heinrich-Heine-University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Youssef Haikel
- INSERM UMR 1121, University of Strasbourg, 67000 Strasbourg, France
| | - Paul Friedlander
- Department of Otolaryngology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital οf Aachen, 52074 Aachen, Germany
| | - Emad Kandil
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mohamed Hassan
- INSERM UMR 1121, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
11
|
Involvement of MnSOD Ala16Val polymorphism in epilepsy: A relationship with seizure type, inflammation, and metabolic syndrome. Gene 2019; 711:143924. [DOI: 10.1016/j.gene.2019.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/15/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023]
|
12
|
Abstract
The master pro-inflammatory cytokine, tumour necrosis factor (TNF), has been shown to modulate multiple signalling pathways, with wide-ranging downstream effects. TNF plays a vital role in the typical immune response through the regulation of a number of pathways encompassing an immediate inflammatory reaction with significant innate immune involvement as well as cellular activation with subsequent proliferation and programmed cell death or necrosis. As might be expected with such a broad spectrum of cellular effects and complex signalling pathways, TNF has also been implicated in a number of disease states, such as rheumatoid arthritis, ankylosing spondylitis, and Crohn’s disease. Since the time of its discovery over 40 years ago, TNF ligand and its receptors, TNF receptor (TNFR) 1 and 2, have been categorised into two complementary superfamilies, namely TNF (TNFSF) and TNFR (TNFRSF), and 19 ligands and 29 receptors have been identified to date. There have been significant advances in our understanding of TNF signalling pathways in the last decade, and this short review aims to elucidate some of the most recent advances involving TNF signalling in health and disease.
Collapse
Affiliation(s)
- Jonathan Holbrook
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Leeds, UK.,Leeds Institute of Medical Research at St. James's, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Leeds, UK
| | - Samuel Lara-Reyna
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Leeds, UK.,Leeds Institute of Medical Research at St. James's, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Leeds, UK
| | - Heledd Jarosz-Griffiths
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Leeds, UK.,Leeds Institute of Medical Research at St. James's, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Leeds, UK
| | - Michael McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Leeds, UK
| |
Collapse
|
13
|
Li W, Zhang G, Guan T, Zhang X, Khosrozadeh A, Xing M, Kong J. Manipulable Permeability of Nanogel Encapsulation on Cells Exerts Protective Effect against TNF-α-Induced Apoptosis. ACS Biomater Sci Eng 2018; 4:2825-2835. [DOI: 10.1021/acsbiomaterials.8b00654] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Guohui Zhang
- Department of Forensic Medicine, Hebei North University, Zhangjiakou 075000, China
| | | | | | | | | | - Jiming Kong
- Department of Forensic Medicine, Hebei North University, Zhangjiakou 075000, China
| |
Collapse
|
14
|
Yang S, Pascual-Guiral S, Ponce R, Giménez-Llort L, Baltrons MA, Arancio O, Palacio JR, Clos VM, Yuste VJ, Bayascas JR. Reducing the Levels of Akt Activation by PDK1 Knock-in Mutation Protects Neuronal Cultures against Synthetic Amyloid-Beta Peptides. Front Aging Neurosci 2018; 9:435. [PMID: 29358916 PMCID: PMC5766684 DOI: 10.3389/fnagi.2017.00435] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/15/2017] [Indexed: 12/16/2022] Open
Abstract
The Akt kinase has been widely assumed for years as a key downstream effector of the PI3K signaling pathway in promoting neuronal survival. This notion was however challenged by the finding that neuronal survival responses were still preserved in mice with reduced Akt activity. Moreover, here we show that the Akt signaling is elevated in the aged brain of two different mice models of Alzheimer Disease. We manipulate the rate of Akt stimulation by employing knock-in mice expressing a mutant form of PDK1 (phosphoinositide-dependent protein kinase 1) with reduced, but not abolished, ability to activate Akt. We found increased membrane localization and activity of the TACE/ADAM17 α-secretase in the brain of the PDK1 mutant mice with concomitant TNFR1 processing, which provided neurons with resistance against TNFα-induced neurotoxicity. Opposite to the Alzheimer Disease transgenic mice, the PDK1 knock-in mice exhibited an age-dependent attenuation of the unfolding protein response, which protected the mutant neurons against endoplasmic reticulum stressors. Moreover, these two mechanisms cooperatively provide the mutant neurons with resistance against amyloid-beta oligomers, and might singularly also contribute to protect these mice against amyloid-beta pathology.
Collapse
Affiliation(s)
- Shaobin Yang
- Unitat de Bioquímica de Medicina, Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sònia Pascual-Guiral
- Unitat de Bioquímica de Medicina, Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rebeca Ponce
- Unitat de Bioquímica de Medicina, Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Departament de Psiquiatria i Medicina Legal, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María A. Baltrons
- Departament de Bioquímica i Biologia Molecular, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ottavio Arancio
- Department of Pathology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Jose R. Palacio
- Departament de Biologia Cel.lular, Fisiologia i Immunologia, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Victoria M. Clos
- Departament de Farmacologia, Terapèutica i Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Victor J. Yuste
- Unitat de Bioquímica de Medicina, Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jose R. Bayascas
- Unitat de Bioquímica de Medicina, Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Jia H, Zhan L, Wang X, He X, Chen G, Zhang Y, Feng Y, Wei Y, Zhang Y, Jing Z. Transcriptome analysis of sheep oral mucosa response to Orf virus infection. PLoS One 2017; 12:e0186681. [PMID: 29073164 PMCID: PMC5658058 DOI: 10.1371/journal.pone.0186681] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 10/05/2017] [Indexed: 01/15/2023] Open
Abstract
Contagious ecthyma is a highly contagious disease with worldwide distribution, which is caused by the Orf virus (ORFV) belonging to the Parapoxvirus. To study the alteration of host gene expression in response to ORFV infection at the transcriptional level, several young small-tailed Han sheep were inoculated with ORFV, and their oral mucosa tissue samples (T0, T3, T7 and T15) were collected on day 0, 3, 7 and 15 after ORFV infection respectively. RNA-seq transcriptome comparisons were performed, showing that 1928, 3219 and 2646 differentially expressed genes (DEGs) were identified among T3 vs. T0, T7 vs. T0, and T15 vs. T0 respectively. Gene Ontology (GO) analyses of the DEGs from these comparisons, revealed that ORFV might provoke vigorous immune response of the host cells during the early stage of infection. Moreover, GO and network analysis showed that positive and negative regulative mechanisms of apoptosis were integrated in the host cells through up or down-regulating the expression level of DEGs involved in apoptotic pathways, in order to reach a homeostasis of oral mucosa tissues during the exposure to ORFV infection. In conclusion, our study for the first time describes the direct effects of ORFV on the global host gene expression of its host using high-throughput RNA sequencing, which provides a resource for future characterizing the interaction mechanism between the mammalian host and ORFV.
Collapse
Affiliation(s)
- Huaijie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Leilei Zhan
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei, China
| | - Xiaoxia Wang
- School of Public Health, Faculty of Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaobing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Guohua Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yu Zhang
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei, China
| | - Yuan Feng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yaxun Wei
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei, China
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei, China
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Wuhan, Hubei, China
| | - Zhizhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- * E-mail:
| |
Collapse
|
16
|
Feng T, Chen W, Zhang C, Xiang J, Ding H, Wu L, Geng D. The p38/CYLD Pathway is Involved in Necroptosis Induced by Oxygen-glucose Deprivation Combined with ZVAD in Primary Cortical Neurons. Neurochem Res 2017; 42:2294-2304. [PMID: 28374134 DOI: 10.1007/s11064-017-2244-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/05/2017] [Accepted: 03/22/2017] [Indexed: 01/01/2023]
Abstract
Recently, necroptosis, a form of programmed necrosis, has been widely studied. It has previously been shown that knockout of lysine 63 deubiquitinase CYLD significantly inhibits necroptosis in other cell lines, and serum response factor (SRF) could regulate CYLD gene expression through p38 mitogen-activated protein kinase (p38 MAPK). In the following study, we show oxygen-glucose deprivation (OGD) combined with a caspase inhibitor, ZVAD (OGD/ZVAD), induced CYLD protein expression in a time-dependent manner. Immunofluorescence studies showed that CYLD was localized strongly to the nucleus and weakly to the cytoplasm of neurons. The expression of CYLD in the cytoplasm, but not in the nucleus, was increased significantly upon OGD treatment. SB203580 (a p38 MAPK inhibitor) protected against neuronal injury induced by OGD/ZVAD treatment. More importantly, SB203580 decreased CYLD protein levels by inhibiting SRF phosphorylation and indirectly prevented SRF from binding to a CYLD promoter. We also found that cells with knockdown of SRF by short interfering RNA in a lentivirus vector tolerated OGD/ZVAD-induced necroptosis, when the expression of CYLD protein decreased. The results show that SB203580 prevented necroptosis induced by OGD/ZVAD injury by blocking a p38/CYLD dependent pathway.
Collapse
Affiliation(s)
- Tao Feng
- Department of Rehabilitation Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - WeiWei Chen
- Department of Neurology, The Fourth Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - CaiYi Zhang
- Department of Psychiatry, The Eastern Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - Jie Xiang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - HongMei Ding
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China
| | - LianLian Wu
- Department of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - DeQin Geng
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China.
| |
Collapse
|
17
|
Madhusudanan P, Reade S, Shankarappa SA. Neuroglia as targets for drug delivery systems: A review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:667-679. [DOI: 10.1016/j.nano.2016.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022]
|
18
|
Moncunill-Massaguer C, Saura-Esteller J, Pérez-Perarnau A, Palmeri CM, Núñez-Vázquez S, Cosialls AM, González-Gironès DM, Pomares H, Korwitz A, Preciado S, Albericio F, Lavilla R, Pons G, Langer T, Iglesias-Serret D, Gil J. A novel prohibitin-binding compound induces the mitochondrial apoptotic pathway through NOXA and BIM upregulation. Oncotarget 2016; 6:41750-65. [PMID: 26497683 PMCID: PMC4747186 DOI: 10.18632/oncotarget.6154] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/30/2015] [Indexed: 01/08/2023] Open
Abstract
We previously described diaryl trifluorothiazoline compound 1a (hereafter referred to as fluorizoline) as a first-in-class small molecule that induces p53-independent apoptosis in a wide range of tumor cell lines. Fluorizoline directly binds to prohibitin 1 and 2 (PHBs), two proteins involved in the regulation of several cellular processes, including apoptosis. Here we demonstrate that fluorizoline-induced apoptosis is mediated by PHBs, as cells depleted of these proteins are highly resistant to fluorizoline treatment. In addition, BAX and BAK are necessary for fluorizoline-induced cytotoxic effects, thereby proving that apoptosis occurs through the intrinsic pathway. Expression analysis revealed that fluorizoline induced the upregulation of Noxa and Bim mRNA levels, which was not observed in PHB-depleted MEFs. Finally, Noxa−/−/Bim−/− MEFs and NOXA-downregulated HeLa cells were resistant to fluorizoline-induced apoptosis. All together, these findings show that fluorizoline requires PHBs to execute the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Cristina Moncunill-Massaguer
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - José Saura-Esteller
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Alba Pérez-Perarnau
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Claudia Mariela Palmeri
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Sonia Núñez-Vázquez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Ana M Cosialls
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Diana M González-Gironès
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Helena Pomares
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Anne Korwitz
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sara Preciado
- Barcelona Science Park and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain
| | - Fernando Albericio
- Barcelona Science Park and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain.,Institute for Research in Biomedicine Barcelona, Barcelona, Spain.,Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
| | - Rodolfo Lavilla
- Barcelona Science Park and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain.,Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Gabriel Pons
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Thomas Langer
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Daniel Iglesias-Serret
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Joan Gil
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| |
Collapse
|
19
|
Nucleofection of rat pheochromocytoma PC-12 cells with human mutated beta-amyloid precursor protein gene (APP-sw) leads to reduced viability, autophagy-like process, and increased expression and secretion of beta amyloid. BIOMED RESEARCH INTERNATIONAL 2015; 2015:746092. [PMID: 25821818 PMCID: PMC4363875 DOI: 10.1155/2015/746092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/06/2014] [Indexed: 01/18/2023]
Abstract
Pheochromocytoma PC-12 cells are immune to physiological stimuli directed to evoke programmed cell death. Besides, metabolic inhibitors are incapable of sensitizing PC-12 cells to extrinsic or intrinsic apoptosis unless they are used in toxic concentrations. Surprisingly, these cells become receptive to cell deletion after human APP-sw gene expression. We observed reduced cell viability in GFP vector + APP-sw-nucleofected cells (drop by 36%) but not in GFP vector - or GFP vector + APP-wt-nucleofected cells. Lower viability was accompanied by higher expression of Aβ 1-16 and elevated secretion of Aβ 1-40 (in average 53.58 pg/mL). At the ultrastructural level autophagy-like process was demonstrated to occur in APP-sw-nucleofected cells with numerous autophagosomes and multivesicular bodies but without autolysosomes. Human APP-sw gene is harmful to PC-12 cells and cells are additionally driven to incomplete autophagy-like process. When stimulated by TRAIL or nystatin, CLU protein expression accompanies early phase of autophagy.
Collapse
|
20
|
Carriba P, Jimenez S, Navarro V, Moreno-Gonzalez I, Barneda-Zahonero B, Moubarak RS, Lopez-Soriano J, Gutierrez A, Vitorica J, Comella JX. Amyloid-β reduces the expression of neuronal FAIM-L, thereby shifting the inflammatory response mediated by TNFα from neuronal protection to death. Cell Death Dis 2015; 6:e1639. [PMID: 25675299 PMCID: PMC4669818 DOI: 10.1038/cddis.2015.6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 12/12/2014] [Accepted: 12/22/2014] [Indexed: 12/13/2022]
Abstract
The brains of patients with Alzheimer's disease (AD) present elevated levels of tumor necrosis factor-α (TNFα), a cytokine that has a dual function in neuronal cells. On one hand, TNFα can activate neuronal apoptosis, and on the other hand, it can protect these cells against amyloid-β (Aβ) toxicity. Given the dual behavior of this molecule, there is some controversy regarding its contribution to the pathogenesis of AD. Here we examined the relevance of the long form of Fas apoptotic inhibitory molecule (FAIM) protein, FAIM-L, in regulating the dual function of TNFα. We detected that FAIM-L was reduced in the hippocampi of patients with AD. We also observed that the entorhinal and hippocampal cortex of a mouse model of AD (PS1M146LxAPP751sl) showed a reduction in this protein before the onset of neurodegeneration. Notably, cultured neurons treated with the cortical soluble fractions of these animals showed a decrease in endogenous FAIM-L, an effect that is mimicked by the treatment with Aβ-derived diffusible ligands (ADDLs). The reduction in the expression of FAIM-L is associated with the progression of the neurodegeneration by changing the inflammatory response mediated by TNFα in neurons. In this sense, we also demonstrate that the protection afforded by TNFα against Aβ toxicity ceases when endogenous FAIM-L is reduced by short hairpin RNA (shRNA) or by treatment with ADDLs. All together, these results support the notion that levels of FAIM-L contribute to determine the protective or deleterious effect of TNFα in neuronal cells.
Collapse
Affiliation(s)
- P Carriba
- 1] Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain [2] Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), Bellaterra 08193, Spain [3] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - S Jimenez
- 1] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain [2] Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas Universidad de Sevilla, c/ Manuel Siurot s/n, Sevilla 41013, Spain [3] Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla 41012, Spain
| | - V Navarro
- 1] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain [2] Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas Universidad de Sevilla, c/ Manuel Siurot s/n, Sevilla 41013, Spain [3] Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla 41012, Spain
| | - I Moreno-Gonzalez
- 1] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain [2] Departamento de Biologia Celular, Genetica y Fisiologia. Facultad de Ciencias. IBIMA Universidad de Malaga, Malaga 29071, Spain
| | - B Barneda-Zahonero
- 1] Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain [2] Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), Bellaterra 08193, Spain [3] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - R S Moubarak
- 1] Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain [2] Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), Bellaterra 08193, Spain [3] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - J Lopez-Soriano
- 1] Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain [2] Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), Bellaterra 08193, Spain [3] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - A Gutierrez
- 1] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain [2] Departamento de Biologia Celular, Genetica y Fisiologia. Facultad de Ciencias. IBIMA Universidad de Malaga, Malaga 29071, Spain
| | - J Vitorica
- 1] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain [2] Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas Universidad de Sevilla, c/ Manuel Siurot s/n, Sevilla 41013, Spain [3] Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla 41012, Spain
| | - J X Comella
- 1] Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain [2] Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), Bellaterra 08193, Spain [3] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
21
|
Sánchez-Osuna M, Garcia-Belinchón M, Iglesias-Guimarais V, Gil-Guiñón E, Casanelles E, Yuste VJ. Caspase-activated DNase is necessary and sufficient for oligonucleosomal DNA breakdown, but not for chromatin disassembly during caspase-dependent apoptosis of LN-18 glioblastoma cells. J Biol Chem 2014; 289:18752-69. [PMID: 24838313 DOI: 10.1074/jbc.m114.550020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caspase-dependent apoptosis is a controlled type of cell death characterized by oligonucleosomal DNA breakdown and major nuclear morphological alterations. Other kinds of cell death do not share these highly distinctive traits because caspase-activated DNase (DFF40/CAD) remains inactive. Here, we report that human glioblastoma multiforme-derived LN-18 cells do not hydrolyze DNA into oligonucleosomal fragments after apoptotic insult. Furthermore, their chromatin remains packaged into a single mass, with no signs of nuclear fragmentation. However, ultrastructural analysis reveals that nuclear disassembly occurs, although compacted chromatin does not localize into apoptotic nuclear bodies. Caspases become properly activated, and ICAD, the inhibitor of DFF40/CAD, is correctly processed. Using cell-free in vitro assays, we show that chromatin from isolated nuclei of LN-18 cells is suitable for hydrolysis into oligonuclesomal fragments by staurosporine-pretreated SH-SY5Y cytoplasms. However, staurosporine-pretreated LN-18 cytoplasms do not induce DNA laddering in isolated nuclei from either LN-18 or SH-SY5Y cells because LN-18 cells express lower amounts of DFF40/CAD. DFF40/CAD overexpression makes LN-18 cells fully competent to degrade their DNA into oligonucleosome-sized fragments, and yet they remain unable to arrange their chromatin into nuclear clumps after apoptotic insult. Indeed, isolated nuclei from LN-18 cells were resistant to undergoing apoptotic nuclear morphology in vitro. The use of LN-18 cells has uncovered a previously unsuspected cellular model, whereby a caspase-dependent chromatin package is DFF40/CAD-independent, and DFF40/CAD-mediated double-strand DNA fragmentation does not warrant the distribution of the chromatin into apoptotic nuclear bodies. The studies highlight a not-yet reported DFF40/CAD-independent mechanism driving conformational nuclear changes during caspase-dependent cell death.
Collapse
Affiliation(s)
- María Sánchez-Osuna
- From the Cell Death, Senescence, and Survival Group, Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, and the Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Mercè Garcia-Belinchón
- From the Cell Death, Senescence, and Survival Group, Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, and the Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Victoria Iglesias-Guimarais
- From the Cell Death, Senescence, and Survival Group, Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, and the Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Estel Gil-Guiñón
- From the Cell Death, Senescence, and Survival Group, Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, and the Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Elisenda Casanelles
- From the Cell Death, Senescence, and Survival Group, Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, and the Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Victor J Yuste
- From the Cell Death, Senescence, and Survival Group, Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, and the Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Cerdanyola del Vallés, Barcelona, Spain
| |
Collapse
|
22
|
Mincheva-Tasheva S, Obis E, Tamarit J, Ros J. Apoptotic cell death and altered calcium homeostasis caused by frataxin depletion in dorsal root ganglia neurons can be prevented by BH4 domain of Bcl-xL protein. Hum Mol Genet 2014; 23:1829-41. [PMID: 24242291 DOI: 10.1093/hmg/ddt576] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Friedreich ataxia (FRDA) is a neurodegenerative disease characterized by a decreased expression of the mitochondrial protein frataxin. Major neurological symptoms of the disease are due to degeneration of dorsal root ganglion (DRG) sensory neurons. In this study we have explored the neurodegenerative events occurring by frataxin depletion on primary cultures of neurons obtained from rat DRGs. Reduction of 80% of frataxin levels in these cells was achieved by transduction with lentivirus containing shRNA silencing sequences. Frataxin depletion caused mitochondrial membrane potential decrease, neurite degeneration and apoptotic cell death. A marked increase of free intracellular Ca(2+) levels and alteration in Ca(2+)-mediated signaling pathways was also observed, thus suggesting that altered calcium homeostasis can play a pivotal role in neurodegeneration caused by frataxin deficiency. These deleterious effects were reverted by the addition of a cell-penetrant TAT peptide coupled to the BH4, the anti-apoptotic domain of Bcl-x(L). Treatment of cultured frataxin-depleted neurons with TAT-BH4 was able to restore the free intracellular Ca(2+) levels and protect the neurons from degeneration. These observations open the possibility of new therapies of FRDA based on modulating the Ca(2+) signaling and prevent apoptotic process to protect DRG neurons from neurodegeneration.
Collapse
Affiliation(s)
- Stefka Mincheva-Tasheva
- Grup de Bioquímica de L'Estrès Oxidatiu, Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, Lleida, Spain
| | | | | | | |
Collapse
|
23
|
Garcera A, Bahi N, Periyakaruppiah A, Arumugam S, Soler RM. Survival motor neuron protein reduction deregulates autophagy in spinal cord motoneurons in vitro. Cell Death Dis 2013; 4:e686. [PMID: 23788043 PMCID: PMC3702296 DOI: 10.1038/cddis.2013.209] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Spinal muscular atrophy (SMA) is a genetic disorder characterized by degeneration of spinal cord motoneurons (MNs), resulting in muscular atrophy and weakness. SMA is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene and decreased SMN protein. SMN is ubiquitously expressed and has a general role in the assembly of small nuclear ribonucleoproteins and pre-mRNA splicing requirements. SMN reduction causes neurite degeneration and cell death without classical apoptotic features, but the direct events leading to SMN degeneration in SMA are still unknown. Autophagy is a conserved lysosomal protein degradation pathway whose precise roles in neurodegenerative diseases remain largely unknown. In particular, it is unclear whether autophagosome accumulation is protective or destructive, but the accumulation of autophagosomes in the neuritic beadings observed in several neurite degeneration models suggests a close relationship between the autophagic process and neurite collapse. In the present work, we describe an increase in the levels of the autophagy markers including autophagosomes, Beclin1 and light chain (LC)3-II proteins in cultured mouse spinal cord MNs from two SMA cellular models, suggesting an upregulation of the autophagy process in Smn (murine survival motor neuron protein)-reduced MNs. Overexpression of Bcl-xL counteracts LC3-II increase, contributing to the hypothesis that the protective role of Bcl-xL observed in some SMA models may be mediated by its role in autophagy inhibition. Our in vitro experimental data indicate an upregulation in the autophagy process and autophagosome accumulation in the pathogenesis of SMA, thus providing a valuable clue in understanding the mechanisms of axonal degeneration and a possible therapeutic target in the treatment of SMA.
Collapse
Affiliation(s)
- A Garcera
- Unitat de Senyalització Neuronal, Department Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLLEIDA, Lleida 25198, Spain
| | | | | | | | | |
Collapse
|
24
|
Marques-Fernandez F, Planells-Ferrer L, Gozzelino R, Galenkamp KMO, Reix S, Llecha-Cano N, Lopez-Soriano J, Yuste VJ, Moubarak RS, Comella JX. TNFα induces survival through the FLIP-L-dependent activation of the MAPK/ERK pathway. Cell Death Dis 2013; 4:e493. [PMID: 23412386 PMCID: PMC3734812 DOI: 10.1038/cddis.2013.25] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activation of tumor necrosis factor receptor-1 can trigger survival or apoptosis pathways. In many cellular models, including the neuronal cell model PC12, it has been demonstrated that inhibition of protein synthesis is sufficient to render cells sensitive to apoptosis induced by TNFα. The survival effect is linked to the translocation of the transcription factor nuclear factor-kappa B (NF-κB) to the nucleus and activation of survival-related genes such as FLICE-like inhibitory protein long form (FLIP-L) or IAPs. Nonetheless, we previously reported an NF-κB-independent contribution of Bcl-xL to cell survival after TNFα treatment. Here, we demonstrate that NF-κB-induced increase in FLIP-L expression levels is essential for mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) activation. We demonstrate that FLIP-L behaves as a Raf-1 activator through both protein-protein interaction and Raf-1 kinase activation, without the requirement of the classical Ras activation. Importantly, prevention of FLIP-L increase by NF-κB inhibition or knockdown of endogenous FLIP-L blocks MAPK/ERK activation after TNFα treatment. From a functional point of view, we show that inhibition of the MAPK/ERK pathway and the NF-κB pathway are equally relevant to render PC12 cells sensitive to cell death induced by TNFα. Apoptosis induced by TNFα under these conditions is dependent on jun nuclear kinase1/2 JNK1/2-dependent Bim upregulation. Therefore, we report a previously undescribed and essential role for MAPK/ERK activation by FLIP-L in the decision between cell survival and apoptosis upon TNFα stimulation.
Collapse
Affiliation(s)
- F Marques-Fernandez
- Cell Signaling and Apoptosis Group, Fundació Institut de recerca de l'Hospital Universitari de la Vall d'Hebron, Edifici Collserola, Laboratori 203, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
NF-κB activation fails to protect cells to TNFα-induced apoptosis in the absence of Bcl-xL, but not Mcl-1, Bcl-2 or Bcl-w. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1085-95. [PMID: 23369735 DOI: 10.1016/j.bbamcr.2013.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/28/2012] [Accepted: 01/18/2013] [Indexed: 12/30/2022]
Abstract
TNFα can promote either cell survival or cell death. The activation of NF-κB plays a central role in cell survival while its inhibition makes TNFα-triggered cytotoxicity possible. Here, we report that the overexpression of a non-degradable mutant of the inhibitor of NF-κB (super-repressor (SR)-IκBα) sensitizes HeLa cells towards TNFα-induced apoptosis, involving caspases activation and cytocrome C release from the mitochondria. Interestingly, we describe that the specific knockdown of Bcl-xL, but not that of Bcl-2, Bcl-w or Mcl-1, renders cells sensitive to TNFα-induced apoptosis. This cytotoxic effect occurs without altering the activation of NF-κB. Then, the activation of the NF-κB pathway is not sufficient to protect Bcl-xL-downregulated cells from TNFα-induced cell death, meaning that TNFα is not able to promote cell survival in the absence of Bcl-xL. In addition, Bcl-xL silencing does not potentiate the cytotoxicity afforded by the cytokine in SR-IκBα-overexpressing cells. This indicates that TNFα-induced apoptosis in SR-IκBα-overexpressing cells relies on the protein levels of Bcl-xL. We have corroborated these findings using RD and DU-145 cells, which also become sensitive to TNFα-induced apoptosis after Bcl-xL knockdown despite that NF-κB remains activated. Altogether, our results point out that the impairment of the anti-apoptotic function of Bcl-xL should make cells sensitive towards external insults circumventing the TNFα-triggered NF-κB-mediated cytoprotective effect. Hence, the specific inhibition of Bcl-xL could be envisaged as a promising alternative strategy against NF-κB-dependent highly chemoresistant proliferative malignancies.
Collapse
|
26
|
Xue Y, Wu J, Sun J. Four types of inorganic nanoparticles stimulate the inflammatory reaction in brain microglia and damage neurons in vitro. Toxicol Lett 2012; 214:91-8. [DOI: 10.1016/j.toxlet.2012.08.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 08/10/2012] [Accepted: 08/11/2012] [Indexed: 10/28/2022]
|
27
|
Resistance against tumour necrosis factor α apoptosis by the cellular prion protein is cell-specific for oral, colon and kidney cancer cell lines. Cell Biol Int 2012; 36:273-7. [PMID: 21980981 DOI: 10.1042/cbi20110088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Since the discovery of PrPC (cellular prion protein), most studies have focused on its role in neurodegenerative diseases, whereas its function outside the nervous system remains obscure. We investigated the ability of PrPC in resisting TNFα (tumour necrosis factor α) apoptosis in three PrPC-transiently transfected cancer cell lines, renal adenocarcinoma ACHN, oral squamous cell carcinoma HSC-2 and colon adenocarcinoma LS174T. PrPC-expressing ACHN and LS174T cells had higher viabilities compared with the mock-transfected cells, while the transient overexpression of PrPC had minimal overall effect on HSC-2 cells due to its high endogenous PrPC expression. Cell cycles were also analysed, with both PrPC expressing ACHN and LS174T cells having a significantly higher proliferative index than mock-transfected cells. Flow cytometry analysis indicated a G1/S-phase cell cycle transition in both PrPC-expressing ACHN and LS174T cells. PrPC resists TNFα apoptosis due to a modest, but statistically significant, cell-specific cytoprotection compared with mock-transfected cells.
Collapse
|
28
|
Iglesias-Guimarais V, Gil-Guiñon E, Gabernet G, García-Belinchón M, Sánchez-Osuna M, Casanelles E, Comella JX, Yuste VJ. Apoptotic DNA degradation into oligonucleosomal fragments, but not apoptotic nuclear morphology, relies on a cytosolic pool of DFF40/CAD endonuclease. J Biol Chem 2012; 287:7766-79. [PMID: 22253444 DOI: 10.1074/jbc.m111.290718] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptotic cell death is characterized by nuclear fragmentation and oligonucleosomal DNA degradation, mediated by the caspase-dependent specific activation of DFF40/CAD endonuclease. Here, we describe how, upon apoptotic stimuli, SK-N-AS human neuroblastoma-derived cells show apoptotic nuclear morphology without displaying concomitant internucleosomal DNA fragmentation. Cytotoxicity afforded after staurosporine treatment is comparable with that obtained in SH-SY5Y cells, which exhibit a complete apoptotic phenotype. SK-N-AS cell death is a caspase-dependent process that can be impaired by the pan-caspase inhibitor q-VD-OPh. The endogenous inhibitor of DFF40/CAD, ICAD, is correctly processed, and dff40/cad cDNA sequence does not reveal mutations altering its amino acid composition. Biochemical approaches show that both SH-SY5Y and SK-N-AS resting cells express comparable levels of DFF40/CAD. However, the endonuclease is poorly expressed in the cytosolic fraction of healthy SK-N-AS cells. Despite this differential subcellular distribution of DFF40/CAD, we find no differences in the subcellular localization of both pro-caspase-3 and ICAD between the analyzed cell lines. After staurosporine treatment, the preferential processing of ICAD in the cytosolic fraction allows the translocation of DFF40/CAD from this fraction to a chromatin-enriched one. Therefore, the low levels of cytosolic DFF40/CAD detected in SK-N-AS cells determine the absence of DNA laddering after staurosporine treatment. In these cells DFF40/CAD cytosolic levels can be restored by the overexpression of their own endonuclease, which is sufficient to make them proficient at degrading their chromatin into oligonucleosome-size fragments after staurosporine treatment. Altogether, the cytosolic levels of DFF40/CAD are determinants in achieving a complete apoptotic phenotype, including oligonucleosomal DNA degradation.
Collapse
Affiliation(s)
- Victoria Iglesias-Guimarais
- Cell Death, Senescence, and Survival Group, Departament de Bioquimica i Biologia Molecular and Institut de Neurociencies, Facultat de Medicina, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Garcera A, Mincheva S, Gou-Fabregas M, Caraballo-Miralles V, Lladó J, Comella JX, Soler RM. A new model to study spinal muscular atrophy: neurite degeneration and cell death is counteracted by BCL-X(L) Overexpression in motoneurons. Neurobiol Dis 2011; 42:415-26. [PMID: 21333739 DOI: 10.1016/j.nbd.2011.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/01/2011] [Accepted: 02/07/2011] [Indexed: 01/15/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a motoneuron disorder characterized by deletions or specific mutations in the Survival Motor Neuron gene (SMN). SMN is ubiquitously expressed and has a general role in the assembly of small nuclear ribonucleoprotein (snRNP) and pre-mRNA splicing requirements. However, in motoneuron axons SMN deficiency results in inappropriate levels of certain transcripts in the distal axon, suggesting that the specific susceptibility of motoneurons to SMN deficiency is related to a specialized function in these cells. Although mouse models of SMA have been generated and are useful for in vivo and in vitro studies, the limited number of isolated MNs that could be obtained from them makes it difficult to perform biochemical, genetic and pharmacological approaches. We describe here an in vitro model of isolated embryonic mouse motoneurons in which the cellular levels of endogenous SMN are reduced. These cells show neurite degeneration and cell death after several days of SMN knockdown. We found that the over-expression of the anti-apoptotic protein Bcl-x(L) into motoneurons rescues these cells from the phenotypic changes observed. This result demonstrates that Bcl-x(L) signaling could be a possible pharmacological target of SMA therapeutics.
Collapse
Affiliation(s)
- Ana Garcera
- Unitat de Senyalització Neuronal, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLLEIDA, Montserrat Roig, 2. 25008-Lleida, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Parlee SD, Ernst MC, Muruganandan S, Sinal CJ, Goralski KB. Serum chemerin levels vary with time of day and are modified by obesity and tumor necrosis factor-{alpha}. Endocrinology 2010; 151:2590-602. [PMID: 20363880 DOI: 10.1210/en.2009-0794] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chemerin is an adipokine with important regulatory roles in adipogenesis. In humans, serum total chemerin (i.e. prochemerin plus chemerin) levels are positively associated with body mass index and metabolic syndrome. However, the mechanisms that increase serum chemerin concentration are unknown. We hypothesized that chronic low-grade inflammation that occurs in obesity promotes chemerin production by adipocytes. Consistent with this, TNFalpha treatment of 3T3-L1 adipocytes increased bioactive chemerin levels in the cell media as detected using a CMKLR1 cell-based bioassay. This effect was blocked by the protein synthesis inhibitor cycloheximide and protein secretion inhibitor brefeldin A, indicating that TNFalpha may enhance prochemerin synthesis and secretion from adipocytes. In vivo, TNFalpha produced a time-dependent increase in serum total chemerin and bioactive chemerin. Bioactive chemerin was produced by primary mouse adipocytes and hepatocytes. Only primary adipocyte-derived chemerin was responsive to TNFalpha regulation implicating adipocytes as a potential source of elevated serum chemerin after TNFalpha exposure in vivo. In lean mice, serum total chemerin levels oscillated with peak levels occurring during daytime and trough levels at night. Comparatively, leptin- and leptin receptor-deficient obese mice, which have elevated adipose tissue expression of TNFalpha, displayed elevated serum total chemerin levels with an enhanced oscillatory pattern. In summary, our novel results identified TNFalpha as a positive regulator of adipocyte-derived chemerin. We corroborate the finding of elevated chemerin in obese humans by identifying elevated serum levels of total chemerin in two obese mouse models with a corresponding alteration in the rhythmic pattern of serum chemerin levels.
Collapse
Affiliation(s)
- Sebastian D Parlee
- College of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia, Canada B3H 3J5
| | | | | | | | | |
Collapse
|
31
|
Moubarak RS, Solé C, Pascual M, Gutierrez H, Llovera M, Pérez-García MJ, Gozzelino R, Segura MF, Iglesias-Guimarais V, Reix S, Soler RM, Davies AM, Soriano E, Yuste VJ, Comella JX. The death receptor antagonist FLIP-L interacts with Trk and is necessary for neurite outgrowth induced by neurotrophins. J Neurosci 2010; 30:6094-105. [PMID: 20427667 PMCID: PMC6632611 DOI: 10.1523/jneurosci.0537-10.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/17/2010] [Indexed: 12/28/2022] Open
Abstract
FLICE-inhibitory protein (FLIP) is an endogenous inhibitor of the signaling pathway triggered by the activation of death receptors. Here, we reveal a novel biological function for the long form of FLIP (FLIP-L) in neuronal differentiation, which can be dissociated from its antiapoptotic role. We show that FLIP-L is expressed in different regions of the mouse embryonic nervous system. Immunohistochemistry of mouse brain sections at different stages reveals that, in neurons, FLIP is expressed early during the embryonic neuronal development (embryonic day 16) and decreases at later stages (postnatal days 5-15), when its expression is essentially detected in glial cells. FLIP-L overexpression significantly enhances neurotrophin-induced neurite outgrowth in motoneurons, superior cervical ganglion neurons, and PC12 cells. Conversely, the downregulation of FLIP-L protein levels by specific RNA interference significantly reduces neurite outgrowth, even in the presence of the appropriate neurotrophin stimulus. Moreover, NGF-dependent activation of two main intracellular pathways involved in the regulation of neurite outgrowth, extracellular signal-regulated kinases (ERKs) and nuclear factor kappaB (NF-kappaB), is impaired when endogenous FLIP-L is downregulated, although TrkA remains activated. Finally, we demonstrate that FLIP-L interacts with TrkA, and not with p75(NTR), in an NGF-dependent manner, and endogenous FLIP-L interacts with TrkB in whole-brain lysates from embryonic day 15 mice embryos. Altogether, we uncover a new role for FLIP-L as an unexpected critical player in neurotrophin-induced mitogen-activated protein kinase/ERK- and NF-kappaB-mediated control of neurite growth in developing neurons.
Collapse
Affiliation(s)
- Rana S. Moubarak
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), 08193 Bellaterra, Spain
- Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Carme Solé
- Cell Signaling and Apoptosis Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida/Universitat de Lleida, 25198 Lleida, Spain
| | - Marta Pascual
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
- Developmental Neurobiology and Regeneration Unit, Institute for Research in Biomedicine, Parc Cientific de Barcelona and Department of Cell Biology, University of Barcelona, Barcelona 08028, Spain, and
| | | | - Marta Llovera
- Cell Signaling and Apoptosis Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida/Universitat de Lleida, 25198 Lleida, Spain
| | - M. José Pérez-García
- Cell Signaling and Apoptosis Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida/Universitat de Lleida, 25198 Lleida, Spain
| | - Raffaella Gozzelino
- Cell Signaling and Apoptosis Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida/Universitat de Lleida, 25198 Lleida, Spain
| | - Miguel F. Segura
- Cell Signaling and Apoptosis Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida/Universitat de Lleida, 25198 Lleida, Spain
| | - Victoria Iglesias-Guimarais
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Stéphanie Reix
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), 08193 Bellaterra, Spain
- Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Rosa M. Soler
- Cell Signaling and Apoptosis Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida/Universitat de Lleida, 25198 Lleida, Spain
| | | | - Eduardo Soriano
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
- Developmental Neurobiology and Regeneration Unit, Institute for Research in Biomedicine, Parc Cientific de Barcelona and Department of Cell Biology, University of Barcelona, Barcelona 08028, Spain, and
| | - Victor J. Yuste
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Joan X. Comella
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), 08193 Bellaterra, Spain
- Cell Signaling and Apoptosis Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida/Universitat de Lleida, 25198 Lleida, Spain
- Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
32
|
TNF-alpha-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-X(L). Cell Death Differ 2010; 17:1420-34. [PMID: 20203691 DOI: 10.1038/cdd.2010.19] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species (ROS) produced by tumor necrosis factor-alpha (TNF-alpha) have an important function in cell death by activating c-Jun N-terminal kinase. However, the exact mechanism of mitochondrial ROS production, after TNF-alpha stimulation, is not clearly understood. In this study, we determined that ROS modulator 1 (Romo1) and B-cell lymphoma-extra large (Bcl-X(L)) are directly associated with TNF-alpha-induced ROS production. In response to TNF-alpha, TNF complex II, which consists of receptor-interacting protein 1, TNF receptor-associated protein with death domain, TNF receptor-associated factor 2, Fas-associated death domain protein, and pro-caspase-8, binds to the C-terminus of Romo1 located in the mitochondria. Concurrently, Romo1 recruits Bcl-X(L) to reduce the mitochondrial membrane potential, resulting in ROS production and apoptotic cell death. On the basis of these results, we suggest that Romo1 is a molecular bridge between TNF-alpha signaling and the mitochondria for ROS production that triggers TNF-alpha-mediated apoptosis, as well as a novel target in the development of anti-inflammatory agents that block the origin of ROS production.
Collapse
|
33
|
Baik JY, Lee GM. A DIGE approach for the assessment of differential expression of the CHO proteome under sodium butyrate addition: Effect of Bcl-xLoverexpression. Biotechnol Bioeng 2010; 105:358-67. [DOI: 10.1002/bit.22534] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
34
|
Liu Z, Wang S, Zhou H, Yang Y, Zhang M. Na+/H+ exchanger mediates TNF-alpha-induced hepatocyte apoptosis via the calpain-dependent degradation of Bcl-xL. J Gastroenterol Hepatol 2009; 24:879-85. [PMID: 19220664 DOI: 10.1111/j.1440-1746.2008.05715.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND AIM It is well known that tumor necrosis factor-alpha (TNF-alpha) induces hepatocyte apoptosis and contributes to liver diseases. However, the exact mechanisms are not well understood. METHODS In the present study, we reported that Na(+)/H(+) exchanger (NHE) is involved in TNF-alpha-induced hepatocyte apoptosis. RESULTS TNF-alpha time dependently induced an increase in NHE activity in hepatocytes, but cariporide, an NHE inhibitor, blocked the TNF-alpha-induced increase of NHE activity in a dose-dependent manner. Increased NHE activity induced by TNF-alpha was associated with increased intracellular calcium (Ca(2+)(i)) concentration and calpain activity. Cariporide reversed these effects induced by TNF-alpha. In addition, TNF-alpha downregulated Bcl-xL, an anti-apoptotic protein, but not mRNA levels. The inhibition of either calpain or NHE blocked the TNF-alpha-induced decrease of the Bcl-xL protein. TNF-alpha did not change the pro-apoptotic Bax and Bak protein levels. Cariporide, calcium remover 1,2-bis (2-aminophenoxy) ethane-N,N,N0,N0-tetraacetic acid, or calpain inhibitor benzyloxycarbonyl-leucyl-leucinal attenuated TNF-alpha-induced hepatocyte apoptosis. CONCLUSION TNF-alpha via NHE results in hepatocyte apoptosis through the calcium/calpain/Bcl-xL pathway.
Collapse
Affiliation(s)
- Zhan Liu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (People's Hospital of Hunan Province), Changsha City, China.
| | | | | | | | | |
Collapse
|