1
|
Profile of Prof. Weizhi Ji. SCIENCE CHINA-LIFE SCIENCES 2018; 62:8-11. [PMID: 30570698 DOI: 10.1007/s11427-018-9424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
2
|
Medwig TN, Matus DQ. Breaking down barriers: the evolution of cell invasion. Curr Opin Genet Dev 2017; 47:33-40. [PMID: 28881331 PMCID: PMC5716887 DOI: 10.1016/j.gde.2017.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/02/2017] [Accepted: 08/11/2017] [Indexed: 12/12/2022]
Abstract
Cell invasion is a specialized cell behavior that likely co-evolved with the emergence of basement membranes in metazoans as a mechanism to break down the barriers that separate tissues. A variety of conserved and lineage-specific biological processes that occur during development and homeostasis rely on cell invasive behavior. Recent innovations in genome editing and live-cell imaging have shed some light on the programs that mediate acquisition of an invasive phenotype; however, comparative approaches among species are necessary to understand how this cell behavior evolved. Here, we discuss the contexts of cell invasion, highlighting both established and emerging model systems, and underscore gaps in our understanding of the evolution of this key cellular behavior.
Collapse
Affiliation(s)
- Taylor N Medwig
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
3
|
Kohrman AQ, Matus DQ. Divide or Conquer: Cell Cycle Regulation of Invasive Behavior. Trends Cell Biol 2017; 27:12-25. [PMID: 27634432 PMCID: PMC5186408 DOI: 10.1016/j.tcb.2016.08.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/30/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022]
Abstract
Cell invasion through the basement membrane (BM) occurs during normal embryonic development and is a fundamental feature of cancer metastasis. The underlying cellular and genetic machinery required for invasion has been difficult to identify, due to a lack of adequate in vivo models to accurately examine invasion in single cells at subcellular resolution. Recent evidence has documented a functional link between cell cycle arrest and invasive activity. While cancer progression is traditionally thought of as a disease of uncontrolled cell proliferation, cancer cell dissemination, a critical aspect of metastasis, may require a switch from a proliferative to an invasive state. In this work, we review evidence that BM invasion requires cell cycle arrest and discuss the implications of this concept with regard to limiting the lethality associated with cancer metastasis.
Collapse
Affiliation(s)
- Abraham Q Kohrman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
4
|
Gupta T, Kumar A, Cattenoz PB, VijayRaghavan K, Giangrande A. The Glide/Gcm fate determinant controls initiation of collective cell migration by regulating Frazzled. eLife 2016; 5. [PMID: 27740455 PMCID: PMC5114015 DOI: 10.7554/elife.15983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/12/2016] [Indexed: 12/16/2022] Open
Abstract
Collective migration is a complex process that contributes to build precise tissue and organ architecture. Several molecules implicated in cell interactions also control collective migration, but their precise role and the finely tuned expression that orchestrates this complex developmental process are poorly understood. Here, we show that the timely and threshold expression of the Netrin receptor Frazzled triggers the initiation of glia migration in the developing Drosophila wing. Frazzled expression is induced by the transcription factor Glide/Gcm in a dose-dependent manner. Thus, the glial determinant also regulates the efficiency of collective migration. NetrinB but not NetrinA serves as a chemoattractant and Unc5 contributes as a repellant Netrin receptor for glia migration. Our model includes strict spatial localization of a ligand, a cell autonomously acting receptor and a fate determinant that act coordinately to direct glia toward their final destination. DOI:http://dx.doi.org/10.7554/eLife.15983.001
Collapse
Affiliation(s)
- Tripti Gupta
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Arun Kumar
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Pierre B Cattenoz
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - K VijayRaghavan
- Department of Developmental Biology and Genetics, Tata Institute for Fundamental Research, Bangalore, India.,National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Angela Giangrande
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
5
|
Chen H, Mao Y, Wang S, Li B, Wang J, Li J, Ma Y. Characterization of glial-restricted precursors from rhesus monkey embryonic stem cells. Transl Neurosci 2015; 6:244-251. [PMID: 28123809 PMCID: PMC4936634 DOI: 10.1515/tnsci-2015-0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/01/2015] [Indexed: 11/15/2022] Open
Abstract
Glial-restricted precursor (GRP) cells, the earliest glial progenitors for both astrocytes and oligodendrocytes, have been derived from embryos and embryonic stem cells (ESC) in rodents. However, knowledge regarding the equivalent cell type in primates is limited due to restrictions imposed by ethics and resources. Here we report successful derivation and characterization of primate GRP cells from rhesus monkey ESC. The purified monkey GRP cells were A2B5-positive and FGF2-dependent for survival and proliferation. The differentiation assays indicated that they were tri-potential in vitro and bi-potential in vivo. These newly purified GRP cells will help to facilitate understanding of the molecular mechanism of glial development in primates as well as provide a source of therapeutic donor cells for use in neuroregenerative medicine.
Collapse
Affiliation(s)
- Hongwei Chen
- Laboratory of Reproductive and Developmental Biology, Kunming Primate Research Center, and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China; Yunnan Key Laboratory of Animal Reproductive Biology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China; Stem Cell and Brain Research Institute, INSERM U846, Bron 69675, France; Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Mao
- Laboratory of Primate Recognition Neurosciences, Kunming Primate Research Center, and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China; Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shufen Wang
- Laboratory of Reproductive and Developmental Biology, Kunming Primate Research Center, and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China; Yunnan Key Laboratory of Animal Reproductive Biology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China; Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Li
- Laboratory of Reproductive and Developmental Biology, Kunming Primate Research Center, and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China; Yunnan Key Laboratory of Animal Reproductive Biology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China; Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinhuan Wang
- Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
| | - Jian Li
- Central Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
| | - Yuanye Ma
- Laboratory of Primate Recognition Neurosciences, Kunming Primate Research Center, and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
| |
Collapse
|
6
|
Wang X, Xu J, Gong J, Shen H, Wang X. Expression of netrin-1 and its receptors, deleted in colorectal cancer and uncoordinated locomotion-5 homolog B, in rat brain following focal cerebral ischemia reperfusion injury. Neural Regen Res 2014; 8:64-9. [PMID: 25206373 PMCID: PMC4107494 DOI: 10.3969/j.issn.1673-5374.2013.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/14/2012] [Indexed: 11/18/2022] Open
Abstract
Netrin-1 is currently one of the most highly studied axon guidance factors. Netrin-1 is widely expressed in the embryonic central nervous system, and together with the deleted in colorectal cancer and uncoordinated locomotion-5 homolog B receptors, netrin-1 plays a guiding role in the construction of neural conduction pathways and the directional migration of neuronal cells. In this study, we established a rat middle cerebral artery ischemia reperfusion model using the intraluminal thread technique. Immunofluorescence microscopy showed that the expression of netrin-1 and deleted in colorectal cancer in the ischemic penumbra was upregulated at 1 day after reperfusion, reached a peak at 14 days, and decreased at 21 days. There was no obvious change in the expression of uncoordinated locomotion-5 homolog B during this time period. Double immunofluorescence labeling revealed that netrin-1 was expressed in neuronal cells and around small vessels, but not in astrocytes and microglia, while deleted in colorectal cancer was localized in the cell membranes and protrusions of neurons and astrocytes. Our experimental findings indicate that netrin-1 may be involved in post-ischemic repair and neuronal protection via deleted in colorectal cancer receptors.
Collapse
Affiliation(s)
- Xiaodan Wang
- Department of Neurology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China ; Department of Neurology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou 215028, Jiangsu Province, China
| | - Jinming Xu
- Department of Neurology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou 215028, Jiangsu Province, China
| | - Jieqin Gong
- Department of Neurology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou 215028, Jiangsu Province, China
| | - Hui Shen
- Department of Neurology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou 215028, Jiangsu Province, China
| | - Xiaoping Wang
- Department of Neurology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
7
|
Harter PN, Bunz B, Dietz K, Hoffmann K, Meyermann R, Mittelbronn M. Spatio-temporal deleted in colorectal cancer (DCC) and netrin-1 expression in human foetal brain development. Neuropathol Appl Neurobiol 2011; 36:623-35. [PMID: 20609112 DOI: 10.1111/j.1365-2990.2010.01100.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS Deleted in colorectal cancer (DCC) and its ligand netrin-1 are known as axonal guidance factors, being involved in angiogenesis, migration and survival of precursor cells in the embryonic mammalian central nervous system (CNS). So far, little is known about the distribution of those molecules in human CNS development. METHODS We investigated 22 human foetal brain specimens (12th and 28th week of gestation) for DCC and netrin-1 expression by means of immunohistochemistry, immunofluorescence and confocal laser microscopy. Statistical analysis was performed by applying a semi-quantitative score, including staining intensity and frequency and correlation with foetal age. RESULTS DCC and netrin-1 were differentially expressed throughout the developing human foetal telencephalic and cerebellar cortical layers. Netrin-1 exhibited the highest levels in telencephalic germinal layers, whereas the strongest DCC immunoreactivity was seen in the developing cortical plate. Netrin-1 and DCC were predominantly present on cerebellar external granule layer cells. Distinct co-expression was seen in maturing foetal brainstem nuclei, cerebellar external granular layer and the choroid plexus. In contrast, endothelial cells showed strong netrin-1 expression with subsidiary DCC immunoreactivity. Pontine and telencephalic axonal fibre tracts also demonstrated strong netrin-1 expression. CONCLUSIONS We show that DCC and netrin-1 are ubiquitously expressed in the human foetal brain; however, both exhibit a distinct spatio-temporal expression pattern. Together with the data from animal experiments, our findings might indicate also an important role for DCC and netrin-1 in human foetal CNS development.
Collapse
Affiliation(s)
- P N Harter
- Institute of Brain Research, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | |
Collapse
|