1
|
Alotaibi G, Alkhammash A. Pharmacological landscape of endoplasmic reticulum stress: Uncovering therapeutic avenues for metabolic diseases. Eur J Pharmacol 2025; 998:177509. [PMID: 40089262 DOI: 10.1016/j.ejphar.2025.177509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
The endoplasmic reticulum (ER) plays a fundamental role in maintaining cellular homeostasis by ensuring proper protein folding, lipid metabolism, and calcium regulation. However, disruptions to ER function, known as ER stress, activate the unfolded protein response (UPR) to restore balance. Chronic or unresolved ER stress contributes to metabolic dysfunctions, including insulin resistance, non-alcoholic fatty liver disease (NAFLD), and neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Recent studies have also highlighted the importance of mitochondria-ER contact sites (MERCs) and ER-associated inflammation in disease progression. This review explores the current pharmacological landscape targeting ER stress, focusing on therapeutic strategies for rare metabolic and neurodegenerative diseases. It examines small molecules such as tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid (4-PBA), repurposed drugs like 17-AAG (17-N-allylamino-17demethoxygeldanamycin (tanespimycin)) and berberine, and phytochemicals such as resveratrol and hesperidin. Additionally, it discusses emerging therapeutic areas, including soluble epoxide hydrolase (sEH) inhibitors for metabolic disorders and MERCs modulation for neurological diseases. The review emphasizes challenges in translating these therapies to clinical applications, such as toxicity, off-target effects, limited bioavailability, and the lack of large-scale randomized controlled trials (RCTs). It also highlights the potential of personalized medicine approaches and pharmacogenomics in optimizing ER stress-targeting therapies.
Collapse
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia.
| | - Abdullah Alkhammash
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia.
| |
Collapse
|
2
|
Shukla M, Narayan M. Proteostasis and Its Role in Disease Development. Cell Biochem Biophys 2025; 83:1725-1741. [PMID: 39422790 DOI: 10.1007/s12013-024-01581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Proteostasis (protein homeostasis) refers to the general biological process that maintains the proper balance between the synthesis of proteins, their folding, trafficking, and degradation. It ensures proteins are functional, locally distributed, and appropriately folded inside cells. Genetic information enclosed in mRNA is translated into proteins. To ensure newly synthesized proteins take on the exact three-dimensional conformation, molecular chaperones assist in proper folding. Misfolded proteins can be refolded or targeted for elimination to stop aggregation. Cells utilize different degradation pathways, for instance, the ubiquitin-proteasome system, the autophagy-lysosome pathway, and the unfolded protein response, to degrade unwanted or damaged proteins. Quality control systems of the cell monitor the folding of proteins. These checkpoint mechanisms are aimed at degrading or refolding misfolded or damaged proteins. Under stress response pathways, such as heat shock response and unfolded protein response, which are triggered under conditions that perturb proteostasis, the capacity for folding is increased, and degradation pathways are activated to help cells handle stressful conditions. The deregulation of proteostasis is implicated in a variety of illnesses, comprising cancer, metabolic diseases, cardiovascular diseases, and neurological disorders. Therapeutic strategies with a deeper insight into the mechanism of proteostasis are crucial for the treatment of illnesses linked with proteostasis and to support cellular health. Thus, proteostasis is required not only for the maintenance of cellular homeostasis and function but also for proper protein function and prevention of injurious protein aggregation. In this review, we have covered the concept of proteostasis, its mechanism, and how disruptions to it can result in a number of disorders.
Collapse
Affiliation(s)
- Manisha Shukla
- Department of Biotechnology, Pandit S.N. Shukla University, Shahdol, Madhya Pradesh, India
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas, El Paso, TX, USA.
| |
Collapse
|
3
|
Zhen W, Zhao T, Chen X, Zhang J. Unlocking the Potential of Disulfidptosis: Nanotechnology-Driven Strategies for Advanced Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500880. [PMID: 40269657 DOI: 10.1002/smll.202500880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Tumor tissues exhibit elevated oxidative stress, with the cystine-glutamate transporter xCT solute carrier family 7 member 11 (xCT/SLC7A11) protecting cancer cells from oxidative damage by facilitating cystine uptake for glutathione synthesis. Disulfidptosis, a newly identified form of programmed cell death (PCD), occurs in cells with high xCT/SLC7A11 expression under glucose-deprived conditions. Distinct from other PCD pathways, disulfidptosis is characterized by aberrant disulfide bond formation and cellular dysfunction, ultimately resulting in cancer cell death. This novel mechanism offers remarkable therapeutic potential by targeting the inherent oxidative stress vulnerabilities of rapidly growing cancer cells. Advances in nanotechnology enable the development of nanomaterials capable of inducing reactive oxygen species (ROS) generation, disrupting disulfide bonds. In addition, they are capable to deliver therapeutic agents directly to tumors, thereby improving therapeutic precision and minimizing off-target effects. Moreover, combining disulfidptosis with ROS-induced immunogenic cell death can remodel the tumor microenvironment and enhance anti-tumor immunity. This review explores the mechanisms underlying disulfidptosis, its therapeutic potential in cancer treatment, and the synergistic role of nanotechnology in amplifying its effects. Selective induction of disulfidptosis using nanomaterials represents a promising strategy for achieving more effective, selective, and less toxic cancer therapies.
Collapse
Affiliation(s)
- Wenyao Zhen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Centre of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore
| | - Tianzhi Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Centre of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Centre of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Centre of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore
| |
Collapse
|
4
|
Xu P, Yang JC, Chen B, Ning S, Zhang X, Wang L, Nip C, Shen Y, Johnson OT, Grigorean G, Phinney B, Liu L, Wei Q, Corey E, Tepper CG, Chen HW, Evans CP, Dall'Era MA, Gao AC, Gestwicki JE, Liu C. Proteostasis perturbation of N-Myc leveraging HSP70 mediated protein turnover improves treatment of neuroendocrine prostate cancer. Nat Commun 2024; 15:6626. [PMID: 39103353 PMCID: PMC11300456 DOI: 10.1038/s41467-024-50459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
N-Myc is a key driver of neuroblastoma and neuroendocrine prostate cancer (NEPC). One potential way to circumvent the challenge of undruggable N-Myc is to target the protein homeostasis (proteostasis) system that maintains N-Myc levels. Here, we identify heat shock protein 70 (HSP70) as a top partner of N-Myc, which binds a conserved "SELILKR" motif and prevents the access of E3 ubiquitin ligase, STIP1 homology and U-box containing protein 1 (STUB1), possibly through steric hindrance. When HSP70's dwell time on N-Myc is increased by treatment with the HSP70 allosteric inhibitor, STUB1 is in close proximity with N-Myc and becomes functional to promote N-Myc ubiquitination on the K416 and K419 sites and forms polyubiquitination chains linked by the K11 and K63 sites. Notably, HSP70 inhibition significantly suppressed NEPC tumor growth, increased the efficacy of aurora kinase A (AURKA) inhibitors, and limited the expression of neuroendocrine-related pathways.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Joy C Yang
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Bo Chen
- Department of Urologic Surgery, University of California, Davis, CA, USA
- Department of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Shu Ning
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Xiong Zhang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Leyi Wang
- Department of Urologic Surgery, University of California, Davis, CA, USA
- Graduate Group in Integrative Pathobiology, University of California, Davis, CA, USA
| | - Christopher Nip
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Yuqiu Shen
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Oleta T Johnson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | | | - Brett Phinney
- Proteomics Core Facility, University of California, Davis, CA, USA
| | - Liangren Liu
- Department of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Eva Corey
- Department of Urology, University of Washington, Washington, WA, USA
| | - Clifford G Tepper
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Christopher P Evans
- Department of Urologic Surgery, University of California, Davis, CA, USA
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Marc A Dall'Era
- Department of Urologic Surgery, University of California, Davis, CA, USA
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Allen C Gao
- Department of Urologic Surgery, University of California, Davis, CA, USA
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Chengfei Liu
- Department of Urologic Surgery, University of California, Davis, CA, USA.
- Graduate Group in Integrative Pathobiology, University of California, Davis, CA, USA.
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA.
| |
Collapse
|
5
|
Gariballa N, Mohamed F, Badawi S, Ali BR. The double whammy of ER-retention and dominant-negative effects in numerous autosomal dominant diseases: significance in disease mechanisms and therapy. J Biomed Sci 2024; 31:64. [PMID: 38937821 PMCID: PMC11210014 DOI: 10.1186/s12929-024-01054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
The endoplasmic reticulum (ER) employs stringent quality control mechanisms to ensure the integrity of protein folding, allowing only properly folded, processed and assembled proteins to exit the ER and reach their functional destinations. Mutant proteins unable to attain their correct tertiary conformation or form complexes with their partners are retained in the ER and subsequently degraded through ER-associated protein degradation (ERAD) and associated mechanisms. ER retention contributes to a spectrum of monogenic diseases with diverse modes of inheritance and molecular mechanisms. In autosomal dominant diseases, when mutant proteins get retained in the ER, they can interact with their wild-type counterparts. This interaction may lead to the formation of mixed dimers or aberrant complexes, disrupting their normal trafficking and function in a dominant-negative manner. The combination of ER retention and dominant-negative effects has been frequently documented to cause a significant loss of functional proteins, thereby exacerbating disease severity. This review aims to examine existing literature and provide insights into the impact of dominant-negative effects exerted by mutant proteins retained in the ER in a range of autosomal dominant diseases including skeletal and connective tissue disorders, vascular disorders, neurological disorders, eye disorders and serpinopathies. Most crucially, we aim to emphasize the importance of this area of research, offering substantial potential for understanding the factors influencing phenotypic variability associated with genetic variants. Furthermore, we highlight current and prospective therapeutic approaches targeted at ameliorating the effects of mutations exhibiting dominant-negative effects. These approaches encompass experimental studies exploring treatments and their translation into clinical practice.
Collapse
Affiliation(s)
- Nesrin Gariballa
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Feda Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
6
|
Su Y, Yang J, Wang MM, Fang HB, Liu HK, Yu ZH, Su Z. Cyclometalated iridium(III) complexes as anti-breast cancer and anti-metastasis agents via STAT3 inhibition. J Inorg Biochem 2024; 251:112427. [PMID: 37979498 DOI: 10.1016/j.jinorgbio.2023.112427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer and second‑leading cause of cancer deaths in women. Signal transducer and activator of transcription 3 (STAT3) plays a critical role in promoting breast cancer cell proliferation, invasion, angiogenesis, and metastasis, and the high expression of STAT3 is related to the occurrence and poor chemotherapy sensitivity of breast cancer. Iridium(III) complexes Ir-PTS-1- 4 containing a pterostilbene-derived ligand were synthesized to inhibit the STAT3 pathway in breast cancer. Ir-PTS-4 inhibited the proliferation of breast cancer cells by suppressing the expression of phosphorylated STAT3 and STAT3-related cyclin D1, arresting cell cycle in the S-phase, inducing DNA damage and reactive oxygen species (ROS) generation, eventually leading to autophagic cell death. The cell metastasis and invasion were also inhibited after Ir-PTS-4 treatment. Besides, Ir-PTS-4 exhibited excellent anti-proliferation activity in 3D multicellular tumor spheroids, showing potential for the treatment of solid tumors. This work presents the rational design of metal-based anticancer agents to block the STAT3 pathway for simultaneously inhibiting breast cancer proliferation and metastasis.
Collapse
Affiliation(s)
- Yan Su
- Department of Rheumatology and Immunology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China; Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jin Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Meng-Meng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hong-Bao Fang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zheng-Hong Yu
- Department of Rheumatology and Immunology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
7
|
Tang F, Peng Y, Liu J, Gao W, Xu Y. Integrating network pharmacology and experimental models to examine the mechanisms of corosolic acid in preventing hepatocellular carcinoma progression through activation PERK-eIF2a-ATF4 signaling. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3671-3682. [PMID: 37294427 DOI: 10.1007/s00210-023-02560-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of liver cancer, with a high recurrence rate and heterogeneity. We aimed to examine the effect of corosolic acid (CRA) on HCC. We employed transcriptomics to validate the target molecules in CRA-treated HCC cells and conducted enrichment analyses that revealed their involvement in the regulation of endoplasmic reticulum (ER) stress and apoptosis. Our experimental data indicated that CRA markedly induced apoptosis in human HCC cell lines through the mitochondrial apoptosis pathway. We also revealed that the pro-apoptotic effects of CRA depended on ER stress, as pretreatment with selective ERS inhibitor salubrinal effectively reversed CRA-induced cell apoptosis. Furthermore, the knockdown of the unfolded protein response (UPR) protein CHOP remarkably abrogated CRA-induced expression of ER stress-associated proteins. Collectively, our results suggest that CRA triggers ER stress-mediated apoptosis in HCC cells via activation of the PERK-eIF2a-ATF4 pathway. Our findings provide novel insights into the potential therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Feifeng Tang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yingxiu Peng
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jingjin Liu
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Wenhui Gao
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yanfeng Xu
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
8
|
Guay KP, Ibba R, Kiappes J, Vasiljević S, Bonì F, De Benedictis M, Zeni I, Le Cornu JD, Hensen M, Chandran AV, Kantsadi AL, Caputo AT, Blanco Capurro JI, Bayo Y, Hill JC, Hudson K, Lia A, Brun J, Withers SG, Martí M, Biasini E, Santino A, De Rosa M, Milani M, Modenutti CP, Hebert DN, Zitzmann N, Roversi P. A quinolin-8-ol sub-millimolar inhibitor of UGGT, the ER glycoprotein folding quality control checkpoint. iScience 2023; 26:107919. [PMID: 37822503 PMCID: PMC10562782 DOI: 10.1016/j.isci.2023.107919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/05/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Misfolded glycoprotein recognition and endoplasmic reticulum (ER) retention are mediated by the ER glycoprotein folding quality control (ERQC) checkpoint enzyme, UDP-glucose glycoprotein glucosyltransferase (UGGT). UGGT modulation is a promising strategy for broad-spectrum antivirals, rescue-of-secretion therapy in rare disease caused by responsive mutations in glycoprotein genes, and many cancers, but to date no selective UGGT inhibitors are known. The small molecule 5-[(morpholin-4-yl)methyl]quinolin-8-ol (5M-8OH-Q) binds a CtUGGTGT24 "WY" conserved surface motif conserved across UGGTs but not present in other GT24 family glycosyltransferases. 5M-8OH-Q has a 47 μM binding affinity for CtUGGTGT24in vitro as measured by ligand-enhanced fluorescence. In cellula, 5M-8OH-Q inhibits both human UGGT isoforms at concentrations higher than 750 μM. 5M-8OH-Q binding to CtUGGTGT24 appears to be mutually exclusive to M5-9 glycan binding in an in vitro competition experiment. A medicinal program based on 5M-8OH-Q will yield the next generation of UGGT inhibitors.
Collapse
Affiliation(s)
- Kevin P. Guay
- Department of Biochemistry and Molecular Biology, and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Roberta Ibba
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23A, 07100 Sassari, Italy
| | - J.L. Kiappes
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Snežana Vasiljević
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Francesco Bonì
- Institute of Biophysics, IBF-CNR Unit of Milano, via Celoria 26, 20133 Milano, Italy
| | - Maria De Benedictis
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy
| | - Ilaria Zeni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Povo, 38123 Trento, Italy
| | - James D. Le Cornu
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Mario Hensen
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Anu V. Chandran
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Anastassia L. Kantsadi
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Alessandro T. Caputo
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Juan I. Blanco Capurro
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
| | - Yusupha Bayo
- Department of Biosciences, University of Milano, via Celoria 26, 20133 Milano, Italy
| | - Johan C. Hill
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Kieran Hudson
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Andrea Lia
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
- Institute of Biophysics, IBF-CNR Unit of Milano, via Celoria 26, 20133 Milano, Italy
| | - Juliane Brun
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Marcelo Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
| | - Emiliano Biasini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Povo, 38123 Trento, Italy
- Dulbecco Telethon Institute, University of Trento, Povo, 38123 Trento, Italy
| | - Angelo Santino
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy
| | - Matteo De Rosa
- Institute of Biophysics, IBF-CNR Unit of Milano, via Celoria 26, 20133 Milano, Italy
| | - Mario Milani
- Institute of Biophysics, IBF-CNR Unit of Milano, via Celoria 26, 20133 Milano, Italy
| | - Carlos P. Modenutti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
| | - Daniel N. Hebert
- Department of Biochemistry and Molecular Biology, and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Pietro Roversi
- Institute of Agricultural Biology and Biotechnology, IBBA-CNR Unit of Milano, via Bassini 15, 20133 Milano, Italy
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, LE1 7HR Leicester, UK
| |
Collapse
|
9
|
Wu J, Yu H, Jin Y, Wang J, Zhou L, Cheng T, Zhang Z, Lin B, Miao J, Lin Z. Ajugol's upregulation of TFEB-mediated autophagy alleviates endoplasmic reticulum stress in chondrocytes and retards osteoarthritis progression in a mouse model. Chin Med 2023; 18:113. [PMID: 37679844 PMCID: PMC10483732 DOI: 10.1186/s13020-023-00824-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA), a degenerative disease with a high global prevalence, is characterized by the degradation of the extracellular matrix (ECM) and the apoptosis of chondrocytes. Ajugol, a extract derived from the herb Rehmannia glutinosa, has not yet been investigated for its potential in modulating the development of OA. METHODS We employed techniques such as western blotting, immunofluorescence, immunohistochemistry, X-ray imaging, HE staining, and SO staining to provide biological evidence supporting the role of Ajugol as a potential therapeutic agent for modulating OA. Furthermore, in an in vivo experiment, intra-peritoneal injection of 50 mg/kg Ajugol effectively mitigated the progression of OA following destabilization of the medial meniscus (DMM) surgery. RESULTS Our findings revealed that treatment with 50 μM Ajugol activated TFEB-mediated autophagy, alleviating ER stress-induced chondrocyte apoptosis and ECM degradation caused by TBHP. Furthermore, in an in vivo experiment, intra-peritoneal injection of 50 mg/kg Ajugol effectively mitigated the progression of OA following destabilization of the medial meniscus (DMM) surgery. CONCLUSION These results provide compelling biological evidence supporting the role of Ajugol as a potential therapeutic agent for modulating OA by activating autophagy and attenuating ER stress-induced cell death and ECM degradation. The promising in vivo results further suggest the potential of Ajugol as a treatment strategy for OA progression.
Collapse
Affiliation(s)
- Jingtao Wu
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Heng Yu
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Yangcan Jin
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Jingquan Wang
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Liwen Zhou
- The First School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Teng Cheng
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Zhao Zhang
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Binghao Lin
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Jiansen Miao
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Zhongke Lin
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
10
|
Castellano BM, Tang D, Marsters S, Lam C, Liu P, Rose CM, Sandoval W, Ashkenazi A, Snedecor B, Misaghi S. Activation of the PERK branch of the unfolded protein response during production reduces specific productivity in CHO cells via downregulation of PDGFRa and IRE1a signaling. Biotechnol Prog 2023; 39:e3354. [PMID: 37161726 DOI: 10.1002/btpr.3354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/13/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
During the course of biopharmaceutical production, heterologous protein expression in Chinese hamster ovary (CHO) cells imposes a high proteostatic burden that requires cellular adaptation. To mitigate such burden, cells utilize the unfolded protein response (UPR), which increases endoplasmic reticulum (ER) capacity to accommodate elevated rates of protein synthesis and folding. In this study, we show that during production the UPR regulates growth factor signaling to modulate growth and protein synthesis. Specifically, the protein kinase R-like ER kinase (PERK) branch of the UPR is responsible for transcriptional down-regulation of platelet-derived growth factor receptor alpha (PDGFRa) and attenuation of the IRE1-alpha (IRE1a) branch of the UPR. PERK knockout (KO) cell lines displayed reduced growth and viability due to higher rates of apoptosis despite having stabilized PDGFRa levels. Knocking out PERK in an apoptosis impaired (Bax/Bak double KO) antibody-expressing cell line prevented apoptotic cell death and revealed that apoptosis was likely triggered by increased ER stress and reactive oxygen species levels in the PERK KO hosts. Our findings suggest that attenuation of IRE1a and PDGFRa signaling by the PERK branch of the UPR reduces ER protein folding capacity and hence specific productivity of CHO cells in order to mitigate UPR and prevent apoptotic cell death. Last, Bax/Bak/PERK triple KO CHO cell lines displayed 2-3 folds higher specific productivity and titer (up to 8 g/L), suggesting that modulation of PERK signaling during production processes can greatly improve specific productivity in CHO cells.
Collapse
Affiliation(s)
- Brian M Castellano
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., South San Francisco, California, USA
| | - Danming Tang
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., South San Francisco, California, USA
| | - Scot Marsters
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, California, USA
| | - Cynthia Lam
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., South San Francisco, California, USA
| | - Peter Liu
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, California, USA
| | - Christopher M Rose
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, California, USA
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, California, USA
| | - Avi Ashkenazi
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, California, USA
| | - Brad Snedecor
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., South San Francisco, California, USA
| | - Shahram Misaghi
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., South San Francisco, California, USA
| |
Collapse
|
11
|
Chen C, Lv H, Xu H, Zhu D, Shen C. Cyclometalated Ru(II)-NHC complexes with phenanthroline ligands induce apoptosis mediated by mitochondria and endoplasmic reticulum stress in cancer cells. Dalton Trans 2023; 52:1671-1679. [PMID: 36648504 DOI: 10.1039/d2dt03405k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The exploration of ruthenium complexes as anticancer drugs has been the focus of intense investigation. In this study, we synthesized and characterized four C,N-cyclometalated ruthenium(II) complexes (Ru1-Ru4) coordinated with pyridine-functionalized N-heterocyclic carbene (NHC) and auxiliary ligands (e.g., acetonitrile, 1,10-phenanthroline, 3,4,7,8-tetramethyl-1,10-phenanthroline, and 4,7-diphenyl-1,10-phenanthroline). X-ray diffraction analysis showed that all of the four cycloruthenated complexes are hexa-coordinated in a typical octahedral geometry. In vitro cytotoxic studies revealed that cyclometalated Ru-NHC complexes Ru3 and Ru4 had stronger anticancer activity than their corresponding Ru-NHC precursor Ru1 and the clinically used cisplatin. For HeLa cells, Ru3 and Ru4 exhibited potent cytotoxicity with the IC50 value of 4.31 ± 0.42 μM and 3.14 ± 0.23 μM, respectively, which was approximately three times lower than that of cisplatin. More interestingly, Ru3 and Ru4 not only effectively inhibited the proliferation of HeLa cells, but also exhibited potential anti-migration activity. In the scratch wound healing assay, Ru3 and Ru4 treatment significantly reduced the wound healing rate of HUVEC cells. Mechanistic studies showed that Ru3 and Ru4 caused a dual action mode of mitochondrial membrane depolarization and endoplasmic reticulum stress and finally induced apoptosis of HeLa cells.
Collapse
Affiliation(s)
- Chao Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China. .,College of Life Sciences, Huzhou University, Huzhou, 313000, PR China
| | - He Lv
- College of Life Sciences, Huzhou University, Huzhou, 313000, PR China
| | - Hao Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Dancheng Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Chao Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
12
|
Yang J, Griffin A, Qiang Z, Ren J. Organelle-targeted therapies: a comprehensive review on system design for enabling precision oncology. Signal Transduct Target Ther 2022; 7:379. [PMID: 36402753 PMCID: PMC9675787 DOI: 10.1038/s41392-022-01243-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer is a major threat to human health. Among various treatment methods, precision therapy has received significant attention since the inception, due to its ability to efficiently inhibit tumor growth, while curtailing common shortcomings from conventional cancer treatment, leading towards enhanced survival rates. Particularly, organelle-targeted strategies enable precise accumulation of therapeutic agents in organelles, locally triggering organelle-mediated cell death signals which can greatly reduce the therapeutic threshold dosage and minimize side-effects. In this review, we comprehensively discuss history and recent advances in targeted therapies on organelles, specifically including nucleus, mitochondria, lysosomes and endoplasmic reticulum, while focusing on organelle structures, organelle-mediated cell death signal pathways, and design guidelines of organelle-targeted nanomedicines based on intervention mechanisms. Furthermore, a perspective on future research and clinical opportunities and potential challenges in precision oncology is presented. Through demonstrating recent developments in organelle-targeted therapies, we believe this article can further stimulate broader interests in multidisciplinary research and technology development for enabling advanced organelle-targeted nanomedicines and their corresponding clinic translations.
Collapse
Affiliation(s)
- Jingjing Yang
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| | - Anthony Griffin
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Zhe Qiang
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Jie Ren
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| |
Collapse
|
13
|
Feng X, Yang G, Zhang L, Tao S, SHIM JS, Chen L, Wu Q. TRIM59 guards ER proteostasis and prevents Bortezomib-mediated colorectal cancer (CRC) cells’ killing. Invest New Drugs 2022; 40:1244-1253. [DOI: 10.1007/s10637-022-01306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
|
14
|
Yang Y, Liu S, Xie C, Li Q, Gao T, Liu M, Xi M, Zhao L. Trafficking Protein TMED3 Promotes Esophageal Squamous Cell Carcinoma. Biomed J 2022; 46:100528. [PMID: 35358714 DOI: 10.1016/j.bj.2022.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The molecular mechanisms of esophageal squamous cell carcinoma (ESCC) remain poorly understood. Transmembrane emp24 trafficking protein 3 (TMED3) acts as an oncogene or tumor suppressor gene in different cancers. Our study was to explore the clinicopathological significance and functional roles of TMED3 in ESCC. METHODS Immunohistochemistry, qPCR, and western blotting were used to analyze the expression of TMED3 in ESCC tissues and cells. Statistical analysis was performed to analyze the relationship between TMED3 expression and tumor characteristics in patients with ESCC. The role of TMED3 in vitro and in vivo was investigated by performing functional verification experiments and using a xenograft mouse model. Proteins that are functionally related to TMED3 were recognized by Affymetrix microarray and Ingenuity Pathway Analysis (IPA). Functional verification experiments were performed to analyze the role of FAM60A (a protein functionally related to TMED3) in vitro. RESULTS We confirmed the overexpression of TMED3 was correlated with poor prognosis in ESCC patients. When TMED3 was knocked down, ESCC cell proliferation, migration, and invasion were inhibited whereas cell apoptosis was promoted in vitro, and tumorigenicity was inhibited in vivo. We further revealed significant changes in gene expression profile in TMED3 knockdown cells. Among these differentially expressed genes, FAM60A was overexpressed in ESCC tissues. Furthermore, knocking down FAM60A significantly weakened the proliferation ability of ESCC cells and reversed TMED3's tumorigenicity of ESCC cells. CONCLUSION Our study revealed an oncogenic role of TMED3 in ESCC.
Collapse
Affiliation(s)
- Yuxian Yang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shiliang Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chunxia Xie
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qiaoqiao Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tiantian Gao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mengzhong Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mian Xi
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Lei Zhao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
15
|
Shkedi A, Adkisson M, Schroeder A, Eckalbar WL, Kuo SY, Neckers L, Gestwicki JE. Inhibitor Combinations Reveal Wiring of the Proteostasis Network in Prostate Cancer Cells. J Med Chem 2021; 64:14809-14821. [PMID: 34606726 PMCID: PMC8806517 DOI: 10.1021/acs.jmedchem.1c01342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protein homeostasis (proteostasis) network is composed of multiple pathways that work together to balance protein folding, stability, and turnover. Cancer cells are particularly reliant on this network; however, it is hypothesized that inhibition of one node might lead to compensation. To better understand these connections, we dosed 22Rv1 prostate cancer cells with inhibitors of four proteostasis targets (Hsp70, Hsp90, proteasome, and p97), either alone or in binary combinations, and measured the effects on cell growth. The results reveal a series of additive, synergistic, and antagonistic relationships, including strong synergy between inhibitors of p97 and the proteasome and striking antagonism between inhibitors of Hsp90 and the proteasome. Based on RNA-seq, these relationships are associated, in part, with activation of stress pathways. Together, these results suggest that cocktails of proteostasis inhibitors might be a powerful way of treating some cancers, although antagonism that blunts the efficacy of both molecules is also possible.
Collapse
Affiliation(s)
- Arielle Shkedi
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco CA 94158
| | - Michael Adkisson
- Functional Genomics Core, University of California San Francisco, San Francisco, CA 94158
| | - Andrew Schroeder
- Functional Genomics Core, University of California San Francisco, San Francisco, CA 94158
| | - Walter L Eckalbar
- Functional Genomics Core, University of California San Francisco, San Francisco, CA 94158
| | - Szu-Yu Kuo
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco CA 94158
| | - Leonard Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco CA 94158
| |
Collapse
|
16
|
Chang L, Liu X, Chen J, Liu H, Wang G, Wang G, Liao X, Shen X. Attenuation of Activated eIF2α Signaling by ISRIB Treatment After Spinal Cord Injury Improves Locomotor Function. J Mol Neurosci 2021; 72:585-597. [PMID: 34647267 PMCID: PMC8921087 DOI: 10.1007/s12031-021-01920-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022]
Abstract
Following spinal cord injury (SCI), multiple signaling cascades are activated instantaneously in the injured segments of the spinal cord to create a complex and pathogenic microenvironment, making it difficult to treat SCI. Nevertheless, the significance of the integrated stress response (ISR) to the series of physiological and pathological changes that occur after SCI remains unclear. Through western blotting (WB), we determined that the autophosphorylation of stress receptors (GCN2, PERK, PKR, and HRI) was enhanced after SCI, leading to increased phosphorylation of eIF2α at Ser51. Strikingly, we found that eIF2α was highly phosphorylated at 1 day post injury (dpi) and that this hypophosphorylation was maintained thereafter in the spinal cord, especially in neurons, which suggests that intervening with eIF2α phosphorylation may be a treatment strategy for SCI. Therefore, we employed the small molecule ISRIB, which inhibits eIF2α phosphorylation when the ISR is activated at moderate or low levels but not when the ISR is highly activated. Daily intraperitoneal injection of ISRIB significantly inhibited ISR signaling after SCI, reduced the cytosolic localization of RNA-binding proteins, and decreased neuronal apoptosis. Histological and functional experiments further demonstrated that treatment with ISRIB after SCI effectively curbed morphological deterioration and promoted the recovery of locomotor function. In summary, the ISR plays an important role in SCI, and ISRIB is a promising drug for the treatment of SCI.
Collapse
Affiliation(s)
- Lei Chang
- Department of Spine Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), No.61, West Jiefang Road, Changsha, 410005, China
| | - Xiangyang Liu
- Department of Spine Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), No.61, West Jiefang Road, Changsha, 410005, China
| | - Jing Chen
- Department of Endocrinology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Hongzhe Liu
- Department of Spine Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), No.61, West Jiefang Road, Changsha, 410005, China
| | - Guoping Wang
- Department of Spine Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), No.61, West Jiefang Road, Changsha, 410005, China
| | - Guohua Wang
- Department of Spine Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), No.61, West Jiefang Road, Changsha, 410005, China
| | - Xiaoyun Liao
- Department of Anesthesiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Xiongjie Shen
- Department of Spine Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), No.61, West Jiefang Road, Changsha, 410005, China.
| |
Collapse
|
17
|
Liu C, Armstrong CM, Ning S, Yang JC, Lou W, Lombard AP, Zhao J, Wu CY, Yu A, Evans CP, Tepper CG, Li PK, Gao AC. ARVib suppresses growth of advanced prostate cancer via inhibition of androgen receptor signaling. Oncogene 2021; 40:5379-5392. [PMID: 34272475 PMCID: PMC8413131 DOI: 10.1038/s41388-021-01914-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Targeting androgen signaling with the second-generation anti-androgen drugs, such as enzalutamide (Enza), abiraterone (Abi), apalutamide (Apal), and darolutamide (Daro), is the mainstay for the treatment of castration-resistant prostate cancer (CRPC). While these treatments are effective initially, resistance occurs frequently. Continued expression of androgen receptor (AR) and its variants such as AR-V7 despite AR-targeted therapy contributes to treatment resistance and cancer progression in advanced CRPC patients. This highlights the need for new strategies blocking continued AR signaling. Here, we identify a novel AR/AR-V7 degrader (ARVib) and found that ARVib effectively degrades AR/AR-V7 protein and attenuates AR/AR-V7 downstream target gene expression in prostate cancer cells. Mechanistically, ARVib degrades AR/AR-V7 protein through the ubiquitin-proteasome pathway mediated by HSP70/STUB1 machinery modulation. ARVib suppresses HSP70 expression and promotes STUB1 nuclear translocation, where STUB1 binds to AR/AR-V7 and promotes its ubiquitination and degradation. ARVib significantly inhibits resistant prostate tumor growth and improves enzalutamide treatment in vitro and in vivo. These data suggest that ARVib has potential for development as an AR/AR-V7 degrader to treat resistant CRPC.
Collapse
Affiliation(s)
- Chengfei Liu
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Cameron M Armstrong
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Shu Ning
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Joy C Yang
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Wei Lou
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Alan P Lombard
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Jinge Zhao
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Chun-Yi Wu
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA
| | - Aiming Yu
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA
| | - Christopher P Evans
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Clifford G Tepper
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA
| | - Pui-Kai Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Allen C Gao
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA.
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA.
- VA Northern California Health Care System, Sacramento, CA, USA.
| |
Collapse
|
18
|
Wang R, Li X, Yoon J. Organelle-Targeted Photosensitizers for Precision Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19543-19571. [PMID: 33900741 DOI: 10.1021/acsami.1c02019] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Subcellular organelles are the cornerstones of cells, and destroying them will cause cell dysfunction and even death. Therefore, realizing precise organelle targeting of photosensitizers (PSs) can help reduce PS dosage, minimize side effects, avoid drug resistance, and enhance therapeutic efficacy in photodynamic therapy (PDT). Organelle-targeted PSs provide a new paradigm for the construction of the next generation of PSs and may provide implementable strategies for future precision medicine. In this Review, the recent targeting strategies of different organelles and the corresponding design principles of molecular and nanostructured PSs are summarized and discussed. The current challenges and opportunities in organelle-targeted PDT are also presented.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Xingshu Li
- College of Chemistry, State Key Laboratory of Photocatalysis for Energy and the Environment, Fujian Provincial Key Laboratory for Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
19
|
Rumman M, Buck S, Polin L, Dzinic S, Boerner J, Winer IS. ONC201 induces the unfolded protein response (UPR) in high- and low-grade ovarian carcinoma cell lines and leads to cell death regardless of platinum sensitivity. Cancer Med 2021; 10:3373-3387. [PMID: 33932119 PMCID: PMC8124100 DOI: 10.1002/cam4.3858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/06/2020] [Accepted: 12/18/2020] [Indexed: 11/09/2022] Open
Abstract
Objectives Treatment of both platinum resistant high grade (HG) and low‐grade (LG) ovarian cancer (OVCA) poses significant challenges as neither respond well to conventional chemotherapy leading to morbidity and mortality. Identification of novel agents that can overcome chemoresistance is therefore critical. Previously, we have demonstrated that OVCA has basal upregulated unfolded protein response (UPR) and that targeting cellular processes leading to further and persistent upregulation of UPR leads to cell death. ONC201 is an orally bioavailable Dopamine Receptor D2 inhibitor demonstrating anticancer activity and was found to induce UPR. Given its unique properties, we hypothesized that ONC201 would overcome platinum resistance in OVCA. Methods Cisplatin sensitive and resistant HG OVCA and two primary LG OVCA cell lines were studied. Cell viability was determined using MTT assay. Cell migration was studied using wound healing assay. Apoptosis and mitochondrial membrane potential were investigated using flow cytometry. Analysis of pathway inhibition was performed by Western Blot. mRNA expression of UPR related genes were measured by qPCR. In vivo studies were completed utilizing axillary xenograft models. Co‐testing with conventional chemotherapy was performed to study synergy. Results ONC201 significantly inhibited cell viability and migration in a dose dependent manner with IC50’s from 1‐20 µM for both cisplatin sensitive and resistant HG and LG‐OVCA cell lines. ONC201 lead to upregulation of the pro‐apoptotic arm of the UPR, specifically ATF‐4/CHOP/ATF3 and increased the intrinsic apoptosispathway. The compensatory, pro‐survival PI3K/AKT/mTOR pathway was downregulated. In vivo, weekly dosing of single agent ONC201 decreased xenograft tumor size by ~50% compared to vehicle. ONC201 also demonstrated significant synergy with paclitaxel in a highly platinum resistant OVCA cell‐line (OV433). Conclusions Our findings demonstrate that ONC201 can effectively overcome chemoresistance in OVCA cells by blocking pro‐survival pathways and inducing the apoptotic arm of the UPR. This is a promising, orallybioavailable therapeutic agent to consider in clinical trials for patients with both HG and LG OVCA.
Collapse
Affiliation(s)
- Marufa Rumman
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Steven Buck
- Division of Hematology/Oncology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI, USA
| | - Lisa Polin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Sijana Dzinic
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Julie Boerner
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Ira S Winer
- Division of Gynecologic Oncology, Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
20
|
Shi L, Liu B, Shen DD, Yan P, Zhang Y, Tian Y, Hou L, Jiang G, Zhu Y, Liang Y, Liang X, Shen B, Yu H, Zhang Y, Wang Y, Guo X, Cai X. A tumor-suppressive circular RNA mediates uncanonical integrin degradation by the proteasome in liver cancer. SCIENCE ADVANCES 2021; 7:7/13/eabe5043. [PMID: 33762338 PMCID: PMC7990343 DOI: 10.1126/sciadv.abe5043] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/04/2021] [Indexed: 05/03/2023]
Abstract
Circular RNAs (circRNAs) have emerged as important regulators of various cellular processes and have been implicated in cancer. Previously, we reported the discovery of several dysregulated circRNAs including circPABPC1 (polyadenylate-binding protein 1) in human hepatocellular carcinoma (HCC), although their roles in HCC development remained unclear. Here, we show that circPABPC1 is preferentially lost in tumor cells from clinical samples and inhibits both intrahepatic and distant metastases in a mouse xenograft model. This tumor-suppressive function of circPABPC1 can be attributed to its inhibition of cell adhesion and migration through down-regulating a key member of the integrin family, ITGB1 (β1 integrin). Mass spectrometry and biochemical evidence demonstrate that circPABPC1 directly links ITGB1 to the 26S proteasome for degradation in a ubiquitination-independent manner. Our data have revealed an uncanonical route for integrin turnover and a previously unidentified mode of action for circRNAs in HCC that can be harnessed for anticancer treatment.
Collapse
Affiliation(s)
- Liang Shi
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou 310016, China
| | - Boqiang Liu
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou 310016, China
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Peijian Yan
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou 310016, China
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yanan Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yuanshi Tian
- Department of Diagnostic Ultrasound and Echocardiography, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Lidan Hou
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou 310016, China
| | - Guangyi Jiang
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou 310016, China
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou 310016, China
| | - Yinxin Zhu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Bo Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou 310016, China
| | - Xing Guo
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou 310016, China
| |
Collapse
|
21
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
22
|
Du C, Hansen LJ, Singh SX, Wang F, Sun R, Moure CJ, Roso K, Greer PK, Yan H, He Y. A PRMT5-RNF168-SMURF2 Axis Controls H2AX Proteostasis. Cell Rep 2020; 28:3199-3211.e5. [PMID: 31533041 DOI: 10.1016/j.celrep.2019.08.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/11/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Abstract
H2AX safeguards genomic stability in a dose-dependent manner; however, mechanisms governing its proteostasis are poorly understood. Here, we identify a PRMT5-RNF168-SMURF2 cascade that regulates H2AX proteostasis. We show that PRMT5 sustains the expression of RNF168, an E3 ubiquitin ligase essential for DNA damage response (DDR). Suppression of PRMT5 occurs in methylthioadenosine phosphorylase (MTAP)-deficient glioblastoma cells and attenuates the expression of RNF168, leading to destabilization of H2AX by E3 ubiquitin ligase SMURF2. RNF168 and SMURF2 serve as a stabilizer and destabilizer of H2AX, respectively, via their dynamic interactions with H2AX. In supporting an important role of this signaling cascade in regulating H2AX, MTAP-deficient glioblastoma cells display higher levels of DNA damage spontaneously or in response to genotoxic agents. These findings reveal a regulatory mechanism of H2AX proteostasis and define a signaling cascade that is essential to DDR and that is disrupted by the loss of a metabolic enzyme in tumor cells.
Collapse
Affiliation(s)
- Changzheng Du
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Gastrointestinal Cancer Center, Peking University Cancer Hospital, Beijing 100142, China
| | - Landon J Hansen
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Simranjit X Singh
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Pathology Graduate Program, Duke University Medical Center, Durham, NC, USA
| | - Feiyifan Wang
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Ran Sun
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Scientific Research Center, China-Japan Union Hospital, Jilin University, Jilin 130033, China
| | - Casey J Moure
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kristen Roso
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Paula K Greer
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Hai Yan
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yiping He
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
23
|
Tan M, Schaffalitzky de Muckadell OB, Jøergensen MT. Gene Expression Network Analysis of Precursor Lesions in Familial Pancreatic Cancer. J Pancreat Cancer 2020; 6:73-84. [PMID: 32783019 PMCID: PMC7415888 DOI: 10.1089/pancan.2020.0007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose: High-grade pancreatic intraepithelial neoplasia (PanIN) are aggressive premalignant lesions, associated with risk of progression to pancreatic ductal adenocarcinoma (PDAC). A depiction of co-dysregulated gene activity in high-grade familial pancreatic cancer (FPC)-related PanIN lesions may characterize the molecular events during the progression from familial PanIN to PDAC. Materials and Methods: We performed weighted gene coexpression network analysis (WGCNA) to identify clusters of coexpressed genes associated with FPC-related PanIN lesions in 13 samples with PanIN-2/3 from FPC predisposed individuals, 6 samples with PDAC from sporadic pancreatic cancer (SPC) patients, and 4 samples of normal donor pancreatic tissue. Results: WGCNA identified seven differentially expressed gene (DEG) modules and two commonly expressed gene (CEG) modules with significant enrichment for Gene Ontology (GO) terms in FPC and SPC, including three upregulated (p < 5e-05) and four downregulated (p < 6e-04) gene modules in FPC compared to SPC. Among the DEG modules, the upregulated modules include 14 significant genes (p < 1e-06): ALOX12-AS1, BCL2L11, EHD4, C4B, BTN3A3, NDUFA11, RBM4B, MYOC, ZBTB47, TTTY15, NAPRT, LOC102606465, LOC100505711, and PTK2. The downregulated modules include 170 genes (p < 1e-06), among them 13 highly significant genes (p < 1e-10): COL10A1, SAMD9, PLPP4, COMP, POSTN, IGHV4-31, THBS2, MMP9, FNDC1, HOPX, TMEM200A, INHBA, and SULF1. The DEG modules are enriched for GO terms related to mitochondrial structure and adenosine triphosphate metabolic processes, extracellular structure and binding properties, humoral and complement mediated immune response, ligand-gated ion channel activity, and transmembrane receptor activity. Among the CEG modules, IL22RA1, DPEP1, and BCAT1 were found as highly connective hub genes associated with both FPC and SPC. Conclusion: FPC-related PanIN lesions exhibit a common molecular basis with SPC as shown by gene network activities and commonly expressed high-connectivity hub genes. The differential molecular pathology of FPC and SPC involves multiple coexpressed gene clusters enriched for GO terms including extracellular activities and mitochondrion function.
Collapse
Affiliation(s)
- Ming Tan
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| | - Ove B. Schaffalitzky de Muckadell
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| | - Maiken Thyregod Jøergensen
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| |
Collapse
|
24
|
Marker SC, King AP, Granja S, Vaughn B, Woods JJ, Boros E, Wilson JJ. Exploring the In Vivo and In Vitro Anticancer Activity of Rhenium Isonitrile Complexes. Inorg Chem 2020; 59:10285-10303. [PMID: 32633531 PMCID: PMC8114230 DOI: 10.1021/acs.inorgchem.0c01442] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The established platinum-based drugs form covalent DNA adducts to elicit their cytotoxic response. Although they are widely employed, these agents cause toxic side-effects and are susceptible to cancer-resistance mechanisms. To overcome these limitations, alternative metal complexes containing the rhenium(I) tricarbonyl core have been explored as anticancer agents. Based on a previous study ( Chem. Eur. J. 2019, 25, 9206), a series of highly active tricarbonyl rhenium isonitrile polypyridyl (TRIP) complexes of the general formula fac-[Re(CO)3(NN)(ICN)]+, where NN is a chelating diimine and ICN is an isonitrile ligand, that induce endoplasmic reticulum (ER) stress via activation of the unfolded protein response (UPR) pathway are investigated. A total of 11 of these TRIP complexes were synthesized, modifying both the equatorial polypyridyl and axial isonitrile ligands. Complexes with more electron-donating equatorial ligands were found to have greater anticancer activity, whereas the axial ICN ligands had a smaller effect on their overall potency. All 11 TRIP derivatives trigger a similar phenotype that is characterized by their abilities to induce ER stress and activate the UPR. Lastly, we explored the in vivo efficacy of one of the most potent complexes, fac-[Re(CO)3(dmphen)(ptolICN)]+ (TRIP-1a), where dmphen = 2,9-dimethyl-1,10-phenanthroline and ptolICN = para-tolyl isonitrile, in mice. The 99mTc congener of TRIP-1a was synthesized, and its biodistribution in BALB/c mice was investigated in comparison to the parent Re complex. The results illustrate that both complexes have similar biodistribution patterns, suggesting that 99mTc analogues of these TRIP complexes can be used as diagnostic partner agents. The in vivo antitumor activity of TRIP-1a was then investigated in NSG mice bearing A2780 ovarian cancer xenografts. When administered at a dose of 20 mg/kg twice weekly, this complex was able to inhibit tumor growth and prolong mouse survival by 150% compared to the vehicle control cohort.
Collapse
Affiliation(s)
- Sierra C. Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - A. Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Samantha Granja
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brett Vaughn
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Joshua J. Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell, University, Ithaca, New York 14853, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
25
|
Qin X, Denton WD, Huiting LN, Smith KS, Feng H. Unraveling the regulatory role of endoplasmic-reticulum-associated degradation in tumor immunity. Crit Rev Biochem Mol Biol 2020; 55:322-353. [PMID: 32633575 DOI: 10.1080/10409238.2020.1784085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During malignant transformation and cancer progression, tumor cells face both intrinsic and extrinsic stress, endoplasmic reticulum (ER) stress in particular. To survive and proliferate, tumor cells use multiple stress response pathways to mitigate ER stress, promoting disease aggression and treatment resistance. Among the stress response pathways is ER-associated degradation (ERAD), which consists of multiple components and steps working together to ensure protein quality and quantity. In addition to its established role in stress responses and tumor cell survival, ERAD has recently been shown to regulate tumor immunity. Here we summarize current knowledge on how ERAD promotes protein degradation, regulates immune cell development and function, participates in antigen presentation, exerts paradoxical roles on tumorigenesis and immunity, and thus impacts current cancer therapy. Collectively, ERAD is a critical protein homeostasis pathway intertwined with cancer development and tumor immunity. Of particular importance is the need to further unveil ERAD's enigmatic roles in tumor immunity to develop effective targeted and combination therapy for successful treatment of cancer.
Collapse
Affiliation(s)
- Xiaodan Qin
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - William D Denton
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Leah N Huiting
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Kaylee S Smith
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Hui Feng
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
26
|
Liu B, Huang B, Liu J, Shi JS. Dendrobium nobile Lindl alkaloid and metformin ameliorate cognitive dysfunction in senescence-accelerated mice via suppression of endoplasmic reticulum stress. Brain Res 2020; 1741:146871. [PMID: 32380088 DOI: 10.1016/j.brainres.2020.146871] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/06/2020] [Accepted: 04/28/2020] [Indexed: 12/25/2022]
Abstract
The senescence-accelerated mouse prone 8 (SAMP8) mice have many pathological features of Alzheimer's disease (AD) with aging. We previously reported that Dendrobium nobile Lindl alkaloid (DNLA) effectively improved cognitive deficits in multiple Alzheimer's disease (AD) models. This study further used SAMP8 mice to study the anti-aging effects of DNLA, focusing on endoplasmic reticulum (ER) stress. DNLA and metformin were orally administered to SAMP8 mice starting at 4-month of age for 6 months. Behavioral tests were performed in 10-month-old SAMP8 mice and age-matched SAMR1 control mice. At the end of experiment, neuron damage was evaluated by histology and transmission electron microscopy. ER stress-related proteins were analyzed with Western-blot. DNLA improved learning and memory impairments, reduced the loss of neurons and Nissl bodies in the hippocampus and cortex. DNLA ameliorated ER dilation and swelling in the hippocampal neurons. DNLA down-regulated the protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway, decreased calpain 1, GSK-3β and Cdk5 activities and the Tau hyper-phosphorylation. The effects of DNLA were comparable to metformin. In summary, DNLA was effective in improving cognitive deficits in aged SAMP8 mice, possibly via suppression of ER stress-related PERK signaling pathway, sequential inhibition of calpain 1, GSK-3β and Cdk5 activities, and eventually reducing the hyper-phosphorylation of Tau.
Collapse
Affiliation(s)
- Bo Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Bo Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, China.
| |
Collapse
|
27
|
Investigating Chaperonin-Containing TCP-1 subunit 2 as an essential component of the chaperonin complex for tumorigenesis. Sci Rep 2020; 10:798. [PMID: 31964905 PMCID: PMC6972895 DOI: 10.1038/s41598-020-57602-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Chaperonin-containing TCP-1 (CCT or TRiC) is a multi-subunit complex that folds many of the proteins essential for cancer development. CCT is expressed in diverse cancers and could be an ideal therapeutic target if not for the fact that the complex is encoded by eight distinct genes, complicating the development of inhibitors. Few definitive studies addressed the role of specific subunits in promoting the chaperonin’s function in cancer. To this end, we investigated the activity of CCT2 (CCTβ) by overexpressing or depleting the subunit in breast epithelial and breast cancer cells. We found that increasing total CCT2 in cells by 1.3-1.8-fold using a lentiviral system, also caused CCT3, CCT4, and CCT5 levels to increase. Likewise, silencing cct2 gene expression by ~50% caused other CCT subunits to decrease. Cells expressing CCT2 were more invasive and had a higher proliferative index. CCT2 depletion in a syngeneic murine model of triple negative breast cancer (TNBC) prevented tumor growth. These results indicate that the CCT2 subunit is integral to the activity of the chaperonin and is needed for tumorigenesis. Hence CCT2 could be a viable target for therapeutic development in breast and other cancers.
Collapse
|
28
|
Anchoori RK, Tan M, Tseng SH, Peng S, Soong RS, Algethami A, Foran P, Das S, Wang C, Wang TL, Liang H, Hung CF, Roden RBS. Structure-function analyses of candidate small molecule RPN13 inhibitors with antitumor properties. PLoS One 2020; 15:e0227727. [PMID: 31940398 PMCID: PMC6961910 DOI: 10.1371/journal.pone.0227727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/29/2019] [Indexed: 11/23/2022] Open
Abstract
We sought to design ubiquitin-proteasome system inhibitors active against solid cancers by targeting ubiquitin receptor RPN13 within the proteasome’s 19S regulatory particle. The prototypic bis-benzylidine piperidone-based inhibitor RA190 is a michael acceptor that adducts Cysteine 88 of RPN13. In probing the pharmacophore, we showed the benefit of the central nitrogen-bearing piperidone ring moiety compared to a cyclohexanone, the importance of the span of the aromatic wings from the central enone-piperidone ring, the contribution of both wings, and that substituents with stronger electron withdrawing groups were more cytotoxic. Potency was further enhanced by coupling of a second warhead to the central nitrogen-bearing piperidone as RA375 exhibited ten-fold greater activity against cancer lines than RA190, reflecting its nitro ring substituents and the addition of a chloroacetamide warhead. Treatment with RA375 caused a rapid and profound accumulation of high molecular weight polyubiquitinated proteins and reduced intracellular glutathione levels, which produce endoplasmic reticulum and oxidative stress, and trigger apoptosis. RA375 was highly active against cell lines of multiple myeloma and diverse solid cancers, and demonstrated a wide therapeutic window against normal cells. For cervical and head and neck cancer cell lines, those associated with human papillomavirus were significantly more sensitive to RA375. While ARID1A-deficiency also enhanced sensitivity 4-fold, RA375 was active against all ovarian cancer cell lines tested. RA375 inhibited proteasome function in muscle for >72h after single i.p. administration to mice, and treatment reduced tumor burden and extended survival in mice carrying an orthotopic human xenograft derived from a clear cell ovarian carcinoma.
Collapse
Affiliation(s)
- Ravi K. Anchoori
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Marietta Tan
- Department of Otolaryngology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ssu-Hsueh Tseng
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Shiwen Peng
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ruey-Shyang Soong
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Aliyah Algethami
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Palmer Foran
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Samarjit Das
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Chenguang Wang
- Department of Biostatistics, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tian-Li Wang
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Hong Liang
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Chien-Fu Hung
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Richard B. S. Roden
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
29
|
King AP, Wilson JJ. Endoplasmic reticulum stress: an arising target for metal-based anticancer agents. Chem Soc Rev 2020; 49:8113-8136. [DOI: 10.1039/d0cs00259c] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal anticancer agents are rapidly emerging as selective, potent therapeutics that exhibit anticancer activity by inducing endoplasmic reticulum stress.
Collapse
Affiliation(s)
- A. Paden King
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| |
Collapse
|
30
|
Reversible phosphorylation of Rpn1 regulates 26S proteasome assembly and function. Proc Natl Acad Sci U S A 2019; 117:328-336. [PMID: 31843888 DOI: 10.1073/pnas.1912531117] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The fundamental importance of the 26S proteasome in health and disease suggests that its function must be finely controlled, and yet our knowledge about proteasome regulation remains limited. Posttranslational modifications, especially phosphorylation, of proteasome subunits have been shown to impact proteasome function through different mechanisms, although the vast majority of proteasome phosphorylation events have not been studied. Here, we have characterized 1 of the most frequently detected proteasome phosphosites, namely Ser361 of Rpn1, a base subunit of the 19S regulatory particle. Using a variety of approaches including CRISPR/Cas9-mediated gene editing and quantitative mass spectrometry, we found that loss of Rpn1-S361 phosphorylation reduces proteasome activity, impairs cell proliferation, and causes oxidative stress as well as mitochondrial dysfunction. A screen of the human kinome identified several kinases including PIM1/2/3 that catalyze S361 phosphorylation, while its level is reversibly controlled by the proteasome-resident phosphatase, UBLCP1. Mechanistically, Rpn1-S361 phosphorylation is required for proper assembly of the 26S proteasome, and we have utilized a genetic code expansion system to directly demonstrate that S361-phosphorylated Rpn1 more readily forms a precursor complex with Rpt2, 1 of the first steps of 19S base assembly. These findings have revealed a prevalent and biologically important mechanism governing proteasome formation and function.
Collapse
|
31
|
Okubo K, Isono M, Miyai K, Asano T, Sato A. Fluvastatin potentiates anticancer activity of vorinostat in renal cancer cells. Cancer Sci 2019; 111:112-126. [PMID: 31675763 PMCID: PMC6942444 DOI: 10.1111/cas.14225] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Drug repositioning is an emerging approach to developing novel cancer treatments. Vorinostat is a histone deacetylase inhibitor approved for cancer treatment, but it could attenuate its anticancer activity by activating the mTOR pathway. The HMG‐CoA reductase inhibitor fluvastatin reportedly activates the mTOR inhibitor AMP‐activated protein kinase (AMPK), and we thought that it would potentiate vorinostat's anticancer activity in renal cancer cells. The combination of vorinostat and fluvastatin induced robust apoptosis and inhibited renal cancer growth effectively both in vitro and in vivo. Vorinostat activated the mTOR pathway, as evidenced by the phosphorylation of ribosomal protein S6, and fluvastatin inhibited this phosphorylation by activating AMPK. Fluvastatin also enhanced vorinostat‐induced histone acetylation. Furthermore, the combination induced endoplasmic reticulum (ER) stress that was accompanied by aggresome formation. We also found that there was a positive feedback cycle among AMPK activation, histone acetylation, and ER stress induction. This is the first study to report the beneficial combined effect of vorinostat and fluvastatin in cancer cells.
Collapse
Affiliation(s)
- Kazuki Okubo
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Makoto Isono
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Kosuke Miyai
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Japan
| | - Takako Asano
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Akinori Sato
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
32
|
Sicari D, Igbaria A, Chevet E. Control of Protein Homeostasis in the Early Secretory Pathway: Current Status and Challenges. Cells 2019; 8:E1347. [PMID: 31671908 PMCID: PMC6912474 DOI: 10.3390/cells8111347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
: Discrimination between properly folded proteins and those that do not reach this state is necessary for cells to achieve functionality. Eukaryotic cells have evolved several mechanisms to ensure secretory protein quality control, which allows efficiency and fidelity in protein production. Among the actors involved in such process, both endoplasmic reticulum (ER) and the Golgi complex play prominent roles in protein synthesis, biogenesis and secretion. ER and Golgi functions ensure that only properly folded proteins are allowed to flow through the secretory pathway while improperly folded proteins have to be eliminated to not impinge on cellular functions. Thus, complex quality control and degradation machineries are crucial to prevent the toxic accumulation of improperly folded proteins. However, in some instances, improperly folded proteins can escape the quality control systems thereby contributing to several human diseases. Herein, we summarize how the early secretory pathways copes with the accumulation of improperly folded proteins, and how insufficient handling can cause the development of several human diseases. Finally, we detail the genetic and pharmacologic approaches that could be used as potential therapeutic tools to treat these diseases.
Collapse
Affiliation(s)
- Daria Sicari
- Proteostasis & Cancer Team INSERM U1242 « Chemistry, Oncogenesis Stress Signaling », Université de Rennes, CEDEX, 35042 Rennes, France.
- Centre de Lutte contre le Cancer Eugène Marquis, CEDEX, 35042 Rennes, France.
| | - Aeid Igbaria
- Proteostasis & Cancer Team INSERM U1242 « Chemistry, Oncogenesis Stress Signaling », Université de Rennes, CEDEX, 35042 Rennes, France.
- Centre de Lutte contre le Cancer Eugène Marquis, CEDEX, 35042 Rennes, France.
| | - Eric Chevet
- Proteostasis & Cancer Team INSERM U1242 « Chemistry, Oncogenesis Stress Signaling », Université de Rennes, CEDEX, 35042 Rennes, France.
- Centre de Lutte contre le Cancer Eugène Marquis, CEDEX, 35042 Rennes, France.
| |
Collapse
|
33
|
Tax G, Lia A, Santino A, Roversi P. Modulation of ERQC and ERAD: A Broad-Spectrum Spanner in the Works of Cancer Cells? JOURNAL OF ONCOLOGY 2019; 2019:8384913. [PMID: 31662755 PMCID: PMC6791201 DOI: 10.1155/2019/8384913] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022]
Abstract
Endoplasmic reticulum glycoprotein folding quality control (ERQC) and ER-associated degradation (ERAD) preside over cellular glycoprotein secretion and maintain steady glycoproteostasis. When cells turn malignant, cancer cell plasticity is affected and supported either by point mutations, preferential isoform selection, altered expression levels, or shifts to conformational equilibria of a secreted glycoprotein. Such changes are crucial in mediating altered extracellular signalling, metabolic behavior, and adhesion properties of cancer cells. It is therefore conceivable that interference with ERQC and/or ERAD can be used to selectively damage cancers. Indeed, inhibitors of the late stages of ERAD are already in the clinic against cancers such as multiple myeloma. Here, we review recent advances in our understanding of the complex relationship between glycoproteostasis and cancer biology and discuss the potential of ERQC and ERAD modulators for the selective targeting of cancer cell plasticity.
Collapse
Affiliation(s)
- Gábor Tax
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7RH, UK
| | - Andrea Lia
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7RH, UK
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, I-73100 Lecce, Italy
| | - Angelo Santino
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, I-73100 Lecce, Italy
| | - Pietro Roversi
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7RH, UK
| |
Collapse
|
34
|
Cheng S, Liu H, Sun Q, Kong R, Letcher RJ, Liu C. Occurrence of the fungus mycotoxin, ustiloxin A, in surface waters of paddy fields in Enshi, Hubei, China, and toxicity in Tetrahymena thermophila. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:901-909. [PMID: 31234256 DOI: 10.1016/j.envpol.2019.05.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 05/22/2023]
Abstract
There has been an increasing incidence rate of rice false smut in global rice cultivation areas. However, there is a dearth of studies on the environmental concentrations and hazards of ustiloxin A (UA), which is the major mycotoxin produced by a pathogenic fungus of the rice false smut. Here, the concentrations of UA in the surface waters of two paddy fields located in Enshi city, Hubei province, China, were measured, and its toxicity in T. Thermophila was evaluated. This is the first study to detect UA in the surface waters of the two paddy fields, and the measured mean concentrations were 2.82 and 0.26 μg/L, respectively. Exposure to 2.19, 19.01 or 187.13 μg/L UA for 5 days significantly reduced the theoretical population and cell size of T. thermophila. Furthermore, treatment with 187.13 μg/L UA changed the percentages of T. thermophila cells in different cell-cycle stages, and with an increased malformation rate compared with the control, suggesting the disruption of the cell cycle. The expressions of 30 genes involved in the enriched proteasome pathway, 7 cyclin genes (cyc9, cyc10, cyc16, cyc22, cyc23, cyc26, cyc33) and 2 histone genes (mlh1 and hho1) were significantly down-regulated, which might be the modes of action responsible for the disruption of cell cycling due to UA exposure.
Collapse
Affiliation(s)
- Shiyang Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hao Liu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qian Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ren Kong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, K1A 0H3, Canada
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
35
|
Yuan B, Liu J, Guan R, Jin C, Ji L, Chao H. Endoplasmic reticulum targeted cyclometalated iridium(iii) complexes as efficient photodynamic therapy photosensitizers. Dalton Trans 2019; 48:6408-6415. [PMID: 30994678 DOI: 10.1039/c9dt01072f] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The endoplasmic reticulum (ER) is an indispensable organelle that undertakes the synthesis and export of proteins and membrane lipids. Subtle interferences of the ER redox signaling pathway are very likely to cause ER-stress induced apoptosis. In view of this, we herein present a series of ER-targeted Ir(iii) complexes (Ir1-Ir3) as photodynamic therapy (PDT) photosensitizers with a gradually extended conjugation area in the main ligand, and study the correlation between the conjugation area and PDT performance. The results showed that all of these complexes can accumulate in the ER and effectively induce cell apoptosis after PDT therapeutics (405 nm, 6 J cm-2) by an ER stress mechanism, and both their singlet oxygen quantum yields and cytotoxicities increase as the conjugation area extends. All complexes showed PDT efficacy towards different cancer cell lines. Among them, Ir2 exhibited the highest PI value (94.3) against A549 cells with an IC50 down to 0.65 μM. In addition, the post PDT ER-stress induced apoptosis along with the efflux of Ca2+ from the ER system in A549 cells in a short period of time (45-90 min) with the pretreatment of Ir2 was demonstrated. All of these results indicate the promising potential of Ir2 as an effective PDT photosensitizer.
Collapse
Affiliation(s)
- Bo Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | | | | | | | | | | |
Collapse
|
36
|
Okubo K, Isono M, Asano T, Sato A. Metformin Augments Panobinostat's Anti-Bladder Cancer Activity by Activating AMP-Activated Protein Kinase. Transl Oncol 2019; 12:669-682. [PMID: 30849634 PMCID: PMC6402380 DOI: 10.1016/j.tranon.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 02/09/2023] Open
Abstract
Panobinostat, a histone deacetylase inhibitor, induces histone acetylation and acts against cancer but attenuates its anticancer activity by activating the mammalian target of rapamycin (mTOR) pathway. AMP-activated protein kinase (AMPK) is a cellular energy sensor that reportedly inhibits the mTOR pathway. The antidiabetic drug metformin is also a potent AMPK activator and we investigated whether it augmented panobinostat's antineoplastic activity in bladder cancer cells (UMUC3, J82, T24 and MBT-2). Metformin enhanced panobinostat-induced apoptosis and the combination inhibited the growth of bladder cancer cells cooperatively in vitro and in vivo. As expected, metformin increased the phosphorylation of AMPK and decreased the panobinostat-caused phosphorylation of S6 ribosomal protein, thus inhibiting the panobinostat-activated mTOR pathway. The AMPK activation was shown to play a pivotal role in the combination's action because the AMPK inhibitor compound C attenuated the combination's anticancer activity. Furthermore, the AMPK activation by metformin enhanced panobinostat-induced histone and non-histone acetylation. This acetylation was especially remarkable in the proteins in the detergent-insoluble fraction, which would be expected if the combination also induced endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Kazuki Okubo
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Makoto Isono
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Takako Asano
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Akinori Sato
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.
| |
Collapse
|
37
|
Zhu J, Xu S, Gao W, Feng J, Zhao G. Honokiol induces endoplasmic reticulum stress-mediated apoptosis in human lung cancer cells. Life Sci 2019; 221:204-211. [DOI: 10.1016/j.lfs.2019.01.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 11/15/2022]
|
38
|
Xu L, Zhang PP, Fang XQ, Liu Y, Wang JQ, Zhou HZ, Chen ST, Chao H. A ruthenium(II) complex containing a p-cresol group induces apoptosis in human cervical carcinoma cells through endoplasmic reticulum stress and reactive oxygen species production. J Inorg Biochem 2019; 191:126-134. [DOI: 10.1016/j.jinorgbio.2018.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 10/27/2022]
|
39
|
Qi G, Kong W, Mou X, Wang S. A new method for excavating feature lncRNA in lung adenocarcinoma based on pathway crosstalk analysis. J Cell Biochem 2018; 120:9034-9046. [DOI: 10.1002/jcb.28177] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Guoqiang Qi
- Department of Electronic Engineering College of Information Engineering, Shanghai Maritime University Shanghai China
| | - Wei Kong
- Department of Electronic Engineering College of Information Engineering, Shanghai Maritime University Shanghai China
| | - Xiaoyang Mou
- Department of Biochemistry Rowan University and Guava Medicine Glassboro New Jersey
| | - Shuaiqun Wang
- Department of Electronic Engineering College of Information Engineering, Shanghai Maritime University Shanghai China
| |
Collapse
|
40
|
The Autophagy-Lysosomal Pathways and Their Emerging Roles in Modulating Proteostasis in Tumors. Cells 2018; 8:cells8010004. [PMID: 30577555 PMCID: PMC6356230 DOI: 10.3390/cells8010004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
In normal physiological condition, the maintenance of cellular proteostasis is a prerequisite for cell growth, functioning, adapting to changing micro-environments, and responding to extracellular stress. Cellular proteostasis is maintained by specific proteostasis networks (PNs) to prevent protein misfolding, aggregating, and accumulating in subcellular compartments. Commonly, the PNs are composed of protein synthesis, molecular chaperones, endoplasmic reticulum (ER), unfolded protein response (UPR), stress response pathways (SRPs), secretions, ubiquitin proteasome system (UPS), and autophagy-lysosomal pathways (ALPs). Although great efforts have been made to explore the underlying detailed mechanisms of proteostasis, there are many questions remain to explore, especially in proteostasis regulated by the ALPs. Proteostasis out-off-balance is correlated with various human diseases such as diabetes, stroke, inflammation, hypertension, pulmonary fibrosis, and Alzheimer’s disease. Enhanced regulation of PNs is observed in tumors, thereby indicating that proteostasis may play a pivotal role in tumorigenesis and cancer development. Recently, inhibitors targeting the UPS have shown to be failed in solid tumor treatment. However, there is growing evidence showing that the ALPs play important roles in regulation of proteostasis alone or with a crosstalk with other PNs in tumors. In this review, we provide insights into the proteostatic process and how it is regulated by the ALPs, such as macroautophagy, aggrephagy, chaperone-mediated autophagy, microautophagy, as well as mitophagy during tumor development.
Collapse
|
41
|
Ferreira RB, Wang M, Law ME, Davis BJ, Bartley AN, Higgins PJ, Kilberg MS, Santostefano KE, Terada N, Heldermon CD, Castellano RK, Law BK. Disulfide bond disrupting agents activate the unfolded protein response in EGFR- and HER2-positive breast tumor cells. Oncotarget 2018; 8:28971-28989. [PMID: 28423644 PMCID: PMC5438706 DOI: 10.18632/oncotarget.15952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/12/2017] [Indexed: 12/14/2022] Open
Abstract
Many breast cancer deaths result from tumors acquiring resistance to available therapies. Thus, new therapeutic agents are needed for targeting drug-resistant breast cancers. Drug-refractory breast cancers include HER2+ tumors that have acquired resistance to HER2-targeted antibodies and kinase inhibitors, and “Triple-Negative” Breast Cancers (TNBCs) that lack the therapeutic targets Estrogen Receptor, Progesterone Receptor, and HER2. A significant fraction of TNBCs overexpress the HER2 family member Epidermal Growth Factor Receptor (EGFR). Thus agents that selectively kill EGFR+ and HER2+ tumors would provide new options for breast cancer therapy. We previously identified a class of compounds we termed Disulfide bond Disrupting Agents (DDAs) that selectively kill EGFR+ and HER2+ breast cancer cells in vitro and blocked the growth of HER2+ breast tumors in an animal model. DDA-dependent cytotoxicity was found to correlate with downregulation of HER1-3 and Akt dephosphorylation. Here we demonstrate that DDAs activate the Unfolded Protein Response (UPR) and that this plays a role in their ability to kill EGFR+ and HER2+ cancer cells. The use of breast cancer cell lines ectopically expressing EGFR or HER2 and pharmacological probes of UPR revealed all three DDA responses: HER1-3 downregulation, Akt dephosphorylation, and UPR activation, contribute to DDA-mediated cytotoxicity. Significantly, EGFR overexpression potentiates each of these responses. Combination studies with DDAs suggest that they may be complementary with EGFR/HER2-specific receptor tyrosine kinase inhibitors and mTORC1 inhibitors to overcome drug resistance.
Collapse
Affiliation(s)
- Renan B Ferreira
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Mengxiong Wang
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL 32610, USA.,UF-Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Mary E Law
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL 32610, USA.,UF-Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Bradley J Davis
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL 32610, USA.,UF-Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Ashton N Bartley
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Paul J Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY 12208, USA
| | - Michael S Kilberg
- Department of Biochemistry, University of Florida, Gainesville, FL, 32610, USA
| | - Katherine E Santostefano
- Department of Pathology, Immunology, and Laboratory Medicine, Center for Cellular Reprogramming, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Naohiro Terada
- Department of Pathology, Immunology, and Laboratory Medicine, Center for Cellular Reprogramming, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Coy D Heldermon
- Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | | | - Brian K Law
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL 32610, USA.,UF-Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
42
|
Amanullah A, Upadhyay A, Joshi V, Mishra R, Jana NR, Mishra A. Progressing neurobiological strategies against proteostasis failure: Challenges in neurodegeneration. Prog Neurobiol 2017; 159:1-38. [DOI: 10.1016/j.pneurobio.2017.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 06/01/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023]
|
43
|
Sato A, Asano T, Okubo K, Isono M, Asano T. Nelfinavir and Ritonavir Kill Bladder Cancer Cells Synergistically by Inducing Endoplasmic Reticulum Stress. Oncol Res 2017; 26:323-332. [PMID: 28560953 PMCID: PMC7844765 DOI: 10.3727/096504017x14957929842972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The human immunodeficiency virus (HIV) protease inhibitor nelfinavir acts against malignancies by inducing endoplasmic reticulum (ER) stress. The HIV protease inhibitor ritonavir, on the other hand, not only induces ER stress but also inhibits P-glycoprotein's pump activity and thereby enhances the effects of its substrate drugs. We therefore postulated that ritonavir in combination with nelfinavir would kill bladder cancer cells effectively by inducing ER stress cooperatively and also enhancing nelfinavir's effect. Nelfinavir was shown to be a P-glycoprotein substrate, and the combination of nelfinavir and ritonavir inhibited bladder cancer cell growth synergistically. It also suppressed colony formation significantly. The combination significantly increased the number of cells in the sub-G1 fraction and also the number of annexin V+ cells, confirming robust apoptosis induction. The combination induced ER stress synergistically, as evidenced by the increased expression of glucose-regulated protein 78, ER-resident protein 44, and endoplasmic oxidoreductin-1-like protein. It also increased the expression of the mammalian target of rapamycin (mTOR) inhibitor AMP-activated protein kinase and caused dephosphorylation of S6 ribosomal protein, demonstrating that the combination also inhibited the mTOR pathway. We also found that the combination enhanced histone acetylation synergistically by decreasing the expression of HDACs 1, 3, and 6.
Collapse
Affiliation(s)
- Akinori Sato
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Takako Asano
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kazuki Okubo
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Makoto Isono
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Tomohiko Asano
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
44
|
Sato A, Asano T, Okubo K, Isono M, Asano T. Ritonavir and ixazomib kill bladder cancer cells by causing ubiquitinated protein accumulation. Cancer Sci 2017; 108:1194-1202. [PMID: 28342223 PMCID: PMC5480085 DOI: 10.1111/cas.13242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/28/2017] [Accepted: 03/14/2017] [Indexed: 12/13/2022] Open
Abstract
There is no curative treatment for advanced bladder cancer. Causing ubiquitinated protein accumulation and endoplasmic reticulum stress is a novel approach to cancer treatment. The HIV protease inhibitor ritonavir has been reported to suppress heat shock protein 90 and increase the amount of unfolded proteins in the cell. If the proteasome functions normally, however, they are rapidly degraded. We postulated that the novel proteasome inhibitor ixazomib combined with ritonavir would kill bladder cancer cells effectively by inhibiting degradation of these unfolded proteins and thereby causing ubiquitinated proteins to accumulate. The combination of ritonavir and ixazomib induced drastic apoptosis and inhibited the growth of bladder cancer cells synergistically. The combination decreased the expression of cyclin D1 and cyclin‐dependent kinase 4, and increased the sub‐G1 fraction significantly. Mechanistically, the combination caused ubiquitinated protein accumulation and endoplasmic reticulum stress. The combination‐induced apoptosis was markedly attenuated by the protein synthesis inhibitor cycloheximide, suggesting that the accumulation of ubiquitinated proteins played an important role in the combination's antineoplastic activity. Furthermore, the combination induced histone acetylation cooperatively and the decreased expression of histone deacetylases was thought to be one mechanism of this histone acetylation. The present study provides a theoretical basis for future development of novel ubiquitinated‐protein‐accumulation‐based therapies effective against bladder cancer.
Collapse
Affiliation(s)
- Akinori Sato
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Takako Asano
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Kazuki Okubo
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Makoto Isono
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Tomohiko Asano
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
45
|
Xiao B, Liu C, Liu BT, Zhang X, Liu RR, Zhang XW. TTF1-NPs Induce ERS-Mediated Apoptosis and Inhibit Human Hepatoma Cell Growth In Vitro and In Vivo. Oncol Res 2017; 23:311-20. [PMID: 27131317 PMCID: PMC7838666 DOI: 10.3727/096504016x14567549091341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previous studies have shown that 5,2',4'-trihydroxy-6,7,5'-trimethoxyflavone (TTF1) is the primary anticancer constituent of the traditional Chinese medicinal plant Sorbaria sorbifolia (SS), which has been applied to treat cancer in China. In this study, we investigated the in vitro and in vivo antitumor effects and biological mechanisms of small-molecule TTF1 nanoparticles (TTF1-NPs). The effects of TTF1-NPs on cell growth and apoptosis were investigated using human hepatoma cells. The molecular changes associated with the effects of TTF1-NPs were analyzed by immunocytochemistry and Western blot analysis. The in vivo effect of TTF1-NPs was investigated using the HepG2 tumor xenograft model. We found that TTF1-NPs exhibited antitumor effects in vitro accompanied by induction of apoptosis in human hepatoma cells. Mechanistically, our data showed that TTF1-NPs induced apoptosis via endoplasmic reticulum stress (ERS) pathway in hepatoma cells. Moreover, inhibition of ERS activation blocked TTF1-NP-induced apoptosis in HepG2 cells. Finally, TTF1-NPs inhibited the growth of HepG2 xenograft tumors. Taken together, our results demonstrated that TTF1-NP-induced apoptosis was mediated at least in part by the ERS pathway and thus inhibited hepatoma tumor growth.
Collapse
Affiliation(s)
- Bin Xiao
- College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | | | | | | | | | | |
Collapse
|
46
|
Jandaghi P, Najafabadi HS, Bauer AS, Papadakis AI, Fassan M, Hall A, Monast A, von Knebel Doeberitz M, Neoptolemos JP, Costello E, Greenhalf W, Scarpa A, Sipos B, Auld D, Lathrop M, Park M, Büchler MW, Strobel O, Hackert T, Giese NA, Zogopoulos G, Sangwan V, Huang S, Riazalhosseini Y, Hoheisel JD. Expression of DRD2 Is Increased in Human Pancreatic Ductal Adenocarcinoma and Inhibitors Slow Tumor Growth in Mice. Gastroenterology 2016; 151:1218-1231. [PMID: 27578530 DOI: 10.1053/j.gastro.2016.08.040] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Incidence of and mortality from pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, are almost equivalent, so better treatments are needed. We studied gene expression profiles of PDACs and the functions of genes with altered expression to identify new therapeutic targets. METHODS We performed microarray analysis to analyze gene expression profiles of 195 PDAC and 41 non-tumor pancreatic tissue samples. We undertook an extensive analysis of the PDAC transcriptome by superimposing interaction networks of proteins encoded by aberrantly expressed genes over signaling pathways associated with PDAC development to identify factors that might alter regulation of these pathways during tumor progression. We performed tissue microarray analysis to verify changes in expression of candidate protein using an independent set of 152 samples (40 nontumor pancreatic tissues, 63 PDAC sections, and 49 chronic pancreatitis samples). We validated the functional relevance of the candidate molecule using RNA interference or pharmacologic inhibitors in pancreatic cancer cell lines and analyses of xenograft tumors in mice. RESULTS In an analysis of 38,276 human genes and loci, we identified 1676 genes that were significantly up-regulated and 1166 genes that were significantly down-regulated in PDAC compared with nontumor pancreatic tissues. One gene that was up-regulated and associated with multiple signaling pathways that are dysregulated in PDAC was G protein subunit αi2, which has not been previously associated with PDAC. G protein subunit αi2 mediates the effects of dopamine receptor D2 (DRD2) on cyclic adenosine monophosphate signaling; PDAC tissues had a slight but significant increase in DRD2 messenger RNA. Levels of DRD2 protein were substantially increased in PDACs, compared with non-tumor tissues, in tissue microarray analyses. RNA interference knockdown of DRD2 or inhibition with pharmacologic antagonists (pimozide and haloperidol) reduced proliferation of pancreatic cancer cells, induced endoplasmic reticulum stress and apoptosis, and reduced cell migration. RNA interference knockdown of DRD2 in pancreatic tumor cells reduced growth of xenograft tumors in mice, and administration of the DRD2 inhibitor haloperidol to mice with orthotopic xenograft tumors reduced final tumor size and metastasis. CONCLUSIONS In gene expression profile analysis of PDAC samples, we found the DRD2 signaling pathway to be activated. Inhibition of DRD2 in pancreatic cancer cells reduced proliferation and migration, and slowed growth of xenograft tumors in mice. DRD2 antagonists routinely used for management of schizophrenia might be tested in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Pouria Jandaghi
- Functional Genome Analysis, Deutsches Krebsforschungszentrum, Heidelberg, Germany; Department of Human Genetics, McGill University, Montreal, Quebec, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Andrea S Bauer
- Functional Genome Analysis, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Andreas I Papadakis
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Matteo Fassan
- ARC-NET Center for Applied Research on Cancer, University and Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Anita Hall
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada; The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Anie Monast
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - John P Neoptolemos
- National Institute for Health Research, Liverpool Pancreas Biomedical Research Unit, Liverpool, UK
| | - Eithne Costello
- National Institute for Health Research, Liverpool Pancreas Biomedical Research Unit, Liverpool, UK
| | - William Greenhalf
- National Institute for Health Research, Liverpool Pancreas Biomedical Research Unit, Liverpool, UK
| | - Aldo Scarpa
- ARC-NET Center for Applied Research on Cancer, University and Azienda Ospedaliera Universitaria Integrata, Verona, Italy; Department of Pathology and Diagnostics, Università di Verona, Verona, Italy
| | - Bence Sipos
- Institute for Pathology and Neuropathology, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Daniel Auld
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Mark Lathrop
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Morag Park
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada; Department of Pathology, McGill University, Montréal, Quebec, Canada; Department of Oncology, McGill University, Montréal, Quebec, Canada
| | - Markus W Büchler
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Oliver Strobel
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Thilo Hackert
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Nathalia A Giese
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - George Zogopoulos
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada; The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Veena Sangwan
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada; Department of Oncology, McGill University, Montréal, Quebec, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Yasser Riazalhosseini
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada.
| | - Jörg D Hoheisel
- Functional Genome Analysis, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| |
Collapse
|
47
|
Ma Z, Fan C, Yang Y, Di S, Hu W, Li T, Zhu Y, Han J, Xin Z, Wu G, Zhao J, Li X, Yan X. Thapsigargin sensitizes human esophageal cancer to TRAIL-induced apoptosis via AMPK activation. Sci Rep 2016; 6:35196. [PMID: 27731378 PMCID: PMC5059685 DOI: 10.1038/srep35196] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent for esophageal squamous cell carcinoma (ESCC). Forced expression of CHOP, one of the key downstream transcription factors during endoplasmic reticulum (ER) stress, upregulates the death receptor 5 (DR5) levels and promotes oxidative stress and cell death. In this study, we show that ER stress mediated by thapsigargin promoted CHOP and DR5 synthesis thus sensitizing TRAIL treatment, which induced ESCC cells apoptosis. These effects were reversed by DR5 siRNA in vitro and CHOP siRNA both in vitro and in vivo. Besides, chemically inhibition of AMPK by Compound C and AMPK siRNA weakened the anti-cancer effect of thapsigargin and TRAIL co-treatment. Therefore, our findings suggest ER stress effectively sensitizes human ESCC to TRAIL-mediated apoptosis via the TRAIL-DR5-AMPK signaling pathway, and that activation of ER stress may be beneficial for improving the efficacy of TRAIL-based anti-cancer therapy.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an 710038, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an 710038, China
| | - Yang Yang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi’an 710032, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an 710038, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi’an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi’an 710032, China
| | - Yifang Zhu
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an 710038, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an 710038, China
| | - Zhenlong Xin
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi’an 710032, China
| | - Guiling Wu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi’an 710032, China
| | - Jing Zhao
- Department of Thoracic Surgery, Beijing Military General Hospital, 5 DongSi ShiTiao Road 100070, Beijing 100700, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an 710038, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an 710038, China
| |
Collapse
|
48
|
Chiu HW, Yeh YL, Wang YC, Huang WJ, Ho SY, Lin P, Wang YJ. Combination of the novel histone deacetylase inhibitor YCW1 and radiation induces autophagic cell death through the downregulation of BNIP3 in triple-negative breast cancer cells in vitro and in an orthotopic mouse model. Mol Cancer 2016; 15:46. [PMID: 27286975 PMCID: PMC4902929 DOI: 10.1186/s12943-016-0531-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 05/31/2016] [Indexed: 12/31/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is the most aggressive and invasive of the breast cancer subtypes. TNBC is a challenging disease that lacks targets for treatment. Histone deacetylase inhibitors (HDACi) are a group of targeted anticancer agents that enhance radiosensitivity. Bcl-2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) is a member of the Bcl-2 subfamily. BNIP3 is not found in normal breast tissue but is up-regulated in breast cancer. In the present study, we investigated the anti-cancer effects of a newly developed HDACi, YCW1, combined with ionizing radiation (IR) in TNBC in vitro and in an orthotopic mouse model. Furthermore, we examined the relationship between autophagy and BNIP3. Methods Trypan blue exclusion was used to investigate the viability of 4 T1 (a mouse TNBC cell line) and MDA-MB-231 cells (a human TNBC cell line) following combined YCW1 and IR treatment. Flow cytometry was used to determine apoptosis and autophagy. The expression levels of BNIP3, endoplasmic reticulum (ER) stress- and autophagic-related proteins were measured using western blot analysis. An orthotopic mouse model was used to investigate the in vivo effects of YCW1 and IR alone and in combination. Tumor volumes were monitored using a bioluminescence-based IVIS Imaging System 200. Results We found that YCW1 significantly enhanced toxicity in 4 T1 cells compared with suberoylanilide hydroxamic acid (SAHA), which was the first HDACi approved by the Food and Drug Administration for clinical use in cancer patients. The combined treatment of YCW1 and IR enhanced cytotoxicity by inducing ER stress and increasing autophagy induction. Additionally, the combined treatment caused autophagic flux and autophagic cell death. Furthermore, the expression level of BNIP3 was significantly decreased in cells following combined treatment. The downregulation of BNIP3 led to a significant increase in autophagy and cytotoxicity. The combined anti-tumor effects of YCW1 and IR were also observed in an orthotopic mouse model; combination therapy resulted in a significant increase in autophagy and decreased tumor tissue expression of BNIP3 in the tumor tissue. Conclusions These data support the possibility of using a combination of HDACi and IR in the treatment of TNBC. Moreover, BNIP3 may be a potential target protein for TNBC treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0531-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Ling Yeh
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, Taiwan, 704
| | - Yi-Ching Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Yow Ho
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying, Tainan, Taiwan.,Chang Jung Christian University, Tainan, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County, 350, Taiwan.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, Taiwan, 704. .,Department of Biomedical Informatics, Asia University, Taichung, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
49
|
Sheng X, Arnoldussen YJ, Storm M, Tesikova M, Nenseth HZ, Zhao S, Fazli L, Rennie P, Risberg B, Wæhre H, Danielsen H, Mills IG, Jin Y, Hotamisligil G, Saatcioglu F. Divergent androgen regulation of unfolded protein response pathways drives prostate cancer. EMBO Mol Med 2016; 7:788-801. [PMID: 25864123 PMCID: PMC4459818 DOI: 10.15252/emmm.201404509] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The unfolded protein response (UPR) is a homeostatic mechanism to maintain endoplasmic reticulum (ER) function. The UPR is activated by various physiological conditions as well as in disease states, such as cancer. As androgens regulate secretion and development of the normal prostate and drive prostate cancer (PCa) growth, they may affect UPR pathways. Here, we show that the canonical UPR pathways are directly and divergently regulated by androgens in PCa cells, through the androgen receptor (AR), which is critical for PCa survival. AR bound to gene regulatory sites and activated the IRE1α branch, but simultaneously inhibited PERK signaling. Inhibition of the IRE1α arm profoundly reduced PCa cell growth in vitro as well as tumor formation in preclinical models of PCa in vivo. Consistently, AR and UPR gene expression were correlated in human PCa, and spliced XBP-1 expression was significantly upregulated in cancer compared with normal prostate. These data establish a genetic switch orchestrated by AR that divergently regulates the UPR pathways and suggest that targeting IRE1α signaling may have therapeutic utility in PCa.
Collapse
Affiliation(s)
- Xia Sheng
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | | | | | | - Sen Zhao
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ladan Fazli
- The Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Paul Rennie
- The Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Bjørn Risberg
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway Division of Pathology, Oslo University Hospital, Oslo, Norway
| | - Håkon Wæhre
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway Division of Surgery, Oslo University Hospital, Oslo, Norway Center for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Håvard Danielsen
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway Center for Cancer Biomedicine, University of Oslo, Oslo, Norway Department of Informatics, University of Oslo, Oslo, Norway
| | - Ian G Mills
- The Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway Department of Urology, Oslo University Hospital, Oslo, Norway Department of Cancer Prevention, Institute of Cancer Research, Radium Hospital, Oslo, Norway
| | - Yang Jin
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Gökhan Hotamisligil
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Harvard University, Boston, MA, USA
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, Oslo, Norway Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
50
|
Fan C, Yang Y, Liu Y, Jiang S, Di S, Hu W, Ma Z, Li T, Zhu Y, Xin Z, Wu G, Han J, Li X, Yan X. Icariin displays anticancer activity against human esophageal cancer cells via regulating endoplasmic reticulum stress-mediated apoptotic signaling. Sci Rep 2016; 6:21145. [PMID: 26892033 PMCID: PMC4759694 DOI: 10.1038/srep21145] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/18/2016] [Indexed: 12/20/2022] Open
Abstract
In this study, we investigated the antitumor activity of icariin (ICA) in human esophageal squamous cell carcinoma (ESCC) in vitro and in vivo and explored the role of endoplasmic reticulum stress (ERS) signaling in this activity. ICA treatment resulted in a dose- and time-dependent decrease in the viability of human EC109 and TE1 ESCCs. Additionally, ICA exhibited strong antitumor activity, as evidenced by reductions in cell migration, adhesion, and intracellular glutathione (GSH) levels and by increases in the EC109 and TE1 cell apoptotic index, Caspase 9 activity, reactive oxygen species (ROS) level, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. Furthermore, ICA treatments upregulated the levels of ERS-related molecules (p-PERK, GRP78, ATF4, p-eIF2α, and CHOP) and a pro-apoptotic protein (PUMA) and simultaneously downregulated an anti-apoptotic protein (Bcl2) in the two ESCC cell lines. The downregulation of ERS signaling using eIF2α siRNA desensitized EC109 and TE1 cells to ICA treatment, and the upregulation of ERS signaling using thapsigargin sensitized EC109 and TE1 cells to ICA treatment. In summary, ERS activation may represent a mechanism of action for the anticancer activity of ICA in ESCCs, and the activation of ERS signaling may represent a novel therapeutic intervention for human esophageal cancer.
Collapse
Affiliation(s)
- Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an 710038, China
| | - Yang Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi’an 710032, China
| | - Yong Liu
- Department of Thoracic Surgery, Guangdong Provincial Corps Hospital of Chinese People’s Armed Police Forces, Guangzhou Medical University, 268 Yanling Road, Guangzhou 510507, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi’an 710032, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an 710038, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi’an 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an 710038, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi’an 710032, China
| | - Yifang Zhu
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an 710038, China
| | - Zhenlong Xin
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi’an 710032, China
| | - Guiling Wu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi’an 710032, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an 710038, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an 710038, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an 710038, China
| |
Collapse
|