1
|
Chen Y, Huang D, Xie A, Shan Y, Zhao S, Gao C, Chen J, Shi H, Fang W, Peng J. Capn3b-deficient zebrafish model reveals a key role of autoimmune response in LGMDR1. J Genet Genomics 2024; 51:1375-1388. [PMID: 39349278 DOI: 10.1016/j.jgg.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Mutations in calcium-dependent papain-like protease CALPAIN3 (CAPN3) cause Limb-Girdle Muscular Dystrophy Recessive Type 1 (LGMDR1), the most common limb-girdle muscular dystrophy in humans. In addition to progressive muscle weakness, persistent inflammatory infiltration is also a feature of LGMDR1. Despite the underlying mechanism remaining poorly understood, we consider that it may relate to the newly defined role of CAPN3/Capn3b in the nucleolus. Here, we report that the loss of function of zebrafish capn3b, the counterpart of human CAPN3, induces an autoimmune response akin to that in LGMDR1 patients. capn3b mutant larvae are more susceptible to Listeria monocytogenes injection, characterized by recruiting more macrophages. Under germ-free conditions, transcriptome analysis of the capn3b mutant muscle reveals a significant upregulation of the chemokine-production-related genes. Coincidently, more neutrophils are recruited to the injury site imposed by either muscle stabbing or tail fin amputation. Nucleolar proteomic analysis and enzymatic assays reveal NKAP, an activating factor of the NF-κB pathway, to be a target of CAPN3. We conclude that the accumulation of Nkap and other factors in the capn3b mutant may be involved in the over-activation of innate immunity. Our studies indicate that the zebrafish capn3b mutant is a powerful model for studying the immunity-related progression of human LGMDR1.
Collapse
Affiliation(s)
- Yayue Chen
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Delai Huang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Aixuan Xie
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ying Shan
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuyi Zhao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ce Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hui Shi
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weihuan Fang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
2
|
Wang T, Jiang J, Zhang X, Ke X, Qu Y. Ubiquitin-like modification dependent proteasomal degradation and disease therapy. Trends Mol Med 2024; 30:1061-1075. [PMID: 38851992 DOI: 10.1016/j.molmed.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 06/10/2024]
Abstract
Although it is believed that ubiquitin (Ub) modification is required for protein degradation in the proteasome system (UPS), several proteins are subject to Ub-independent proteasome degradation, and in many cases ubiquitin-like (UBL) modifications, including neddylation, FAT10ylation, SUMOylation, ISGylation, and urmylation, are essential instead. In this Review, we focus on UBL-dependent proteasome degradation (UBLPD), on proteasome regulators especially shuttle factors and receptors, as well as potential competition and coordination with UPS. We propose that there is a distinct UBL-proteasome system (UBLPS) that might be underestimated in protein degradation. Finally, we investigate the association of UBLPD with muscle wasting and neurodegenerative diseases in which the proteasome is abnormally activated and impaired, respectively, and suggest strategies to modulate UBLPD for disease therapy.
Collapse
Affiliation(s)
- Tiantian Wang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Jiang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Zhang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xisong Ke
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yi Qu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
3
|
Bao J, Su B, Chen Z, Sun Z, Peng J, Zhao S. A UTP3-dependent nucleolar translocation pathway facilitates pre-rRNA 5'ETS processing. Nucleic Acids Res 2024; 52:9671-9694. [PMID: 39036955 PMCID: PMC11381329 DOI: 10.1093/nar/gkae631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
The ribosome small subunit (SSU) is assembled by the SSU processome which contains approximately 70 non-ribosomal protein factors. Whilst the biochemical mechanisms of the SSU processome in 18S rRNA processing and maturation have been extensively studied, how SSU processome components enter the nucleolus has yet to be systematically investigated. Here, in examining the nucleolar localization of 50 human SSU processome components, we found that UTP3, together with another 24 proteins, enter the nucleolus autonomously. For the remaining 25 proteins we found that UTP3/SAS10 assists the nucleolar localization of five proteins (MPP10, UTP25, EMG1 and the two UTP-B components UTP12 and UTP13), likely through its interaction with nuclear importin α. This 'ferrying' function of UTP3 was then confirmed as conserved in the zebrafish. We also found that knockdown of human UTP3 impairs cleavage at the A0-site while loss-of-function of either utp3/sas10 or utp13/tbl3 in zebrafish causes the accumulation of aberrantly processed 5'ETS products, which highlights the crucial role of UTP3 in mediating 5'ETS processing. Mechanistically, we found that UTP3 facilitates the degradation of processed 5'ETS by recruiting the RNA exosome component EXOSC10 to the nucleolus. These findings lay the groundwork for studying the mechanism of cytoplasm-to-nucleolus trafficking of SSU processome components.
Collapse
Affiliation(s)
- Jiayang Bao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baochun Su
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zheyan Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaoxiang Sun
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuyi Zhao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Huang S, Yang J, Xie T, Jiang Y, Hong Y, Liu X, He X, Buratto D, Zhang D, Zhou R, Liang T, Bai X. Inhibition of DEF-p65 Interactions as a Potential Avenue to Suppress Tumor Growth in Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401845. [PMID: 38757623 PMCID: PMC11267266 DOI: 10.1002/advs.202401845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/28/2024] [Indexed: 05/18/2024]
Abstract
The limited success of current targeted therapies for pancreatic cancer underscores an urgent demand for novel treatment modalities. The challenge in mitigating this malignancy can be attributed to the digestive organ expansion factor (DEF), a pivotal yet underexplored factor in pancreatic tumorigenesis. The study uses a blend of in vitro and in vivo approaches, complemented by the theoretical analyses, to propose DEF as a promising anti-tumor target. Analysis of clinical samples reveals that high expression of DEF is correlated with diminished survival in pancreatic cancer patients. Crucially, the depletion of DEF significantly impedes tumor growth. The study further discovers that DEF binds to p65, shielding it from degradation mediated by the ubiquitin-proteasome pathway in cancer cells. Based on these findings and computational approaches, the study formulates a DEF-mimicking peptide, peptide-031, designed to disrupt the DEF-p65 interaction. The effectiveness of peptide-031 in inhibiting tumor proliferation has been demonstrated both in vitro and in vivo. This study unveils the oncogenic role of DEF while highlighting its prognostic value and therapeutic potential in pancreatic cancer. In addition, peptide-031 is a promising therapeutic agent with potent anti-tumor effects.
Collapse
Affiliation(s)
- Sicong Huang
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310000China
- Key Laboratory of Pancreatic Disease of Zhejiang ProvinceHangzhou310000China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang ProvinceHangzhou310000China
| | - Jiaqi Yang
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310000China
- Key Laboratory of Pancreatic Disease of Zhejiang ProvinceHangzhou310000China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang ProvinceHangzhou310000China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic DiseasesHangzhou310000China
| | - Teng Xie
- Institute of Quantitative Biology, College of Life SciencesZhejiang UniversityHangzhou310000China
- Shanghai Institute for Advanced StudyZhejiang UniversityShanghai200000China
| | - Yangwei Jiang
- Institute of Quantitative Biology, College of Life SciencesZhejiang UniversityHangzhou310000China
| | - Yifan Hong
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310000China
- Key Laboratory of Pancreatic Disease of Zhejiang ProvinceHangzhou310000China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang ProvinceHangzhou310000China
| | - Xinyuan Liu
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310000China
- Key Laboratory of Pancreatic Disease of Zhejiang ProvinceHangzhou310000China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang ProvinceHangzhou310000China
| | - Xuyan He
- Life Sciences InstituteZhejiang UniversityHangzhou310000China
| | - Damiano Buratto
- Institute of Quantitative Biology, College of Life SciencesZhejiang UniversityHangzhou310000China
- Shanghai Institute for Advanced StudyZhejiang UniversityShanghai200000China
| | - Dong Zhang
- Institute of Quantitative Biology, College of Life SciencesZhejiang UniversityHangzhou310000China
- Shanghai Institute for Advanced StudyZhejiang UniversityShanghai200000China
| | - Ruhong Zhou
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310000China
- Institute of Quantitative Biology, College of Life SciencesZhejiang UniversityHangzhou310000China
- Shanghai Institute for Advanced StudyZhejiang UniversityShanghai200000China
- Department of ChemistryColumbia UniversityNew York10027USA
- Cancer CenterZhejiang UniversityHangzhou310000China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310000China
- Key Laboratory of Pancreatic Disease of Zhejiang ProvinceHangzhou310000China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang ProvinceHangzhou310000China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic DiseasesHangzhou310000China
- Cancer CenterZhejiang UniversityHangzhou310000China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310000China
- Key Laboratory of Pancreatic Disease of Zhejiang ProvinceHangzhou310000China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang ProvinceHangzhou310000China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic DiseasesHangzhou310000China
- Cancer CenterZhejiang UniversityHangzhou310000China
| |
Collapse
|
5
|
Wei J, Wang S, Zhu H, Cui W, Gao J, Gao C, Yu B, Liu B, Chen J, Peng J. Hepatic depletion of nucleolar protein mDEF causes excessive mitochondrial copper accumulation associated with p53 and NRF1 activation. iScience 2023; 26:107220. [PMID: 37456842 PMCID: PMC10339200 DOI: 10.1016/j.isci.2023.107220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/15/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Copper is an essential component in the mitochondrial respiratory chain complex IV (cytochrome c oxidases). However, whether any nucleolar factor(s) is(are) involved in regulating the mitochondrial copper homeostasis remains unclear. The nucleolar localized Def-Capn3 protein degradation pathway cleaves target proteins, including p53, in both zebrafish and human nucleoli. Here, we report that hepatic depletion of mDEF in mice causes an excessive copper accumulation in the mitochondria. We find that mDEF-depleted hepatocytes show an exclusion of CAPN3 from the nucleoli and accumulate p53 and NRF1 proteins in the nucleoli. Furthermore, we find that NRF1 is a CAPN3 substrate. Elevated p53 and NRF1 enhances the expression of Sco2 and Cox genes, respectively, to allow more copper acquirement in the mDefloxp/loxp, Alb:Cre mitochondria. Our findings reveal that the mDEF-CAPN3 pathway serves as a novel mechanism for regulating the mitochondrial copper homeostasis through targeting its substrates p53 and NRF1.
Collapse
Affiliation(s)
- Jinsong Wei
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuai Wang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haozhe Zhu
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Cui
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianan Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ce Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bojing Liu
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Zhang Z, Yang C, Wang Z, Guo L, Xu Y, Gao C, Sun Y, Zhang Z, Peng J, Hu M, Jan Lo L, Ma Z, Chen J. Wdr5-mediated H3K4me3 coordinately regulates cell differentiation, proliferation termination, and survival in digestive organogenesis. Cell Death Discov 2023; 9:227. [PMID: 37407577 DOI: 10.1038/s41420-023-01529-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Food digestion requires the cooperation of different digestive organs. The differentiation of digestive organs is crucial for larvae to start feeding. Therefore, during digestive organogenesis, cell identity and the tissue morphogenesis must be tightly coordinated but how this is accomplished is poorly understood. Here, we demonstrate that WD repeat domain 5 (Wdr5)-mediated H3K4 tri-methylation (H3K4me3) coordinately regulates cell differentiation, proliferation and apoptosis in zebrafish organogenesis of three major digestive organs including intestine, liver, and exocrine pancreas. During zebrafish digestive organogenesis, some of cells in these organ primordia usually undergo differentiation without apoptotic activity and gradually reduce their proliferation capacity. In contrast, cells in the three digestive organs of wdr5-/- mutant embryos retain progenitor-like status with high proliferation rates, and undergo apoptosis. Wdr5 is a core member of COMPASS complex to implement H3K4me3 and its expression is enriched in digestive organs from 2 days post-fertilization (dpf). Further analysis reveals that lack of differentiation gene expression is due to significant decreases of H3K4me3 around the transcriptional start sites of these genes; this histone modification also reduces the proliferation capacity in differentiated cells by increasing the expression of apc to promote the degradation of β-Catenin; in addition, H3K4me3 promotes the expression of anti-apoptotic genes such as xiap-like, which modulates p53 activity to guarantee differentiated cell survival. Thus, our findings have discovered a common molecular mechanism for cell fate determination in different digestive organs during organogenesis, and also provided insights to understand mechanistic basis of human diseases in these digestive organs.
Collapse
Affiliation(s)
- Zhe Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chun Yang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zixu Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liwei Guo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongpan Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ce Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenhai Zhang
- Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Hu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Li Jan Lo
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zhipeng Ma
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jun Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun Road East, Hangzhou, 310016, China.
| |
Collapse
|
7
|
Xie A, Ma Z, Wang J, Zhang Y, Chen Y, Yang C, Chen J, Peng J. Upf3a but not Upf1 mediates the genetic compensation response induced by leg1 deleterious mutations in an H3K4me3-independent manner. Cell Discov 2023; 9:63. [PMID: 37369707 DOI: 10.1038/s41421-023-00550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/29/2023] [Indexed: 06/29/2023] Open
Abstract
Genetic compensation responses (GCRs) can be induced by deleterious mutations in living organisms in order to maintain genetic robustness. One type of GCRs, homology-dependent GCR (HDGCR), involves transcriptional activation of one or more homologous genes related to the mutated gene. In zebrafish, ~80% of the genetic mutants produced by gene editing technology failed to show obvious phenotypes. The HDGCR has been proposed to be one of the main reasons for this phenomenon. It is triggered by mutant mRNA bearing a premature termination codon and has been suggested to depend on components of both the nonsense mRNA-mediated degradation (NMD) pathway and the complex of proteins associated with Set1 (COMPASS). However, exactly which specific NMD factor is required for HDGCR remains disputed. Here, zebrafish leg1 deleterious mutants are adopted as a model to distinguish the role of the NMD factors Upf1 and Upf3a in HDGCR. Four single mutant lines and three double mutant lines were produced. The RNA-seq data from 71 samples and the ULI-NChIP-seq data from 8 samples were then analyzed to study the HDGCR in leg1 mutants. Our results provide strong evidence that Upf3a, but not Upf1, is essential for the HDGCR induced by nonsense mutations in leg1 genes where H3K4me3 enrichment appears not to be a prerequisite. We also show that Upf3a is responsible for correcting the expression of hundreds of genes that would otherwise be dysregulated in the leg1 deleterious mutant.
Collapse
Affiliation(s)
- Aixuan Xie
- 1MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhipeng Ma
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jinyang Wang
- 1MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuxi Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yayue Chen
- 1MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chun Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jinrong Peng
- 1MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Prykhozhij SV, Caceres L, Ban K, Cordeiro-Santanach A, Nagaraju K, Hoffman EP, Berman JN. Loss of calpain3b in Zebrafish, a Model of Limb-Girdle Muscular Dystrophy, Increases Susceptibility to Muscle Defects Due to Elevated Muscle Activity. Genes (Basel) 2023; 14:492. [PMID: 36833417 PMCID: PMC9957097 DOI: 10.3390/genes14020492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Limb-Girdle Muscular Dystrophy Type R1 (LGMDR1; formerly LGMD2A), characterized by progressive hip and shoulder muscle weakness, is caused by mutations in CAPN3. In zebrafish, capn3b mediates Def-dependent degradation of p53 in the liver and intestines. We show that capn3b is expressed in the muscle. To model LGMDR1 in zebrafish, we generated three deletion mutants in capn3b and a positive-control dmd mutant (Duchenne muscular dystrophy). Two partial deletion mutants showed transcript-level reduction, whereas the RNA-less mutant lacked capn3b mRNA. All capn3b homozygous mutants were developmentally-normal adult-viable animals. Mutants in dmd were homozygous-lethal. Bathing wild-type and capn3b mutants in 0.8% methylcellulose (MC) for 3 days beginning 2 days post-fertilization resulted in significantly pronounced (20-30%) birefringence-detectable muscle abnormalities in capn3b mutant embryos. Evans Blue staining for sarcolemma integrity loss was strongly positive in dmd homozygotes, negative in wild-type embryos, and negative in MC-treated capn3b mutants, suggesting membrane instability is not a primary muscle pathology determinant. Increased birefringence-detected muscle abnormalities in capn3b mutants compared to wild-type animals were observed following induced hypertonia by exposure to cholinesterase inhibitor, azinphos-methyl, reinforcing the MC results. These mutant fish represent a novel tractable model for studying the mechanisms underlying muscle repair and remodeling, and as a preclinical tool for whole-animal therapeutics and behavioral screening in LGMDR1.
Collapse
Affiliation(s)
- Sergey V. Prykhozhij
- Children’s Hospital of Eastern Ontario (CHEO) Research Institute & University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Lucia Caceres
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, NS B3H 4J1, Canada
- AGADA BioSciences, Halifax, NS B3H 0A8, Canada
| | - Kevin Ban
- Children’s Hospital of Eastern Ontario (CHEO) Research Institute & University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | | | - Kanneboyina Nagaraju
- AGADA BioSciences, Halifax, NS B3H 0A8, Canada
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University—State University of New York, Binghamton, NY 13902, USA
| | - Eric P. Hoffman
- AGADA BioSciences, Halifax, NS B3H 0A8, Canada
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University—State University of New York, Binghamton, NY 13902, USA
| | - Jason N. Berman
- Children’s Hospital of Eastern Ontario (CHEO) Research Institute & University of Ottawa, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
9
|
Restoring Age-Related Cognitive Decline through Environmental Enrichment: A Transcriptomic Approach. Cells 2022; 11:cells11233864. [PMID: 36497123 PMCID: PMC9736066 DOI: 10.3390/cells11233864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Cognitive decline is one of the greatest health threats of old age and the maintenance of optimal brain function across a lifespan remains a big challenge. The hippocampus is considered particularly vulnerable but there is cross-species consensus that its functional integrity benefits from the early and continuous exercise of demanding physical, social and mental activities, also referred to as environmental enrichment (EE). Here, we investigated the extent to which late-onset EE can improve the already-impaired cognitive abilities of lifelong deprived C57BL/6 mice and how it affects gene expression in the hippocampus. To this end, 5- and 24-month-old mice housed in standard cages (5mSC and 24mSC) and 24-month-old mice exposed to EE in the last 2 months of their life (24mEE) were subjected to a Barnes maze task followed by next-generation RNA sequencing of the hippocampal tissue. Our analyses showed that late-onset EE was able to restore deficits in spatial learning and short-term memory in 24-month-old mice. These positive cognitive effects were reflected by specific changes in the hippocampal transcriptome, where late-onset EE affected transcription much more than age (24mSC vs. 24mEE: 1311 DEGs, 24mSC vs. 5mSC: 860 DEGs). Remarkably, a small intersection of 72 age-related DEGs was counter-regulated by late-onset EE. Of these, Bcl3, Cttnbp2, Diexf, Esr2, Grb10, Il4ra, Inhba, Rras2, Rps6ka1 and Socs3 appear to be particularly relevant as key regulators involved in dendritic spine plasticity and in age-relevant molecular signaling cascades mediating senescence, insulin resistance, apoptosis and tissue regeneration. In summary, our observations suggest that the brains of aged mice in standard cage housing preserve a considerable degree of plasticity. Switching them to EE proved to be a promising and non-pharmacological intervention against cognitive decline.
Collapse
|
10
|
Ding F, Huang D, Wang M, Peng J. An 86 amino acids motif in CAPN3 is essential for formation of the nucleolus-localized Def-CAPN3 complex. Biochem Biophys Res Commun 2022; 623:66-73. [PMID: 35878425 DOI: 10.1016/j.bbrc.2022.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Digestive-organ expansion factor (Def) is a nucleolar protein that recruits cysteine proteinase Calpain3 (CAPN3) into the nucleolus to form the Def-CAPN3 complex in both human and zebrafish. This complex mediates the degradation of the tumor suppressor p53 and ribosome biogenesis factor mitotic phosphorylated protein 10 (Mpp10) in nucleolus, demonstrating the importance of this complex in regulating cell cycle and ribosome biogenesis. However, the Def and CAPN3 interacting motifs have yet been identified. In this report, by using a series of truncated or internally deleted human CAPN3 (hCAPN3) derivatives we identify that an essential motif of 86 amino acids (86-aa) (430-515aa) in hCAPN3 for its interaction with human Def (hDef), and this 86-aa motif is highly conserved in zebrafish Capn3b (zCapn3b) and is also required for the interaction between zebrafish Def (zDef) and zCapn3b. We further identify the 2/3 C-terminus of hDef is responsible for mediating the hDef-hCAPN3 interaction, and the corresponding region is conserved for the zDef and zCapn3b interaction. Our results lay the ground to resolve the structure of the Def-CAPN3 complex in the future.
Collapse
Affiliation(s)
- Feng Ding
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Delai Huang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mingyun Wang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
p53 Isoforms as Cancer Biomarkers and Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14133145. [PMID: 35804915 PMCID: PMC9264937 DOI: 10.3390/cancers14133145] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The well-known tumor suppressor protein p53 plays important roles in tumor prevention through transcriptional regulation of its target genes. Reactivation of p53 activity has been a potent strategy for cancer treatment. Accumulating evidences indicate that p53 isoforms truncated/modified in the N- or C-terminus can modulate the p53 pathway in a p53-dependent or p53-independent manner. It is thus imperative to characterize the roles of the p53 isoforms in cancer development. This review illustrates how p53 isoforms participate in tumor development and/or suppression. It also summarizes the knowledge about the p53 isoforms as promising cancer biomarkers and therapeutic targets. Abstract This review aims to summarize the implications of the major isoforms of the tumor suppressor protein p53 in aggressive cancer development. The current knowledge of p53 isoforms, their involvement in cell-signaling pathways, and their interactions with other cellular proteins or factors suggests the existence of an intricate molecular network that regulates their oncogenic function. Moreover, existing literature about the involvement of the p53 isoforms in various cancers leads to the proposition of therapeutic solutions by altering the cellular levels of the p53 isoforms. This review thus summarizes how the major p53 isoforms Δ40p53α/β/γ, Δ133p53α/β/γ, and Δ160p53α/β/γ might have clinical relevance in the diagnosis and effective treatments of cancer.
Collapse
|
12
|
Wang J, Bai Y, Xie A, Huang H, Hu M, Peng J. Difference in an intermolecular disulfide-bond between two highly homologous serum proteins Leg1a and Leg1b implicates their functional differentiation. Biochem Biophys Res Commun 2021; 579:81-88. [PMID: 34592574 DOI: 10.1016/j.bbrc.2021.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022]
Abstract
Zebrafish Liver-enriched gene 1a (Leg1a) and Leg1b are liver-produced serum proteins encoded by two adjacently linked homologous genes leg1a and leg1b, respectively. We previously showed that maternal-zygotic (MZ) leg1a null mutant developed a small liver at 3.5 days post-fertilization (dpf) during winter-time or under UV-treatment and displayed an abnormal stature at its adulthood. It is puzzling why Leg1b, which shares 89.3% identity with Leg1a and co-expressed with Leg1a, cannot fully compensate for the loss-of-function of Leg1a in the leg1azju1 MZ mutant. Here we report that Leg1a and Leg1b share eight cysteine residues but differ in amino acid residue 358, which is a serine in Leg1a but cysteine (C358) in Leg1b. We find that Leg1b forms an intermolecular disulfide bond through C358. Mutating C358 to Methionine (M358) does not affect Leg1b secretion whereas mutating other conserved cysteine residues do. We propose that the intermolecular disulfide bond in Leg1b might establish a rigid structure that makes it functionally different from Leg1a under certain oxidative conditions.
Collapse
Affiliation(s)
- Jinyang Wang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yun Bai
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Aixuan Xie
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Heping Huang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Hu
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Rodríguez-Fernández L, Company S, Zaragozá R, Viña JR, García-Trevijano ER. Cleavage and activation of LIM kinase 1 as a novel mechanism for calpain 2-mediated regulation of nuclear dynamics. Sci Rep 2021; 11:16339. [PMID: 34381117 PMCID: PMC8358030 DOI: 10.1038/s41598-021-95797-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Calpain-2 (CAPN2) is a processing enzyme ubiquitously expressed in mammalian tissues whose pleiotropic functions depend on the role played by its cleaved-products. Nuclear interaction networks, crucial for a number of molecular processes, could be modified by CAPN2 activity. However, CAPN2 functions in cell nucleus are poorly understood. To unveil CAPN2 functions in this compartment, the result of CAPN2-mediated interactions in cell nuclei was studied in breast cancer cell (BCC) lines. CAPN2 abundance was found to be determinant for its nucleolar localization during interphase. Those CAPN2-dependent components of nucleolar proteome, including the actin-severing protein cofilin-1 (CFL1), were identified by proteomic approaches. CAPN2 binding, cleavage and activation of LIM Kinase-1 (LIMK1), followed by CFL1 phosphorylation was studied. Upon CAPN2-depletion, full-length LIMK1 levels increased and CFL1/LIMK1 binding was inhibited. In addition, LIMK1 accumulated at the cell periphery and perinucleolar region and, the mitosis-specific increase of CFL1 phosphorylation and localization was altered, leading to aberrant mitosis and cell multinucleation. These findings uncover a mechanism for the role of CAPN2 during mitosis, unveil the critical role of CAPN2 in the interactions among nuclear components and, identifying LIMK1 as a new CAPN2-target, provide a novel mechanism for LIMK1 activation. CFL1 is crucial for cytoskeleton remodeling and mitosis, but also for the maintenance of nuclear structure, the movement of chromosomes and the modulation of transcription frequently altered in cancer cells. Consequently, the role of CAPN2 in the nuclear compartment might be extended to other actin-associated biological and pathological processes.
Collapse
Affiliation(s)
- L Rodríguez-Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Avda. Blasco Ibañez, 15, 46010, Valencia, Spain
| | - S Company
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Avda. Blasco Ibañez, 15, 46010, Valencia, Spain
| | - R Zaragozá
- Fundación Investigación Hospital Clínico-INCLIVA, Valencia, Spain.,Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - J R Viña
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Avda. Blasco Ibañez, 15, 46010, Valencia, Spain.,Fundación Investigación Hospital Clínico-INCLIVA, Valencia, Spain
| | - E R García-Trevijano
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Avda. Blasco Ibañez, 15, 46010, Valencia, Spain. .,Fundación Investigación Hospital Clínico-INCLIVA, Valencia, Spain.
| |
Collapse
|
14
|
Nagati JS, Kobeissy PH, Nguyen MQ, Xu M, Garcia T, Comerford SA, Hammer RE, Garcia JA. Mammalian acetate-dependent acetyl CoA synthetase 2 contains multiple protein destabilization and masking elements. J Biol Chem 2021; 297:101037. [PMID: 34343565 PMCID: PMC8405932 DOI: 10.1016/j.jbc.2021.101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/13/2021] [Accepted: 07/30/2021] [Indexed: 11/05/2022] Open
Abstract
Besides contributing to anabolism, cellular metabolites serve as substrates or cofactors for enzymes and may also have signaling functions. Given these roles, multiple control mechanisms likely ensure fidelity of metabolite-generating enzymes. Acetate-dependent acetyl CoA synthetases (ACS) are de novo sources of acetyl CoA, a building block for fatty acids and a substrate for acetyltransferases. Eukaryotic acetate-dependent acetyl CoA synthetase 2 (Acss2) is predominantly cytosolic, but is also found in the nucleus following oxygen or glucose deprivation, or upon acetate exposure. Acss2-generated acetyl CoA is used in acetylation of Hypoxia-Inducible Factor 2 (HIF-2), a stress-responsive transcription factor. Mutation of a putative nuclear localization signal in endogenous Acss2 abrogates HIF-2 acetylation and signaling, but surprisingly also results in reduced Acss2 protein levels due to unmasking of two protein destabilization elements (PDE) in the Acss2 hinge region. In the current study, we identify up to four additional PDE in the Acss2 hinge region and determine that a previously identified PDE, the ABC domain, consists of two functional PDE. We show that the ABC domain and other PDE are likely masked by intramolecular interactions with other domains in the Acss2 hinge region. We also characterize mice with a prematurely truncated Acss2 that exposes a putative ABC domain PDE, which exhibits reduced Acss2 protein stability and impaired HIF-2 signaling. Finally, using primary mouse embryonic fibroblasts, we demonstrate that the reduced stability of select Acss2 mutant proteins is due to a shortened half-life, which is a result of enhanced degradation via a nonproteasome, nonautophagy pathway.
Collapse
Affiliation(s)
- Jason S Nagati
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Philippe H Kobeissy
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Minh Q Nguyen
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Min Xu
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Trent Garcia
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sarah A Comerford
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert E Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph A Garcia
- Department of Medicine, Columbia University Medical Center, New York, New York, USA; Department of Research, James J. Peters VA Medical Center, New York, New York, USA.
| |
Collapse
|
15
|
Zhao S, Huang D, Peng J. Nucleolus-localized Def-CAPN3 protein degradation pathway and its role in cell cycle control and ribosome biogenesis. J Genet Genomics 2021; 48:955-960. [PMID: 34452850 DOI: 10.1016/j.jgg.2021.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/25/2022]
Abstract
The nucleolus, as the 'nucleus of the nucleus', is a prominent subcellular organelle in a eukaryocyte. The nucleolus serves as the centre for ribosome biogenesis, as well as an important site for cell-cycle regulation, cellular senescence, and stress response. The protein composition of the nucleolus changes dynamically through protein turnover to meet the needs of cellular activities or stress responses. Recent studies have identified a nucleolus-localized protein degradation pathway in zebrafish and humans, namely the Def-CAPN3 pathway, which is essential to ribosome production and cell-cycle progression, by controlling the turnover of multiple substrates (e.g., ribosomal small-subunit [SSU] processome component Mpp10, transcription factor p53, check-point proteins Chk1 and Wee1). This pathway relies on the Ca2+-dependent cysteine proteinase CAPN3 and is independent of the ubiquitin-mediated proteasome pathway. CAPN3 is recruited by nucleolar protein Def from cytoplasm to nucleolus, where it proteolyzes its substrates which harbor a CAPN3 recognition-motif. Def depletion leads to the exclusion of CAPN3 and accumulation of p53, Wee1, Chk1, and Mpp10 in the nucleolus that result in cell-cycle arrest and rRNA processing abnormality. Here, we summarize the discovery of the Def-CAPN3 pathway and propose its biological role in cell-cycle control and ribosome biogenesis.
Collapse
Affiliation(s)
- Shuyi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Delai Huang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, United States
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
16
|
Zhu Q, Tao B, Chen H, Shi H, Huang L, Chen J, Hu M, Lo LJ, Peng J. Rcl1 depletion impairs 18S pre-rRNA processing at the A1-site and up-regulates a cohort of ribosome biogenesis genes in zebrafish. Nucleic Acids Res 2021; 49:5743-5759. [PMID: 34019640 PMCID: PMC8191805 DOI: 10.1093/nar/gkab381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/24/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Yeast Rcl1 is a potential endonuclease that mediates pre-RNA cleavage at the A2-site to separate 18S rRNA from 5.8S and 25S rRNAs. However, the biological function of Rcl1 in opisthokonta is poorly defined. Moreover, there is no information regarding the exact positions of 18S pre-rRNA processing in zebrafish. Here, we report that zebrafish pre-rRNA harbours three major cleavage sites in the 5′ETS, namely –477nt (A′-site), –97nt (A0-site) and the 5′ETS and 18S rRNA link (A1-site), as well as two major cleavage regions within the ITS1, namely 208–218nt (site 2) and 20–33nt (site E). We also demonstrate that depletion of zebrafish Rcl1 mainly impairs cleavage at the A1-site. Phenotypically, rcl1–/– mutants exhibit a small liver and exocrine pancreas and die before 15 days post-fertilization. RNA-seq analysis revealed that the most significant event in rcl1–/– mutants is the up-regulated expression of a cohort of genes related to ribosome biogenesis and tRNA production. Our data demonstrate that Rcl1 is essential for 18S rRNA maturation at the A1-site and for digestive organogenesis in zebrafish. Rcl1 deficiency, similar to deficiencies in other ribosome biogenesis factors, might trigger a common mechanism to upregulate the expression of genes responsible for ribosome biogenesis.
Collapse
Affiliation(s)
- Qinfang Zhu
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, China
| | - Boxiang Tao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, China
| | - Hong Chen
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, China
| | - Hui Shi
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, China
| | - Ling Huang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minjie Hu
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - Li Jan Lo
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, China
| |
Collapse
|
17
|
Tao T, Shi H, Wang M, Perez-Atayde AR, London WB, Gutierrez A, Lemos B, Durbin AD, Look AT. Ganglioneuromas are driven by activated AKT and can be therapeutically targeted with mTOR inhibitors. J Exp Med 2021; 217:151986. [PMID: 32728700 PMCID: PMC7537400 DOI: 10.1084/jem.20191871] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/01/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
Peripheral sympathetic nervous system tumors are the most common extracranial solid tumors of childhood and include neuroblastoma, ganglioneuroblastoma, and ganglioneuroma. Surgery is the only effective therapy for ganglioneuroma, which may be challenging due to the location of the tumor and involvement of surrounding structures. Thus, there is a need for well-tolerated presurgical therapies that could reduce the size and extent of ganglioneuroma and therefore limit surgical morbidity. Here, we found that an AKT–mTOR–S6 pathway was active in human ganglioneuroma but not neuroblastoma samples. Zebrafish transgenic for constitutively activated myr-Akt2 in the sympathetic nervous system were found to develop ganglioneuroma without progression to neuroblastoma. Inhibition of the downstream AKT target, mTOR, in zebrafish with ganglioneuroma effectively reduced the tumor burden. Our results implicate activated AKT as a tumorigenic driver in ganglioneuroma. We propose a clinical trial of mTOR inhibitors as a means to shrink large ganglioneuromas before resection in order to reduce surgical morbidity.
Collapse
Affiliation(s)
- Ting Tao
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Hui Shi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Meng Wang
- Department of Environmental Health & Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA
| | | | - Wendy B London
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Alejandro Gutierrez
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Bernardo Lemos
- Department of Environmental Health & Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Adam D Durbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA.,The Broad Institute of MIT and Harvard, Cambridge, MA
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Liu Y, Wang Y, Yang L, Sun F, Li S, Wang Y, Zhang GA, Dong T, Zhang LL, Duan W, Zhang X, Cui W, Chen S. The nucleolus functions as the compartment for histone H2B protein degradation. iScience 2021; 24:102256. [PMID: 33796843 PMCID: PMC7995529 DOI: 10.1016/j.isci.2021.102256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
Histones are main components of chromatin, and the protein levels of histones significantly affect chromatin assembly. However, how histone protein levels are regulated, especially whether and how histones are degraded, is largely unclear. Here, we found that histone H2B is mainly degraded through the proteasome-mediated pathway, and the lysine-120 site of H2B is essential for its K48-linked polyubiquitination and degradation. Moreover, the degradation-impaired H2BK120R mutant shows an increased nucleolus localization, and inhibition of the proteasome results in an elevated nucleolus distribution of wild-type H2B, which is similar to that of H2BK120R mutants. More importantly, the nucleolus fractions can ubiquitinate and degrade the purified H2B in vitro, suggesting that the nucleolus, in addition to its canonical roles regulating ribosome genesis and protein translation, likely associates with H2B degradation. Therefore, these findings revealed a novel mechanism for the regulation of H2B degradation in which a nucleolus-associated proteasome pathway is involved. Histone H2B can be polyubiquitinated at the lysine 120 residue The degradation of histone H2B is achieved via the ubiquitination-proteasome pathway The nucleolus regulates the protein degradation of histone H2B
Collapse
Affiliation(s)
- Yanping Liu
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Yufei Wang
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Lu Yang
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Feng Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, Shanghai 200092, PR China
| | - Sheng Li
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Yequan Wang
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Guo-An Zhang
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Tingting Dong
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Lei-Lei Zhang
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Wanglin Duan
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Xiaojun Zhang
- Department of Science and Education, People's Hospital of Zunhua, Tangshan, Hebei 064200, PR China
| | - Wen Cui
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Su Chen
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China.,School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China.,Department of Science and Education, People's Hospital of Zunhua, Tangshan, Hebei 064200, PR China.,Laboratory of Molecular and Cellular Biology, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan 475004, PR China
| |
Collapse
|
19
|
Gao C, Peng J. All routes lead to Rome: multifaceted origin of hepatocytes during liver regeneration. CELL REGENERATION 2021; 10:2. [PMID: 33403526 PMCID: PMC7785766 DOI: 10.1186/s13619-020-00063-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022]
Abstract
Liver is the largest internal organ that serves as the key site for various metabolic activities and maintenance of homeostasis. Liver diseases are great threats to human health. The capability of liver to regain its mass after partial hepatectomy has widely been applied in treating liver diseases either by removing the damaged part of a diseased liver in a patient or transplanting a part of healthy liver into a patient. Vast efforts have been made to study the biology of liver regeneration in different liver-damage models. Regarding the sources of hepatocytes during liver regeneration, convincing evidences have demonstrated that different liver-damage models mobilized different subtype hepatocytes in contributing to liver regeneration. Under extreme hepatocyte ablation, biliary epithelial cells can undergo dedifferentiation to liver progenitor cells (LPCs) and then LPCs differentiate to produce hepatocytes. Here we will focus on summarizing the progresses made in identifying cell types contributing to producing new hepatocytes during liver regeneration in mice and zebrafish.
Collapse
Affiliation(s)
- Ce Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
20
|
Gong L, Zhang Q, Pan X, Chen S, Yang L, Liu B, Yang W, Yu L, Xiao ZX, Feng XH, Wang H, Yuan ZM, Peng J, Tan WQ, Chen J. p53 Protects Cells from Death at the Heatstroke Threshold Temperature. Cell Rep 2020; 29:3693-3707.e5. [PMID: 31825845 DOI: 10.1016/j.celrep.2019.11.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/12/2019] [Accepted: 11/07/2019] [Indexed: 01/28/2023] Open
Abstract
When the core body temperature is higher than 40°C, life is threatened due to heatstroke. Tumor repressor p53 is required for heat-induced apoptosis at hyperthermia conditions (>41°C). However, its role in sub-heatstroke conditions (≤40°C) remains unclear. Here, we reveal that both zebrafish and human p53 promote survival at 40°C, the heatstroke threshold temperature, by preventing a hyperreactive heat shock response (HSR). At 40°C, both Hsf1 and Hsp90 are activated. Hsf1 upregulates the expression of Hsc70 to trigger Hsc70-mediated protein degradation, whereas Hsp90 stabilizes p53 to repress the expression of Hsf1 and Hsc70, which prevents excessive HSR to maintain cell homeostasis. Under hyperthermia conditions, ATM is activated to phosphorylate p53 at S37, which increases BAX expression to induce apoptosis. Furthermore, growth of p53-deficient tumor xenografts, but not that of their p53+/+ counterparts, was inhibited by 40°C treatment. Our findings may provide a strategy for individualized therapy for p53-deficient cancers.
Collapse
Affiliation(s)
- Lu Gong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Qinghe Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao Pan
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuming Chen
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lina Yang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bin Liu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhonshan Road, Guangzhou 510080, China
| | - Weijun Yang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Luyang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xin-Hua Feng
- Life Sciences Institute and Innovation Center for Signaling Network, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhonshan Road, Guangzhou 510080, China
| | - Zhi-Min Yuan
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun Road East, Hangzhou 310016, China.
| | - Jun Chen
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
p53 isoform Δ113p53 promotes zebrafish heart regeneration by maintaining redox homeostasis. Cell Death Dis 2020; 11:568. [PMID: 32703938 PMCID: PMC7378207 DOI: 10.1038/s41419-020-02781-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Neonatal mice and adult zebrafish can fully regenerate their hearts through proliferation of pre-existing cardiomyocytes. Previous studies have revealed that p53 signalling is activated during cardiac regeneration in neonatal mice and that hydrogen peroxide (H2O2) generated near the wound site acts as a novel signal to promote zebrafish heart regeneration. We recently demonstrated that the expression of the p53 isoform Δ133p53 is highly induced upon stimulation by low-level reactive oxygen species (ROS) and that Δ133p53 coordinates with full-length p53 to promote cell survival by enhancing the expression of antioxidant genes. However, the function of p53 signalling in heart regeneration remains uncharacterised. Here, we found that the expression of Δ113p53 is activated in cardiomyocytes at the resection site in the zebrafish heart in a full-length p53- and ROS signalling-dependent manner. Cell lineage tracing showed that Δ113p53-positive cardiomyocytes undergo cell proliferation and contribute to myocardial regeneration. More importantly, heart regeneration is impaired in Δ113p53M/M mutant zebrafish. Depletion of Δ113p53 significantly decreases the proliferation frequency of cardiomyocytes but has little effect on the activation of gata4-positive cells, their migration to the edge of the wound site, or apoptotic activity. Live imaging of intact hearts showed that induction of H2O2 at the resection site is significantly higher in Δ113p53M/M mutants than in wild-type zebrafish, which may be the result of reduced induction of antioxidant genes in Δ113p53M/M mutants. Our findings demonstrate that induction of Δ113p53 in cardiomyocytes at the resection site functions to promote heart regeneration by increasing the expression of antioxidant genes to maintain redox homeostasis.
Collapse
|
22
|
Shi H, Tao T, Abraham BJ, Durbin AD, Zimmerman MW, Kadoch C, Look AT. ARID1A loss in neuroblastoma promotes the adrenergic-to-mesenchymal transition by regulating enhancer-mediated gene expression. SCIENCE ADVANCES 2020; 6:eaaz3440. [PMID: 32832616 PMCID: PMC7439613 DOI: 10.1126/sciadv.aaz3440] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 06/02/2020] [Indexed: 05/11/2023]
Abstract
Mutations in genes encoding SWI/SNF chromatin remodeling complexes are found in approximately 20% of all human cancers, with ARID1A being the most frequently mutated subunit. Here, we show that disruption of ARID1A homologs in a zebrafish model accelerates the onset and increases the penetrance of MYCN-driven neuroblastoma by increasing cell proliferation in the sympathoadrenal lineage. Depletion of ARID1A in human NGP neuroblastoma cells promoted the adrenergic-to-mesenchymal transition with changes in enhancer-mediated gene expression due to alterations in the genomic occupancies of distinct SWI/SNF assemblies, BAF and PBAF. Our findings indicate that ARID1A is a haploinsufficient tumor suppressor in MYCN-driven neuroblastoma, whose depletion enhances tumor development and promotes the emergence of the more drug-resistant mesenchymal cell state.
Collapse
Affiliation(s)
- Hui Shi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ting Tao
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Brian J. Abraham
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Adam D. Durbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute, Cambridge, MA 02142, USA
| | - Mark W. Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute, Cambridge, MA 02142, USA
| | - A. Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
23
|
Chen F, Huang D, Shi H, Gao C, Wang Y, Peng J. Capn3 depletion causes Chk1 and Wee1 accumulation and disrupts synchronization of cell cycle reentry during liver regeneration after partial hepatectomy. ACTA ACUST UNITED AC 2020; 9:8. [PMID: 32588143 PMCID: PMC7306836 DOI: 10.1186/s13619-020-00049-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/16/2020] [Indexed: 01/20/2023]
Abstract
Recovery of liver mass to a healthy liver donor by compensatory regeneration after partial hepatectomy (PH) is a prerequisite for liver transplantation. Synchronized cell cycle reentry of the existing hepatocytes after PH is seemingly a hallmark of liver compensatory regeneration. Although the molecular control of the PH-triggered cell cycle reentry has been extensively studied, little is known about how the synchronization is achieved after PH. The nucleolus-localized protein cleavage complex formed by the nucleolar protein Digestive-organ expansion factor (Def) and cysteine proteinase Calpain 3 (Capn3) has been implicated to control wounding healing during liver regeneration through selectively cleaving the tumor suppressor p53 in the nucleolus. However, whether the Def-Capn3 complex participates in regulating the synchronization of cell cycle reentry after PH is unknown. In this report, we generated a zebrafish capn3b null mutant (capn3b∆19∆14). The homozygous mutant was viable and fertile, but suffered from a delayed liver regeneration after PH. Delayed liver regeneration in capn3b∆19∆14 was due to disruption of synchronized cell proliferation after PH. Mass spectrometry (MS) analysis of nuclear proteins revealed that a number of negative regulators of cell cycle are accumulated in the capn3b∆19∆14 liver after PH. Moreover, we demonstrated that Check-point kinase 1 (Chk1) and Wee1, two key negative regulators of G2 to M transition, are substrates of Capn3. We also demonstrated that Chk1 and Wee1 were abnormally accumulated in the nucleoli of amputated capn3b∆19∆14 liver. In conclusion, our findings suggest that the nucleolar-localized Def-Capn3 complex acts as a novel regulatory pathway for the synchronization of cell cycle reentry, at least partially, through inactivating Chk1 and Wee1 during liver regeneration after PH.
Collapse
Affiliation(s)
- Feng Chen
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Delai Huang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,Present address: Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Hui Shi
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,Present address: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ce Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
24
|
Huang W, Chen F, Ma Q, Xin J, Li J, Chen J, Zhou B, Chen M, Li J, Peng J. Ribosome biogenesis gene DEF/UTP25 is essential for liver homeostasis and regeneration. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1651-1664. [PMID: 32303961 DOI: 10.1007/s11427-019-1635-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022]
Abstract
Hepatocytes are responsible for diverse metabolic activities in a liver. Proper ribosome biogenesis is essential to sustain the function of hepatocytes. There are approximately 200 factors involved in ribosome biogenesis; however, few studies have focused on the role of these factors in maintaining liver homeostasis. The digestive organ expansion factor (def) gene encodes a nucleolar protein Def that participates in ribosome biogenesis. In addition, Def forms a complex with cysteine protease Calpain3 (Capn3) and recruits Capn3 to the nucleolus to cleave protein targets. However, the function of Def has not been characterized in the mammalian digestive organs. In this report, we show that conditional knockout of the mouse def gene in hepatocytes causes cell morphology abnormality and constant infiltration of inflammatory cells in the liver. As age increases, the def conditional knockout liver displays multiple tissue damage foci and biliary hyperplasia. Moreover, partial hepatectomy leads to sudden acute death to the def conditional knockout mice and this phenotype is rescued by intragastric injection of the anti-inflammation drug dexamethasone one day before hepatectomy. Our results demonstrate that Def is essential for maintaining the liver homeostasis and liver regeneration capacity in mammals.
Collapse
Affiliation(s)
- Weidong Huang
- MOE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Feng Chen
- MOE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Quanxin Ma
- Academy of Chinese Medicine/Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiaojiao Xin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiaqi Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Minli Chen
- Academy of Chinese Medicine/Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Jinrong Peng
- MOE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
25
|
Hwang SD, Choi KM, Hwang JY, Kwon MG, Jeong JM, Seo JS, Jee BY, Park CI. Molecular genetic characterisation and expression profiling of calpain 3 transcripts in red sea bream (Pagrus major). FISH & SHELLFISH IMMUNOLOGY 2020; 98:19-24. [PMID: 31899359 DOI: 10.1016/j.fsi.2019.12.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/25/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Calpains (CAPNs) belong to the papain superfamily of cysteine proteases, and they are calcium-dependent cytoplasmic cysteine proteases that regulate a variety of physiological processes. We obtained the sequence of CAPN3 from an NGS-based analysis of Pagrus major (PmCAPN3) and confirmed the conserved molecular biological properties in the predicted amino acid sequence. The amino acid sequence and predicted domains of CAPN3 were found to be highly conserved in all of the examined species, and one catalytic domain and four calcium binding sites were identified. In healthy P. major, the PmCAPN3 mRNA was most abundantly expressed in the muscle and skin, and ubiquitously expressed in the other tissues used in the experiment. After artificial infections with fish pathogens, significant changes in its expression levels were found in immune-related tissues, most of showed upregulation. In particular, the highest level of expression was found in the liver, a tissue associated with protease activity. Taken together, these results suggest a physiological activity for PmCAPN3 in P. major and reveal functional possibilities that have not yet been reported in the immune system.
Collapse
Affiliation(s)
- Seong Don Hwang
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Kwang-Min Choi
- Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Jee Youn Hwang
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Mun-Gyeong Kwon
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Ji-Min Jeong
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Jung Soo Seo
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Bo-Yeong Jee
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Chan-Il Park
- Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| |
Collapse
|
26
|
Martín B, Pappa S, Díez-Villanueva A, Mallona I, Custodio J, Barrero MJ, Peinado MA, Jordà M. Tissue and cancer-specific expression of DIEXF is epigenetically mediated by an Alu repeat. Epigenetics 2020; 15:765-779. [PMID: 32041475 DOI: 10.1080/15592294.2020.1722398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Alu repeats constitute a major fraction of human genome and for a small subset of them a role in gene regulation has been described. The number of studies focused on the functional characterization of particular Alu elements is very limited. Most Alu elements are DNA methylated and then assumed to lie in repressed chromatin domains. We hypothesize that Alu elements with low or variable DNA methylation are candidates for a functional role. In a genome-wide study in normal and cancer tissues, we pinpointed an Alu repeat (AluSq2) with differential methylation located upstream of the promoter region of the DIEXF gene. DIEXF encodes a highly conserved factor essential for the development of zebrafish digestive tract. To characterize the contribution of the Alu element to the regulation of DIEXF we analysed the epigenetic landscapes of the gene promoter and flanking regions in different cell types and cancers. Alternate epigenetic profiles (DNA methylation and histone modifications) of the AluSq2 element were associated with DIEXF transcript diversity as well as protein levels, while the epigenetic profile of the CpG island associated with the DIEXF promoter remained unchanged. These results suggest that AluSq2 might directly contribute to the regulation of DIEXF transcription and protein expression. Moreover, AluSq2 was DNA hypomethylated in different cancer types, pointing out its putative contribution to DIEXF alteration in cancer and its potential as tumoural biomarker.
Collapse
Affiliation(s)
- Berta Martín
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Barcelona, Spain
| | - Stella Pappa
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Barcelona, Spain
| | - Anna Díez-Villanueva
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Barcelona, Spain
| | - Izaskun Mallona
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Barcelona, Spain
| | - Joaquín Custodio
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Barcelona, Spain
| | - María José Barrero
- Center for Regenerative Medicine in Barcelona (CMRB), Avinguda de la Granvia de l'Hospitalet , Barcelona, Spain
| | - Miguel A Peinado
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Barcelona, Spain
| | - Mireia Jordà
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Barcelona, Spain
| |
Collapse
|
27
|
Zhao S, Chen Y, Chen F, Huang D, Shi H, Lo LJ, Chen J, Peng J. Sas10 controls ribosome biogenesis by stabilizing Mpp10 and delivering the Mpp10-Imp3-Imp4 complex to nucleolus. Nucleic Acids Res 2019; 47:2996-3012. [PMID: 30773582 PMCID: PMC6451133 DOI: 10.1093/nar/gkz105] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 01/29/2019] [Accepted: 02/09/2019] [Indexed: 01/19/2023] Open
Abstract
Mpp10 forms a complex with Imp3 and Imp4 that serves as a core component of the ribosomal small subunit (SSU) processome. Mpp10 also interacts with the nucleolar protein Sas10/Utp3. However, it remains unknown how the Mpp10-Imp3-Imp4 complex is delivered to the nucleolus and what biological function the Mpp10-Sas10 complex plays. Here, we report that the zebrafish Mpp10 and Sas10 are conserved nucleolar proteins essential for the development of the digestive organs. Mpp10, but not Sas10/Utp3, is a target of the nucleolus-localized Def-Capn3 protein degradation pathway. Sas10 protects Mpp10 from Capn3-mediated cleavage by masking the Capn3-recognition site on Mpp10. Def interacts with Sas10 to form the Def-Sas10-Mpp10 complex to facilitate the Capn3-mediated cleavage of Mpp10. Importantly, we found that Sas10 determines the nucleolar localization of the Mpp10-Imp3-Imp4 complex. In conclusion, Sas10 is essential not only for delivering the Mpp10-Imp3-Imp4 complex to the nucleolus for assembling the SSU processome but also for fine-tuning Mpp10 turnover in the nucleolus during organogenesis.
Collapse
Affiliation(s)
- Shuyi Zhao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yayue Chen
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Feng Chen
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Delai Huang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Shi
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Jan Lo
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
28
|
Gene redundancy and gene compensation: An updated view. J Genet Genomics 2019; 46:329-333. [PMID: 31377237 DOI: 10.1016/j.jgg.2019.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 11/20/2022]
Abstract
Gene knockdown approaches using antisense oligo nucleotides or analogs such as siRNAs and morpholinos have been widely adopted to study gene functions although the off-target issue has been always a concern in these studies. On the other hand, classic genetic analysis relies on the availability of loss-of-function or gain-of-function mutants. The fast development of genome editing technologies such as TALEN and CRISPR/Cas9 has greatly facilitated the generation of null mutants for the functional studies of target genes in a variety of organisms such as zebrafish. Surprisingly, an unexpected discrepancy was observed between morphant phenotype and mutant phenotype for many genes in zebrafish, i.e., while the morphant often displays an obvious phenotype, the corresponding null mutant appears relatively normal or only exhibits a mild phenotype due to gene compensation. Two recent reports have partially answered this intriguing question by showing that a pre-mature termination codon and homologous sequence are required to elicit the gene compensation and the histone modifying complex COMPASS is involved in activating the expression of the compensatory genes. Here, I summarize these exciting new progress and try to redefine the concept of genetic compensation and gene compensation.
Collapse
|
29
|
Loss of atrx cooperates with p53-deficiency to promote the development of sarcomas and other malignancies. PLoS Genet 2019; 15:e1008039. [PMID: 30970016 PMCID: PMC6476535 DOI: 10.1371/journal.pgen.1008039] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 04/22/2019] [Accepted: 02/20/2019] [Indexed: 12/24/2022] Open
Abstract
The SWI/SNF-family chromatin remodeling protein ATRX is a tumor suppressor in sarcomas, gliomas and other malignancies. Its loss of function facilitates the alternative lengthening of telomeres (ALT) pathway in tumor cells, while it also affects Polycomb repressive complex 2 (PRC2) silencing of its target genes. To further define the role of inactivating ATRX mutations in carcinogenesis, we knocked out atrx in our previously reported p53/nf1-deficient zebrafish line that develops malignant peripheral nerve sheath tumors and gliomas. Complete inactivation of atrx using CRISPR/Cas9 was lethal in developing fish and resulted in an alpha-thalassemia-like phenotype including reduced alpha-globin expression. In p53/nf1-deficient zebrafish neither peripheral nerve sheath tumors nor gliomas showed accelerated onset in atrx+/- fish, but these fish developed various tumors that were not observed in their atrx+/+ siblings, including epithelioid sarcoma, angiosarcoma, undifferentiated pleomorphic sarcoma and rare types of carcinoma. These cancer types are included in the AACR Genie database of human tumors associated with mutant ATRX, indicating that our zebrafish model reliably mimics a role for ATRX-loss in the early pathogenesis of these human cancer types. RNA-seq of p53/nf1- and p53/nf1/atrx-deficient tumors revealed that down-regulation of telomerase accompanied ALT-mediated lengthening of the telomeres in atrx-mutant samples. Moreover, inactivating mutations in atrx disturbed PRC2-target gene silencing, indicating a connection between ATRX loss and PRC2 dysfunction in cancer development. Somatic mutations in genes coding for epigenetic regulators such as ATRX are found across a diverse group of cancer types, suggesting their broad relevance in tumor induction and progression. However, tumors that have been linked to these chromatin remodelers can arise in many different molecular and cellular contexts, requiring studies with new experimental models to understand the extent and mechanisms of tumor development mediated by these regulatory proteins. Thus, we analyzed the tumor suppressive role of atrx in zebrafish that already harbored inactivating mutations of p53 and nf1. Homozygous deletion of atrx was lethal in developing fish, whereas the partial loss of this gene (atrx+/-) within the p53/nf1-deficient background led to a diverse spectrum of tumors not observed in animals that were wildtype for atrx, including epithelioid sarcoma, angiosarcoma, and rare carcinomas. Most of the cancer types we identified correspond to human tumors in the ATRX-mutant tumor sample cohort within the AACR Genie database, attesting to the relevance of our findings to human cancer. Further analysis revealed downregulation of telomerase during the lengthening of the telomeres through the ALT pathway, and disturbed function of the polycomb repressive complex 2 as key mechanistic components underlying atrx-linked tumorigenesis. These results demonstrate how a p53/nf1 compromised genetic background combined with ATRX haploinsufficiency leads to a broad spectrum of sarcomas and carcinomas associated with loss of this chromatin modulator.
Collapse
|
30
|
Ma Z, Zhu P, Shi H, Guo L, Zhang Q, Chen Y, Chen S, Zhang Z, Peng J, Chen J. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature 2019; 568:259-263. [PMID: 30944473 DOI: 10.1038/s41586-019-1057-y] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 03/01/2019] [Indexed: 12/26/2022]
Abstract
The genetic compensation response (GCR) has recently been proposed as a possible explanation for the phenotypic discrepancies between gene-knockout and gene-knockdown1,2; however, the underlying molecular mechanism of the GCR remains uncharacterized. Here, using zebrafish knockdown and knockout models of the capn3a and nid1a genes, we show that mRNA bearing a premature termination codon (PTC) promptly triggers a GCR that involves Upf3a and components of the COMPASS complex. Unlike capn3a-knockdown embryos, which have small livers, and nid1a-knockdown embryos, which have short body lengths2, capn3a-null and nid1a-null mutants appear normal. These phenotypic differences have been attributed to the upregulation of other genes in the same families. By analysing six uniquely designed transgenes, we demonstrate that the GCR is dependent on both the presence of a PTC and the nucleotide sequence of the transgene mRNA, which is homologous to the compensatory endogenous genes. We show that upf3a (a member of the nonsense-mediated mRNA decay pathway) and components of the COMPASS complex including wdr5 function in GCR. Furthermore, we demonstrate that the GCR is accompanied by an enhancement of histone H3 Lys4 trimethylation (H3K4me3) at the transcription start site regions of the compensatory genes. These findings provide a potential mechanistic basis for the GCR, and may help lead to the development of therapeutic strategies that treat missense mutations associated with genetic disorders by either creating a PTC in the mutated gene or introducing a transgene containing a PTC to trigger a GCR.
Collapse
Affiliation(s)
- Zhipeng Ma
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Peipei Zhu
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hui Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Liwei Guo
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qinghe Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yanan Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shuming Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhe Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
| | - Jun Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
31
|
Chen Z, Boor PJ, Finnerty CC, Herndon DN, Albrecht T. Calpain-mediated cleavage of p53 in human cytomegalovirus-infected lung fibroblasts. FASEB Bioadv 2019; 1:151-166. [PMID: 32123827 PMCID: PMC6996331 DOI: 10.1096/fba.1028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
Endogenous fragments of p53 protein were identified in human cytomegalovirus (HCMV)-infected human lung fibroblasts, particularly a 44-kDa N-terminal fragment [hereafter referred to as p53(ΔCp44)], generated via calpain cleavage. The fragment abundance increased in a biphasic manner, peaking at 6-9 hours and 48 hours post infection. Treatment of LU cells with calpain inhibitors eliminated most detectable p53 fragments. In cell-free experiments, exogenous m-calpain cleavage generated p53(ΔCp44). Attempts to preserve p53 proteins by treating cells with the calpain inhibitor E64d for 6 hours before harvesting increased the sensitivity of p53 to calpain cleavage. p53 in mock-infected cell lysates was much more sensitive to cleavage and degradation by exogenous calpain than that in HCMV-infected cells. The proteasome inhibitor MG132 stabilized p53(ΔCp44), particularly in mock-infected cells. p53(ΔCp44) appeared to be tightly associated with a chromatin-rich fraction. The abundance of p53β was unchanged over a 96-h time course and very similar in mock- and HCMV-infected cells, making it unlikely that p53(ΔCp44) was p53β. The biological activities of this and other fragments lacking C-terminal sequences are unknown, but deserve further investigation, given the association of p53(ΔCp44) with the chromatin-rich (or buffer C insoluble) fraction in HCMV-infected cells.
Collapse
Affiliation(s)
- Zhenping Chen
- Department of Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonTexas
- Department of PathologyUniversity of Texas Medical BranchGalvestonTexas
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTexas
| | - Paul J. Boor
- Department of PathologyUniversity of Texas Medical BranchGalvestonTexas
- Shriners Hospitals for Children—GalvestonGalvestonTexas
| | - Celeste C. Finnerty
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTexas
- Shriners Hospitals for Children—GalvestonGalvestonTexas
| | - David N. Herndon
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTexas
- Shriners Hospitals for Children—GalvestonGalvestonTexas
| | - Thomas Albrecht
- Department of Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonTexas
- Infectious Disease and Toxicology Optical Imaging CoreUniversity of Texas Medical BranchGalvestonTexas
| |
Collapse
|
32
|
Pérez-Cañamás M, Hernández C. New Insights into the Nucleolar Localization of a Plant RNA Virus-Encoded Protein That Acts in Both RNA Packaging and RNA Silencing Suppression: Involvement of Importins Alpha and Relevance for Viral Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1134-1144. [PMID: 29781763 DOI: 10.1094/mpmi-02-18-0050-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite the fact that replication of plus-strand RNA viruses takes place in the cytoplasm of host cells, different proteins encoded by these infectious agents have been shown to localize in the nucleus, with high accumulation at the nucleolus. In most cases, the molecular determinants or biological significance of such subcellular localization remains elusive. Recently, we reported that protein p37 encoded by Pelargonium line pattern virus (family Tombusviridae) acts in both RNA packaging and RNA silencing suppression. Consistently with these functions, p37 was detected in the cytoplasm of plant cells, although it was also present in the nucleus and, particularly, in the nucleolus. Here, we searched for further insights into factors influencing p37 nucleolar localization and into its potential relevance for viral infection. Besides mapping the protein region containing the nucleolar localization signal, we have found that p37 interacts with distinct members of the importin alpha family-main cellular transporters for nucleo-cytoplasmic traffic of proteins-and that these interactions are crucial for nucleolar targeting of p37. Impairment of p37 nucleolar localization through downregulation of importin alpha expression resulted in a reduction of viral accumulation, suggesting that sorting of the protein to the major subnuclear compartment is advantageous for the infection process.
Collapse
Affiliation(s)
- Miryam Pérez-Cañamás
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia). Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Carmen Hernández
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia). Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
33
|
Ohnuma T, Sakamoto K, Shinoda A, Takagi C, Ohno S, Nishiyama T, Ogura K, Hiratsuka A. Procyanidins from Cinnamomi Cortex promote proteasome-independent degradation of nuclear Nrf2 through phosphorylation of insulin-like growth factor-1 receptor in A549 cells. Arch Biochem Biophys 2017; 635:66-73. [DOI: 10.1016/j.abb.2017.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/22/2017] [Accepted: 10/13/2017] [Indexed: 12/24/2022]
|
34
|
Aryal NK, Wasylishen AR, Pant V, Riley-Croce M, Lozano G. Loss of digestive organ expansion factor ( Diexf) reveals an essential role during murine embryonic development that is independent of p53. Oncotarget 2017; 8:103996-104006. [PMID: 29262616 PMCID: PMC5732782 DOI: 10.18632/oncotarget.22087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023] Open
Abstract
Increased levels of inhibitors of the p53 tumor suppressor such as Mdm2 and Mdm4 drive tumor development and thus serve as targets for therapeutic intervention. Recently, digestive organ expansion factor (Diexf) has been identified as a novel inhibitor of p53 in zebrafish. Here, we address the potential role of Diexf as a regulator of the p53 pathway in mammals by generating Diexf knockout mice. We demonstrate that, similar to Mdm2 and Mdm4, homozygous deletion of Diexf is embryonic lethal. However, unlike in Mdm2 and Mdm4 mice, loss of p53 does not rescue this phenotype. Moreover, Diexf heterozygous animals are not sensitive to sub-lethal ionizing radiation. Thus, we conclude that Diexf is an essential developmental gene in the mouse, but is not a significant regulator of the p53 pathway during development or in response to ionizing radiation.
Collapse
Affiliation(s)
- Neeraj K Aryal
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Genes and Development Program, The University of Texas MD Anderson Cancer Center, UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Amanda R Wasylishen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vinod Pant
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maurisa Riley-Croce
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
35
|
Brun S, Abella N, Berciano MT, Tapia O, Jaumot M, Freire R, Lafarga M, Agell N. SUMO regulates p21Cip1 intracellular distribution and with p21Cip1 facilitates multiprotein complex formation in the nucleolus upon DNA damage. PLoS One 2017; 12:e0178925. [PMID: 28582471 PMCID: PMC5459497 DOI: 10.1371/journal.pone.0178925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/22/2017] [Indexed: 01/06/2023] Open
Abstract
We previously showed that p21Cip1 transits through the nucleolus on its way from the nucleus to the cytoplasm and that DNA damage inhibits this transit and induces the formation of p21Cip1-containing intranucleolar bodies (INoBs). Here, we demonstrate that these INoBs also contain SUMO-1 and UBC9, the E2 SUMO-conjugating enzyme. Furthermore, whereas wild type SUMO-1 localized in INoBs, a SUMO-1 mutant, which is unable to conjugate with proteins, does not, suggesting the presence of SUMOylated proteins at INoBs. Moreover, depletion of the SUMO-conjugating enzyme UBC9 or the sumo hydrolase SENP2 changed p21Cip1 intracellular distribution. In addition to SUMO-1 and p21Cip1, cell cycle regulators and DNA damage checkpoint proteins, including Cdk2, Cyclin E, PCNA, p53 and Mdm2, and PML were also detected in INoBs. Importantly, depletion of UBC9 or p21Cip1 impacted INoB biogenesis and the nucleolar accumulation of the cell cycle regulators and DNA damage checkpoint proteins following DNA damage. The impact of p21Cip1 and SUMO-1 on the accumulation of proteins in INoBs extends also to CRM1, a nuclear exportin that is also important for protein translocation from the cytoplasm to the nucleolus. Thus, SUMO and p21Cip1 regulate the transit of proteins through the nucleolus, and that disruption of nucleolar export by DNA damage induces SUMO and p21Cip1 to act as hub proteins to form a multiprotein complex in the nucleolus.
Collapse
Affiliation(s)
- Sonia Brun
- Departament Biomedicina, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - Neus Abella
- Departament Biomedicina, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - Maria T. Berciano
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - Olga Tapia
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - Montserrat Jaumot
- Departament Biomedicina, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Tenerife, Spain
| | - Miguel Lafarga
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - Neus Agell
- Departament Biomedicina, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| |
Collapse
|
36
|
Tao T, Sondalle SB, Shi H, Zhu S, Perez-Atayde AR, Peng J, Baserga SJ, Look AT. The pre-rRNA processing factor DEF is rate limiting for the pathogenesis of MYCN-driven neuroblastoma. Oncogene 2017; 36:3852-3867. [PMID: 28263972 PMCID: PMC5501763 DOI: 10.1038/onc.2016.527] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/08/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023]
Abstract
The nucleolar factor, digestive organ expansion factor (DEF), has a key role in ribosome biogenesis, functioning in pre-ribosomal RNA (pre-rRNA) processing as a component of the small ribosomal subunit (SSU) processome. Here we show that the peripheral sympathetic nervous system (PSNS) is very underdeveloped in def-deficient zebrafish, and that def haploinsufficiency significantly decreases disease penetrance and tumor growth rate in a MYCN-driven transgenic zebrafish model of neuroblastoma that arises in the PSNS. Consistent with these findings, DEF is highly expressed in human neuroblastoma, and its depletion in human neuroblastoma cell lines induces apoptosis. Interestingly, overexpression of MYCN in zebrafish and in human neuroblastoma cells results in the appearance of intermediate pre-rRNAs species that reflect the processing of pre-rRNAs through Pathway 2, a pathway that processes pre-rRNAs in a different temporal order than the more often used Pathway 1. Our results indicate that DEF and possibly other components of the SSU processome provide a novel site of vulnerability in neuroblastoma cells that could be exploited for targeted therapy.
Collapse
Affiliation(s)
- T Tao
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S B Sondalle
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - H Shi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - S Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center and Mayo Clinic Center for Individualized Medicine, Rochester, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center and Mayo Clinic Center for Individualized Medicine, Rochester, MN, USA
| | - A R Perez-Atayde
- Department of Pathology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - J Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - S J Baserga
- Departments of Molecular Biophysics &Biochemistry, Genetics and Therapeutic Radiology, Yale University and Yale University School of Medicine, New Haven, CT, USA
| | - A T Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Pradhan A, Hammerquist AM, Khanna A, Curran SP. The C-Box Region of MAF1 Regulates Transcriptional Activity and Protein Stability. J Mol Biol 2016; 429:192-207. [PMID: 27986570 DOI: 10.1016/j.jmb.2016.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/15/2016] [Accepted: 12/08/2016] [Indexed: 12/26/2022]
Abstract
MAF1 is a conserved negative regulator of RNA polymerase (pol) III and intracellular lipid homeostasis across species. Here, we show that the MAF1 C-box region negatively regulates its activity. Mutations in Caenorhabditis elegans mafr-1 that truncate the C-box retain the ability to inhibit the transcription of RNA pol III targets, reduce lipid biogenesis, and lower reproductive output. In human cells, C-box deletion of MAF1 leads to increased MAF1 nuclear localization and enhanced repression of ACC1 and FASN, but with impaired repression of RNA pol III targets. Surprisingly, C-box mutations render MAF1 insensitive to rapamycin, further defining a regulatory role for this region. Two MAF1 species, MAF1L and MAF1S, are regulated by the C-box YSY motif, which, when mutated, alters species stoichiometry and proteasome-dependent turnover of nuclear MAF1. Our results reveal a role for the C-box region as a critical determinant of MAF1 stability, activity, and response to cellular stress.
Collapse
Affiliation(s)
- Ajay Pradhan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Amy M Hammerquist
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Department of Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Akshat Khanna
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Department of Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Department of Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
38
|
Guan Y, Huang D, Chen F, Gao C, Tao T, Shi H, Zhao S, Liao Z, Lo LJ, Wang Y, Chen J, Peng J. Phosphorylation of Def Regulates Nucleolar p53 Turnover and Cell Cycle Progression through Def Recruitment of Calpain3. PLoS Biol 2016; 14:e1002555. [PMID: 27657329 PMCID: PMC5033581 DOI: 10.1371/journal.pbio.1002555] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/19/2016] [Indexed: 01/15/2023] Open
Abstract
Digestive organ expansion factor (Def) is a nucleolar protein that plays dual functions: it serves as a component of the ribosomal small subunit processome for the biogenesis of ribosomes and also mediates p53 degradation through the cysteine proteinase calpain-3 (CAPN3). However, nothing is known about the exact relationship between Def and CAPN3 or the regulation of the Def function. In this report, we show that CAPN3 degrades p53 and its mutant proteins p53A138V, p53M237I, p53R248W, and p53R273P but not the p53R175H mutant protein. Importantly, we show that Def directly interacts with CAPN3 in the nucleoli and determines the nucleolar localisation of CAPN3, which is a prerequisite for the degradation of p53 in the nucleolus. Furthermore, we find that Def is modified by phosphorylation at five serine residues: S50, S58, S62, S87, and S92. We further show that simultaneous phosphorylations at S87 and S92 facilitate the nucleolar localisation of Capn3 that is not only essential for the degradation of p53 but is also important for regulating cell cycle progression. Hence, we propose that the Def-CAPN3 pathway serves as a nucleolar checkpoint for cell proliferation by selective inactivation of cell cycle-related substrates during organogenesis.
Collapse
Affiliation(s)
- Yihong Guan
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Delai Huang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Feng Chen
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ce Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ting Tao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hui Shi
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuyi Zhao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zuyuan Liao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Li Jan Lo
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (JC); (JRP)
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (JC); (JRP)
| |
Collapse
|
39
|
Overexpression of PDGFRA cooperates with loss of NF1 and p53 to accelerate the molecular pathogenesis of malignant peripheral nerve sheath tumors. Oncogene 2016; 36:1058-1068. [PMID: 27477693 PMCID: PMC5332555 DOI: 10.1038/onc.2016.269] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/09/2016] [Accepted: 06/16/2016] [Indexed: 12/23/2022]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, frequently metastatic sarcomas that are associated with neurofibromatosis type 1 (NF1), a prominent inherited genetic disease in humans. Although loss of the NF1 gene predisposes to MPNST induction, relatively long tumor latency in NF1 patients suggests that additional genetic or epigenetic abnormalities are needed for the development of these nerve sheath malignancies. To study the molecular pathways contributing to the formation of MPNSTs in NF1 patients, we used a zebrafish tumor model defined by nf1 loss in a p53-deficient background together with the overexpression of either wild-type or constitutively activated PDGFRA (platelet-derived growth factor receptor-α) under control of the sox10 neural crest-specific promoter. Here we demonstrate the accelerated onset and increased penetrance of MPNST formation in fish overexpressing both the wild-type and the mutant PDGFRA transgenes in cells of neural crest origin. Interestingly, overexpression of the wild-type PDGFRA was even more potent in promoting transformation than the mutant PDGFRA, which is important because ~78% of human MPNSTs have expression of wild-type PDGFRA, whereas only 5% harbor activating mutations of the gene encoding this receptor. Further analysis revealed the induction of cellular senescence in zebrafish embryos overexpressing mutant, but not wild-type, PDGFRA, suggesting a mechanism through which the oncogenic activity of the mutant receptor is tempered by the activation of premature cellular senescence in an NF1-deficient background. Taken together, our study suggests a model in which overexpression of wild-type PDGFRA associated with NF1 deficiency leads to aberrant activation of downstream RAS signaling and thus contributes importantly to MPNST development-a prediction supported by the ability of the kinase inhibitor sunitinib alone and in combination with the MEK inhibitor trametinib to retard MPNST progression in transgenic fish overexpressing the wild-type receptor.
Collapse
|
40
|
Stępiński D. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways. Histochem Cell Biol 2016; 146:119-39. [PMID: 27142852 DOI: 10.1007/s00418-016-1443-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 12/12/2022]
Abstract
Rapid growth and division of cells, including tumor ones, is correlated with intensive protein biosynthesis. The output of nucleoli, organelles where translational machineries are formed, depends on a rate of particular stages of ribosome production and on accessibility of elements crucial for their effective functioning, including substrates, enzymes as well as energy resources. Different factors that induce cellular stress also often lead to nucleolar dysfunction which results in ribosome biogenesis impairment. Such nucleolar disorders, called nucleolar or ribosomal stress, usually affect cellular functioning which in fact is a result of p53-dependent pathway activation, elicited as a response to stress. These pathways direct cells to new destinations such as cell cycle arrest, damage repair, differentiation, autophagy, programmed cell death or aging. In the case of impaired nucleolar functioning, nucleolar and ribosomal proteins mediate activation of the p53 pathways. They are also triggered as a response to oncogenic factor overexpression to protect tissues and organs against extensive proliferation of abnormal cells. Intentional impairment of any step of ribosome biosynthesis which would direct the cells to these destinations could be a strategy used in anticancer therapy. This review presents current knowledge on a nucleolus, mainly in relation to cancer biology, which is an important and extremely sensitive element of the mechanism participating in cellular stress reaction mediating activation of the p53 pathways in order to counteract stress effects, especially cancer development.
Collapse
Affiliation(s)
- Dariusz Stępiński
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland.
| |
Collapse
|
41
|
An eccentric calpain, CAPN3/p94/calpain-3. Biochimie 2016; 122:169-87. [DOI: 10.1016/j.biochi.2015.09.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/07/2015] [Indexed: 01/09/2023]
|
42
|
An equation to estimate the difference between theoretically predicted and SDS PAGE-displayed molecular weights for an acidic peptide. Sci Rep 2015; 5:13370. [PMID: 26311515 PMCID: PMC4550835 DOI: 10.1038/srep13370] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/23/2015] [Indexed: 12/11/2022] Open
Abstract
The molecular weight (MW) of a protein can be predicted based on its amino acids (AA) composition. However, in many cases a non-chemically modified protein shows an SDS PAGE-displayed MW larger than its predicted size. Some reports linked this fact to high content of acidic AA in the protein. However, the exact relationship between the acidic AA composition and the SDS PAGE-displayed MW is not established. Zebrafish nucleolar protein Def is composed of 753 AA and shows an SDS PAGE-displayed MW approximately 13 kDa larger than its predicted MW. The first 188 AA in Def is defined by a glutamate-rich region containing ~35.6% of acidic AA. In this report, we analyzed the relationship between the SDS PAGE-displayed MW of thirteen peptides derived from Def and the AA composition in each peptide. We found that the difference between the predicted and SDS PAGE-displayed MW showed a linear correlation with the percentage of acidic AA that fits the equation y = 276.5x − 31.33 (x represents the percentage of acidic AA, 11.4% ≤ x ≤ 51.1%; y represents the average ΔMW per AA). We demonstrated that this equation could be applied to predict the SDS PAGE-displayed MW for thirteen different natural acidic proteins.
Collapse
|
43
|
Lee PC, Wildt DE, Comizzoli P. Nucleolar Translocation of Histone Deacetylase 2 Is Involved in Regulation of Transcriptional Silencing in the Cat Germinal Vesicle. Biol Reprod 2015; 93:33. [PMID: 26108793 DOI: 10.1095/biolreprod.115.129106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 06/15/2015] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylase 2 (HDAC2) is a key transcriptional coregulator that is suspected to play a role during oogenesis. It is known that RNA transcription in the cat germinal vesicle (GV) stops during folliculogenesis at the late antral follicle stage and is unrelated to histone deacetylation or chromatin condensation. The objective of the present study was to determine if and how HDAC2 participates in transcription regulation in the cat GV. Spatiotemporal HDAC2 protein expression was examined by immunostaining oocytes from primary to large antral follicles. HDAC2 was detected in the majority of GVs within oocytes from early, small, and large antral follicles. At early and small antral stages, HDAC2 was found primarily in the GV's nucleoplasm. There then was a significant shift in HDAC2 localization into the nucleolus, mostly in oocytes from large antral follicles. Assessments revealed that transcription was active in oocytes that contained nucleoplasm-localized HDAC2, whereas nucleolar-bound HDAC2 was associated with loss of both global transcription and ribosomal RNA presence at all antral stages. When oocytes were exposed to the HDAC inhibitor valproic acid, results indicated that HDAC regulated transcriptional activity in the nucleoplasm, but not in the nucleolus. Collective results suggest that nucleolar translocation of HDAC2 is associated with transcriptional silencing in the GV, thereby likely contributing to an oocyte's acquisition of competence.
Collapse
Affiliation(s)
- Pei-Chih Lee
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, and Front Royal, Virginia
| | - David E Wildt
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, and Front Royal, Virginia
| | - Pierre Comizzoli
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, and Front Royal, Virginia
| |
Collapse
|
44
|
Genome-wide analysis of the zebrafish Klf family identifies two genes important for erythroid maturation. Dev Biol 2015; 403:115-27. [PMID: 26015096 DOI: 10.1016/j.ydbio.2015.05.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 01/01/2023]
Abstract
Krüppel-like transcription factors (Klfs), each of which contains a CACCC-box binding domain, have been investigated in a variety of developmental processes, such as angiogenesis, neurogenesis and somatic-cell reprogramming. However, the function and molecular mechanism by which the Klf family acts during developmental hematopoiesis remain elusive. Here, we report identification of 24 Klf family genes in zebrafish using bioinformatics. Gene expression profiling shows that 6 of these genes are expressed in blood and/or vascular endothelial cells during embryogenesis. Loss of function of 2 factors (klf3 or klf6a) leads to a decreased number of mature erythrocytes. Molecular studies indicate that both Klf3 and Klf6a are essential for erythroid cell differentiation and maturation but that these two proteins function in distinct manners. We find that Klf3 inhibits the expression of ferric-chelate reductase 1b (frrs1b), thereby promoting the maturation of erythroid cells, whereas Klf6a controls the erythroid cell cycle by negatively regulating cdkn1a expression to determine the rate of red blood cell proliferation. Taken together, our study provides a global view of the Klf family members that contribute to hematopoiesis in zebrafish and sheds new light on the function and molecular mechanism by which Klf3 and Klf6a act during erythropoiesis in vertebrates.
Collapse
|
45
|
Charton K, Sarparanta J, Vihola A, Milic A, Jonson PH, Suel L, Luque H, Boumela I, Richard I, Udd B. CAPN3-mediated processing of C-terminal titin replaced by pathological cleavage in titinopathy. Hum Mol Genet 2015; 24:3718-31. [DOI: 10.1093/hmg/ddv116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/30/2015] [Indexed: 02/03/2023] Open
|
46
|
Cox AG, Goessling W. The lure of zebrafish in liver research: regulation of hepatic growth in development and regeneration. Curr Opin Genet Dev 2015; 32:153-61. [PMID: 25863341 DOI: 10.1016/j.gde.2015.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/23/2015] [Accepted: 03/05/2015] [Indexed: 12/18/2022]
Abstract
The liver is an essential organ that plays a pivotal role in metabolism, digestion and nutrient storage. Major efforts have been made to develop zebrafish (Danio rerio) as a model system to study the pathways regulating hepatic growth during liver development and regeneration. Zebrafish offer unique advantages over other vertebrates including in vivo imaging at cellular resolution and the capacity for large-scale chemical and genetic screens. Here, we review the cellular and molecular mechanisms that regulate hepatic growth during liver development in zebrafish. We also highlight emerging evidence that developmental pathways are reactivated following liver injury to facilitate regeneration. Finally, we discuss how zebrafish have transformed drug discovery efforts and enabled the identification of drugs that stimulate hepatic growth and provide hepatoprotection in pre-clinical models of liver injury, with the ultimate goal of identifying novel therapeutic approaches to treat liver disease.
Collapse
Affiliation(s)
- Andrew G Cox
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Wolfram Goessling
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Dana-Farber Cancer Institute, Boston, MA, United States; Harvard Stem Cell Institute, Cambridge, MA, United States; Broad Institute of MIT and Harvard, Cambridge, MA, United States.
| |
Collapse
|
47
|
Gong L, Gong H, Pan X, Chang C, Ou Z, Ye S, Yin L, Yang L, Tao T, Zhang Z, Liu C, Lane DP, Peng J, Chen J. p53 isoform Δ113p53/Δ133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage. Cell Res 2015; 25:351-69. [PMID: 25698579 DOI: 10.1038/cr.2015.22] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/06/2014] [Accepted: 11/10/2014] [Indexed: 02/07/2023] Open
Abstract
The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a p53 target gene that antagonizes p53 apoptotic activity. However, information on its functions in DNA damage repair is lacking. Here we report that Δ113p53 expression is strongly induced by γ-irradiation, but not by UV-irradiation or heat shock treatment. Strikingly, Δ113p53 promotes DNA DSB repair pathways, including homologous recombination, non-homologous end joining and single-strand annealing. To study the biological significance of Δ113p53 in promoting DNA DSB repair, we generated a zebrafish Δ113p53(M/M) mutant via the transcription activator-like effector nuclease technique and found that the mutant is more sensitive to γ-irradiation. The human ortholog, Δ133p53, is also only induced by γ-irradiation and functions to promote DNA DSB repair. Δ133p53-knockdown cells were arrested at the G2 phase at the later stage in response to γ-irradiation due to a high level of unrepaired DNA DSBs, which finally led to cell senescence. Furthermore, Δ113p53/Δ133p53 promotes DNA DSB repair via upregulating the transcription of repair genes rad51, lig4 and rad52 by binding to a novel type of p53-responsive element in their promoters. Our results demonstrate that Δ113p53/Δ133p53 is an evolutionally conserved pro-survival factor for DNA damage stress by preventing apoptosis and promoting DNA DSB repair to inhibit cell senescence. Our data also suggest that the induction of Δ133p53 expression in normal cells or tissues provides an important tolerance marker for cancer patients to radiotherapy.
Collapse
Affiliation(s)
- Lu Gong
- Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences
| | - Hongjian Gong
- Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences
| | - Xiao Pan
- Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences
| | - Changqing Chang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510650, China
| | - Zhao Ou
- Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences
| | - Shengfan Ye
- Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences
| | - Le Yin
- Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences
| | - Lina Yang
- Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences
| | - Ting Tao
- College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, Zhenjiang 310058, China
| | - Zhenhai Zhang
- National Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Cong Liu
- Developmental and Stem Cell Institute, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - David P Lane
- Biomedical Research Council, Agency for Science and Technology Research, Singapore
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, Zhenjiang 310058, China
| | - Jun Chen
- Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences
| |
Collapse
|
48
|
Florey O, Gammoh N, Kim SE, Jiang X, Overholtzer M. V-ATPase and osmotic imbalances activate endolysosomal LC3 lipidation. Autophagy 2015; 11:88-99. [PMID: 25484071 PMCID: PMC4502810 DOI: 10.4161/15548627.2014.984277] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/25/2014] [Accepted: 07/08/2014] [Indexed: 02/01/2023] Open
Abstract
Recently a noncanonical activity of autophagy proteins has been discovered that targets lipidation of microtubule-associated protein 1 light chain 3 (LC3) onto macroendocytic vacuoles, including macropinosomes, phagosomes, and entotic vacuoles. While this pathway is distinct from canonical autophagy, the mechanism of how these nonautophagic membranes are targeted for LC3 lipidation remains unclear. Here we present evidence that this pathway requires activity of the vacuolar-type H(+)-ATPase (V-ATPase) and is induced by osmotic imbalances within endolysosomal compartments. LC3 lipidation by this mechanism is induced by treatment of cells with the lysosomotropic agent chloroquine, and through exposure to the Heliobacter pylori pore-forming toxin VacA. These data add novel mechanistic insights into the regulation of noncanonical LC3 lipidation and its associated processes, including LC3-associated phagocytosis (LAP), and demonstrate that the widely and therapeutically used drug chloroquine, which is conventionally used to inhibit autophagy flux, is an inducer of LC3 lipidation.
Collapse
Key Words
- ATG, autophagy-related
- Baf, bafilomycin A1
- CALCOCO2/NDP52, calcium binding and coiled-coil domain 2
- CQ, chloroquine
- ConA, concanamycin A
- FYCO1, FYVE and coiled-coil domain containing 1
- GFP, green fluorescent protein
- Helicobacter pylori
- LAMP1, lysosomal-associated membrane protein 1
- LAP
- LAP, LC3-associated phagocytosis
- LC3
- MAP1LC3/LC3, microtubule-associated protein 1 light chain 3
- MTOR, mechanistic target of rapamycin
- PIK3C3/VPS34, phosphatidylinositol 3-kinase
- PtdIns3K, phosphatidylinositol 3-kinase
- PtdIns3P, phosphatidylinositol 3-phosphate
- RB1CC1/FIP200, RB1-inducible coiled-coil 1
- SQSTM1/p62, sequestosome 1
- TEM, transmission electron microscopy
- TLR, toll-like receptor
- ULK1/2, unc-51 like autophagy activating kinase 1/2
- V-ATPase
- V-ATPase, vacuolar-type H+-ATPase
- VacA, vacuolating toxin A
- autophagy
- catalytic subunit type 3
- chloroquine
- entosis
- lysosome
- phagocytosis
Collapse
Affiliation(s)
- Oliver Florey
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
- Signalling Program; The Babraham Institute; Cambridge, UK
| | - Noor Gammoh
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
- Edinburgh Cancer Research UK Center; Institute of Genetics and Molecular Medicine; University of Edinburgh; Edinburgh, UK
| | - Sung Eun Kim
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
- BCMB Allied Program; Weill Cornell Medical College; New York, NY USA
| | - Xuejun Jiang
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
| | - Michael Overholtzer
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
- BCMB Allied Program; Weill Cornell Medical College; New York, NY USA
| |
Collapse
|
49
|
Shi H, Tao T, Huang D, Ou Z, Chen J, Peng J. A naturally occurring 4-bp deletion in the intron 4 of p53 creates a spectrum of novel p53 isoforms with anti-apoptosis function. Nucleic Acids Res 2014; 43:1035-43. [PMID: 25550427 PMCID: PMC4333405 DOI: 10.1093/nar/gku1359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
p53 functions as a tumor suppressor by transcriptionally regulating the expression of genes involved in controlling cell proliferation or apoptosis. p53 and its isoform Δ133p53/Δ113p53 form a negative regulation loop in that p53 activates the expression of Δ133p53/Δ113p53 while Δ133p53/Δ113p53 specifically antagonizes p53 apoptotic activity. This pathway is especially important to safeguard the process of embryogenesis because sudden activation of p53 by DNA damage signals or developmental stress is detrimental to a developing embryo. Here we report the identification of five novel p53 isoforms. p53β is generated due to alternative splicing of the intron 8 of p53 while the other four, namely, TA2p53, TA3p53, TA4p53 and TA5p53, result from the combination of alternative splicing of intron 1 (within intron 4 of the p53 gene) of the Δ113p53 gene and a naturally occurring CATT 4 bp deletion within the alternative splicing product in zebrafish. The CATT 4 bp deletion creates four translation start codons which are in-frame to the open reading frame of Δ113p53. We also show that TAp53 shares the same promoter with Δ113p53 and functions to antagonize p53 apoptotic activity. The identification of Δ113p53/TA2/3/4/5p53 reveals a pro-survival mechanism which operates robustly during embryogenesis in response to the DNA-damage condition.
Collapse
Affiliation(s)
- Hui Shi
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Ting Tao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Delai Huang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Zhao Ou
- College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| |
Collapse
|
50
|
Fleischer T, Frigessi A, Johnson KC, Edvardsen H, Touleimat N, Klajic J, Riis ML, Haakensen VD, Wärnberg F, Naume B, Helland A, Børresen-Dale AL, Tost J, Christensen BC, Kristensen VN. Genome-wide DNA methylation profiles in progression to in situ and invasive carcinoma of the breast with impact on gene transcription and prognosis. Genome Biol 2014. [PMID: 25146004 PMCID: PMC4165906 DOI: 10.1186/s13059-014-0435-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Ductal carcinoma in situ (DCIS) of the breast is a precursor of invasive breast carcinoma. DNA methylation alterations are thought to be an early event in progression of cancer, and may prove valuable as a tool in clinical decision making and for understanding neoplastic development. RESULTS We generate genome-wide DNA methylation profiles of 285 breast tissue samples representing progression of cancer, and validate methylation changes between normal and DCIS in an independent dataset of 15 normal and 40 DCIS samples. We also validate a prognostic signature on 583 breast cancer samples from The Cancer Genome Atlas. Our analysis reveals that DNA methylation profiles of DCIS are radically altered compared to normal breast tissue, involving more than 5,000 genes. Changes between DCIS and invasive breast carcinoma involve around 1,000 genes. In tumors, DNA methylation is associated with gene expression of almost 3,000 genes, including both negative and positive correlations. A prognostic signature based on methylation level of 18 CpGs is associated with survival of breast cancer patients with invasive tumors, as well as with survival of patients with DCIS and mixed lesions of DCIS and invasive breast carcinoma. CONCLUSIONS This work demonstrates that changes in the epigenome occur early in the neoplastic progression, provides evidence for the possible utilization of DNA methylation-based markers of progression in the clinic, and highlights the importance of epigenetic changes in carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Vessela N Kristensen
- Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Montebello, Oslo, 0310, Norway.
| |
Collapse
|