1
|
Sin YC, Abernathy B, Yuan ZF, Heier JL, Gonzalez JE, Parker LL, Mashek DG, Chen Y. Sorbate induces lysine sorbylation through noncanonical activities of class I HDACs to regulate the expression of inflammation genes. SCIENCE ADVANCES 2025; 11:eadv1071. [PMID: 40446041 PMCID: PMC12124360 DOI: 10.1126/sciadv.adv1071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/25/2025] [Indexed: 06/02/2025]
Abstract
Environmental factors may affect gene expression through epigenetic modifications of histones and transcription factors. Here, we report that cellular uptake of sorbate, a common food preservative, induces lysine sorbylation (Ksor) in mammalian cells and tissue mediated by the noncanonical activities of class I histone deacetylases (HDAC1-3). We demonstrated that HDAC1-3 catalyze sorbylation upon sorbate uptake and desorbylation in the absence of sorbate both in vitro and in cells. Sorbate uptake in mice livers significantly induced histone Ksor, correlating with decreased expressions of inflammation-response genes. Accordingly, sorbate treatment in macrophage RAW264.7 cells upon lipopolysaccharide (LPS) stimulation dose-dependently down-regulated proinflammatory gene expressions and nitric oxide production. Proteomic profiling identified RelA, a component of the NF-κB complex, and its interacting proteins as bona fide Ksor targets and sorbate treatment significantly decreased NF-κB transcriptional activities in response to LPS stimulation in RAW264.7 cells. Together, our study demonstrated a noncanonical mechanism of sorbate uptake in regulating epigenetic histone modifications and inflammatory gene expression.
Collapse
Affiliation(s)
- Yi-Cheng Sin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, USA
- Bioinformatics and Computational Biology Program, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Breann Abernathy
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Zuo-fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jason L. Heier
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Justin E. Gonzalez
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Laurie L. Parker
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Douglas G. Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, USA
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Minnesota Twin Cities, Minneapolis, MN, USA
- Institute for the Biology of Aging and Metabolism, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
2
|
Yan S, Yuan A, Shao G, Zhou W, Xu X, Dong MQ, Liu X, Li J. SUMOylation targets O-GlcNAcase to chaperone-mediated autophagy. J Biol Chem 2025:110314. [PMID: 40449592 DOI: 10.1016/j.jbc.2025.110314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 05/08/2025] [Accepted: 05/10/2025] [Indexed: 06/03/2025] Open
Abstract
O-GlcNAcase (OGA) is the sole eraser for the intracellular O-linked N-acetylglucosamine (O-GlcNAc). OGA has many roles in distinct biological processes, such as cancer and embryonic stem cells, but its precise regulatory mechanism is far from being understood. Herein we studied the small ubiquitin-like modifier (SUMO) modification of OGA, and found that OGA is SUMOylated at K358. SUMOylation targets OGA to the chaperone-mediated autophagy (CMA) pathway, which shunts client proteins to the lysosome for degradation. We demonstrate that SUMOylation increases the association between OGA and the heat shock cognate protein 70 (HSC70), the CMA chaperone, and facilitates OGA further degradation. We further mapped a SUMO-interacting motif (SIM) (VLIFD, aa. 195-199) on HSC70. Notably, HSC70-SIM is essential for affinity with other CMA client proteins, such as PKM2. We thus posit that the SIM of HSC70 binds SUMOylated client proteins in a lock-and-key manner to confer substrate selectivity during CMA. To further test our hypothesis, we used label-free quantitative mass spectrometry to study the HSC70-SIM mutant interactome, and generated a proteome-wide SUMO-mediated CMA client pool. We then validated this model by studying YEATS domain containing 2 (YEATS2) from the protein pool, and demonstrated that YEATS2 is SUMOylated at K592, targeting it to CMA. Our work uncovers the SUMO-SIM interaction as a fundamental mechanism governing CMA substrate selectivity and identifies a potential CMA client proteome to deepen our understanding of its pathophysiological relevance.
Collapse
Affiliation(s)
- Sheng Yan
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Aiyun Yuan
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Guangcan Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wen Zhou
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin Xu
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing 100032, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiaoqian Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 250100, China.
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
3
|
Pérez Baca MDR, Palomares-Bralo M, Vanhooydonck M, Hamerlinck L, D'haene E, Leimbacher S, Jacobs EZ, De Cock L, D'haenens E, Dheedene A, Malfait Z, Vantomme L, Silva A, Rooney K, Zhao X, Saeidian AH, Owen NM, Santos-Simarro F, Lleuger-Pujol R, García-Miñaúr S, Losantos-García I, Menten B, Gestri G, Ragge N, Sadikovic B, Bogaert E, Vleminckx K, Naert T, Syx D, Callewaert B, Vergult S. Loss of function of the zinc finger homeobox 4 gene, ZFHX4, underlies a neurodevelopmental disorder. Am J Hum Genet 2025:S0002-9297(25)00149-1. [PMID: 40367947 DOI: 10.1016/j.ajhg.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025] Open
Abstract
8q21.11 microdeletions involving ZFHX4 have previously been associated with a syndromic form of intellectual disability, hypotonia, unstable gait, and hearing loss. We report on 63 individuals-57 probands and 6 affected family members-with protein-truncating variants (n = 41), (micro)deletions (n = 21), or an inversion (n = 1) affecting ZFHX4. Probands display variable developmental delay and intellectual disability, distinctive facial characteristics, morphological abnormalities of the central nervous system, behavioral alterations, short stature, hypotonia, and occasionally cleft palate and anterior segment dysgenesis. The phenotypes associated with 8q21.11 microdeletions and ZFHX4 intragenic loss-of-function (LoF) variants largely overlap, although leukocyte-derived DNA shows a mild common methylation profile for (micro)deletions. ZFHX4 shows increased expression during human brain development and neuronal differentiation. Furthermore, ZFHX4-interacting factors identified via immunoprecipitation followed by mass spectrometry (IP-MS) suggest an important role for ZFHX4 in cellular pathways, especially during histone modifications, protein trafficking, signal transduction, cytosolic transport, and development. Additionally, using CUT&RUN, we observed that ZFHX4 binds the promoter of genes with crucial roles in embryonic, neuronal, and axonal development. Moreover, we investigated whether the disruption of zfhx4 causes craniofacial abnormalities in zebrafish. First-generation (F0) zfhx4 crispant zebrafish, a (mosaic) mutant for zfhx4 LoF variants, have significantly shorter Meckel's cartilage and smaller ethmoid plates compared to control zebrafish. Behavioral assays showed a decreased movement frequency in the zfhx4 crispant zebrafish in comparison with controls. Furthermore, structural abnormalities were found in the zebrafish hindbrain. In conclusion, our findings delineate a ZFHX4-associated neurodevelopmental disorder and suggest a role for zfhx4 in facial skeleton patterning, palatal development, and behavior.
Collapse
Affiliation(s)
- María Del Rocío Pérez Baca
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - María Palomares-Bralo
- CIBERER-ISCIII and INGEMM, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain; ITHACA-European Reference Network, Madrid, Spain
| | - Michiel Vanhooydonck
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lisa Hamerlinck
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Eva D'haene
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sebastian Leimbacher
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Eva Z Jacobs
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Laurenz De Cock
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Erika D'haenens
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Annelies Dheedene
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Zoë Malfait
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lies Vantomme
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ananilia Silva
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Xiaonan Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Baylor Genetics Laboratories, One Baylor Plaza, R806, Houston, TX 77030, USA
| | - Amir Hossein Saeidian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Baylor Genetics Laboratories, One Baylor Plaza, R806, Houston, TX 77030, USA
| | - Nichole Marie Owen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Baylor Genetics Laboratories, One Baylor Plaza, R806, Houston, TX 77030, USA
| | - Fernando Santos-Simarro
- Unit of Molecular Diagnostics and Clinical Genetics, Hospital Universitari Son Espases, Health Research Institute of the Balearic Islands (IdiSBa), Palma, Spain
| | - Roser Lleuger-Pujol
- Hereditary Cancer Program, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, Precision Oncology Group (OncoGIR-Pro), Institut d'Investigació Biomèdica de Girona (IDIGBI), Girona, Spain
| | - Sixto García-Miñaúr
- CIBERER-ISCIII and INGEMM, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain; ITHACA-European Reference Network, Madrid, Spain
| | | | - Björn Menten
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Gaia Gestri
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Nicola Ragge
- Birmingham Women's and Children's NHS Foundation Trust, Clinical Genetics Unit, Birmingham Womens Hospital, Lavender House, Mindelsohn Way, Edgbaston, Birmingham B15 2TG, UK
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada; Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Elke Bogaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Thomas Naert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Delfien Syx
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| | - Sarah Vergult
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Wang X, Qu Y, Li Z, Xia Q. Histone crotonylation in tumors (Review). Mol Clin Oncol 2025; 22:39. [PMID: 40160299 PMCID: PMC11948463 DOI: 10.3892/mco.2025.2834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/03/2025] [Indexed: 04/02/2025] Open
Abstract
Lysine crotonylation (Kcr) refers to a type of modification in which crotonyl groups are transferred to lysine residues by histone crotonyltransferase (HCT) using crotonyl-coenzyme A (CoA) as a substrate. Kcr is distributed in core histones and in some nonhistone proteins. Histone crotonylation is a newly discovered epigenetic modification with a significant ability to regulate gene expression. Crotonylation occurs on the ε-amino group of lysine residues and results in a modification of the histone charge. Similar to acetylation, the substrate for crotonylation is a donor molecule, crotonyl-CoA, which is linked to the sulfhydryl group of CoA by a thioester bond. Crotonylation is involved in regulating a wide range of biological processes and diseases. With advances in detection technologies, the impact of histone crotonylation on tumors has been revealed. The present review examines the recent discoveries of histone crotonylation, its function in tumors and its regulatory mechanism, which will aid in elucidating the mechanisms of malignant tumor development and provide a theoretical foundation for the development of new targeted cancer therapies.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
- Post-doctoral Research Station of Clinical Medicine, Liaocheng People's Hospital, Liaocheng, Shandong 252004, P.R. China
| | - Yu Qu
- Department of Pediatric Surgery, Children's Hospital Affiliated to Shandong University, Jinan, Shandong 250022, P.R. China
- Department of Pediatric Surgery, Jinan Children's Hospital, Jinan, Shandong 250022, P.R. China
| | - Zhaopei Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
5
|
Becht DC, Song J, Selvam K, Yin K, Bai W, Zhao Y, Wu R, Zheng YG, Kutateladze TG. The YEATS domain is a selective reader of histone methacrylation. Structure 2025:S0969-2126(25)00144-3. [PMID: 40339582 DOI: 10.1016/j.str.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/18/2025] [Accepted: 04/11/2025] [Indexed: 05/10/2025]
Abstract
Metabolically regulated lysine acylation modifications in proteins play a major role in epigenetic processes and cellular homeostasis. A new type of histone acylation, lysine methacrylation, has recently been identified but remains poorly characterized. Here, we show that lysine methacrylation can be generated through metabolism of sodium methacrylate and enzymatically removed in cells, and that the YEATS domain but not bromodomain recognizes this modification. Structural and biochemical analyses reveal the π-π-π-stacking mechanism for binding of the YEATS domain of ENL to methacrylated histone H3K18 (H3K18mc). Using mass spectrometry proteomics, we demonstrate that methacrylate induces global methacrylation of a set of proteins that differs from the set of methacrylated proteins associated with valine metabolism. These findings suggest that high levels of methacrylate may potentially perturb cellular functions of these proteins by altering protein methacrylation profiles.
Collapse
Affiliation(s)
- Dustin C Becht
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jiabao Song
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Karthik Selvam
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kejun Yin
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Weizhi Bai
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
6
|
Ji K, Chen G, Wang Y, Li Y, Chen J, Feng M. YEATS2: a novel cancer epigenetic reader and potential therapeutic target. Cancer Cell Int 2025; 25:162. [PMID: 40287757 PMCID: PMC12034173 DOI: 10.1186/s12935-025-03797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
YEATS2, an evolutionarily conserved reader of histone acylation marks (H3K27ac, H3K27cr, H3K27bz), functions as a central oncogenic driver in diverse cancers, including non-small cell lung cancer (NSCLC), pancreatic ductal adenocarcinoma (PDAC), and hepatocellular carcinoma (HCC). Its structurally plastic YEATS domain bridges acyl-CoA metabolism to chromatin remodeling, amplifying transcription of survival genes such as MYC, BCL2, and PD-L1. YEATS2 orchestrates malignancy-specific programs-sustaining ribosome biogenesis in NSCLC through ATAC complex recruitment, enhancing NF-κB-dependent immune evasion in PDAC, and activating PI3K/AKT-driven metabolic rewiring in HCC. Structural studies demonstrate a unique aromatic cage architecture that selectively engages diverse acylated histones. Although pyrazolopyridine-based inhibitors targeting the YEATS domain show preclinical efficacy, developing isoform-selective agents remains challenging. Clinically, YEATS2 overexpression correlates with therapy resistance and may synergize with immune checkpoint blockade. This review integrates mechanistic insights into the role of YEATS2 in epigenetic regulation, evaluates its therapeutic potential, and proposes future directions: elucidating full-length complex topologies, mapping synthetic lethal interactors, and optimizing selective inhibitors. Disrupting YEATS2-mediated epigenetic adaptation presents novel opportunities for precision cancer therapy.
Collapse
Affiliation(s)
- Kangkang Ji
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Department of Clinical Medical Research, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng, 224500, Jiangsu, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guoping Chen
- Department of Clinical Medical Research, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng, 224500, Jiangsu, China
| | - Yan Wang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yunyi Li
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jian Chen
- Department of Head and Neck Surgery, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, 430070, China.
| | - Mingqian Feng
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
7
|
Ji Y, Liu S, Zhang Y, Min Y, Wei L, Guan C, Yu H, Zhang Z. Lysine crotonylation in disease: mechanisms, biological functions and therapeutic targets. Epigenetics Chromatin 2025; 18:13. [PMID: 40119392 PMCID: PMC11929287 DOI: 10.1186/s13072-025-00577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/24/2025] [Indexed: 03/24/2025] Open
Abstract
Lysine crotonylation (Kcr), a previously unknown post-translational modification (PTM), plays crucial roles in regulating cellular processes, including gene expression, chromatin remodeling, and cellular metabolism. Kcr is associated with various diseases, including neurodegenerative disorders, cancer, cardiovascular conditions, and metabolic syndromes. Despite advances in identifying crotonylation sites and their regulatory enzymes, the molecular mechanisms by which Kcr influences disease progression remain poorly understood. Understanding the interplay between Kcr and other acylation modifications may reveal opportunities for developing targeted therapies. This review synthesizes current research on Kcr, focusing on its regulatory mechanisms and disease associations, and highlights insights into future exploration in epigenetics and therapeutic interventions.
Collapse
Affiliation(s)
- Yu Ji
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & State Key Lab of Digestive Health & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Shanshan Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & State Key Lab of Digestive Health & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Yiqiao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & State Key Lab of Digestive Health & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Yiyang Min
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & State Key Lab of Digestive Health & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Luyang Wei
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & State Key Lab of Digestive Health & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Chengjian Guan
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & State Key Lab of Digestive Health & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China.
| | - Huajing Yu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & State Key Lab of Digestive Health & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China.
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & State Key Lab of Digestive Health & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China.
| |
Collapse
|
8
|
Mukherjee U, Basu B, Beyer SE, Ghodsi S, Robillard N, Vanrobaeys Y, Taylor EB, Abel T, Chatterjee S. Histone Lysine Crotonylation Regulates Long-Term Memory Storage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639114. [PMID: 40027819 PMCID: PMC11870504 DOI: 10.1101/2025.02.19.639114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Histone post-translational modifications (PTMs), particularly lysine acetylation (Kac), are critical epigenetic regulators of gene transcription underlying long-term memory consolidation. Beyond Kac, several other non-acetyl acylations have been identified, but their role in memory consolidation remains unknown. Here, we demonstrate histone lysine crotonylation (Kcr) as a key molecular switch of hippocampal memory storage. Spatial memory training induces distinct spatiotemporal patterns of Kcr induction in the dorsal hippocampus of mice. Through genetic and pharmacological manipulations, we show that reducing hippocampal Kcr levels impairs long-term memory, while increasing Kcr enhances memory. Utilizing single-nuclei multiomics, we delineate that Kcr enhancement during memory consolidation activates transcription of genes involved in neurotransmission and synaptic function within hippocampal excitatory neurons. Cell-cell communication analysis further inferred that Kcr enhancement strengthens glutamatergic signaling within principal hippocampal neurons. Our findings establish Kcr as a novel epigenetic mechanism governing memory consolidation and provide a foundation for therapeutic strategies targeting memory-related disorders.
Collapse
Affiliation(s)
- Utsav Mukherjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States
| | - Budhaditya Basu
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Stacy E. Beyer
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Saaman Ghodsi
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Nathan Robillard
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Yann Vanrobaeys
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, United States
| | - Eric B. Taylor
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, United States
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, United States
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Snehajyoti Chatterjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
9
|
Sahu V, Lu C. Metabolism-driven chromatin dynamics: Molecular principles and technological advances. Mol Cell 2025; 85:262-275. [PMID: 39824167 PMCID: PMC11750176 DOI: 10.1016/j.molcel.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025]
Abstract
Cells integrate metabolic information into core molecular processes such as transcription to adapt to environmental changes. Chromatin, the physiological template of the eukaryotic genome, has emerged as a sensor and rheostat for fluctuating intracellular metabolites. In this review, we highlight the growing list of chromatin-associated metabolites that are derived from diverse sources. We discuss recent advances in our understanding of the mechanisms by which metabolic enzyme activities shape the chromatin structure and modifications, how specificity may emerge from their seemingly broad effects, and technologies that facilitate the study of epigenome-metabolome interplay. The recognition that metabolites are immanent components of the chromatin regulatory network has significant implications for the evolution, function, and therapeutic targeting of the epigenome.
Collapse
Affiliation(s)
- Varun Sahu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
10
|
Westerveld M, Besermenji K, Aidukas D, Ostrovitsa N, Petracca R. Cracking Lysine Crotonylation (Kcr): Enlightening a Promising Post-Translational Modification. Chembiochem 2025; 26:e202400639. [PMID: 39462860 PMCID: PMC11776371 DOI: 10.1002/cbic.202400639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Indexed: 10/29/2024]
Abstract
Lysine crotonylation (Kcr) is a recently discovered post-translational modification (PTM). Both histone and non-histone Kcr-proteins have been associated with numerous diseases including cancer, acute kidney injury, HIV latency, and cardiovascular disease. Histone Kcr enhances gene expression to a larger extend than the extensively studied lysine acetylation (Kac), suggesting Kcr as a novel potential therapeutic target. Although numerous scientific reports on crotonylation were published in the last years, relevant knowledge gaps concerning this PTM and its regulation still remain. To date, only few selective Kcr-interacting proteins have been identified and selective methods for the enrichment of Kcr-proteins in chemical proteomics analysis are still lacking. The development of new techniques to study this underexplored PTM could then clarify its function in health and disease and hopefully accelerate the development of new therapeutics for Kcr-related disease. Herein we briefly review what is known about the regulation mechanisms of Kcr and the current methods used to identify Kcr-proteins and their interacting partners. This report aims to highlight the significant potential of Kcr as a therapeutic target and to identify the existing scientific gaps that new research must address.
Collapse
Affiliation(s)
- Marinda Westerveld
- Department of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityDavid De Wied Building, Universiteitsweg 993584 CGUtrechtNL
| | - Kosta Besermenji
- Department of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityDavid De Wied Building, Universiteitsweg 993584 CGUtrechtNL
| | - David Aidukas
- Department of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityDavid De Wied Building, Universiteitsweg 993584 CGUtrechtNL
| | - Nikita Ostrovitsa
- Trinity Biomedical Sciences Institute (TBSI)Trinity College Dublin (TCD)152-160 Pearse St.DublinD02 R590Ireland
| | - Rita Petracca
- Department of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityDavid De Wied Building, Universiteitsweg 993584 CGUtrechtNL
| |
Collapse
|
11
|
Yeewa R, Pohsa S, Yamsri T, Wongkummool W, Jantaree P, Potikanond S, Nimlamool W, Shotelersuk V, Lo Piccolo L, Jantrapirom S. The histone acylation reader ENL/AF9 regulates aging in Drosophila melanogaster. Neurobiol Aging 2024; 144:153-162. [PMID: 39405796 DOI: 10.1016/j.neurobiolaging.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
Histone acylation plays a pivotal role in modulating gene expression, ensuring proper neurogenesis and responsiveness to various signals. Recently, the evolutionary conserved YAF9, ENL, AF9, TAF41, SAS5 (YEATS) domain found in four human paralogs, has emerged as a new class of histone acylation reader with a preference for the bulkier crotonyl group lysine over acetylation. Despite advancements, the role of either histone crotonylation or its readers in neurons remains unclear. In this study, we employed Drosophila melanogaster to investigate the role of ENL/AF9 (dENL/AF9) in the nervous system. Pan-neuronal dENL/AF9 knockdown not only extended the lifespan of flies but also enhanced their overall fitness during aging, including improved sleep quality and locomotion. Moreover, a decreased activity of dENL/AF9 in neurons led to an up-regulation of catalase gene expression which combined with reduced levels of malondialdehyde (MDA) and an enhanced tolerance to oxidative stress in aging flies. This study unveiled a novel function of histone crotonylation readers in aging with potential implications for understanding age-related conditions in humans.
Collapse
Affiliation(s)
- Ranchana Yeewa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sureena Pohsa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Titaree Yamsri
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wasinee Wongkummool
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phatcharida Jantaree
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Vorasuk Shotelersuk
- Centre of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Centre for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Luca Lo Piccolo
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
12
|
Long Y, Wang W, Liu S, Wang X, Tao Y. The survival prediction analysis and preliminary study of the biological function of YEATS2 in hepatocellular carcinoma. Cell Oncol (Dordr) 2024; 47:2297-2316. [PMID: 39718737 DOI: 10.1007/s13402-024-01019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2024] [Indexed: 12/25/2024] Open
Abstract
PURPOSE Our study aims to develop and validate a novel molecular marker for the prognosis and diagnosis of hepatocellular carcinoma (HCC) MATERIALS & METHODS: We retrospectively analyzed mRNA expression profile and clinicopathological data of HCC patients fetched from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and The International Cancer Genome Consortium (ICGC) datasets. Univariate Cox regression analysis was performed to collect differentially expressed mRNA (DEmRNAs) from HCC and non-tumor tissues, and YEATS2, a prognostic marker, was identified by further analysis. ROC curve, survival analysis and multivariate Cox regression analysis as well as nomograms were used to evaluate the prognosis of this gene. Finally, the biological function of this gene was preliminarily discussed by using single gene Gene Set Enrichment Analysis (GSEA), and the YEATS2 overexpression and knockdown hepatoma cell line was used to verify the results in vitro and in vivo. RESULTS Based on the clinical information of HCC in TCGA, GEO and ICGC databases, the gene YEATS2 with significant differences from HCC was identified. There was a statistical difference in the survival prognosis between the two databases and the ROC curve showed that the survival of HCC in both TCGA, GSE14520 and ICGC groups had a satisfactory predictive effect. Univariate and multivariate Cox regression analysis showed that YEATS2 was an independent prognostic factor for HCC, and Nomograms, which combined this prognostic feature with significant clinical features, provided an important reference for the clinical prognostic diagnosis of HCC. Next, we constructed overexpression and knockdown YEATS2 cell line in Hep3B and LM3 cells, and further proved that overexpression YEATS2 promote the proliferation and migration of HCC cells by CCK8, colony formation experiment, and transwell assays, and knockdown YEATS2 inhibited the proliferation and migration of HCC cells by CCK8, colony formation experiment, and transwell assays. Finally, the biological function of YEATS2 was preliminarily explored through GSEA analysis of a single gene, and it was found that it was significantly correlated with cell cycle and DNA repair, which provided us with ideas for further analysis. Furthermore, the knockdown of YEATS2 promoted radiation-induced DNA damage, enhanced radiosensitivity, and ultimately inhibited the proliferation of hepatocellular carcinoma cells in vitro and in vivo. CONCLUSIONS Our study identified a promising prognostic marker for hepatocellular carcinoma that is useful for clinical decision-making and individualized treatment.
Collapse
Affiliation(s)
- Yao Long
- Cancer Research Institute; School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wei Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Shouping Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiang Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.
- Cancer Research Institute; School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
13
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
14
|
Yang S, Fan X, Yu W. Regulatory Mechanism of Protein Crotonylation and Its Relationship with Cancer. Cells 2024; 13:1812. [PMID: 39513918 PMCID: PMC11545499 DOI: 10.3390/cells13211812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Crotonylation is a recently discovered protein acyl modification that shares many enzymes with acetylation. However, it possesses a distinct regulatory mechanism and biological function due to its unique crotonyl structure. Since the discovery of crotonylation in 2011, numerous crotonylation sites have been identified in both histones and other proteins. In recent studies, crotonylation was found to play a role in various diseases and biological processes. This paper reviews the initial discovery and regulatory mechanisms of crotonylation, including various writer, reader, and eraser proteins. Finally, we emphasize the relationship of dysregulated protein crotonylation with eight common malignancies, including cervical, prostate, liver, and lung cancer, providing new potential therapeutic targets.
Collapse
Affiliation(s)
- Siyi Yang
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Xinyi Fan
- Faculty of Arts and Science, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| |
Collapse
|
15
|
Yan W, Zhang Y, Dai Y, Ge J. Application of crotonylation modification in pan-vascular diseases. J Drug Target 2024; 32:996-1004. [PMID: 38922829 DOI: 10.1080/1061186x.2024.2372316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Pan-vascular diseases, based on systems biology theory, explore the commonalities and individualities of important target organs such as cardiovascular, cerebrovascular and peripheral blood vessels, starting from the systemic and holistic aspects of vascular diseases. The purpose is to understand the interrelationships and results between them, achieve vascular health or sub-health, and comprehensively improve the physical and mental health of the entire population. Post-translational modification (PTM) is an important part of epigenetics, including phosphorylation, acetylation, ubiquitination, methylation, etc., playing a crucial role in the pan-vascular system. Crotonylation is a novel type of PTM that has made significant progress in the research of pan-vascular related diseases in recent years. Based on the review of previous studies, this article summarises the various regulatory factors of crotonylation, physiological functions and the mechanisms of histone and non-histone crotonylation in regulating pan-vascular related diseases to explore the possibility of precise regulation of crotonylation sites as potential targets for disease treatment and the value of clinical translation.
Collapse
Affiliation(s)
- Wendi Yan
- Oriental Pan-vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, China
| | - Yang Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Yuxiang Dai
- Oriental Pan-vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Junbo Ge
- Oriental Pan-vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
16
|
Guo Y, Li J, Zhang K. Crotonylation modification and its role in diseases. Front Mol Biosci 2024; 11:1492212. [PMID: 39606030 PMCID: PMC11599741 DOI: 10.3389/fmolb.2024.1492212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Protein lysine crotonylation is a novel acylation modification discovered in 2011, which plays a key role in the regulation of various biological processes. Thousands of crotonylation sites have been identified in histone and non-histone proteins over the past decades. Crotonylation is conserved and is regulated by a series of enzymes including "writer", "eraser", and "reader". In recent years, crotonylation has received extensive attention due to its breakthrough progress in reproduction, development and pathogenesis of diseases. Here we brief the crotonylation-related enzyme systems, biological functions, and diseases caused by abnormal crotonylation, which provide new ideas for developing disease intervention and treatment regimens.
Collapse
Affiliation(s)
| | | | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
17
|
Liao M, Zheng W, Wang Y, Li M, Sun X, Liu N, Yao J, Dong F, Wang Q, Ma Y, Mou J. LINC00887 promotes GCN5-dependent H3K27cr level and CRC metastasis via recruitment of YEATS2 and enhancing ETS1 expression. Cell Death Dis 2024; 15:711. [PMID: 39349460 PMCID: PMC11443008 DOI: 10.1038/s41419-024-07091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
Recent observations have revealed upregulation of H3K27cr in colorectal cancer (CRC) tissues; however, the underlying cause remains elusive. This study aimed to investigate the mechanism of H3K27cr upregulation and its roles in CRC metastasis. Clinically, our findings showed that H3K27cr served as a highly accurate diagnostic marker to distinguish CRC tissues from healthy controls. Elevated levels of LINC00887 and H3K27cr were associated with a poorer prognosis in CRC patients. Functionally, LINC00887 and H3K27cr facilitated the migration and invasion of CRC cells. Mechanistically, LINC00887 interacted with SIRT3 protein. Overexpressed of LINC00887 obstructed the enrichment of SIRT3 within GCN5 promoter, thereby elevating H3K27ac but not H3K27cr level within this region, subsequently activating GCN5 expression. This activation increased the global level of H3K27cr, promoting the enrichment of GCN5, H3K27cr, and YEATS2 within ETS1 promoter, activating ETS1 transcription and ultimately promoting the metastasis of CRC. The in vivo study demonstrated that inhibition of LINC00887 suppressed CRC metastasis, but this inhibitory effect was nullified when mice were treated with NaCr. In conclusion, our results confirmed the diagnostic biomarker potential of H3K27cr in individuals with CRC, and proposed a functional model to elucidate the involvement of LINC00887 in promoting CRC metastasis by elevating H3K27cr level.
Collapse
Affiliation(s)
- Meijian Liao
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Wendan Zheng
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Yifan Wang
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Mengting Li
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Xiaolin Sun
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Nan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, the First Hospital of Jilin University, Changchun, 130061, PR China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, the First Hospital of Jilin University, Changchun, 130061, PR China
| | - Jia Yao
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Fuxing Dong
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Qingling Wang
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Yu Ma
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China.
| | - Jie Mou
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China.
| |
Collapse
|
18
|
Zhao H, Han Y, Zhou P, Guan H, Gao S. Protein lysine crotonylation in cellular processions and disease associations. Genes Dis 2024; 11:101060. [PMID: 38957707 PMCID: PMC11217610 DOI: 10.1016/j.gendis.2023.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/05/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2024] Open
Abstract
Protein lysine crotonylation (Kcr) is one conserved form of posttranslational modifications of proteins, which plays an important role in a series of cellular physiological and pathological processes. Lysine ε-amino groups are the primary sites of such modification, resulting in four-carbon planar lysine crotonylation that is structurally and functionally distinct from the acetylation of these residues. High levels of Kcr modifications have been identified on both histone and non-histone proteins. The present review offers an update on the research progression regarding protein Kcr modifications in biomedical contexts and provides a discussion of the mechanisms whereby Kcr modification governs a range of biological processes. In addition, given the importance of protein Kcr modification in disease onset and progression, the potential viability of Kcr regulators as therapeutic targets is elucidated.
Collapse
Affiliation(s)
- Hongling Zhao
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yang Han
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Guan
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shanshan Gao
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
19
|
María Del Rocío PB, Palomares Bralo M, Vanhooydonck M, Hamerlinck L, D'haene E, Leimbacher S, Jacobs EZ, De Cock L, D'haenens E, Dheedene A, Malfait Z, Vantomme L, Silva A, Rooney K, Santos-Simarro F, Lleuger-Pujol R, García-Miñaúr S, Losantos-García I, Menten B, Gestri G, Ragge N, Sadikovic B, Bogaert E, Syx D, Callewaert B, Vergult S. Loss-of-function of the Zinc Finger Homeobox 4 ( ZFHX4) gene underlies a neurodevelopmental disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.07.24311381. [PMID: 39148819 PMCID: PMC11326360 DOI: 10.1101/2024.08.07.24311381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
8q21.11 microdeletions encompassing the gene encoding transcription factor ZFHX4, have previously been associated by us with a syndromic form of intellectual disability, hypotonia, decreased balance and hearing loss. Here, we report on 57 individuals, 52 probands and 5 affected family members, with protein truncating variants (n=36), (micro)deletions (n=20) or an inversion (n=1) affecting ZFHX4 with variable developmental delay and intellectual disability, distinctive facial characteristics, morphological abnormalities of the central nervous system, behavioral alterations, short stature, hypotonia, and occasionally cleft palate and anterior segment dysgenesis. The phenotypes associated with 8q21.11 microdeletions and ZFHX4 intragenic loss-of-function variants largely overlap, identifying ZFHX4 as the main driver for the microdeletion syndrome, although leukocyte-derived DNA shows a mild common methylation profile for (micro)deletions only. We identify ZFHX4 as a transcription factor that is increasingly expressed during human brain development and neuronal differentiation. Furthermore, ZFHX4 interacting factors identified via IP-MS in neural progenitor cells, suggest an important role for ZFHX4 in cellular and developmental pathways, especially during histone modifications, cytosolic transport and development. Additionally, using CUT&RUN, we observed that ZFHX4 binds with the promoter regions of genes with crucial roles in embryonic, neuron and axon development. Since loss-of-function variants in ZFHX4 are found with consistent dysmorphic facial features, we investigated whether the disruption of zfhx4 causes craniofacial abnormalities in zebrafish. First-generation (F0) zfhx4 crispant zebrafish, (mosaic) mutant for zfhx4 loss-of-function variants, have significantly shorter Meckel's cartilages and smaller ethmoid plates compared to control zebrafish. Furthermore, behavioral assays show a decreased movement frequency in the zfhx4 crispant zebrafish in comparison with control zebrafish larvae. Although further research is needed, our in vivo work suggests a role for zfhx4 in facial skeleton patterning, palatal development and behavior.
Collapse
Affiliation(s)
- Pérez Baca María Del Rocío
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - María Palomares Bralo
- CIBERER-ISCIII and INGEMM, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain
- ITHACA- European Reference Network, Spain
| | - Michiel Vanhooydonck
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lisa Hamerlinck
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Eva D'haene
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sebastian Leimbacher
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Eva Z Jacobs
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Laurenz De Cock
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Erika D'haenens
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Annelies Dheedene
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Zoë Malfait
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lies Vantomme
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ananilia Silva
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Fernando Santos-Simarro
- Unit of Molecular Diagnostics and Clinical Genetics, Hospital Universitari Son Espases, Health Research Institute of the Balearic Islands (IdiSBa), Palma, Spain
| | - Roser Lleuger-Pujol
- Hereditary Cancer Program, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital; Precision Oncology Group (OncoGIR-Pro), Institut d'Investigació Biomèdica de Girona (IDIGBI), Girona, Spain
| | - Sixto García-Miñaúr
- CIBERER-ISCIII and INGEMM, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain
- ITHACA- European Reference Network, Spain
| | | | - Björn Menten
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Gaia Gestri
- University College London, London, England, Great Britain
| | - Nicola Ragge
- Birmingham Women's and Children's NHS Foundation Trust, Clinical Genetics Unit, Birmingham Womens Hospital, Lavender House, Mindelsohn Way, Edgbaston, Birmingham B15 2TG
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Elke Bogaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Delfien Syx
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sarah Vergult
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Mavridou D, Psatha K, Aivaliotis M. Integrative Analysis of Multi-Omics Data to Identify Deregulated Molecular Pathways and Druggable Targets in Chronic Lymphocytic Leukemia. J Pers Med 2024; 14:831. [PMID: 39202022 PMCID: PMC11355716 DOI: 10.3390/jpm14080831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is the most common B-cell malignancy in the Western world, characterized by frequent relapses despite temporary remissions. Our study integrated publicly available proteomic, transcriptomic, and patient survival datasets to identify key differences between healthy and CLL samples. We exposed approximately 1000 proteins that differentiate healthy from cancerous cells, with 608 upregulated and 415 downregulated in CLL cases. Notable upregulated proteins include YEATS2 (an epigenetic regulator), PIGR (Polymeric immunoglobulin receptor), and SNRPA (a splicing factor), which may serve as prognostic biomarkers for this disease. Key pathways implicated in CLL progression involve RNA processing, stress resistance, and immune response deficits. Furthermore, we identified three existing drugs-Bosutinib, Vorinostat, and Panobinostat-for potential further investigation in drug repurposing in CLL. We also found limited correlation between transcriptomic and proteomic data, emphasizing the importance of proteomics in understanding gene expression regulation mechanisms. This generally known disparity highlights once again that mRNA levels do not accurately predict protein abundance due to many regulatory factors, such as protein degradation, post-transcriptional modifications, and differing rates of translation. These results demonstrate the value of integrating omics data to uncover deregulated proteins and pathways in cancer and suggest new therapeutic avenues for CLL.
Collapse
Affiliation(s)
- Dimitra Mavridou
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantina Psatha
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Laboratory of Medical Biology—Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Michalis Aivaliotis
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
21
|
Wang Z, Zhao N, Zhang S, Wang D, Wang S, Liu N. YEATS domain-containing protein GAS41 regulates nuclear shape by working in concert with BRD2 and the mediator complex in colorectal cancer. Pharmacol Res 2024; 206:107283. [PMID: 38964523 DOI: 10.1016/j.phrs.2024.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
The maintenance of nuclear shape is essential for cellular homeostasis and disruptions in this process have been linked to various pathological conditions, including cancer, laminopathies, and aging. Despite the significance of nuclear shape, the precise molecular mechanisms controlling it are not fully understood. In this study, we have identified the YEATS domain-containing protein 4 (GAS41) as a previously unidentified factor involved in regulating nuclear morphology. Genetic ablation of GAS41 in colorectal cancer cells resulted in significant abnormalities in nuclear shape and inhibited cancer cell proliferation both in vitro and in vivo. Restoration experiments revealed that wild-type GAS41, but not a YEATS domain mutant devoid of histone H3 lysine 27 acetylation or crotonylation (H3K27ac/cr) binding, rescued the aberrant nuclear phenotypes in GAS41-deficient cells, highlighting the importance of GAS41's binding to H3K27ac/cr in nuclear shape regulation. Further experiments showed that GAS41 interacts with H3K27ac/cr to regulate the expression of key nuclear shape regulators, including LMNB1, LMNB2, SYNE4, and LEMD2. Mechanistically, GAS41 recruited BRD2 and the Mediator complex to gene loci of these regulators, promoting their transcriptional activation. Disruption of GAS41-H3K27ac/cr binding caused BRD2, MED14 and MED23 to dissociate from gene loci, leading to nuclear shape abnormalities. Overall, our findings demonstrate that GAS41 collaborates with BRD2 and the Mediator complex to control the expression of crucial nuclear shape regulators.
Collapse
Affiliation(s)
- Zhengmin Wang
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Nan Zhao
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Siwei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130000, China
| | - Deyu Wang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Shuai Wang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Nan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
22
|
Feng F, Gao Y, Zhao Q, Luo T, Yang Q, Zhao N, Xiao Y, Han Y, Pan J, Feng S, Zhang L, Wu M. Single-electron transfer between sulfonium and tryptophan enables site-selective photo crosslinking of methyllysine reader proteins. Nat Chem 2024; 16:1267-1277. [PMID: 39079947 DOI: 10.1038/s41557-024-01577-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 06/12/2024] [Indexed: 08/15/2024]
Abstract
The identification of readers, an important class of proteins that recognize modified residues at specific sites, is essential to uncover the biological roles of post-translational modifications. Photoreactive crosslinkers are powerful tools for investigating readers. However, existing methods usually employ synthetically challenging photoreactive warheads, and their high-energy intermediates generated upon irradiation, such as nitrene and carbene, may cause substantial non-specific crosslinking. Here we report dimethylsulfonium as a methyllysine mimic that binds to specific readers and subsequently crosslinks to a conserved tryptophan inside the binding pocket through single-electron transfer under ultraviolet irradiation. The crosslinking relies on a protein-templated σ-π electron donor-acceptor interaction between sulfonium and indole, ensuring excellent site selectivity for tryptophan in the active site and orthogonality to other methyllysine readers. This method could escalate the discovery of methyllysine readers from complex cell samples. Furthermore, this photo crosslinking strategy could be extended to develop other types of microenvironment-dependent conjugations to site-specific tryptophan.
Collapse
Affiliation(s)
- Feng Feng
- Department of Chemistry, Zhejiang University, Hangzhou, China
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Yingxiao Gao
- Department of Chemistry, Fudan University, Shanghai, China
| | - Qun Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ting Luo
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Qingyun Yang
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Nan Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yihang Xiao
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yusong Han
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Jinheng Pan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, China
| | - Lihua Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Mingxuan Wu
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
23
|
Du N, Yi L, Wang J, Lei Y, Bo X, Guo F, Wang R, Chai J, Liu G. High expression of YEATS2 as a predictive factor of poor prognosis in patients with hepatocellular carcinoma. Sci Rep 2024; 14:17246. [PMID: 39060453 PMCID: PMC11282058 DOI: 10.1038/s41598-024-68348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
YEATS domain containing 2 (YEATS2), it may function as a proto-oncogene. This study aims to investigate if YEATS2 correlates with prognosis in hepatocellular carcinoma. The prognostic landscape of YEATS2 and its relationship with expression in hepatocellular carcinoma were deciphered with public databases, RT-qPCR and western-blot in tissue samples. The expression profiling and prognostic value of YEATS2 were explored using UALCAN, TIMER, OncoLnc database. Transcription and survival analyses of YEATS2 in hepatocellular carcinoma were investigated with cBioPortal database. The STRING database was explored to identify molecular functions and signaling pathways downstream of YEATS2. YEATS2 expression was significantly higher in hepatocellular carcinoma compared with adjacent non-malignant tissues. Promoter methylation of YEATS2 exhibited different patterns in hepatocellular carcinoma. High expression of YEATS2 was associated with poorer survival. Mechanistically, YEATS2 was involved in mediating multiple biological processes including morphogenesis and migration.
Collapse
Affiliation(s)
- Ning Du
- Department of Hepatobiliary Surgery, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Lili Yi
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Jiamu Wang
- Department of Hepatobiliary Surgery, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Yongqiang Lei
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Xiaohui Bo
- Department of Hepatobiliary Surgery, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Fangjie Guo
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Ruhao Wang
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Jian Chai
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, 252000, China.
| | - Guijie Liu
- Department of Hepatobiliary Surgery, Liaocheng People's Hospital, Liaocheng, 252000, China.
| |
Collapse
|
24
|
Li D, Lin L, Xu F, Feng T, Tao Y, Miao H, Yang F. Protein crotonylation: Basic research and clinical diseases. Biochem Biophys Rep 2024; 38:101694. [PMID: 38586826 PMCID: PMC10997999 DOI: 10.1016/j.bbrep.2024.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
Crotonylation is an importantly conserved post-translational modification, which is completely different from acetylation. In recent years, it has been confirmed that crotonylation occurs on histone and non-histone. Crotonylated Histone primarily affects gene expression through transcriptional regulation, while non-histone Crotonylation mainly regulates protein functions including protein activity, localization, and stability, as well as protein-protein interactions. The change in protein expression and function will affect the physiological process of cells and even cause disease. Reviewing previous studies, this article summarizes the mechanisms of histone and non-histone crotonylation in regulating diseases and cellular physiological processes to explore the possibility of precise regulation of crotonylation sites as potential targets for disease treatment.
Collapse
Affiliation(s)
- Dongling Li
- School of Medicine, Chongqing University, Chongqing, 400044, China
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Ling Lin
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Fan Xu
- School of Medicine, Chongqing University, Chongqing, 400044, China
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Tianlin Feng
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yang Tao
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
- Department of Critical Care Medicine, Chongqing University Central Hospital, Chongqing, 400000, China
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Fan Yang
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
- Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
25
|
Tian G, Li X, Li XD. Genetically Encoded Epitope Tag for Probing Lysine Acylation-Mediated Protein-Protein Interactions. ACS Chem Biol 2024; 19:1376-1386. [PMID: 38829775 DOI: 10.1021/acschembio.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Histone lysine acetylation (Kac) and crotonylation (Kcr) marks mediate the recruitment of YEATS domains to chromatin. In this way, YEATS domain-containing proteins such as AF9 participate in the regulation of DNA-templated processes. Our previous study showed that the replacement of Kac/Kcr by a 2-furancarbonyllysine (Kfu) residue led to greatly enhanced affinity toward the AF9 YEATS domain, rendering Kfu-containing peptides useful chemical tools to probe the AF9 YEATS-Kac/Kcr interactions. Here, we report the genetic incorporation of Kfu in Escherichia coli and mammalian cells through the amber codon suppression technology. We develop a Kfu-containing epitope tag, termed RAY-tag, which can robustly and selectively engage with the AF9 YEATS domain in vitro and in cellulo. We further demonstrate that the fusion of RAY-tag to different protein modules, including fluorescent proteins and DNA binding proteins, can facilitate the interrogation of the histone lysine acylation-mediated recruitment of the AF9 YEATS domain in different biological contexts.
Collapse
Affiliation(s)
- Gaofei Tian
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Xin Li
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Xiang David Li
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| |
Collapse
|
26
|
Hu X, Huang X, Yang Y, Sun Y, Zhao Y, Zhang Z, Qiu D, Wu Y, Wu G, Lei L. Dux activates metabolism-lactylation-MET network during early iPSC reprogramming with Brg1 as the histone lactylation reader. Nucleic Acids Res 2024; 52:5529-5548. [PMID: 38512058 PMCID: PMC11162783 DOI: 10.1093/nar/gkae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 02/24/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
The process of induced pluripotent stem cells (iPSCs) reprogramming involves several crucial events, including the mesenchymal-epithelial transition (MET), activation of pluripotent genes, metabolic reprogramming, and epigenetic rewiring. Although these events intricately interact and influence each other, the specific element that regulates the reprogramming network remains unclear. Dux, a factor known to promote totipotency during the transition from embryonic stem cells (ESC) to 2C-like ESC (2CLC), has not been extensively studied in the context of iPSC reprogramming. In this study, we demonstrate that the modification of H3K18la induced by Dux overexpression controls the metabolism-H3K18la-MET network, enhancing the efficiency of iPSC reprogramming through a metabolic switch and the recruitment of p300 via its C-terminal domain. Furthermore, our proteomic analysis of H3K18la immunoprecipitation experiment uncovers the specific recruitment of Brg1 during reprogramming, with both H3K18la and Brg1 being enriched on the promoters of genes associated with pluripotency and epithelial junction. In summary, our study has demonstrated the significant role of Dux-induced H3K18la in the early reprogramming process, highlighting its function as a potent trigger. Additionally, our research has revealed, for the first time, the binding of Brg1 to H3K18la, indicating its role as a reader of histone lactylation.
Collapse
Affiliation(s)
- Xinglin Hu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province 150081, China
| | - Xingwei Huang
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province 150081, China
- Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005 Guangdong Province, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Yue Yang
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province 150081, China
| | - Yuchen Sun
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province 150081, China
| | - Yanhua Zhao
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province 150081, China
| | - Zhijing Zhang
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province 150081, China
| | - Dan Qiu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province 150081, China
| | - Yanshuang Wu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province 150081, China
| | - Guangming Wu
- Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005 Guangdong Province, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Lei Lei
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province 150081, China
| |
Collapse
|
27
|
Chen PH, Guo XS, Zhang HE, Dubey GK, Geng ZZ, Fierke CA, Xu S, Hampton JT, Liu WR. Leveraging a Phage-Encoded Noncanonical Amino Acid: A Novel Pathway to Potent and Selective Epigenetic Reader Protein Inhibitors. ACS CENTRAL SCIENCE 2024; 10:782-792. [PMID: 38680566 PMCID: PMC11046469 DOI: 10.1021/acscentsci.3c01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 05/01/2024]
Abstract
Epigenetic reader proteins interpret histone epigenetic marks to regulate gene expression. Given their vital roles and the link between their dysfunction and various diseases, these proteins present compelling targets for therapeutic interventions. Nevertheless, designing selective inhibitors for these proteins poses significant challenges, primarily due to their unique properties such as shallow binding sites and similarities with homologous proteins. To overcome these challenges, we propose an innovative strategy that uses phage display with a genetically encoded noncanonical amino acid (ncAA) containing an epigenetic mark. This ncAA guides binding to the reader protein's active site, allowing the identification of peptide inhibitors with enhanced affinity and selectivity. In this study, we demonstrate this novel approach's effectiveness by identifying potent inhibitors for the ENL YEATS domain that plays a critical role in leukemogenesis. Our strategy involved genetically incorporating Nε-butyryl-l-lysine (BuK), known for its binding to ENL YEATS, into a phage display library for enriching the pool of potent inhibitors. One resultant hit was further optimized by substituting BuK with other pharmacophores to exploit a unique π-π-π stacking interaction with ENL YEATS. This led to the creation of selective ENL YEATS inhibitors with a KD value of 2.0 nM and a selectivity 28 times higher for ENL YEATS than its close homologue AF9 YEATS. One such inhibitor, tENL-S1f, demonstrated robust cellular target engagement and on-target effects to inhibit leukemia cell growth and suppress the expression of ENL target genes. As a pioneering study, this work opens up extensive avenues for the development of potent and selective peptidyl inhibitors for a broad spectrum of epigenetic reader proteins.
Collapse
Affiliation(s)
- Peng-Hsun
Chase Chen
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xuejiao Shirley Guo
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hanyuan Eric Zhang
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Gopal K. Dubey
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zhi Zachary Geng
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Carol A. Fierke
- Department
of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Shiqing Xu
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Texas A&M
University, College
Station, Texas 77843, United States
| | - J. Trae Hampton
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Texas A&M
University, College
Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, College of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Cell Biology and Genetics, College of Medicine, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
28
|
Lappalainen R, Kumar M, Duraisingh MT. Hungry for control: metabolite signaling to chromatin in Plasmodium falciparum. Curr Opin Microbiol 2024; 78:102430. [PMID: 38306915 PMCID: PMC11157454 DOI: 10.1016/j.mib.2024.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
The human malaria parasite Plasmodium falciparum undergoes a complex life cycle in two hosts, mammalian and mosquito, where it is constantly subjected to environmental changes in nutrients. Epigenetic mechanisms govern transcriptional switches and are essential for parasite persistence and proliferation. Parasites infecting red blood cells are auxotrophic for several nutrients, and mounting evidence suggests that various metabolites act as direct substrates for epigenetic modifications, with their abundance directly relating to changes in parasite gene expression. Here, we review the latest understanding of metabolic changes that alter the histone code resulting in changes to transcriptional programmes in malaria parasites.
Collapse
Affiliation(s)
- Ruth Lappalainen
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston 02115, USA
| | - Manish Kumar
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston 02115, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston 02115, USA.
| |
Collapse
|
29
|
Dashti P, Lewallen EA, Gordon JAR, Montecino MA, Davie JR, Stein GS, van Leeuwen JPTM, van der Eerden BCJ, van Wijnen AJ. Epigenetic regulators controlling osteogenic lineage commitment and bone formation. Bone 2024; 181:117043. [PMID: 38341164 DOI: 10.1016/j.bone.2024.117043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Bone formation and homeostasis are controlled by environmental factors and endocrine regulatory cues that initiate intracellular signaling pathways capable of modulating gene expression in the nucleus. Bone-related gene expression is controlled by nucleosome-based chromatin architecture that limits the accessibility of lineage-specific gene regulatory DNA sequences and sequence-specific transcription factors. From a developmental perspective, bone-specific gene expression must be suppressed during the early stages of embryogenesis to prevent the premature mineralization of skeletal elements during fetal growth in utero. Hence, bone formation is initially inhibited by gene suppressive epigenetic regulators, while other epigenetic regulators actively support osteoblast differentiation. Prominent epigenetic regulators that stimulate or attenuate osteogenesis include lysine methyl transferases (e.g., EZH2, SMYD2, SUV420H2), lysine deacetylases (e.g., HDAC1, HDAC3, HDAC4, HDAC7, SIRT1, SIRT3), arginine methyl transferases (e.g., PRMT1, PRMT4/CARM1, PRMT5), dioxygenases (e.g., TET2), bromodomain proteins (e.g., BRD2, BRD4) and chromodomain proteins (e.g., CBX1, CBX2, CBX5). This narrative review provides a broad overview of the covalent modifications of DNA and histone proteins that involve hundreds of enzymes that add, read, or delete these epigenetic modifications that are relevant for self-renewal and differentiation of mesenchymal stem cells, skeletal stem cells and osteoblasts during osteogenesis.
Collapse
Affiliation(s)
- Parisa Dashti
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Eric A Lewallen
- Department of Biological Sciences, Hampton University, Hampton, VA, USA
| | | | - Martin A Montecino
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad Andres Bello, Santiago, Chile; Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada; CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, Manitoba R3E 0V9, Canada.
| | - Gary S Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | | | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Andre J van Wijnen
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Biochemistry, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
30
|
Konuma T, Zhou MM. Distinct Histone H3 Lysine 27 Modifications Dictate Different Outcomes of Gene Transcription. J Mol Biol 2024; 436:168376. [PMID: 38056822 DOI: 10.1016/j.jmb.2023.168376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Site-specific histone modifications have long been recognized to play an important role in directing gene transcription in chromatin in biology of health and disease. However, concrete illustration of how different histone modifications in a site-specific manner dictate gene transcription outcomes, as postulated in the influential "Histone code hypothesis", introduced by Allis and colleagues in 2000, has been lacking. In this review, we summarize our latest understanding of the dynamic regulation of gene transcriptional activation, silence, and repression in chromatin that is directed distinctively by histone H3 lysine 27 acetylation, methylation, and crotonylation, respectively. This represents a special example of a long-anticipated verification of the "Histone code hypothesis."
Collapse
Affiliation(s)
- Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama 230-0045, Japan; School of Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
31
|
Fan S, Kong C, Zhou R, Zheng X, Ren D, Yin Z. Protein Post-Translational Modifications Based on Proteomics: A Potential Regulatory Role in Animal Science. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6077-6088. [PMID: 38501450 DOI: 10.1021/acs.jafc.3c08332] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Genomic studies in animal breeding have provided a wide range of references; however, it is important to note that genes and mRNA alone do not fully capture the complexity of living organisms. Protein post-translational modification, which involves covalent modifications regulated by genetic and environmental factors, serves as a fundamental epigenetic mechanism that modulates protein structure, activity, and function. In this review, we comprehensively summarize various phosphorylation and acylation modifications on metabolic enzymes relevant to energy metabolism in animals, including acetylation, succinylation, crotonylation, β-hydroxybutylation, acetoacetylation, and lactylation. It is worth noting that research on animal energy metabolism and modification regulation lags behind the demands for growth and development in animal breeding compared to human studies. Therefore, this review provides a novel research perspective by exploring unreported types of modifications in livestock based on relevant findings from human or animal models.
Collapse
Affiliation(s)
- Shuhao Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chengcheng Kong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230013, China
| | - Ren Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Dalong Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
32
|
Wang Z, Yang X, Chen D, Liu Y, Li Z, Duan S, Zhang Z, Jiang X, Stockwell BR, Gu W. GAS41 modulates ferroptosis by anchoring NRF2 on chromatin. Nat Commun 2024; 15:2531. [PMID: 38514704 PMCID: PMC10957913 DOI: 10.1038/s41467-024-46857-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
YEATS domain-containing protein GAS41 is a histone reader and oncogene. Here, through genome-wide CRISPR-Cas9 screenings, we identify GAS41 as a repressor of ferroptosis. GAS41 interacts with NRF2 and is critical for NRF2 to activate its targets such as SLC7A11 for modulating ferroptosis. By recognizing the H3K27-acetylation (H3K27-ac) marker, GAS41 is recruited to the SLC7A11 promoter, independent of NRF2 binding. By bridging the interaction between NRF2 and the H3K27-ac marker, GAS41 acts as an anchor for NRF2 on chromatin in a promoter-specific manner for transcriptional activation. Moreover, the GAS41-mediated effect on ferroptosis contributes to its oncogenic role in vivo. These data demonstrate that GAS41 is a target for modulating tumor growth through ferroptosis. Our study reveals a mechanism for GAS41-mediated regulation in transcription by anchoring NRF2 on chromatin, and provides a model in which the DNA binding activity on chromatin by transcriptional factors (NRF2) can be directly regulated by histone markers (H3K27-ac).
Collapse
Affiliation(s)
- Zhe Wang
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Xin Yang
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Delin Chen
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Yanqing Liu
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhiming Li
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Shoufu Duan
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Department of Pediatrics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Department of Genetics and Development, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
33
|
Weinzapfel EN, Fedder-Semmes KN, Sun ZW, Keogh MC. Beyond the tail: the consequence of context in histone post-translational modification and chromatin research. Biochem J 2024; 481:219-244. [PMID: 38353483 PMCID: PMC10903488 DOI: 10.1042/bcj20230342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
The role of histone post-translational modifications (PTMs) in chromatin structure and genome function has been the subject of intense debate for more than 60 years. Though complex, the discourse can be summarized in two distinct - and deceptively simple - questions: What is the function of histone PTMs? And how should they be studied? Decades of research show these queries are intricately linked and far from straightforward. Here we provide a historical perspective, highlighting how the arrival of new technologies shaped discovery and insight. Despite their limitations, the tools available at each period had a profound impact on chromatin research, and provided essential clues that advanced our understanding of histone PTM function. Finally, we discuss recent advances in the application of defined nucleosome substrates, the study of multivalent chromatin interactions, and new technologies driving the next era of histone PTM research.
Collapse
|
34
|
Lo Piccolo L, Yeewa R, Pohsa S, Yamsri T, Calovi D, Phetcharaburanin J, Suksawat M, Kulthawatsiri T, Shotelersuk V, Jantrapirom S. FAME4-associating YEATS2 knockdown impairs dopaminergic synaptic integrity and leads to seizure-like behaviours in Drosophila melanogaster. Prog Neurobiol 2024; 233:102558. [PMID: 38128822 DOI: 10.1016/j.pneurobio.2023.102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Familial adult myoclonus epilepsy (FAME) is a neurological disorder caused by a TTTTA/TTTCA intronic repeat expansion. FAME4 is one of the six types of FAME that results from the repeat expansion in the first intron of the gene YEATS2. Although the RNA toxicity is believed to be the primary mechanism underlying FAME, the role of genes where repeat expansions reside is still unclear, particularly in the case of YEATS2 in neurons. This study used Drosophila to explore the effects of reducing YEATS2 expression. Two pan-neuronally driven dsDNA were used for knockdown of Drosophila YEATS2 (dYEATS2), and the resulting molecular and behavioural outcomes were evaluated. Drosophila with reduced dYEATS2 expression exhibited decreased tolerance to acute stress, disturbed locomotion, abnormal social behaviour, and decreased motivated activity. Additionally, reducing dYEATS2 expression negatively affected tyrosine hydroxylase (TH) gene expression, resulting in decreased dopamine biosynthesis. Remarkably, seizure-like behaviours induced by knocking down dYEATS2 were rescued by the administration of L-DOPA. This study reveals a novel role of YEATS2 in neurons in regulating acute stress responses, locomotion, and complex behaviours, and suggests that haploinsufficiency of YEATS2 may play a role in FAME4.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ranchana Yeewa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sureena Pohsa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Titaree Yamsri
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Daniel Calovi
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany; Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, Konstanz, Germany
| | - Jutarop Phetcharaburanin
- International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand; Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Manida Suksawat
- International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand; Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thanaporn Kulthawatsiri
- International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand; Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Vorasuk Shotelersuk
- Centre of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Centre for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand.
| | - Salinee Jantrapirom
- Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
35
|
Peng X, Hu Z, Zeng L, Zhang M, Xu C, Lu B, Tao C, Chen W, Hou W, Cheng K, Bi H, Pan W, Chen J. Overview of epigenetic degraders based on PROTAC, molecular glue, and hydrophobic tagging technologies. Acta Pharm Sin B 2024; 14:533-578. [PMID: 38322348 PMCID: PMC10840439 DOI: 10.1016/j.apsb.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/21/2023] [Accepted: 08/30/2023] [Indexed: 02/08/2024] Open
Abstract
Epigenetic pathways play a critical role in the initiation, progression, and metastasis of cancer. Over the past few decades, significant progress has been made in the development of targeted epigenetic modulators (e.g., inhibitors). However, epigenetic inhibitors have faced multiple challenges, including limited clinical efficacy, toxicities, lack of subtype selectivity, and drug resistance. As a result, the design of new epigenetic modulators (e.g., degraders) such as PROTACs, molecular glue, and hydrophobic tagging (HyT) degraders has garnered significant attention from both academia and pharmaceutical industry, and numerous epigenetic degraders have been discovered in the past decade. In this review, we aim to provide an in-depth illustration of new degrading strategies (2017-2023) targeting epigenetic proteins for cancer therapy, focusing on the rational design, pharmacodynamics, pharmacokinetics, clinical status, and crystal structure information of these degraders. Importantly, we also provide deep insights into the potential challenges and corresponding remedies of this approach to drug design and development. Overall, we hope this review will offer a better mechanistic understanding and serve as a useful guide for the development of emerging epigenetic-targeting degraders.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Zhihao Hu
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Limei Zeng
- College of Basic Medicine, Gannan Medical University, Ganzhou 314000, China
| | - Meizhu Zhang
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Congcong Xu
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Benyan Lu
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Chengpeng Tao
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Weiming Chen
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Wen Hou
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wanyi Pan
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
36
|
Neja S, Dashwood WM, Dashwood RH, Rajendran P. Histone Acyl Code in Precision Oncology: Mechanistic Insights from Dietary and Metabolic Factors. Nutrients 2024; 16:396. [PMID: 38337680 PMCID: PMC10857208 DOI: 10.3390/nu16030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Cancer etiology involves complex interactions between genetic and non-genetic factors, with epigenetic mechanisms serving as key regulators at multiple stages of pathogenesis. Poor dietary habits contribute to cancer predisposition by impacting DNA methylation patterns, non-coding RNA expression, and histone epigenetic landscapes. Histone post-translational modifications (PTMs), including acyl marks, act as a molecular code and play a crucial role in translating changes in cellular metabolism into enduring patterns of gene expression. As cancer cells undergo metabolic reprogramming to support rapid growth and proliferation, nuanced roles have emerged for dietary- and metabolism-derived histone acylation changes in cancer progression. Specific types and mechanisms of histone acylation, beyond the standard acetylation marks, shed light on how dietary metabolites reshape the gut microbiome, influencing the dynamics of histone acyl repertoires. Given the reversible nature of histone PTMs, the corresponding acyl readers, writers, and erasers are discussed in this review in the context of cancer prevention and treatment. The evolving 'acyl code' provides for improved biomarker assessment and clinical validation in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Sultan Neja
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
| | - Wan Mohaiza Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
- Antibody & Biopharmaceuticals Core, Texas A&M Health, Houston, TX 77030, USA
| |
Collapse
|
37
|
Peng F, Zhu F, Cao B, Peng L. Multidimensional Analysis of PANoptosis-Related Molecule CASP8: Prognostic Significance, Immune Microenvironment Effect, and Therapeutic Implications in Hepatocellular Carcinoma. Genet Res (Camb) 2023; 2023:2406193. [PMID: 38186679 PMCID: PMC10771335 DOI: 10.1155/2023/2406193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/25/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) presents significant challenges in diagnosis and treatment. Understanding the role of PANoptosis-related molecules in HCC is crucial for advancing therapeutic strategies. Methods We conducted a comprehensive analysis using public data from the Cancer Genome Atlas, Human Protein Atlas, Tumor Immune Single Cell Hub, and STRING databases. Techniques included Kaplan-Meier survival curves, Cox regression, LASSO analysis, and various computational methods for understanding the tumor microenvironment. We also employed ClueGO, gene set enrichment analysis, and other algorithms for biological enrichment analysis. Results CASP8 emerged as a significant molecule in HCC, correlated with poor survival outcomes. Its expression was predominant in the nucleoplasm and cytosol and varied across different cancer types. Biological enrichment analysis revealed CASP8's association with critical cellular activities and immune responses. In the tumor microenvironment, CASP8 showed correlations with various immune cell types. A nomogram plot was developed for better clinical prognostication. Mutation analysis indicated a higher frequency of TP53 mutations in patients with elevated CASP8 expression. In addition, CASP8 was found to regulate YEATS2 in HCC, highlighting a potential pathway in tumor progression. Conclusions Our study underscores the multifaceted role of CASP8 in HCC, emphasizing its prognostic and therapeutic significance. The regulatory relationship between CASP8 and YEATS2 opens new avenues for understanding HCC pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Fei Peng
- The Second People's Hospital of Jingdezhen, Jingdezhen 333000, Jiangxi, China
| | - Fang Zhu
- The Second People's Hospital of Jingdezhen, Jingdezhen 333000, Jiangxi, China
| | - Baodi Cao
- The Second People's Hospital of Jingdezhen, Jingdezhen 333000, Jiangxi, China
| | - Liang Peng
- The Second People's Hospital of Jingdezhen, Jingdezhen 333000, Jiangxi, China
| |
Collapse
|
38
|
McCrory C, Verma J, Tucey TM, Turner R, Weerasinghe H, Beilharz TH, Traven A. The short-chain fatty acid crotonate reduces invasive growth and immune escape of Candida albicans by regulating hyphal gene expression. mBio 2023; 14:e0260523. [PMID: 37929941 PMCID: PMC10746253 DOI: 10.1128/mbio.02605-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Macrophages curtail the proliferation of the pathogen Candida albicans within human body niches. Within macrophages, C. albicans adapts its metabolism and switches to invasive hyphal morphology. These adaptations enable fungal growth and immune escape by triggering macrophage lysis. Transcriptional programs regulate these metabolic and morphogenetic adaptations. Here we studied the roles of chromatin in these processes and implicate lysine crotonylation, a histone mark regulated by metabolism, in hyphal morphogenesis and macrophage interactions by C. albicans. We show that the short-chain fatty acid crotonate increases histone crotonylation, reduces hyphal formation within macrophages, and slows macrophage lysis and immune escape of C. albicans. Crotonate represses hyphal gene expression, and we propose that C. albicans uses diverse acylation marks to regulate its cell morphology in host environments. Hyphal formation is a virulence property of C. albicans. Therefore, a further importance of our study stems from identifying crotonate as a hyphal inhibitor.
Collapse
Affiliation(s)
- Christopher McCrory
- Department of Biochemistry and Molecular Biology and Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Jiyoti Verma
- Department of Biochemistry and Molecular Biology and Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Timothy M. Tucey
- Department of Biochemistry and Molecular Biology and Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Rachael Turner
- Department of Biochemistry and Molecular Biology and Stem Cells and Development Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Harshini Weerasinghe
- Department of Biochemistry and Molecular Biology and Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Traude H. Beilharz
- Department of Biochemistry and Molecular Biology and Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Department of Biochemistry and Molecular Biology and Stem Cells and Development Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology and Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| |
Collapse
|
39
|
Erb MA. Small-molecule tools for YEATS domain proteins. Curr Opin Chem Biol 2023; 77:102404. [PMID: 37924571 PMCID: PMC10842393 DOI: 10.1016/j.cbpa.2023.102404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/06/2023]
Abstract
Chromatin reader domains are protein folds that bind to post-translational modifications of histones and other chromatin-associated proteins. Compared to other families of reader domains, the discovery that YEATS domains bind to acylated lysines is relatively recent. Four human proteins harbor a YEATS domain, and each is present in protein complexes that regulate chromatin and transcription (ENL, AF9, YEATS2, and YEATS4). Without chemical tools to enable temporally resolved perturbations, it is often unclear how reader domains contribute to protein function. Here, we will discuss recent progress in developing small-molecule tools for YEATS domains and highlight their usefulness for making biological discoveries.
Collapse
Affiliation(s)
- Michael A Erb
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
40
|
Guo X, Wang Y, An Y, Liu Z, Liu J, Chen J, Zhan MM, Liang M, Hou Z, Wan C, Yin F, Wang R, Li Z. Development of Lysine Crotonyl-Mimic Probe to Covalently Identify H3K27Cr Interacting Proteins. Chemistry 2023; 29:e202301624. [PMID: 37587551 DOI: 10.1002/chem.202301624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
Histone lysine crotonylation (Kcr) is one newly discovered acylation modification and regulates numerous pathophysiological processes. The binding affinity between Kcr and its interacting proteins is generally weak, which makes it difficult to effectively identify Kcr-interacting partners. Changing the amide of crotonyl to an ester increased reactivity with proximal cysteines and retained specificity for Kcr antibody. The probe "H3g27Cr" was designed by incorporating the ester functionality into a H3K27 peptide. Using this probe, multiple Kcr-interacting partners including STAT3 were successfully identified, and this has not been reported previously. Further experiments suggested that STAT3 possibly could form complexes with Histone deacetylase HDACs to downregulate the acetylation and crotonylation of Histone H3K27. Our unique design provided intriguing tools to further explore Kcr-interacting proteins and elucidate their working mechanisms.
Collapse
Affiliation(s)
- Xiaochun Guo
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Yuena Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Yuhao An
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| | - Zhihong Liu
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| | - Jianbo Liu
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| | - Jiaxin Chen
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| | - Mei-Miao Zhan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Mingcha Liang
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| | - Zhanfeng Hou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Chuan Wan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Feng Yin
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| | - Rui Wang
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| |
Collapse
|
41
|
Xue Q, Yang Y, Li H, Li X, Zou L, Li T, Ma H, Qi H, Wang J, Yu T. Functions and mechanisms of protein lysine butyrylation (Kbu): Therapeutic implications in human diseases. Genes Dis 2023; 10:2479-2490. [PMID: 37554202 PMCID: PMC10404885 DOI: 10.1016/j.gendis.2022.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/27/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
Post-translational modifications (PTM) are covalent modifications of proteins or peptides caused by proteolytic cleavage or the attachment of moieties to one or more amino acids. PTMs play essential roles in biological function and regulation and have been linked with several diseases. Modifications of protein acylation (Kac), a type of PTM, are known to induce epigenetic regulatory processes that promote various diseases. Thus, an increasing number of studies focusing on acylation modifications are being undertaken. Butyrylation (Kbu) is a new acylation process found in animals and plants. Kbu has been recently linked to the onset and progression of several diseases, such as cancer, cardiovascular diseases, diabetes, and vascular dementia. Moreover, the mode of action of certain drugs used in the treatment of lymphoma and colon cancer is based on the regulation of butyrylation levels, suggesting that butyrylation may play a therapeutic role in these diseases. In addition, butyrylation is also commonly involved in rice gene expression and thus plays an important role in the growth, development, and metabolism of rice. The tools and analytical methods that could be utilized for the prediction and detection of lysine butyrylation have also been investigated. This study reviews the potential role of histone Kbu, as well as the mechanisms underlying this process. It also summarizes various enzymes and analytical methods associated with Kbu, with the goal of providing new insights into the role of Kbu in gene regulation and diseases.
Collapse
Affiliation(s)
- Qianqian Xue
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Hong Li
- Clinical Laboratory, Central Laboratory. The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Xiaoxin Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Lu Zou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Tianxiang Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Huibo Ma
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Hongzhao Qi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Jianxun Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| |
Collapse
|
42
|
Ji K, Li L, Liu H, Shen Y, Jiang J, Zhang M, Teng H, Yan X, Zhang Y, Cai Y, Zhou H. Unveiling the role of GAS41 in cancer progression. Cancer Cell Int 2023; 23:245. [PMID: 37853482 PMCID: PMC10583379 DOI: 10.1186/s12935-023-03098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
GAS41, a member of the human YEATS domain family, plays a pivotal role in human cancer development. It serves as a highly promising epigenetic reader, facilitating precise regulation of cell growth and development by recognizing essential histone modifications, including histone acetylation, benzoylation, succinylation, and crotonylation. Functional readouts of these histone modifications often coincide with cancer progression. In addition, GAS41 functions as a novel oncogene, participating in numerous signaling pathways. Here, we summarize the epigenetic functions of GAS41 and its role in the carcinoma progression. Moving forward, elucidating the downstream target oncogenes regulated by GAS41 and the developing small molecule inhibitors based on the distinctive YEATS recognition properties will be pivotal in advancing this research field.
Collapse
Affiliation(s)
- Kangkang Ji
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Li Li
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hui Liu
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yucheng Shen
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Jian Jiang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Minglei Zhang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hongwei Teng
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Xun Yan
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yanhua Zhang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yong Cai
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hai Zhou
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China.
| |
Collapse
|
43
|
Ji P, Zhang G, Guo Y, Song H, Yuan X, Hu X, Guo Z, Xia P, Shen R, Wang D. Protein crotonylation: An emerging regulator in DNA damage response. Life Sci 2023; 331:122059. [PMID: 37652154 DOI: 10.1016/j.lfs.2023.122059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
DNA damage caused by internal or external factors lead to increased genomic instability and various diseases. The DNA damage response (DDR) is a crucial mechanism that maintaining genomic stability through detecting and repairing DNA damage timely. Post-translational modifications (PTMs) play significant roles in regulation of DDR. Among the present PTMs, crotonylation has emerged as a novel identified modification that is involved in a wide range of biological processes including gene expression, spermatogenesis, cell cycle, and the development of diverse diseases. In the past decade, numerous crotonylation sites have been identified in histone and non-histone proteins, leading to a more comprehensive and deep understanding of the function and mechanisms in protein crotonylation. This review provides a comprehensive overview of the regulatory mechanisms of protein crotonylation and the effect of crotonylation in DDR. Furthermore, the effect of protein crotonylation in tumor development and progression is presented, to inspire and explore the novel strategies for tumor therapy.
Collapse
Affiliation(s)
- Pengfei Ji
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Guokun Zhang
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Yanan Guo
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Haoyun Song
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Xinyi Yuan
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Xiaohui Hu
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Zhao Guo
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Peng Xia
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Rong Shen
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Degui Wang
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China; NHC Key Laboratory of diagnosis and therapy of Gastrointestinal Tumor, Lanzhou, Gansu Province 730000, China.
| |
Collapse
|
44
|
Yang P, Qin Y, Zeng L, He Y, Xie Y, Cheng X, Huang W, Cao L. Crotonylation and disease: Current progress and future perspectives. Biomed Pharmacother 2023; 165:115108. [PMID: 37392654 DOI: 10.1016/j.biopha.2023.115108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
Histone lysine crotonylation was first identified as a new type of post-translational modification in 2011. In recent years, prominent progress has been made in the study of histone and nonhistone crotonylation in reproduction, development, and disease. Although the regulatory enzyme systems and targets of crotonylation partially overlap with those of acetylation, the peculiar CC bond structure of crotonylation suggests that crotonylation may have specific biological functions. In this review, we summarize the latest research progress regarding crotonylation, especially its regulatory factors and relationship with diseases, which suggest further research directions for crotonylation and provide new ideas for developing disease intervention and treatment regimens.
Collapse
Affiliation(s)
- Ping Yang
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China
| | - Yuanyuan Qin
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China
| | - Lisha Zeng
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Yanqiu He
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China
| | - Yumei Xie
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China
| | - Xi Cheng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China.
| | - Ling Cao
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China.
| |
Collapse
|
45
|
Jeon T, Oh UJ, Min J, Kim C. Gene-level dissection of chromosome 3q locus amplification in squamous cell carcinoma of the lung using the nCounter assay. Thorac Cancer 2023; 14:2635-2641. [PMID: 37469197 PMCID: PMC10493484 DOI: 10.1111/1759-7714.15045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Amplification of the 3q region has been identified as a useful biomarker for the diagnosis and treatment of squamous cell carcinoma (SqCC). This region contains genes such as PIK3CA and YEATS2, which have been linked to the prognosis of SqCC. METHODS The NanoString nCounter assay is a powerful tool for identifying genetic alterations that affect the progression and prognosis of SqCC. The NanoString nCounter assay was used to identify a subgroup of patients with gene level gain in the 3q region. RESULTS Gene level gain in the 3q region was more frequent in SqCC than in adenocarcinoma. We found that genes such as PIK3CA and YEATS2 in the 3q region were associated with the prognosis of SqCC. Therefore, identifying a subgroup of patients with gene level gain in the 3q region using the NanoString nCounter assay can aid in selecting appropriate treatment options and improving prognostic predictions for SqCC patients. CONCLUSION Amplification of the 3q region in SqCC of lung cancer is a useful biomarker for diagnosis and treatment. The NanoString nCounter assay is a powerful tool for identifying specific genetic alterations that affect the progression and prognosis of SqCC. Our study highlights the importance 3q amplification and its associated genes in lung cancer.
Collapse
Affiliation(s)
- Taesung Jeon
- Department of PathologyCollege of Medicine, Korea UniversitySeoulSouth Korea
| | - Uk Jeen Oh
- Department of PathologyCollege of Medicine, Korea UniversitySeoulSouth Korea
| | - Jaeyoung Min
- Department of PathologyCollege of Medicine, Korea UniversitySeoulSouth Korea
| | - Chungyeul Kim
- Department of PathologyCollege of Medicine, Korea UniversitySeoulSouth Korea
| |
Collapse
|
46
|
Liu R, Wu J, Guo H, Yao W, Li S, Lu Y, Jia Y, Liang X, Tang J, Zhang H. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e292. [PMID: 37220590 PMCID: PMC10200003 DOI: 10.1002/mco2.292] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Histones are DNA-binding basic proteins found in chromosomes. After the histone translation, its amino tail undergoes various modifications, such as methylation, acetylation, phosphorylation, ubiquitination, malonylation, propionylation, butyrylation, crotonylation, and lactylation, which together constitute the "histone code." The relationship between their combination and biological function can be used as an important epigenetic marker. Methylation and demethylation of the same histone residue, acetylation and deacetylation, phosphorylation and dephosphorylation, and even methylation and acetylation between different histone residues cooperate or antagonize with each other, forming a complex network. Histone-modifying enzymes, which cause numerous histone codes, have become a hot topic in the research on cancer therapeutic targets. Therefore, a thorough understanding of the role of histone post-translational modifications (PTMs) in cell life activities is very important for preventing and treating human diseases. In this review, several most thoroughly studied and newly discovered histone PTMs are introduced. Furthermore, we focus on the histone-modifying enzymes with carcinogenic potential, their abnormal modification sites in various tumors, and multiple essential molecular regulation mechanism. Finally, we summarize the missing areas of the current research and point out the direction of future research. We hope to provide a comprehensive understanding and promote further research in this field.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jiajun Wu
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Haiwei Guo
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Weiping Yao
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Shuang Li
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentJinzhou Medical UniversityJinzhouLiaoningChina
| | - Yanwei Lu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Yongshi Jia
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiaodong Liang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jianming Tang
- Department of Radiation OncologyThe First Hospital of Lanzhou UniversityLanzhou UniversityLanzhouGansuChina
| | - Haibo Zhang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
47
|
Sheng H, Zheng F, Lan T, Chen HF, Xu CY, Wang SW, Weng YY, Xu LF, Zhang F. YEATS2 regulates the activation of TAK1/NF-κB pathway and is critical for pancreatic ductal adenocarcinoma cell survival. Cell Biol Toxicol 2023; 39:1-16. [PMID: 34686948 DOI: 10.1007/s10565-021-09671-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
The prognosis of pancreatic ductal adenocarcinoma (PDAC) is poor despite diagnostic progress and new chemotherapeutic regimens. Constitutive activation of NF-κB is frequently observed in PDAC. In this study, we found that YEATS2, a scaffolding protein of ATAC complex, was highly expressed in human PDAC. Depletion of YEATS2 reduced the growth, survival, and tumorigenesis of PDAC cells. The binding of YEATS2 is crucial for maintaining TAK1 activation and NF-κB transcriptional activity. Of importance, our results reveal that YEATS2 promotes NF-κB transcriptional activity through modulating TAK1 abundance and directly interacting with NF-κB as a co-transcriptional factor.
Collapse
Affiliation(s)
- Hao Sheng
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, China
- The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Jiande, Hangzhou, Zhejiang, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Zheng
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, China
| | - Tian Lan
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, China
| | - Hang-Fei Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Chun-Yi Xu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Si-Wei Wang
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, China
| | - Yuan-Yuan Weng
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, China
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Li-Feng Xu
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, China
| | - Feng Zhang
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, China.
- Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
48
|
Liu X, Hu Y, Li C, Chen J, Liu X, Shen Y, Xu Y, Chen W, Xu X. Overexpression of YEATS2 Remodels the Extracellular Matrix to Promote Hepatocellular Carcinoma Progression via the PI3K/AKT Pathway. Cancers (Basel) 2023; 15:cancers15061850. [PMID: 36980736 PMCID: PMC10046954 DOI: 10.3390/cancers15061850] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and the fourth leading cause of death in men. YEATS domain containing 2 (YEATS2) gene encodes a scaffolding subunit of the ATAC complex. We found that YEATS2 was upregulated in HCC tissues and was associated with a poor prognosis. However, the role of YEATS2 in HCC remains unclear. The purpose of this study was to investigate the effect of YEATS2 on the progression of HCC and to elucidate its related mechanisms. We found that overexpression of YEATS2 promoted tumor cell proliferation, migration, and invasion through the PI3K/AKT signaling pathway and regulation of extracellular matrix. These findings help to understand the role of YEATS2 in HCC, and YEATS2 may become a new target for HCC therapy.
Collapse
Affiliation(s)
- Xin Liu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yi Hu
- Department of Oncology, General Hospital of Central Theater Command, Wuhan 430061, China
| | - Cairong Li
- School of Clinical Medicine, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Jiayu Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaohong Liu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yang Shen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yangtao Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenliang Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
49
|
Qin F, Li B, Wang H, Ma S, Li J, Liu S, Kong L, Zheng H, Zhu R, Han Y, Yang M, Li K, Ji X, Chen PR. Linking chromatin acylation mark-defined proteome and genome in living cells. Cell 2023; 186:1066-1085.e36. [PMID: 36868209 DOI: 10.1016/j.cell.2023.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/01/2022] [Accepted: 02/02/2023] [Indexed: 03/05/2023]
Abstract
A generalizable strategy with programmable site specificity for in situ profiling of histone modifications on unperturbed chromatin remains highly desirable but challenging. We herein developed a single-site-resolved multi-omics (SiTomics) strategy for systematic mapping of dynamic modifications and subsequent profiling of chromatinized proteome and genome defined by specific chromatin acylations in living cells. By leveraging the genetic code expansion strategy, our SiTomics toolkit revealed distinct crotonylation (e.g., H3K56cr) and β-hydroxybutyrylation (e.g., H3K56bhb) upon short chain fatty acids stimulation and established linkages for chromatin acylation mark-defined proteome, genome, and functions. This led to the identification of GLYR1 as a distinct interacting protein in modulating H3K56cr's gene body localization as well as the discovery of an elevated super-enhancer repertoire underlying bhb-mediated chromatin modulations. SiTomics offers a platform technology for elucidating the "metabolites-modification-regulation" axis, which is widely applicable for multi-omics profiling and functional dissection of modifications beyond acylations and proteins beyond histones.
Collapse
Affiliation(s)
- Fangfei Qin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| | - Boyuan Li
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Wang
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China
| | - Sihui Ma
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiaofeng Li
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shanglin Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Linghao Kong
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Huangtao Zheng
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Rongfeng Zhu
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yu Han
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mingdong Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kai Li
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiong Ji
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| |
Collapse
|
50
|
Design, synthesis of novel benzimidazole derivatives as ENL inhibitors suppressing leukemia cells viability via downregulating the expression of MYC. Eur J Med Chem 2023; 248:115093. [PMID: 36645983 DOI: 10.1016/j.ejmech.2023.115093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
Eleven-Nineteen-Leukemia Protein (ENL) containing YEATS domain, a potential drug target, has emerged as a reader of lysine acetylation. SGC-iMLLT bearing with benzimidazole scaffold was identified as an effective ENL inhibitor, but with weak activity against mixed-lineage leukemia (MLL)-rearranged cells proliferation. In this study, a series of compounds were designed and synthesized by structural optimization on SGC-iMLLT. All the compounds have been evaluated for their ENL inhibitory activities. The results showed that compounds 13, 23 and 28 are the most potential ones with the IC50 values of 14.5 ± 3.0 nM, 10.7 ± 5.3 nM, and 15.4 ± 2.2 nM, respectively, similar with that of SGC-iMLLT. They could interact with ENL protein and strengthen its thermal stability in vitro. Among them, compound 28 with methyl phenanthridinone moiety replacement of indazole in SGC-iMLLT, exhibited significantly inhibitory activities towards MV4-11 and MOLM-13 cell lines with IC50 values of 4.8 μM and 8.3 μM, respectively, exhibiting ∼7 folds and ∼9 folds more potent inhibition of cell growth than SGC-iMLLT. It could also increase the ENL thermal stability while SGC-iMLLT had no obvious effect on leukemia cells. Moreover, compound 28 could downregulate the expression of target gene MYC either alone or in combination with JQ-1 in cells, which was more effective than SGC-iMLLT. Besides, in vivo pharmacokinetic studies showed that the PK properties for compound 28 was much improved over that of SGC-iMLLT. These observations suggested compound 28 was a potential ligand for ENL-related MLL chemotherapy.
Collapse
|