1
|
Xie LQ, Hu B, Lu RB, Cheng YL, Chen X, Wen J, Xiao Y, An YZ, Peng N, Dai Y, Xie G, Guo Q, Peng H, Luo XH. Raptin, a sleep-induced hypothalamic hormone, suppresses appetite and obesity. Cell Res 2025; 35:165-185. [PMID: 39875551 PMCID: PMC11909135 DOI: 10.1038/s41422-025-01078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
Sleep deficiency is associated with obesity, but the mechanisms underlying this connection remain unclear. Here, we identify a sleep-inducible hypothalamic protein hormone in humans and mice that suppresses obesity. This hormone is cleaved from reticulocalbin-2 (RCN2), and we name it Raptin. Raptin release is timed by the circuit from vasopressin-expressing neurons in the suprachiasmatic nucleus to RCN2-positive neurons in the paraventricular nucleus. Raptin levels peak during sleep, which is blunted by sleep deficiency. Raptin binds to glutamate metabotropic receptor 3 (GRM3) in neurons of the hypothalamus and stomach to inhibit appetite and gastric emptying, respectively. Raptin-GRM3 signaling mediates anorexigenic effects via PI3K-AKT signaling. Of note, we verify the connections between deficiencies in the sleeping state, impaired Raptin release, and obesity in patients with sleep deficiency. Moreover, humans carrying an RCN2 nonsense variant present with night eating syndrome and obesity. These data define a unique hormone that suppresses food intake and prevents obesity.
Collapse
Affiliation(s)
- Ling-Qi Xie
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Biao Hu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ren-Bin Lu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ya-Lun Cheng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xin Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jie Wen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yao Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu-Ze An
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ning Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu Dai
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Genqing Xie
- Department of Endocrinology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, Hunan, China.
| |
Collapse
|
2
|
Häfker NS, Holcik L, Mat AM, Ćorić A, Vadiwala K, Beets I, Stockinger AW, Atria CE, Hammer S, Revilla-i-Domingo R, Schoofs L, Raible F, Tessmar-Raible K. Molecular circadian rhythms are robust in marine annelids lacking rhythmic behavior. PLoS Biol 2024; 22:e3002572. [PMID: 38603542 PMCID: PMC11008795 DOI: 10.1371/journal.pbio.3002572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 04/13/2024] Open
Abstract
The circadian clock controls behavior and metabolism in various organisms. However, the exact timing and strength of rhythmic phenotypes can vary significantly between individuals of the same species. This is highly relevant for rhythmically complex marine environments where organismal rhythmic diversity likely permits the occupation of different microenvironments. When investigating circadian locomotor behavior of Platynereis dumerilii, a model system for marine molecular chronobiology, we found strain-specific, high variability between individual worms. The individual patterns were maintained for several weeks. A diel head transcriptome comparison of behaviorally rhythmic versus arrhythmic wild-type worms showed that 24-h cycling of core circadian clock transcripts is identical between both behavioral phenotypes. While behaviorally arrhythmic worms showed a similar total number of cycling transcripts compared to their behaviorally rhythmic counterparts, the annotation categories of their transcripts, however, differed substantially. Consistent with their locomotor phenotype, behaviorally rhythmic worms exhibit an enrichment of cycling transcripts related to neuronal/behavioral processes. In contrast, behaviorally arrhythmic worms showed significantly increased diel cycling for metabolism- and physiology-related transcripts. The prominent role of the neuropeptide pigment-dispersing factor (PDF) in Drosophila circadian behavior prompted us to test for a possible functional involvement of Platynereis pdf. Differing from its role in Drosophila, loss of pdf impacts overall activity levels but shows only indirect effects on rhythmicity. Our results show that individuals arrhythmic in a given process can show increased rhythmicity in others. Across the Platynereis population, rhythmic phenotypes exist as a continuum, with no distinct "boundaries" between rhythmicity and arrhythmicity. We suggest that such diel rhythm breadth is an important biodiversity resource enabling the species to quickly adapt to heterogeneous or changing marine environments. In times of massive sequencing, our work also emphasizes the importance of time series and functional tests.
Collapse
Affiliation(s)
- N. Sören Häfker
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Laurenz Holcik
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Audrey M. Mat
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Aida Ćorić
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Karim Vadiwala
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Isabel Beets
- Division of animal Physiology and Neurobiology, KU Leuven, Leuven, Belgium
| | - Alexander W. Stockinger
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Carolina E. Atria
- Department of Neuro- and Developmental Biology, University of Vienna, Vienna, Austria
- Research Platform Single-Cell Regulation of Stem Cells, University of Vienna, Vienna, Austria
| | - Stefan Hammer
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Roger Revilla-i-Domingo
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Department of Neuro- and Developmental Biology, University of Vienna, Vienna, Austria
- Research Platform Single-Cell Regulation of Stem Cells, University of Vienna, Vienna, Austria
| | - Liliane Schoofs
- Division of animal Physiology and Neurobiology, KU Leuven, Leuven, Belgium
| | - Florian Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
3
|
Wang Z, Xu H, Teng C, Wang C. Effects of a simulated maritime shift schedule on vigilance, sleep, and sleepiness. Chronobiol Int 2024; 41:237-247. [PMID: 38148569 DOI: 10.1080/07420528.2023.2298279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
Shift work is associated with circadian misalignment, which causes sleep loss, impairs performance, and increases the risk of accidents. Shorter, more frequently shifting watch schedules, widely used in industries such as maritime operation, defense, and mining, may mitigate these risks by reducing shift length and providing sleep opportunities for all workers across the biological night. However, the effects of frequently shifting work on sleep and performance still need to be clarified. The current study investigated the vigilance, sleepiness, and sleep patterns of fifteen participants who lived in a controlled and confined laboratory that mimicked a maritime environment for 14 d following a simulating frequent shift schedule. The results of psychomotor vigilance tasks (PVT) suggest that this shift schedule may lead to an accumulation of vigilance detrimental across watch days, with both reaction speed impairment and error growth. Furthermore, the circadian phase significantly affects PVT performance, with the afternoon shift section showing relatively better performance. Overall, more working hours per day resulted in poorer PVT performance. As the shift progressed, total sleep duration reduced slightly, and wake after sleep onset (WASO) increased. Sleep during the biological night was generally longer than sleep in the daytime. Less on-watch time was linked to longer overall sleep duration. Additionally, although the subjective sleepiness obtained by the Karolinska Sleepiness Scale (KSS) varied insignificantly across days, the KSS score was negatively correlated with PVT performance. This research can serve as a foundation for developing countermeasures to mitigate frequently shifting schedules' potentially detrimental effects and safety risks.
Collapse
Affiliation(s)
- Ziying Wang
- Naval Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, China
- Key Laboratory of Molecular Neurobiology of Ministry of Education, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Haodan Xu
- Naval Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, China
- Key Laboratory of Molecular Neurobiology of Ministry of Education, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Chen Teng
- Naval Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, China
- Key Laboratory of Molecular Neurobiology of Ministry of Education, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Chuan Wang
- Naval Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, China
- Key Laboratory of Molecular Neurobiology of Ministry of Education, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
4
|
Chen M, Wang Z, Tan DS, Wang X, Ye Z, Xie Z, Zhang D, Wu D, Zhao Y, Qu Y, Jiang Y. The Causal Relationship between the Morning Chronotype and the Gut Microbiota: A Bidirectional Two-Sample Mendelian Randomization Study. Nutrients 2023; 16:46. [PMID: 38201876 PMCID: PMC10780629 DOI: 10.3390/nu16010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Numerous observational studies have documented an association between the circadian rhythm and the composition of the gut microbiota. However, the bidirectional causal effect of the morning chronotype on the gut microbiota is unknown. METHODS A two-sample Mendelian randomization study was performed, using the summary statistics of the morning chronotype from the European Consortium and those of the gut microbiota from the largest available genome-wide association study meta-analysis, conducted by the MiBioGen consortium. The inverse variance-weighted (IVW), weighted mode, weighted median, MR-Egger regression, and simple mode methods were used to examine the causal association between the morning chronotype and the gut microbiota. A reverse Mendelian randomization analysis was conducted on the gut microbiota, which was identified as causally linked to the morning chronotype in the initial Mendelian randomization analysis. Cochran's Q statistics were employed to assess the heterogeneity of the instrumental variables. RESULTS Inverse variance-weighted estimates suggested that the morning chronotype had a protective effect on Family Bacteroidaceae (β = -0.072; 95% CI: -0.143, -0.001; p = 0.047), Genus Parabacteroides (β = -0.112; 95% CI: -0.184, -0.039; p = 0.002), and Genus Bacteroides (β = -0.072; 95% CI: -0.143, -0.001; p = 0.047). In addition, the gut microbiota (Family Bacteroidaceae (OR = 0.925; 95% CI: 0.857, 0.999; p = 0.047), Genus Parabacteroides (OR = 0.915; 95% CI: 0.858, 0.975; p = 0.007), and Genus Bacteroides (OR = 0.925; 95% CI: 0.857, 0.999; p = 0.047)) demonstrated positive effects on the morning chronotype. No significant heterogeneity in the instrumental variables, or in horizontal pleiotropy, was found. CONCLUSION This two-sample Mendelian randomization study found that Family Bacteroidaceae, Genus Parabacteroides, and Genus Bacteroides were causally associated with the morning chronotype. Further randomized controlled trials are needed to clarify the effects of the gut microbiota on the morning chronotype, as well as their specific protective mechanisms.
Collapse
Affiliation(s)
- Manman Chen
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhenghe Wang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Din Son Tan
- Vanke School of Public Health and Institute for Healthy China, Tsinghua University, Beijing 100084, China
| | - Xijie Wang
- Vanke School of Public Health and Institute for Healthy China, Tsinghua University, Beijing 100084, China
| | - Zichen Ye
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhilan Xie
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Daqian Zhang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dandan Wu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuankai Zhao
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yimin Qu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yu Jiang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
5
|
Chen X, Liu X, Gan X, Li S, Ma H, Zhang L, Wang P, Li Y, Huang T, Yang X, Fang L, Liang Y, Wu J, Chen T, Zhou Z, Liu X, Guo J. Differential regulation of phosphorylation, structure and stability of circadian clock protein FRQ isoforms. J Biol Chem 2023; 299:104597. [PMID: 36898580 PMCID: PMC10140173 DOI: 10.1016/j.jbc.2023.104597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 03/12/2023] Open
Abstract
Neurospora crassa is an important model for circadian clock research. The Neurospora core circadian component FRQ protein has two isoforms, large FRQ (l-FRQ) and small FRQ (s-FRQ), of which l-FRQ bears an additional N-terminal 99-amino acid fragment. However, how the FRQ isoforms operate differentially in regulating the circadian clock remains elusive. Here, we show l-FRQ and s-FRQ play different roles in regulating the circadian negative feedback loop. Compared to s-FRQ, l-FRQ is less stable at three temperatures, and undergoes hypophosphorylation and faster degradation. The phosphorylation of the C-terminal l-FRQ 794-aa fragment was markedly higher than that of s-FRQ, suggesting the l-FRQ N-terminal 99-aa region may regulate phosphorylation of the entire FRQ protein. Quantitative label-free LC/MS analysis identified several peptides that were differentially phosphorylated between l-FRQ and s-FRQ, which were distributed in FRQ in an interlaced fashion. Furthermore, we identified two novel phosphorylation sites, S765 and T781; mutations S765A and T781A showed no significant effects on conidiation rhythmicity, although T781 conferred FRQ stability. These findings demonstrate that FRQ isoforms play differential roles in the circadian negative feedback loop and undergo different regulation of phosphorylation, structure, and stability. The l-FRQ N-terminal 99-aa region plays an important role in regulating the phosphorylation, stability, conformation, and function of the FRQ protein. As the FRQ circadian clock counterparts in other species also have isoforms or paralogues, these findings will also further our understanding of the underlying regulatory mechanisms of the circadian clock in other organisms based on the high conservation of circadian clocks in eukaryotes.
Collapse
Affiliation(s)
- Xianyun Chen
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaolan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xihui Gan
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Silin Li
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huan Ma
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiliang Wang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yunzhen Li
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tianyu Huang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaolin Yang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Fang
- Sun Yat-sen University Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingying Liang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingjing Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tongyue Chen
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zengxuan Zhou
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinhu Guo
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Wheeler CR, Kneebone J, Heinrich D, Strugnell JM, Mandelman JW, Rummer JL. Diel Rhythm and Thermal Independence of Metabolic Rate in a Benthic Shark. J Biol Rhythms 2022; 37:484-497. [PMID: 35822624 DOI: 10.1177/07487304221107843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biological rhythms that are mediated by exogenous factors, such as light and temperature, drive the physiology of organisms and affect processes ranging from cellular to population levels. For elasmobranchs (i.e. sharks, rays, and skates), studies documenting diel activity and movement patterns indicate that many species are crepuscular or nocturnal in nature. However, few studies have investigated the rhythmicity of elasmobranch physiology to understand the mechanisms underpinning these distinct patterns. Here, we assess diel patterns of metabolic rates in a small meso-predator, the epaulette shark (Hemiscyllium ocellatum), across ecologically relevant temperatures and upon acutely removing photoperiod cues. This species possibly demonstrates behavioral sleep during daytime hours, which is supported herein by low metabolic rates during the day and a 1.7-fold increase in metabolic rates at night. From spring to summer seasons, where average average water temperature temperatures for this species range 24.5 to 28.5 °C, time of day, and not temperature, had the strongest influence on metabolic rate. These results indicate that this species, and perhaps other similar species from tropical and coastal environments, may have physiological mechanisms in place to maintain metabolic rate on a seasonal time scale regardless of temperature fluctuations that are relevant to their native habitats.
Collapse
Affiliation(s)
- Carolyn R Wheeler
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,School for the Environment, The University of Massachusetts Boston, Boston, Massachusetts
| | - Jeff Kneebone
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, Massachusetts
| | - Dennis Heinrich
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia.,Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia
| | - John W Mandelman
- School for the Environment, The University of Massachusetts Boston, Boston, Massachusetts.,Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, Massachusetts
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
7
|
Kang J, Nagelkerken I, Rummer JL, Rodolfo‐Metalpa R, Munday PL, Ravasi T, Schunter C. Rapid evolution fuels transcriptional plasticity to ocean acidification. GLOBAL CHANGE BIOLOGY 2022; 28:3007-3022. [PMID: 35238117 PMCID: PMC9310587 DOI: 10.1111/gcb.16119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/20/2021] [Accepted: 01/22/2022] [Indexed: 05/16/2023]
Abstract
Ocean acidification (OA) is postulated to affect the physiology, behavior, and life-history of marine species, but potential for acclimation or adaptation to elevated pCO2 in wild populations remains largely untested. We measured brain transcriptomes of six coral reef fish species at a natural volcanic CO2 seep and an adjacent control reef in Papua New Guinea. We show that elevated pCO2 induced common molecular responses related to circadian rhythm and immune system but different magnitudes of molecular response across the six species. Notably, elevated transcriptional plasticity was associated with core circadian genes affecting the regulation of intracellular pH and neural activity in Acanthochromis polyacanthus. Gene expression patterns were reversible in this species as evidenced upon reduction of CO2 following a natural storm-event. Compared with other species, Ac. polyacanthus has a more rapid evolutionary rate and more positively selected genes in key functions under the influence of elevated CO2 , thus fueling increased transcriptional plasticity. Our study reveals the basis to variable gene expression changes across species, with some species possessing evolved molecular toolkits to cope with future OA.
Collapse
Affiliation(s)
- Jingliang Kang
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong KongHong Kong SARChina
| | - Ivan Nagelkerken
- Southern Seas Ecology LaboratoriesSchool of Biological Sciences & The Environment InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Jodie L. Rummer
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Riccardo Rodolfo‐Metalpa
- ENTROPIE – UMR 9220 (CNRS, IRD, UR, UNC, IFREMER)IRD Institut de Recherche pour le DéveloppementNouméa cedexNew Caledonia
| | - Philip L. Munday
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia
| | - Timothy Ravasi
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonJapan
| | - Celia Schunter
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong KongHong Kong SARChina
- State Key Laboratory of Marine PollutionCity University of Hong KongHong KongHong Kong SARChina
| |
Collapse
|
8
|
Sgro M, Kodila ZN, Brady RD, Reichelt AC, Mychaisuk R, Yamakawa GR. Synchronizing Our Clocks as We Age: The Influence of the Brain-Gut-Immune Axis on the Sleep-Wake Cycle Across the Lifespan. Sleep 2021; 45:6425072. [PMID: 34757429 DOI: 10.1093/sleep/zsab268] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Indexed: 11/12/2022] Open
Abstract
The microbes that colonize the small and large intestines, known as the gut microbiome, play an integral role in optimal brain development and function. The gut microbiome is a vital component of the bi-directional communication pathway between the brain, immune system, and gut, also known as the brain-gut-immune axis. To date there has been minimal investigation into the implications of improper development of the gut microbiome and the brain-gut-immune axis on the sleep-wake cycle, particularly during sensitive periods of physical and neurological development, such as childhood, adolescence, and senescence. Therefore, this review will explore the current literature surrounding the overlapping developmental periods of the gut microbiome, brain, and immune system from birth through to senescence, while highlighting how the brain-gut-immune axis affects maturation and organisation of the sleep-wake cycle. We also examine how dysfunction to either the microbiome or the sleep-wake cycle negatively affects the bidirectional relationship between the brain and gut, and subsequently the overall health and functionality of this complex system. Additionally, this review integrates therapeutic studies to demonstrate when dietary manipulations, such as supplementation with probiotics and prebiotics, can modulate the gut microbiome to enhance health of the brain-gut-immune axis and optimize our sleep-wake cycle.
Collapse
Affiliation(s)
- Marissa Sgro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Zoe N Kodila
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Amy C Reichelt
- Department of Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Richelle Mychaisuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Circadian misalignment leads to changes in cortisol rhythms, blood biochemical variables and serum miRNA profiles. Biochem Biophys Res Commun 2021; 567:9-16. [PMID: 34130181 DOI: 10.1016/j.bbrc.2021.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/04/2021] [Indexed: 01/16/2023]
Abstract
The circadian clock plays a critical role in synchronizing the inner molecular, metabolic and physiological processes to environmental cues that cycle with a period of 24 h. Non-24 h and shift schedules are commonly used in maritime operations, and both of which can disturb circadian rhythms. In this study, we first conducted an experiment in which the volunteers followed a 3-d rotary schedule with consecutive shift in sleep time (rotatory schedule), and analyzed the changes in salivary cortisol rhythms and blood variables. Next we conducted another experiment in which the volunteers followed an 8 h-on and 4-h off schedule (non-24-h schedule) to compare the changes in blood/serum variables. The rotatory schedule led to elevated levels of serum cortisol during the early stage, and the phase became delayed during the early and late stages. Interestingly, both of the schedules caused comprehensive changes in blood/serum biochemical variables and increased phosphate levels. Furthermore, transcriptomic analysis of the plasma miRNAs from the volunteers following the rotatory schedule identified a subset of serum miRNAs targeting genes involved in circadian rhythms, sleep homeostasis, phosphate transport and multiple important physiological processes. Overexpression of miRNAs targeting the phosphate transport associated genes, SLC20A1 and SLC20A2, showed altered expression due to rotary schedule resulted in attenuated cellular levels of phosphate, which might account for the changed levels in serum phosphate. These findings would further our understanding of the deleterious effects of shift schedules and help to optimize and enhance the performances and welfare of personnel working on similar schedules.
Collapse
|
10
|
Perrigault M, Andrade H, Bellec L, Ballantine C, Camus L, Tran D. Rhythms during the polar night: evidence of clock-gene oscillations in the Arctic scallop Chlamys islandica. Proc Biol Sci 2020; 287:20201001. [PMID: 32811311 DOI: 10.1098/rspb.2020.1001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Arctic regions are highly impacted by climate change and are characterized by drastic seasonal changes in light intensity and duration with extended periods of permanent light or darkness. Organisms use cyclic variations in light to synchronize daily and seasonal biological rhythms to anticipate cyclic variations in the environment, to control phenology and to maintain fitness. In this study, we investigated the diel biological rhythms of the Arctic scallop, Chlamys islandica, during the autumnal equinox and polar night. Putative circadian clock genes and putative light perception genes were identified in the Arctic scallop. Clock gene expression oscillated in the three tissues studied (gills, muscle, mantle edge). The oscillation of some genes in some tissues shifted from daily to tidal periodicity between the equinox and polar night periods and was associated with valve behaviour. These results are the first evidence of the persistence of clock gene expression oscillations during the polar night and might suggest that functional clockwork could entrain rhythmic behaviours in polar environments.
Collapse
Affiliation(s)
- Mickael Perrigault
- University of Bordeaux, EPOC, UMR 5805, 33120 Arcachon, France.,CNRS, EPOC, UMR 5805, 33120 Arcachon, France
| | | | - Laure Bellec
- University of Bordeaux, EPOC, UMR 5805, 33120 Arcachon, France.,CNRS, EPOC, UMR 5805, 33120 Arcachon, France
| | | | - Lionel Camus
- Akvaplan-niva AS, Fram Centre, 9296 Tromsø, Norway
| | - Damien Tran
- University of Bordeaux, EPOC, UMR 5805, 33120 Arcachon, France.,CNRS, EPOC, UMR 5805, 33120 Arcachon, France
| |
Collapse
|
11
|
Guo JH, Ma XH, Ma H, Zhang Y, Tian ZQ, Wang X, Shao YC. Circadian misalignment on submarines and other non-24-h environments - from research to application. Mil Med Res 2020; 7:39. [PMID: 32814592 PMCID: PMC7437048 DOI: 10.1186/s40779-020-00268-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 08/10/2020] [Indexed: 11/10/2022] Open
Abstract
Circadian clocks have important physiological and behavioral functions in humans and other organisms, which enable organisms to anticipate and respond to periodic environmental changes. Disturbances in circadian rhythms impair sleep, metabolism, and behavior. People with jet lag, night workers and shift workers are vulnerable to circadian misalignment. In addition, non-24-h cycles influence circadian rhythms and cause misalignment and disorders in different species, since these periods are beyond the entrainment ranges. In certain special conditions, e.g., on submarines and commercial ships, non-24-h watch schedules are often employed, which have also been demonstrated to be deleterious to circadian rhythms. Personnel working under such conditions suffer from circadian misalignment with their on-watch hours, leading to increased health risks and decreased cognitive performance. In this review, we summarize the research progress and knowledge concerning circadian rhythms on submarines and other environments in which non-24-h watch schedules are employed.
Collapse
Affiliation(s)
- Jin-Hu Guo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Xiao-Hong Ma
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Huan Ma
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yin Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhi-Qiang Tian
- China Institute of Marine Technology and Economy, Beijing, 100081, China
| | - Xin Wang
- China Institute of Marine Technology and Economy, Beijing, 100081, China
| | - Yong-Cong Shao
- School of Psychology, Beijing Sport University, Beijing, 100084, China
| |
Collapse
|
12
|
Petit IJ, González CF, Gusmao JB, Álvarez-Varas R, Hinojosa IA. Resting Dynamics and Diel Activity of the Green Turtle (Chelonia mydas) in Rapa Nui, Chile. CHELONIAN CONSERVATION AND BIOLOGY 2020. [DOI: 10.2744/ccb-1374.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ignacio J. Petit
- Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, Chile []
| | | | - Joao B. Gusmao
- Millennium Nucleus for Ecology and Sustainable Management of Oceanic Islands, Coquimbo, Chile []
| | - Rocío Álvarez-Varas
- Millennium Nucleus for Ecology and Sustainable Management of Oceanic Islands, Coquimbo, Chile []
| | - Iván A. Hinojosa
- Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, Chile []
| |
Collapse
|
13
|
Cheng Y, Chi Y, Zhang L, Wang GZ. A single factor dominates the behavior of rhythmic genes in mouse organs. BMC Genomics 2019; 20:879. [PMID: 31747875 PMCID: PMC6868821 DOI: 10.1186/s12864-019-6255-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/31/2019] [Indexed: 11/10/2022] Open
Abstract
Background Circadian rhythm, regulated by both internal and external environment of the body, is a multi-scale biological oscillator of great complexity. On the molecular level, thousands of genes exhibit rhythmic transcription, which is both organ- and species-specific, but it remains a mystery whether some common factors could potentially explain their rhythmicity in different organs. In this study we address this question by analyzing the transcriptome data in 12 mouse organs to determine such major impacting factors. Results We found a strong positive correlation between the transcriptional level and rhythmic amplitude of circadian rhythmic genes in mouse organs. Further, transcriptional level could explain over 70% of the variation in amplitude. In addition, the functionality and tissue specificity were not strong predictors of amplitude, and the expression level of rhythmic genes was linked to the energy consumption associated with transcription. Conclusion Expression level is a single major factor impacts the behavior of rhythmic genes in mouse organs. This single determinant implicates the importance of rhythmic expression itself on the design of the transcriptional system. So, rhythmic regulation of highly expressed genes can effectively reduce the energetic cost of transcription, facilitating the long-term adaptive evolution of the entire genetic system.
Collapse
Affiliation(s)
- Yang Cheng
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, Shanghai, 200031, China
| | - Yuhao Chi
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, Shanghai, 200031, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, Shanghai, 200031, China.
| |
Collapse
|
14
|
Bayram ÖS, Dettmann A, Karahoda B, Moloney NM, Ormsby T, McGowan J, Cea-Sánchez S, Miralles-Durán A, Brancini GTP, Luque EM, Fitzpatrick DA, Cánovas D, Corrochano LM, Doyle S, Selker EU, Seiler S, Bayram Ö. Control of Development, Secondary Metabolism and Light-Dependent Carotenoid Biosynthesis by the Velvet Complex of Neurospora crassa. Genetics 2019; 212:691-710. [PMID: 31068340 PMCID: PMC6614901 DOI: 10.1534/genetics.119.302277] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/04/2019] [Indexed: 01/24/2023] Open
Abstract
Neurospora crassa is an established reference organism to investigate carotene biosynthesis and light regulation. However, there is little evidence of its capacity to produce secondary metabolites. Here, we report the role of the fungal-specific regulatory velvet complexes in development and secondary metabolism (SM) in N. crassa Three velvet proteins VE-1, VE-2, VOS-1, and a putative methyltransferase LAE-1 show light-independent nucleocytoplasmic localization. Two distinct velvet complexes, a heterotrimeric VE-1/VE-2/LAE-1 and a heterodimeric VE-2/VOS-1 are found in vivo The heterotrimer-complex, which positively regulates sexual development and represses asexual sporulation, suppresses siderophore coprogen production under iron starvation conditions. The VE-1/VE-2 heterodimer controls carotene production. VE-1 regulates the expression of >15% of the whole genome, comprising mainly regulatory and developmental features. We also studied intergenera functions of the velvet complex through complementation of Aspergillus nidulans veA, velB, laeA, vosA mutants with their N. crassa orthologs ve-1, ve-2, lae-1, and vos-1, respectively. Expression of VE-1 and VE-2 in A. nidulans successfully substitutes the developmental and SM functions of VeA and VelB by forming two functional chimeric velvet complexes in vivo, VelB/VE-1/LaeA and VE-2/VeA/LaeA, respectively. Reciprocally, expression of veA restores the phenotypes of the N. crassa ve-1 mutant. All N. crassa velvet proteins heterologously expressed in A. nidulans are localized to the nuclear fraction independent of light. These data highlight the conservation of the complex formation in N. crassa and A. nidulans However, they also underline the intergenera similarities and differences of velvet roles according to different life styles, niches and ontogenetic processes.
Collapse
Affiliation(s)
| | - Anne Dettmann
- Institute for Biology II, Molecular Plant Physiology, Albert-Ludwigs-University 79104 Freiburg, Germany
| | - Betim Karahoda
- Department of Biology, Maynooth University, Co. Kildare, W23 F2H6, Ireland
| | - Nicola M Moloney
- Department of Biology, Maynooth University, Co. Kildare, W23 F2H6, Ireland
| | - Tereza Ormsby
- Institute of Molecular Biology, University of Oregon, Eugene, 97403 Oregon
| | - Jamie McGowan
- Department of Biology, Maynooth University, Co. Kildare, W23 F2H6, Ireland
| | - Sara Cea-Sánchez
- Departmento de Genética, Facultad de Biologia, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | - Guilherme T P Brancini
- Departmento de Genética, Facultad de Biologia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Eva M Luque
- Departmento de Genética, Facultad de Biologia, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | - David Cánovas
- Departmento de Genética, Facultad de Biologia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Luis M Corrochano
- Departmento de Genética, Facultad de Biologia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Sean Doyle
- Department of Biology, Maynooth University, Co. Kildare, W23 F2H6, Ireland
| | - Eric U Selker
- Institute of Molecular Biology, University of Oregon, Eugene, 97403 Oregon
| | - Stephan Seiler
- Institute for Biology II, Molecular Plant Physiology, Albert-Ludwigs-University 79104 Freiburg, Germany
| | - Özgür Bayram
- Department of Biology, Maynooth University, Co. Kildare, W23 F2H6, Ireland
- Human Health Research Institute, Maynooth University, Co. Kildare, W23 F2H6, Ireland
| |
Collapse
|
15
|
Pelham JF, Mosier AE, Hurley JM. Characterizing Time-of-Day Conformational Changes in the Intrinsically Disordered Proteins of the Circadian Clock. Methods Enzymol 2018; 611:503-529. [DOI: 10.1016/bs.mie.2018.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Dumitru C, Kabat AM, Maloy KJ. Metabolic Adaptations of CD4 + T Cells in Inflammatory Disease. Front Immunol 2018; 9:540. [PMID: 29599783 PMCID: PMC5862799 DOI: 10.3389/fimmu.2018.00540] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
A controlled and self-limiting inflammatory reaction generally results in removal of the injurious agent and repair of the damaged tissue. However, in chronic inflammation, immune responses become dysregulated and prolonged, leading to tissue destruction. The role of metabolic reprogramming in orchestrating appropriate immune responses has gained increasing attention in recent years. Proliferation and differentiation of the T cell subsets that are needed to address homeostatic imbalance is accompanied by a series of metabolic adaptations, as T cells traveling from nutrient-rich secondary lymphoid tissues to sites of inflammation experience a dramatic shift in microenvironment conditions. How T cells integrate information about the local environment, such as nutrient availability or oxygen levels, and transfer these signals to functional pathways remains to be fully understood. In this review, we discuss how distinct subsets of CD4+ T cells metabolically adapt to the conditions of inflammation and whether these insights may pave the way to new treatments for human inflammatory diseases.
Collapse
Affiliation(s)
- Cristina Dumitru
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Agnieszka M. Kabat
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Kevin J. Maloy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- *Correspondence: Kevin J. Maloy,
| |
Collapse
|
17
|
Uetani N, Hardy S, Gravel SP, Kiessling S, Pietrobon A, Wong NN, Chénard V, Cermakian N, St-Pierre J, Tremblay ML. PRL2 links magnesium flux and sex-dependent circadian metabolic rhythms. JCI Insight 2017; 2:91722. [PMID: 28679948 DOI: 10.1172/jci.insight.91722] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/23/2017] [Indexed: 11/17/2022] Open
Abstract
Magnesium (Mg2+) plays pleiotropic roles in cellular biology, and it is essentially required for all living organisms. Although previous studies demonstrated intracellular Mg2+ levels were regulated by the complex of phosphatase of regenerating liver 2 (PRL2) and Mg2+ transporter of cyclin M (CNNMs), physiological functions of PRL2 in whole animals remain unclear. Interestingly, Mg2+ was recently identified as a regulator of circadian rhythm-dependent metabolism; however, no mechanism was found to explain the clock-dependent Mg2+ oscillation. Herein, we report PRL2 as a missing link between sex and metabolism, as well as clock genes and daily cycles of Mg2+ fluxes. Our results unveil that PRL2-null animals displayed sex-dependent alterations in body composition, and expression of PRLs and CNNMs were sex- and circadian time-dependently regulated in brown adipose tissues. Consistently, PRL2-KO mice showed sex-dependent alterations in thermogenesis and in circadian energy metabolism. These physiological changes were associated with an increased rate of uncoupled respiration with lower intracellular Mg2+ in PRL2-KO cells. Moreover, PRL2 deficiency causes inhibition of the ATP citrate lyase axis, which is involved in fatty acid synthesis. Overall, our findings support that sex- and circadian-dependent PRL2 expression alter intracellular Mg2+ levels, which accordingly controls energy metabolism status.
Collapse
Affiliation(s)
| | - Serge Hardy
- Rosalind and Morris Goodman Cancer Research Centre
| | | | - Silke Kiessling
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, and
| | | | - Nau Nau Wong
- Rosalind and Morris Goodman Cancer Research Centre
| | | | - Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, and
| | - Julie St-Pierre
- Rosalind and Morris Goodman Cancer Research Centre.,Department of Biochemistry
| | - Michel L Tremblay
- Rosalind and Morris Goodman Cancer Research Centre.,Department of Biochemistry.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
18
|
Häfker NS, Meyer B, Last KS, Pond DW, Hüppe L, Teschke M. Circadian Clock Involvement in Zooplankton Diel Vertical Migration. Curr Biol 2017; 27:2194-2201.e3. [DOI: 10.1016/j.cub.2017.06.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/08/2017] [Accepted: 06/09/2017] [Indexed: 12/21/2022]
|
19
|
Applying a systems approach to thyroid physiology: Looking at the whole with a mitochondrial perspective instead of judging single TSH values or why we should know more about mitochondria to understand metabolism. BBA CLINICAL 2017; 7:127-140. [PMID: 28417080 PMCID: PMC5390562 DOI: 10.1016/j.bbacli.2017.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 12/17/2022]
Abstract
Classical thinking in endocrine physiology squeezes our diagnostic handling into a simple negative feedback mechanism with a controller and a controlled variable. In the case of the thyroid this is reduced to TSH and fT3 and fT4, respectively. The setting of this tight notion has no free space for any additions. In this paper we want to challenge this model of limited application by proposing a construct based on a systems approach departing from two basic considerations. In first place since the majority of cases of thyroid disease develop and appear during life it has to be considered as an acquired condition. In the second place, our experience with the reversibility of morphological changes makes the autoimmune theory inconsistent. While medical complexity can expand into the era of OMICS as well as into one where manipulations with the use of knock-outs and -ins are common in science, we have preferred to maintain a simple and practical approach. We will describe the interactions of iron, magnesium, zinc, selenium and coenzyme Q10 with the thyroid axis. The discourse will be then brought into the context of ovarian function, i.e. steroid hormone production. Finally the same elemental players will be presented in relation to the basic mitochondrial machinery that supports the endocrine. We propose that an intact mitochondrial function can guard the normal endocrine function of both the thyroid as well as of the ovarian axis. The basic elements required for this function appear to be magnesium and iron. In the case of the thyroid, magnesium-ATP acts in iodine uptake and the heme protein peroxidase in thyroid hormone synthesis. A similar biochemical process is found in steroid synthesis with cholesterol uptake being the initial energy-dependent step and later the heme protein ferredoxin 1 which is required for steroid synthesis. Magnesium plays a central role in determining the clinical picture associated with thyroid disease and is also involved in maintaining fertility. With the aid of 3D sonography patients needing selenium and/or coenzyme Q10 can be easily identified. By this we firmly believe that physicians should know more about basic biochemistry and the way it fits into mitochondrial function in order to understand metabolism. Contemplating only TSH is highly reductionistic. Outline Author's profiles and motivation for this analysis The philosophical alternatives in science and medicine Reductionism vs. systems approach in clinical thyroid disease guidelines The entry into complexity: the involvement of the musculoskeletal system Integrating East and West: teachings from Chinese Medicine and from evidence based medicine (EBM) Can a mathematical model represent complexity in the daily thyroid practice? How effective is thyroxine treatment? Resolving the situation of residual symptoms in treated patients with thyroid disease Importance of iron, zinc and magnesium in relation to thyroid function Putting together new concepts related to thyroid function for a systems approach Expanding our model into general aspects of medicine
Collapse
|