1
|
Selim OA, Sarcon AK, Tunaboylu MF, Zhao C, Moran SL. A longitudinal rat forelimb model for assessing in vivo neuromuscular function following extremity reperfusion injury. RESEARCH SQUARE 2025:rs.3.rs-5582098. [PMID: 39975916 PMCID: PMC11838728 DOI: 10.21203/rs.3.rs-5582098/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Rhabdomyolysis following revascularization of the ischemic upper extremity can lead to life- & limb-threatening sequelae. In the context of replantations and vascularized composite allografting, a reconstructive procedure usually reserved for upper limb amputees, prolonged tissue ischemia is detrimental to extremity functional recovery. Currently, validated survival small animal models of extremity reperfusion injury that permit longitudinal assessment of limb function are lacking. To date, studies that evaluated reperfusion injury-induced neuromuscular impairment rely on terminal ex vivo procedures and do not provide clinically translatable measurements. Furthermore, it is unclear if upper extremity musculature exhibits a different ischemic threshold compared to the lower limb given the relatively rare incidence of upper limb ischemia. Here, we present a reliable rat model of extremity post-reperfusion syndrome (PRS) that comprehensively recapitulates the biochemical hallmarks of rhabdomyolysis secondary to upper extremity reperfusion injury and allows for monitoring in vivo upper limb function using clinically relevant electrodiagnostic and kinematic metrics. In addition to inducing severe metabolic derangements, our forelimb PRS provided insights on gross motor and electrophysiological alterations upper-extremity reperfusion injury. We identify gait coordination parameters such as stride frequency and forelimb-hindlimb coordination index and electrophysiological metrics including compound muscle action potential amplitude as objective, non-invasive outcome measures for limb function assessment in small animal models of extremity PRS. This comprehensive, validated functional model can serve as an invaluable tool to evaluate therapeutics or preconditioning regimens to attenuate PRS and mitigate resulting neuromuscular dysfunction.
Collapse
Affiliation(s)
- Omar A. Selim
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
- T32 Musculoskeletal Research Training Program, Mayo Clinic, Rochester, MN
| | | | | | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Steven L. Moran
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN
| |
Collapse
|
2
|
Schwietring J, Wähnert D, Scholl LS, Thies KC. [Prehospital blood transfusion : Opportunities and challenges for the German emergency medical services]. DIE ANAESTHESIOLOGIE 2024; 73:760-770. [PMID: 39356309 PMCID: PMC11522168 DOI: 10.1007/s00101-024-01463-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Exsanguination is the leading cause of preventable death in severe trauma. Immediate hemorrhage control and transfusion of blood products are critical to maintain oxygen delivery and address trauma-induced coagulopathy. While prehospital blood product transfusion (PHBT) is established in neighboring countries, the fragmented configuration of Germany's emergency medical service (EMS) infrastructure has delayed the adoption of widespread PHBT programmes. This review aims to provide an updated perspective on the evolution, international practices and research needs of PHBT within the German context. METHODS This narrative review is based on a PubMed search using the search terms "prehospital" and "blood*". From an initial 4738 articles, 333 were directly related to PHBT and were subjected to further detailed examination. The literature, including referenced studies, was categorized into areas such as history, rationale, international practices, and evidence, and analyzed for quality. RESULTS The benefit of early blood transfusion in major trauma has been established since WW1, explaining the efforts to initiate this lifesaving intervention as early as possible in the care pathway, including the prehospital field. Recent randomized trials have faced design and recruitment challenges, reflecting the complexity of the research question. These trials have yielded inconclusive results regarding the survival benefits of PHBT in civilian settings. This scenario raises doubts about the capability of randomized trials to resolve questions concerning survival advantages. Despite these difficulties, there is a discernible trend indicating potential improvements in patient outcomes. In Germany, the incidence of trauma-associated shock stands at 38 per 100,000 individuals per year. It is estimated that between 300 and 1800 patients annually possibly benefit from PHBT. CONCLUSION Prehospital Blood Transfusion appears to be promising but identifying patient groups most likely to benefit as well as the most suitable blood products remain unresolved issues. In Germany PHBT programs are not yet widely established. Paradoxically, this situation, paired with the extensive German Trauma Registry, provides a prime opportunity for comprehensive prospective cohort studies, addressing the balance between PHBT benefits, logistical feasibility, and implementation strategies. Such studies are essential for establishing guidelines and integrating PHBT efficiently into German trauma care protocols.
Collapse
Affiliation(s)
- Jens Schwietring
- Ruhr-Universität Bochum, Medizinische Fakultät, Bochum, Deutschland.
- ADAC Luftrettung gGmbH, Hansastr. 19, 80686, München, Deutschland.
| | - Dirk Wähnert
- Universität Bielefeld, Medizinische Fakultät und Universitätsklinikum OWL, Ev. Klinikum Bethel, Universitätsklinik für Unfallchirurgie und Orthopädie, Bielefeld, Deutschland
| | | | - Karl-Christian Thies
- Universität Bielefeld, Medizinische Fakultät und Universitätsklinikum OWL, Ev. Klinikum Bethel, Universitätsklinik für Anästhesiologie, Intensivmedizin, Notfallmedizin, Transfusionsmedizin und Schmerztherapie, Bielefeld, Deutschland
| |
Collapse
|
3
|
Smith SR, Becker EJ, Bone NB, Kerby JD, Nowak JI, Tadié JM, Darley-Usmar VM, Pittet JF, Zmijewski JW. METABOLIC AND BIOENERGETIC ALTERATIONS ARE ASSOCIATED WITH INFECTION SUSCEPTIBILITY IN SURVIVORS OF SEVERE TRAUMA: AN EXPLORATORY STUDY. Shock 2024; 62:633-643. [PMID: 39012766 DOI: 10.1097/shk.0000000000002419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
ABSTRACT Background : Trauma and blood loss are frequently associated with organ failure, immune dysfunction, and a high risk of secondary bacterial lung infections. We aim to test if plasma metabolomic flux and monocyte bioenergetics are altered in association with trauma and related secondary infections. Methods : Plasma samples were collected from trauma patients at three time points: days 0, 3, and 7 postadmission. Metabolites (140) were measured in plasma from trauma survivors ( n = 24) and healthy control individuals (HC, n = 10). Further analysis within the trauma cohort included subsets of trauma/infection-negative (TIneg, n = 12) and trauma/infection-positive patients (TIpos, n = 12). The bioenergetic profile in monocytes was determined using mitochondrial and glycolytic stress tests. Results : In the trauma cohort, significant alterations were observed in 29 metabolites directly affecting 11 major metabolic pathways, while 34 metabolite alterations affected 8 pathways in 9, versus TIneg patients. The most altered metabolic pathways included protein synthesis, the urea cycle/arginine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, and carnitine compound family. In monocytes from trauma patients, reduced mitochondrial indices and loss of glycolytic plasticity were consistent with an altered profile of plasma metabolites in the tricarboxylic acid cycle and glycolysis. Conclusions : Our study highlights that the metabolic profile is significantly and persistently affected by trauma and related infections. Among trauma survivors, metabolic alterations in plasma were associated with reduced monocyte bioenergetics. These exploratory findings establish a groundwork for future clinical studies aimed at enhancing our understanding of the interplay between metabolic/bioenergetic alterations associated with trauma and secondary bacterial infections.
Collapse
Affiliation(s)
- Samuel R Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eugene J Becker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nathaniel B Bone
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeffrey D Kerby
- Division of Trauma and Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Jean-Marc Tadié
- INSERM, EFS Bretagne, UMR U1236, Université Rennes, Rennes, France
| | | | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jaroslaw W Zmijewski
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
4
|
Sokhan A, Haschka J, Reichardt B, Zwerina J, Kocijan R, Behanova M. Epidemiological characteristics and impact of sepsis on survival after osteoporotic pelvic fracture in Austria. Sci Rep 2024; 14:24531. [PMID: 39424911 PMCID: PMC11489783 DOI: 10.1038/s41598-024-75568-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
We performed a retrospective nationwide register-based cohort study which included all in-hospital patients aged ≥ 50 with pelvic fracture (PF) between 2010 and 2018 in Austria. We identified patients who were hospitalized with sepsis within 180 days following a PF event. Aetiology of sepsis was divided by unspecified, gram positive, gram negative and other. Among 59,081 patients hospitalized with PF between 2010 and 2018 we identified 619 (1.05%) patients who were hospitalized with sepsis within 180 days following PF. The cumulative incidence risk of sepsis within 180 days after PF was significantly higher in males (1.4%, 95% CI 1.2%-1.5%) as compared to females (0.92%, 95% CI 0.83%-1.0%), p < 0.001. In the cohort of patients with sepsis, the one-year mortality was 50.4%. Mortality risk was greater for patients who developed sepsis, independently of age, sex and comorbidity status (HR 3.12, 95% CI 2.83-3.44, p < 0.001) as compared to patients without sepsis. With a very high one-year mortality risk among those who develop sepsis, our study emphasizes the substantial impact of sepsis on long term survival in fractured patients. These findings underscore the critical need for sepsis prevention and early detection and management to mitigate its detrimental effects on patient outcomes.
Collapse
Affiliation(s)
- Anton Sokhan
- 1st Medical Department Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Heinrich Collin-Str. 30, 1140, Vienna, Austria.
| | - Judith Haschka
- 1st Medical Department Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Heinrich Collin-Str. 30, 1140, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Berthold Reichardt
- Austrian Social Health Insurance Fund, Österreichische Gesundheitskasse, Eisenstadt, Austria
| | - Jochen Zwerina
- 1st Medical Department Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Heinrich Collin-Str. 30, 1140, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Roland Kocijan
- 1st Medical Department Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Heinrich Collin-Str. 30, 1140, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
- Metabolic Bone Diseases Unit, School of Medicine, Sigmund Freud University Vienna, Vienna, Austria
| | - Martina Behanova
- 1st Medical Department Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Heinrich Collin-Str. 30, 1140, Vienna, Austria
| |
Collapse
|
5
|
Duran I, Banerjee A, Flaherty PJ, Que YA, Ryan CM, Rahme LG, Tsurumi A. Development of a biomarker prediction model for post-trauma multiple organ failure/dysfunction syndrome based on the blood transcriptome. Ann Intensive Care 2024; 14:134. [PMID: 39198331 PMCID: PMC11358370 DOI: 10.1186/s13613-024-01364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Multiple organ failure/dysfunction syndrome (MOF/MODS) is a major cause of mortality and morbidity among severe trauma patients. Current clinical practices entail monitoring physiological measurements and applying clinical score systems to diagnose its onset. Instead, we aimed to develop an early prediction model for MOF outcome evaluated soon after traumatic injury by performing machine learning analysis of genome-wide transcriptome data from blood samples drawn within 24 h of traumatic injury. We then compared its performance to baseline injury severity scores and detection of infections. METHODS Buffy coat transcriptome and linked clinical datasets from blunt trauma patients from the Inflammation and the Host Response to Injury Study ("Glue Grant") multi-center cohort were used. According to the inclusion/exclusion criteria, 141 adult (age ≥ 16 years old) blunt trauma patients (excluding penetrating) with early buffy coat (≤ 24 h since trauma injury) samples were analyzed, with 58 MOF-cases and 83 non-cases. We applied the Least Absolute Shrinkage and Selection Operator (LASSO) and eXtreme Gradient Boosting (XGBoost) algorithms to select features and develop models for MOF early outcome prediction. RESULTS The LASSO model included 18 transcripts (AUROC [95% CI]: 0.938 [0.890-0.987] (training) and 0.833 [0.699-0.967] (test)), and the XGBoost model included 41 transcripts (0.999 [0.997-1.000] (training) and 0.907 [0.816-0.998] (test)). There were 16 overlapping transcripts comparing the two panels (0.935 [0.884-0.985] (training) and 0.836 [0.703-0.968] (test)). The biomarker models notably outperformed models based on injury severity scores and sex, which we found to be significantly associated with MOF (APACHEII + sex-0.649 [0.537-0.762] (training) and 0.493 [0.301-0.685] (test); ISS + sex-0.630 [0.516-0.744] (training) and 0.482 [0.293-0.670] (test); NISS + sex-0.651 [0.540-0.763] (training) and 0.525 [0.335-0.714] (test)). CONCLUSIONS The accurate assessment of MOF from blood samples immediately after trauma is expected to aid in improving clinical decision-making and may contribute to reduced morbidity, mortality and healthcare costs. Moreover, understanding the molecular mechanisms involving the transcripts identified as important for MOF prediction may eventually aid in developing novel interventions.
Collapse
Affiliation(s)
- Ivan Duran
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA, 02114, USA
| | - Ankita Banerjee
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA, 02114, USA
| | - Patrick J Flaherty
- Department of Mathematics and Statistics, University of Massachusetts at Amherst, Amherst, MA, 01003, USA
| | - Yok-Ai Que
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Colleen M Ryan
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA, 02114, USA
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA, 02114, USA
| | - Laurence G Rahme
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA, 02114, USA
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA, 02114, USA
- Department of Microbiology and Immunology, Harvard Medical School, 77 Ave. Louis Pasteur, Boston, MA, 02115, USA
| | - Amy Tsurumi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA, 02114, USA.
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA, 02114, USA.
| |
Collapse
|
6
|
Lun XK, Sheng K, Yu X, Lam CY, Gowri G, Serrata M, Zhai Y, Su H, Luan J, Kim Y, Ingber DE, Jackson HW, Yaffe MB, Yin P. Signal amplification by cyclic extension enables high-sensitivity single-cell mass cytometry. Nat Biotechnol 2024:10.1038/s41587-024-02316-x. [PMID: 39075149 PMCID: PMC11910986 DOI: 10.1038/s41587-024-02316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/13/2024] [Indexed: 07/31/2024]
Abstract
Mass cytometry uses metal-isotope-tagged antibodies to label targets of interest, which enables simultaneous measurements of ~50 proteins or protein modifications in millions of single cells, but its sensitivity is limited. Here, we present a signal amplification technology, termed Amplification by Cyclic Extension (ACE), implementing thermal-cycling-based DNA in situ concatenation in combination with 3-cyanovinylcarbazole phosphoramidite-based DNA crosslinking to enable signal amplification simultaneously on >30 protein epitopes. We demonstrate the utility of ACE in low-abundance protein quantification with suspension mass cytometry to characterize molecular reprogramming during the epithelial-to-mesenchymal transition as well as the mesenchymal-to-epithelial transition. We show the capability of ACE to quantify the dynamics of signaling network responses in human T lymphocytes. We further present the application of ACE in imaging mass cytometry-based multiparametric tissue imaging to identify tissue compartments and profile spatial aspects related to pathological states in polycystic kidney tissues.
Collapse
Affiliation(s)
- Xiao-Kang Lun
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Kuanwei Sheng
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Xueyang Yu
- Departments of Biology and Bioengineering, Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ching Yeung Lam
- Mount Sinai Health Systems and Department of Molecular Genetics, Lunenfeld Tanenbaum Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Gokul Gowri
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Matthew Serrata
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Yunhao Zhai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Hanquan Su
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jingyi Luan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Youngeun Kim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Vascular Biology Program and Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA
| | - Hartland W Jackson
- Mount Sinai Health Systems and Department of Molecular Genetics, Lunenfeld Tanenbaum Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Michael B Yaffe
- Departments of Biology and Bioengineering, Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Divisions of Acute Care Surgery, Trauma, and Critical Care and Surgical Oncology, Harvard Medical School, Boston, MA, USA
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Moldovan F. Sterile Inflammatory Response and Surgery-Related Trauma in Elderly Patients with Subtrochanteric Fractures. Biomedicines 2024; 12:354. [PMID: 38397956 PMCID: PMC10887083 DOI: 10.3390/biomedicines12020354] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Sterile inflammation is a natural response of the organism in the absence of microorganisms, which is triggered in correspondence with the degree of tissue damage sustained after a surgical procedure. The objective of this study was to explore the values of postoperative hematological-derived biomarkers in assessing the sterile inflammatory response magnitude related to the invasiveness of the surgical reduction technique used for subtrochanteric fractures (STFs) treatment. A retrospective, observational cohort research was conducted between January 2021 and October 2023 that included a total of 143 patients diagnosed with acute subtrochanteric fractures who underwent long Gamma Nail (LGN) fixation. According to the surgical reduction technique used, they were divided into two groups: group 1, which consisted of those with a closed reduction and internal fixation (CRIF); and group 2, which consisted of those with an open reduction internal fixation (ORIF). Between groups, statistically significant differences (p < 0.05) were found in relation to days to surgery, length of hospital stay (LOHS), duration of surgery, postoperative hemoglobin (HGB) levels, neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), monocyte-lymphocyte ratio (MLR), systemic inflammation index (SII), systemic inflammation response index (SIRI), and aggregate inflammation systemic index (AISI). The receiver operating characteristics (ROC) curve analysis revealed that all ratios presented a high diagnostic ability (p < 0.0001) with NLR > 6.95 being the most reliable (sensitivity 94.8% and specificity 70.6%). Moreover, the multivariate regression model confirmed that sterile immune response after orthopedic interventions can be assessed in an almost equal and non-dependent manner using these biomarkers. Postoperative NLR, PLR, MLR, SII, SIRI, and AISI ratios are closely correlated to the sterile inflammatory response magnitude, due to the extent of surgical dissection performed during internal fixation procedures of subtrochanteric femur fractures.
Collapse
Affiliation(s)
- Flaviu Moldovan
- Orthopedics-Traumatology Department, Faculty of Medicine, "George Emil Palade" University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
8
|
Traetta ME, Chaves Filho AM, Akinluyi ET, Tremblay MÈ. Neurodevelopmental and Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:457-495. [PMID: 39207708 DOI: 10.1007/978-3-031-55529-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This chapter will focus on microglial involvement in neurodevelopmental and neuropsychiatric disorders, particularly autism spectrum disorder (ASD), schizophrenia and major depressive disorder (MDD). We will describe the neuroimmune risk factors that contribute to the etiopathology of these disorders across the lifespan, including both in early life and adulthood. Microglia, being the resident immune cells of the central nervous system, could play a key role in triggering and determining the outcome of these disorders. This chapter will review preclinical and clinical findings where microglial morphology and function were examined in the contexts of ASD, schizophrenia and MDD. Clinical evidence points out to altered microglial morphology and reactivity, as well as increased expression of pro-inflammatory cytokines, supporting the idea that microglial abnormalities are involved in these disorders. Indeed, animal models for these disorders found altered microglial morphology and homeostatic functions which resulted in behaviours related to these disorders. Additionally, as microglia have emerged as promising therapeutic targets, we will also address in this chapter therapies involving microglial mechanisms for the treatment of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC, Canada.
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
9
|
Ziogas A, Bruno M, van der Meel R, Mulder WJM, Netea MG. Trained immunity: Target for prophylaxis and therapy. Cell Host Microbe 2023; 31:1776-1791. [PMID: 37944491 DOI: 10.1016/j.chom.2023.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/27/2023] [Accepted: 10/15/2023] [Indexed: 11/12/2023]
Abstract
Trained immunity is a de facto memory for innate immune responses, leading to long-term functional reprogramming of innate immune cells. In physiological conditions, trained immunity leads to adaptive states that enhance resistance against pathogens and contributes to immunosurveillance. Dysregulated trained immunity can however lead either to defective innate immune responses in severe infections or cancer or to inflammatory and autoimmune diseases if trained immunity is inappropriately activated. Here, we review the immunological and molecular mechanisms that mediate trained immunity induction and propose that trained immunity represents an important target for prophylactic and therapeutic approaches in human diseases. On the one hand, we argue that novel approaches that induce trained immunity may enhance vaccine efficacy. On the other hand, induction of trained immunity in cancer, and inhibition of exaggerated induction of trained immunity in inflammatory disorders, are viable targets amenable for new therapeutic approaches.
Collapse
Affiliation(s)
- Athanasios Ziogas
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - Mariolina Bruno
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Willem J M Mulder
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
10
|
Davis RW, Klampatsa A, Cramer GM, Kim MM, Miller JM, Yuan M, Houser C, Snyder E, Putt M, Vinogradov SA, Albelda SM, Cengel KA, Busch TM. Surgical Inflammation Alters Immune Response to Intraoperative Photodynamic Therapy. CANCER RESEARCH COMMUNICATIONS 2023; 3:1810-1822. [PMID: 37700795 PMCID: PMC10494787 DOI: 10.1158/2767-9764.crc-22-0494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/15/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Surgical cytoreduction for patients with malignant pleural mesothelioma (MPM) is used for selected patients as a part of multi-modality management strategy. Our group has previously described the clinical use of photodynamic therapy (PDT), a form of non-ionizing radiation, as an intraoperative therapy option for MPM. Although necessary for the removal of bulk disease, the effects of surgery on residual MPM burden are not understood. In this bedside-to-bench study, Photofrin-based PDT introduced the possibility of achieving a long-term response in murine models of MPM tumors that were surgically debulked by 60% to 90%. Thus, the addition of PDT provided curative potential after an incomplete resection. Despite this success, we postulated that surgical induction of inflammation may mitigate the comprehensive response of residual disease to further therapy. Utilizing a previously validated tumor incision (TI) model, we demonstrated that the introduction of surgical incisions had no effect on acute cytotoxicity by PDT. However, we found that surgically induced inflammation limited the generation of antitumor immunity by PDT. Compared with PDT alone, when TI preceded PDT of mouse tumors, splenocytes and/or CD8+ T cells from the treated mice transferred less antitumor immunity to recipient animals. These results demonstrate that addition of PDT to surgical cytoreduction significantly improves long-term response compared with cytoreduction alone, but at the same time, the inflammation induced by surgery may limit the antitumor immunity generated by PDT. These data inform future potential approaches aimed at blocking surgically induced immunosuppression that might improve the outcomes of intraoperative combined modality treatment. Significance Although mesothelioma is difficult to treat, we have shown that combining surgery with a form of radiation, photodynamic therapy, may help people with mesothelioma live longer. In this study, we demonstrate in mice that this regimen could be further improved by addressing the inflammation induced as a by-product of surgery.
Collapse
Affiliation(s)
- Richard W. Davis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Astero Klampatsa
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gwendolyn M. Cramer
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michele M. Kim
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joann M. Miller
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Min Yuan
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cassandra Houser
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emma Snyder
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mary Putt
- Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sergei A. Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven M. Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Keith A. Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Theresa M. Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Magatti M, Pischiutta F, Ortolano F, Pasotti A, Caruso E, Cargnoni A, Papait A, Capuzzi F, Zoerle T, Carbonara M, Stocchetti N, Borsa S, Locatelli M, Erba E, Prati D, Silini AR, Zanier ER, Parolini O. Systemic immune response in young and elderly patients after traumatic brain injury. Immun Ageing 2023; 20:41. [PMID: 37573338 PMCID: PMC10422735 DOI: 10.1186/s12979-023-00369-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a leading cause of death and long-term disability worldwide. In addition to primary brain damage, systemic immune alterations occur, with evidence for dysregulated immune responses in aggravating TBI outcome and complications. However, immune dysfunction following TBI has been only partially understood, especially in the elderly who represent a substantial proportion of TBI patients and worst outcome. Therefore, we aimed to conduct an in-depth immunological characterization of TBI patients, by evaluating both adaptive (T and B lymphocytes) and innate (NK and monocytes) immune cells of peripheral blood mononuclear cells (PBMC) collected acutely (< 48 h) after TBI in young (18-45 yo) and elderly (> 65 yo) patients, compared to age-matched controls, and also the levels of inflammatory biomarkers. RESULTS Our data show that young respond differently than elderly to TBI, highlighting the immune unfavourable status of elderly compared to young patients. While in young only CD4 T lymphocytes are activated by TBI, in elderly both CD4 and CD8 T cells are affected, and are induced to differentiate into subtypes with low cytotoxic activity, such as central memory CD4 T cells and memory precursor effector CD8 T cells. Moreover, TBI enhances the frequency of subsets that have not been previously investigated in TBI, namely the double negative CD27- IgD- and CD38-CD24- B lymphocytes, and CD56dim CD16- NK cells, both in young and elderly patients. TBI reduces the production of pro-inflammatory cytokines TNF-α and IL-6, and the expression of HLA-DM, HLA-DR, CD86/B7-2 in monocytes, suggesting a compromised ability to drive a pro-inflammatory response and to efficiently act as antigen presenting cells. CONCLUSIONS We described the acute immunological response induced by TBI and its relation with injury severity, which could contribute to pathologic evolution and possibly outcome. The focus on age-related immunological differences could help design specific therapeutic interventions based on patients' characteristics.
Collapse
Affiliation(s)
- Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy.
| | - Francesca Pischiutta
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Fabrizio Ortolano
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Anna Pasotti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Enrico Caruso
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Andrea Papait
- Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Roma, Italy
| | - Franco Capuzzi
- Dipartimento Medicina di Laboratorio, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Tommaso Zoerle
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
| | - Marco Carbonara
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nino Stocchetti
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
| | - Stefano Borsa
- Unit of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Marco Locatelli
- Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
- Unit of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Elisa Erba
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Daniele Prati
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Antonietta R Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Elisa R Zanier
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Ornella Parolini
- Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Roma, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Roma, Italy
| |
Collapse
|
12
|
Marton C, Minaud A, Coupet CA, Chauvin M, Dhiab J, Vallet H, Boddaert J, Kehrer N, Bastien B, Inchauspe G, Barraud L, Sauce D. IL-7 producing immunotherapy improves ex vivo T cell functions of immunosenescent patients, especially post hip fracture. Hum Vaccin Immunother 2023; 19:2232247. [PMID: 37417353 PMCID: PMC10332238 DOI: 10.1080/21645515.2023.2232247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
Following acute stress such as trauma or sepsis, most of critically ill elderly patients become immunosuppressed and susceptible to secondary infections and enhanced mortality. We have developed a virus-based immunotherapy encoding human interleukin-7 (hIL-7) aiming at restoring both innate an adaptative immune homeostasis in these patients. We assessed the impact of this encoded hIL-7 on the ex vivo immune functions of T cells from PBMC of immunosenescent patients with or without hip fracture. T-cell ex vivo phenotyping was characterized in terms of senescence (CD57), IL-7 receptor (CD127) expression, and T cell differentiation profile. Then, post stimulation, activation status, and functionality (STAT5/STAT1 phosphorylation and T cell proliferation assays) were evaluated by flow cytometry. Our data show that T cells from both groups display immunosenescence features, express CD127 and are activated after stimulation by virotherapy-produced hIL-7-Fc. Interestingly, hip fracture patients exhibit a unique functional ability: An important T cell proliferation occurred compared to controls following stimulation with hIL-7-Fc. In addition, stimulation led to an increased naïve T cell as well as a decreased effector memory T cell proportions compared to controls. This preliminary study indicates that the produced hIL-7-Fc is well recognized by T cells and initiates IL-7 signaling through STAT5 and STAT1 phosphorylation. This signaling efficiently leads to T cell proliferation and activation and enables a T cell "rejuvenation." These results are in favor of the clinical development of the hIL-7-Fc expressing virotherapy to restore or induce immune T cell responses in immunosenescent hip fracture patients.
Collapse
Affiliation(s)
- Chrystel Marton
- Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, Inserm, CIMI-Paris, Paris, France
- ImmmunResQ Department, Transgene, Lyon, France
| | - Alix Minaud
- Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, Inserm, CIMI-Paris, Paris, France
| | | | - Manon Chauvin
- Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, Inserm, CIMI-Paris, Paris, France
| | - Jamila Dhiab
- Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, Inserm, CIMI-Paris, Paris, France
| | - Hélène Vallet
- Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, Inserm, CIMI-Paris, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Unité de Gériatrie Aigue, Paris, France
| | - Jacques Boddaert
- Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, Inserm, CIMI-Paris, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpétrière, Unité périopératoire gériatrique, Paris, France
| | | | | | | | - Luc Barraud
- ImmmunResQ Department, Transgene, Lyon, France
| | - Delphine Sauce
- Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, Inserm, CIMI-Paris, Paris, France
| |
Collapse
|
13
|
Athale J, Gallagher J, Busch LM. Management of Severe and Critical COVID-19 Infection with Immunotherapies. Infect Dis Clin North Am 2022; 36:761-775. [PMID: 36328635 PMCID: PMC9293954 DOI: 10.1016/j.idc.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Following the reduction in mortality demonstrated by dexamethasone treatment in severe COVID-19, many targeted immunotherapies have been investigated. Thus far, inhibition of IL-6 and JAK pathways have the most robust data and have been granted Emergency Use Authorization for treatment of severe disease. However, it must be noted that critically ill patients comprised a relatively small proportion of most of the trials of COVID-19 therapeutics, despite bearing a disproportionate burden of morbidity and mortality. Furthermore, the rapidity and fluidity with which clinical trials have been conducted in the pandemic setting have contributed to difficulty in extrapolating available trial data to critically ill patients. The exclusion of many patients requiring invasive mechanical ventilation, preponderance of ordinal scale based endpoints, and frequent lack of blinding are particular challenges. More data is needed to identify beneficial treatments in the complex milieu of critical illness from COVID-19 infection.
Collapse
Affiliation(s)
- Janhavi Athale
- Critical Care Medicine Department, Mayo Clinic, Phoenix, AZ, USA
| | - Jolie Gallagher
- Department of Pharmacy, Emory University Hospital, Atlanta, GA, USA
| | - Lindsay M Busch
- Division of Infectious Diseases, Emory University School of Medicine, 101 Woodruff Memorial Building, Suite 2101, Atlanta, GA 30322, USA; Emory Critical Care Center, Atlanta, GA, USA.
| |
Collapse
|
14
|
Humicola Trauma-related Invasive Fungal Infection in an Immunocompetent Patient. Plast Reconstr Surg Glob Open 2022; 10:e4568. [PMID: 36405049 PMCID: PMC9668556 DOI: 10.1097/gox.0000000000004568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/10/2022] [Indexed: 01/25/2023]
Abstract
The majority of invasive fungal infections arise in immunocompromised patients; however, there exist many clinical interventions and physiologic phenomena in the setting of traumatic injury that induce immunosuppressant states. Enhanced clinical suspicion and early detection of invasive fungal infections has played an increasingly pertinent role in clinical management of patients admitted for traumatic injury, given its substantial morbidity and mortality rates. In this case report, we discuss a case of trauma-related invasive fungal infection by a rare humicola pathogen in a previously immunocompetent patient. We present this case in hopes of instilling a high index of clinical suspicion for trauma-related invasive fungal infections. We also discuss the role of negative pressure wound therapy and aggressive surgical management, including debridement and various levels of amputation to optimize patient outcomes. Clinical management of trauma-related IFI has adopted increasingly aggressive approaches with respect to its formidable morbidity and mortality rates. Multidisciplinary discussions and patient-centered care are essential when making surgical decisions that impact quality of life such as amputation level.
Collapse
|
15
|
Dobson GP, Morris JL, Letson HL. Why are bleeding trauma patients still dying? Towards a systems hypothesis of trauma. Front Physiol 2022; 13:990903. [PMID: 36148305 PMCID: PMC9485567 DOI: 10.3389/fphys.2022.990903] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022] Open
Abstract
Over the years, many explanations have been put forward to explain early and late deaths following hemorrhagic trauma. Most include single-event, sequential contributions from sympathetic hyperactivity, endotheliopathy, trauma-induced coagulopathy (TIC), hyperinflammation, immune dysfunction, ATP deficit and multiple organ failure (MOF). We view early and late deaths as a systems failure, not as a series of manifestations that occur over time. The traditional approach appears to be a by-product of last century's highly reductionist, single-nodal thinking, which also extends to patient management, drug treatment and drug design. Current practices appear to focus more on alleviating symptoms rather than addressing the underlying problem. In this review, we discuss the importance of the system, and focus on the brain's "privilege" status to control secondary injury processes. Loss of status from blood brain barrier damage may be responsible for poor outcomes. We present a unified Systems Hypothesis Of Trauma (SHOT) which involves: 1) CNS-cardiovascular coupling, 2) Endothelial-glycocalyx health, and 3) Mitochondrial integrity. If central control of cardiovascular coupling is maintained, we hypothesize that the endothelium will be protected, mitochondrial energetics will be maintained, and immune dysregulation, inflammation, TIC and MOF will be minimized. Another overlooked contributor to early and late deaths following hemorrhagic trauma is from the trauma of emergent surgery itself. This adds further stress to central control of secondary injury processes. New point-of-care drug therapies are required to switch the body's genomic and proteomic programs from an injury phenotype to a survival phenotype. Currently, no drug therapy exists that targets the whole system following major trauma.
Collapse
Affiliation(s)
- Geoffrey P. Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | | | | |
Collapse
|
16
|
Dobson GP, Morris JL, Letson HL. Immune dysfunction following severe trauma: A systems failure from the central nervous system to mitochondria. Front Med (Lausanne) 2022; 9:968453. [PMID: 36111108 PMCID: PMC9468749 DOI: 10.3389/fmed.2022.968453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 12/20/2022] Open
Abstract
When a traumatic injury exceeds the body's internal tolerances, the innate immune and inflammatory systems are rapidly activated, and if not contained early, increase morbidity and mortality. Early deaths after hospital admission are mostly from central nervous system (CNS) trauma, hemorrhage and circulatory collapse (30%), and later deaths from hyperinflammation, immunosuppression, infection, sepsis, acute respiratory distress, and multiple organ failure (20%). The molecular drivers of secondary injury include damage associated molecular patterns (DAMPs), pathogen associated molecular patterns (PAMPs) and other immune-modifying agents that activate the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic stress response. Despite a number of drugs targeting specific anti-inflammatory and immune pathways showing promise in animal models, the majority have failed to translate. Reasons for failure include difficulty to replicate the heterogeneity of humans, poorly designed trials, inappropriate use of specific pathogen-free (SPF) animals, ignoring sex-specific differences, and the flawed practice of single-nodal targeting. Systems interconnectedness is a major overlooked factor. We argue that if the CNS is protected early after major trauma and control of cardiovascular function is maintained, the endothelial-glycocalyx will be protected, sufficient oxygen will be delivered, mitochondrial energetics will be maintained, inflammation will be resolved and immune dysfunction will be minimized. The current challenge is to develop new systems-based drugs that target the CNS coupling of whole-body function.
Collapse
Affiliation(s)
- Geoffrey P. Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | | | | |
Collapse
|
17
|
Fausther-Bovendo H, Qiu X, Babuadze GG, Azizi H, Pedersen J, Wong G, Kobinger GP. Transient Liver Damage and Hemolysis Are Associated With an Inhibition of Ebola Virus Glycoprotein-Specific Antibody Response and Lymphopenia. J Infect Dis 2022; 225:1852-1855. [PMID: 34791300 PMCID: PMC9113424 DOI: 10.1093/infdis/jiab552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/27/2021] [Indexed: 11/14/2022] Open
Abstract
Numerous studies have demonstrated the importance of the adaptive immunity for survival following Ebola virus (EBOV) infection. To evaluate the contribution of tissue damage to EBOV-induced immune suppression, acute liver damage or hemolysis, 2 symptoms associated with lethal EBOV infection, were chemically induced in vaccinated mice. Results show that either liver damage or hemolysis was sufficient to inhibit the host humoral response against EBOV glycoprotein and to drastically reduce the level of circulating T cells. This study thus provides a possible mechanism for the limited specific antibody production and lymphopenia in individuals with lethal hemorrhagic fever infections.
Collapse
Affiliation(s)
- Hugues Fausther-Bovendo
- Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Xiangguo Qiu
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - George Giorgi Babuadze
- Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Hiva Azizi
- Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Jannie Pedersen
- Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Gary Wong
- Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Quebec, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Gary P Kobinger
- Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Quebec, Canada
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School 27 of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Rosen AW, Gögenur M, Paulsen IW, Olsen J, Eiholm S, Kirkeby LT, Pedersen OB, Pallisgaard N, Gögenur I. Perioperative changes in cell-free DNA for patients undergoing surgery for colon cancer. BMC Gastroenterol 2022; 22:168. [PMID: 35387596 PMCID: PMC8988386 DOI: 10.1186/s12876-022-02217-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Various conditions with cellular decay are associated with elevated cell-free DNA (cfDNA). This study aimed to investigate if perioperatively measured cfDNA levels were associated with the surgical approach, complications, or recurrence. METHODS Plasma was obtained from patients who underwent surgery for colon cancer at admission and at the time of discharge. Quantitative measurement of cfDNA was performed by amplifying two amplicons of 102 base pairs (bp) and 132 bp of Beta-2-Microglobulin (B2M) and Peptidyl-Prolyl cis-trans Isomerase A (PPIA), respectively. RESULTS cfDNA was measured in 48 patients who underwent surgery for colonic cancer. Sixteen patients had recurrence during the follow-up period, fifteen developed a postoperative complication, and seventeen patients developed neither, acting as the control group. Postoperative cfDNA levels were significantly elevated from baseline samples, across all groups, with a median preoperatively B2M level of 48.3 alleles per mL and postoperatively of 220 alleles per mL and a median preoperatively level PPIA of 26.9 alleles per mL and postoperatively of 111.6 alleles per mL (p < 0.001 for B2M and p < 0.001 for PPIA). Postoperative levels of PPIA, but not B2M, were significantly higher in patients experiencing complications than in the control group (p = 0.036). However, a tendency towards an association between the surgical approach and the changes in cfDNA levels was found for PPIA (p = 0.058), and B2M (p = 0.087). CONCLUSIONS Plasma cfDNA was increased after surgery in all patients with colon cancer. Postoperative PPIA levels were significantly higher in patients experiencing surgical complications but not in B2M levels.
Collapse
Affiliation(s)
- Andreas W Rosen
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
| | - Mikail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark.
| | - Isabella W Paulsen
- Department of Clinical Immunology, Zealand University Hospital, Ringstedgade 77b, 4700, Næstved, Denmark.,Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
| | - Jesper Olsen
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark.,Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
| | - Susanne Eiholm
- Department of Pathology, Zealand University Hospital, Sygehusvej 9, 4000, Roskilde, Denmark
| | - Lene T Kirkeby
- Department of Surgery, Zealand University Hospital, Sygehusvej 6, 4000, Roskilde, Denmark
| | - Ole B Pedersen
- Department of Clinical Immunology, Zealand University Hospital, Ringstedgade 77b, 4700, Næstved, Denmark
| | - Niels Pallisgaard
- Department of Pathology, Zealand University Hospital, Sygehusvej 9, 4000, Roskilde, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.,Danish Colorectal Cancer Group, Copenhagen, Denmark
| |
Collapse
|
19
|
Udovicic I, Stanojevic I, Djordjevic D, Zeba S, Rondovic G, Abazovic T, Lazic S, Vojvodic D, To K, Abazovic D, Khan W, Surbatovic M. Immunomonitoring of Monocyte and Neutrophil Function in Critically Ill Patients: From Sepsis and/or Trauma to COVID-19. J Clin Med 2021; 10:5815. [PMID: 34945111 PMCID: PMC8706110 DOI: 10.3390/jcm10245815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Immune cells and mediators play a crucial role in the critical care setting but are understudied. This review explores the concept of sepsis and/or injury-induced immunosuppression and immuno-inflammatory response in COVID-19 and reiterates the need for more accurate functional immunomonitoring of monocyte and neutrophil function in these critically ill patients. in addition, the feasibility of circulating and cell-surface immune biomarkers as predictors of infection and/or outcome in critically ill patients is explored. It is clear that, for critically ill, one size does not fit all and that immune phenotyping of critically ill patients may allow the development of a more personalized approach with tailored immunotherapy for the specific patient. In addition, at this point in time, caution is advised regarding the quality of evidence of some COVID-19 studies in the literature.
Collapse
Affiliation(s)
- Ivo Udovicic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Ivan Stanojevic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Dragan Djordjevic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Snjezana Zeba
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Goran Rondovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Tanja Abazovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
| | - Srdjan Lazic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute of Epidemiology, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Danilo Vojvodic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Kendrick To
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK; (K.T.); (W.K.)
| | - Dzihan Abazovic
- Emergency Medical Centar of Montenegro, Vaka Djurovica bb, 81000 Podgorica, Montenegro;
| | - Wasim Khan
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK; (K.T.); (W.K.)
| | - Maja Surbatovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| |
Collapse
|
20
|
Selective Inhibition of IL-6 Trans-Signaling Has No Beneficial Effect on the Posttraumatic Cytokine Release after Multiple Trauma in Mice. Life (Basel) 2021; 11:life11111252. [PMID: 34833127 PMCID: PMC8617644 DOI: 10.3390/life11111252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 12/26/2022] Open
Abstract
While improvements in pre-hospital and in-hospital care allow more multiple trauma patients to advance to intensive care, the incidence of posttraumatic multiple organ dysfunction syndrome (MODS) is on the rise. Herein, the influence of a selective IL-6 trans-signaling inhibition on posttraumatic cytokine levels was investigated as an approach to prevent MODS caused by a dysbalanced posttraumatic immune reaction. Therefore, the artificial IL-6 trans-signaling inhibitor sgp130Fc was deployed in a murine multiple trauma model (femoral fracture plus bilateral chest trauma). The traumatized mice were treated with sgp130Fc (FP) and compared to untreated mice (WT) and IL-6 receptor knockout mice (RKO), which received the same traumas. The overall trauma mortality was 4.4%. Microscopic pulmonary changes were apparent after multiple trauma and after isolated bilateral chest trauma. Elevated IL-6, MCP-3 and RANTES plasma levels were measured after trauma, indicating a successful induction of a systemic inflammatory reaction. Significantly reduced IL-6 and RANTES plasma levels were visible in RKO compared to WT. Only a little effect was visible in FP compared to WT. Comparable cytokine levels in WT and FP indicate neither a protective nor an adverse effect of sgp130Fc on the cytokine release after femoral fracture and bilateral chest trauma.
Collapse
|
21
|
Bobrov AG, Getnet D, Swierczewski B, Jacobs A, Medina-Rojas M, Tyner S, Watters C, Antonic V. Evaluation of Pseudomonas aeruginosa pathogenesis and therapeutics in military-relevant animal infection models. APMIS 2021; 130:436-457. [PMID: 34132418 DOI: 10.1111/apm.13119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/21/2021] [Indexed: 01/02/2023]
Abstract
Modern combat-related injuries are often associated with acute polytrauma. As a consequence of severe combat-related injuries, a dysregulated immune response results in serious infectious complications. The gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen that often causes life-threatening bloodstream, lung, bone, urinary tract, and wound infections following combat-related injuries. The rise in the number of multidrug-resistant P. aeruginosa strains has elevated its importance to civilian clinicians and military medicine. Development of novel therapeutics and treatment options for P. aeruginosa infections is urgently needed. During the process of drug discovery and therapeutic testing, in vivo testing in animal models is a critical step in the bench-to-bedside approach, and required for Food and Drug Administration approval. Here, we review current and past literature with a focus on combat injury-relevant animal models often used to understand infection development, the interplay between P. aeruginosa and the host, and evaluation of novel treatments. Specifically, this review focuses on the following animal infection models: wound, burn, bone, lung, urinary tract, foreign body, and sepsis.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Derese Getnet
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Brett Swierczewski
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Anna Jacobs
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Maria Medina-Rojas
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Stuart Tyner
- US Army Medical Research and Development Command Military Infectious Diseases Research Program, Frederick, Maryland, USA
| | - Chase Watters
- Naval Medical Research Unit-3, Ghana Detachment, Accra, Ghana
| | - Vlado Antonic
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
22
|
Bergmann CB, Beckmann N, Salyer CE, Hanschen M, Crisologo PA, Caldwell CC. Potential Targets to Mitigate Trauma- or Sepsis-Induced Immune Suppression. Front Immunol 2021; 12:622601. [PMID: 33717127 PMCID: PMC7947256 DOI: 10.3389/fimmu.2021.622601] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
In sepsis and trauma, pathogens and injured tissue provoke a systemic inflammatory reaction which can lead to overwhelming inflammation. Concurrent with the innate hyperinflammatory response is adaptive immune suppression that can become chronic. A current key issue today is that patients who undergo intensive medical care after sepsis or trauma have a high mortality rate after being discharged. This high mortality is thought to be associated with persistent immunosuppression. Knowledge about the pathophysiology leading to this state remains fragmented. Immunosuppressive cytokines play an essential role in mediating and upholding immunosuppression in these patients. Specifically, the cytokines Interleukin-10 (IL-10), Transforming Growth Factor-β (TGF-β) and Thymic stromal lymphopoietin (TSLP) are reported to have potent immunosuppressive capacities. Here, we review their ability to suppress inflammation, their dynamics in sepsis and trauma and what drives the pathologic release of these cytokines. They do exert paradoxical effects under certain conditions, which makes it necessary to evaluate their functions in the context of dynamic changes post-sepsis and trauma. Several drugs modulating their functions are currently in clinical trials in the treatment of other pathologies. We provide an overview of the current literature on the effects of IL-10, TGF-β and TSLP in sepsis and trauma and suggest therapeutic approaches for their modulation.
Collapse
Affiliation(s)
- Christian B Bergmann
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Nadine Beckmann
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Christen E Salyer
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Marc Hanschen
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Peter A Crisologo
- Division of Podiatric Medicine and Surgery, Critical Care, and Acute Care Surgery, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Charles C Caldwell
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States.,Division of Research, Shriners Hospital for Children, Cincinnati, OH, United States
| |
Collapse
|
23
|
Zhao H, Shao X, Liu H, Liu Q, Lu J, Li W. The circRNA_102911/miR-129-5p/SOX6 axis is involved with T lymphocyte immune function in elderly patients with laparoscopic left hepatectomy for hepatolithiasis. Exp Ther Med 2020; 21:150. [PMID: 33456517 PMCID: PMC7792479 DOI: 10.3892/etm.2020.9582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to investigate the impact of laparoscopic left hepatectomy (LLH) for hepatolithiasis on the T lymphocyte immune changes of elderly patients and to analyze underlying mechanisms of action behind these changes. A total of 164 patients who underwent LLH due to left-sided hepatolithiasis were recruited. In terms of T lymphocyte immune changes, it was found that firstly, the basic quantity of peripheral lymphocytes in the elderly group was significantly lower than that in a younger preoperative group. Secondly, after surgical trauma, the immune function of T lymphocytes had a significant decline and lasted longer when compared with younger patients, which was reflected by the perioperative changes in the T lymphocyte proliferative ability, levels of IL-2 secreted by T lymphocytes and the percentage of CD3+/CD4+ T lymphocytes in the peripheral blood. Circular RNA (circRNA) 102911 (102911) was upregulated and microRNA (miR)-129-5p was downregulated in CD3+/CD4+ T lymphocytes from elderly patients with LLH for hepatolithiasis. Furthermore, the overexpression of 102911 inhibited the proliferation of CD3+/CD4+ T lymphocytes as well as promoting cell apoptosis, with the opposite effects being observed on knockdown of 102911. miR-129-5p is involved in the proliferation and apoptosis of CD3+/CD4+ T lymphocytes and may be a promising target of 102911. Moreover, SOX6 is a downstream molecule of miR-129-5p. Immune function and number of T lymphocytes decreased significantly after surgical trauma compared to younger patients, and this decline lasted longer in older patients treated with LLH for hepatolithiasis. The 102911/miR-129-5p/SOX6 axis was found to be involved in T lymphocytes immune function, which provided a novel insight for the treatment of elderly patients with hepatolithiasis.
Collapse
Affiliation(s)
- Hongqiang Zhao
- Translational Medicine Research Center, Fourth Medical Center and Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100048, P.R. China.,Department of Pathology, Fourth Medical Center of The Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - Xiaoyu Shao
- Department of Ultrasound, Community Health Service Center, Changping, Beijing 100096, P.R. China
| | - Haorun Liu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Qi Liu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jiangyang Lu
- Department of Pathology, Fourth Medical Center of The Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - Weimin Li
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
24
|
Tsurumi A, Flaherty PJ, Que YA, Ryan CM, Mendoza AE, Almpani M, Bandyopadhaya A, Ogura A, Dhole YV, Goodfield LF, Tompkins RG, Rahme LG. Multi-Biomarker Prediction Models for Multiple Infection Episodes Following Blunt Trauma. iScience 2020; 23:101659. [PMID: 33047099 PMCID: PMC7539926 DOI: 10.1016/j.isci.2020.101659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/25/2020] [Accepted: 10/05/2020] [Indexed: 11/21/2022] Open
Abstract
Severe trauma predisposes patients to multiple independent infection episodes (MIIEs), leading to augmented morbidity and mortality. We developed a method to identify increased MIIE risk before clinical signs appear, which is fundamentally different from existing approaches entailing infections' detection after their establishment. Applying machine learning algorithms to genome-wide transcriptome data from 128 adult blunt trauma patients' (42 MIIE cases and 85 non-cases) leukocytes collected ≤48 hr of injury and ≥3 days before any infection, we constructed a 15-transcript and a 26-transcript multi-biomarker panel model with the least absolute shrinkage and selection operator (LASSO) and Elastic Net, respectively, which accurately predicted MIIE (Area Under Receiver Operating Characteristics Curve [AUROC] [95% confidence intervals, CI]: 0.90 [0.84–0.96] and 0.92 [0.86–0.96]) and significantly outperformed clinical models. Gene Ontology and network analyses found various pathways to be relevant. External validation found our model to be generalizable. Our unique precision medicine approach can be applied to a wide range of patient populations and outcomes. We describe a method for predicting multiple independent infection episodes (MIIEs). We applied machine learning algorithms to transcriptome data to develop models The biomarker prediction models significantly outperformed clinical models External validation in another trauma cohort found evidence of generalizability
Collapse
Affiliation(s)
- Amy Tsurumi
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA 02114, USA
| | - Patrick J. Flaherty
- Department of Mathematics and Statistics, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Yok-Ai Que
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland, 3010 Bern, Switzerland
| | - Colleen M. Ryan
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA 02114, USA
| | - April E. Mendoza
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
| | - Marianna Almpani
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA 02114, USA
| | - Arunava Bandyopadhaya
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA 02114, USA
| | - Asako Ogura
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yashoda V. Dhole
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
| | - Laura F. Goodfield
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
| | - Ronald G. Tompkins
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
| | - Laurence G. Rahme
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA 02114, USA
- Corresponding author
| |
Collapse
|
25
|
Early Lymphopenia and Infections in Nontraumatic Subarachnoid Hemorrhage Patients. J Neurosurg Anesthesiol 2020; 34:243-247. [PMID: 33208711 DOI: 10.1097/ana.0000000000000744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/06/2020] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Subarachnoid hemorrhage (SAH) is associated with high morbidity and mortality. A certain degree of immunodepression has been reported during critical illness, and lymphopenia identified as an independent predictor of poor outcome; no data are available for critically ill SAH patients. We aimed to evaluate the prevalence of lymphopenia among SAH patients and its association with hospital-acquired infection. METHODS Retrospective cohort study of adult patients admitted to an intensive care unit with nontraumatic SAH between January 2011 and May 2016. Lymphocyte count was obtained daily for the first 5 days; lymphopenia was defined as lymphocyte count <1000/mm. The occurrence of infection during the first 21 days after hospital admission, hospital mortality, and unfavorable neurological outcome (Glasgow Outcome Scale score 1 to 3 at 3 mo) were recorded. RESULTS Data from 270 patients were analyzed (median age 54 y; male 45%); 121 (45%) patients had lymphopenia and 62 (23%) patients developed infections. Median (25th to 75th percentiles) lymphocyte count at hospital admission was 1280 (890 to 1977)/mm. Lymphopenia patients had more episodes of infection (38/121, 31% vs. 24/139, 17%; P=0.003) than nonlymphopenia patients, while mortality and unfavorable outcome were similar. Lymphopenia was not independently associated with the development of infection, unfavorable neurological outcome or with mortality. CONCLUSIONS Early lymphopenia is common after SAH, but is not significantly associated with the development of infections or with poor outcome.
Collapse
|
26
|
De la Vega R, Coenen M, Müller S, Nagelli C, Quirk N, Lopez de Padilla C, Evans C. Effects of FK506 on the healing of diaphyseal, critical size defects in the rat femur. Eur Cell Mater 2020; 40:160-171. [PMID: 33021330 PMCID: PMC7816824 DOI: 10.22203/ecm.v040a10] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
There is much interest in understanding the influence of the immune system on bone healing, including a number of reports suggesting a beneficial effect of FK506 (tacrolimus) in this regard. The influence of FK506 in a rat, femoral, critical size defect was examined using locally implanted, recombinant, human (rh) BMP-2 and adenovirally-transduced, autologous, adipose-derived mesenchymal stromal cells (AD-MSCs) expressing BMP-2. FK506 was delivered systemically using an implanted osmotic pump. Empty defects and those implanted with unmodified AD-MSCs did not heal in the presence or absence of FK506. Defects treated with rhBMP-2 healed with a large callus containing thin cortices and wispy trabeculae; this, too, was unaffected by FK506. A third of defects implanted with adenovirally-transduced AD-MSCs healed, but this improved to 100 % in the presence of FK506. New bone formed in response to BMP-2 synthesised endogenously by the genetically modified cells had a slimmer callus than those healed by rhBMP-2, with improved cortication and advanced reconstitution of marrow. These results suggest that FK506 may have had little effect on the intrinsic biology of bone healing, but improved healing in response to adenovirally-transduced cells by inhibiting immune responses to the first-generation adenovirus used here. Because the genetically modified cells produced bone of higher quality at far lower doses of BMP-2, this approach should be explored in subsequent research.
Collapse
Affiliation(s)
- R.E. De la Vega
- Musculoskeletal Gene Therapy Research Laboratory, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA,Department cBITE and Department IBE, MERLN - Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - M.J. Coenen
- Musculoskeletal Gene Therapy Research Laboratory, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA
| | - S.A. Müller
- Musculoskeletal Gene Therapy Research Laboratory, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA,Orthopaedic Department, University of Basel, Basel, Switzerland
| | - C.V. Nagelli
- Musculoskeletal Gene Therapy Research Laboratory, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA
| | - N.P. Quirk
- Musculoskeletal Gene Therapy Research Laboratory, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA
| | - C. Lopez de Padilla
- Musculoskeletal Gene Therapy Research Laboratory, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA
| | - C.H. Evans
- Musculoskeletal Gene Therapy Research Laboratory, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA,Address for correspondence: C.H. Evans, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
27
|
Lymphocyte Immunosuppression and Dysfunction Contributing to Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS). Shock 2020; 55:723-741. [PMID: 33021569 DOI: 10.1097/shk.0000000000001675] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT Persistent Inflammation, Immune Suppression, and Catabolism Syndrome (PICS) is a disease state affecting patients who have a prolonged recovery after the acute phase of a large inflammatory insult. Trauma and sepsis are two pathologies after which such an insult evolves. In this review, we will focus on the key clinical determinants of PICS: Immunosuppression and cellular dysfunction. Currently, relevant immunosuppressive functions have been attributed to both innate and adaptive immune cells. However, there are significant gaps in our knowledge, as for trauma and sepsis the immunosuppressive functions of these cells have mostly been described in acute phase of inflammation so far, and their clinical relevance for the development of prolonged immunosuppression is mostly unknown. It is suggested that the initial immune imbalance determines the development of PCIS. Additionally, it remains unclear what distinguishes the onset of immune dysfunction in trauma and sepsis and how this drives immunosuppression in these cells. In this review, we will discuss how regulatory T cells (Tregs), innate lymphoid cells, natural killer T cells (NKT cells), TCR-a CD4- CD8- double-negative T cells (DN T cells), and B cells can contribute to the development of post-traumatic and septic immunosuppression. Altogether, we seek to fill a gap in the understanding of the contribution of lymphocyte immunosuppression and dysfunction to the development of chronic immune disbalance. Further, we will provide an overview of promising diagnostic and therapeutic interventions, whose potential to overcome the detrimental immunosuppression after trauma and sepsis is currently being tested.
Collapse
|
28
|
Relland LM, Hall M, Martin DP, Nateri J, Hanson-Huber L, Beebe A, Samora W, Klamar J, Muszynski J, Tobias JD. Immune Function following Major Spinal Surgery and General Anesthesia. J Pediatr Intensive Care 2020; 10:248-255. [PMID: 34745697 DOI: 10.1055/s-0040-1716668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022] Open
Abstract
There are reported differences in the effects that general anesthetics may have on immune function after minor surgery. To date, there are no prospective trials comparing total intravenous anesthesia (TIVA) with a volatile agent-based technique and its effects on immune function after major spinal surgery in adolescents. Twenty-six adolescents undergoing spinal fusion were randomized to receive TIVA with propofol-remifentanil or a volatile agent-based technique with desflurane-remifentanil. Immune function measures were based on the antigen-presenting and cytokine production capacity, and relative proportions of cell populations. Overall characteristics of the two groups did not differ in terms of perioperative times, hemodynamics, or fluid shifts, but those treated with propofol had lower bispectral index values. Experimental groups had relatively high baseline interleukin-10 values, but both showed a significant inflammatory response with similar changes in their respective immune functions. This included a shift toward a granulocytic predominance; a transient reduction in monocyte markers with significant decrease in antigen-presenting capacity and cytokine production capacity. Anesthetic choice does not appear to differentially impact immune function, but exposure to anesthetics and surgical trauma results in reproducibly measurable suppression of both innate and adaptive immunity in adolescents undergoing posterior spinal fusion. The magnitude of this suppression was modest when compared with pediatric and adult patients with critical illnesses. This study highlighted the need to evaluate immune function in a broader population of surgical patients with higher severity of illness.
Collapse
Affiliation(s)
- Lance M Relland
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States.,Center for Clinical and Translational Research, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Mark Hall
- Center for Clinical and Translational Research, Nationwide Children's Hospital, Columbus, Ohio, United States.,Department of Pediatrics, Division of Critical Care, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - David P Martin
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Jyotsna Nateri
- Center for Clinical and Translational Research, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Lisa Hanson-Huber
- Center for Clinical and Translational Research, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Allan Beebe
- Department of Orthopedic Surgery, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Walter Samora
- Department of Orthopedic Surgery, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Jan Klamar
- Department of Orthopedic Surgery, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Jennifer Muszynski
- Center for Clinical and Translational Research, Nationwide Children's Hospital, Columbus, Ohio, United States.,Department of Pediatrics, Division of Critical Care, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Joseph D Tobias
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States
| |
Collapse
|
29
|
Thies KC, Truhlář A, Keene D, Hinkelbein J, Rützler K, Brazzi L, Vivien B. Pre-hospital blood transfusion - an ESA survey of European practice. Scand J Trauma Resusc Emerg Med 2020; 28:79. [PMID: 32795320 PMCID: PMC7427720 DOI: 10.1186/s13049-020-00774-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/29/2020] [Indexed: 01/17/2023] Open
Abstract
Background Blood products are a lifesaving commodity in the treatment of major trauma. Although there is little evidence for use of pre-hospital blood products (PHBP) in seriously injured patients, an increasing number of emergency medical services have started using PHBP for treatment of major haemorrhage. The primary aim of this survey was to establish the degree of prehospital blood product use throughout Europe and discover main indications. The secondary aim was to evaluate opinions about PHBP and also the experience and the personal views of its users. Methods The subcommittee for Critical Emergency Medicine of the European Society of Anaesthesiology (ESA) held an online survey of European Helicopter Emergency Services (HEMS) and all French Services d’Aide Médicale Urgente (SAMU) regions. It contained 13 questions both open and multiple-choice about the frequency transfusions are carried out, the PHBP used and the perceived benefit. The survey was distributed to the corresponding HEMS leads in 14 European countries. Results In total there were 172 valid responses; overall 48% of all respondents have prehospital access to packed red cells, 22% to fresh plasma and 14% use lyophilised plasma. Besides blood product administration, 94% of all services use tranexamic acid. Sixty five percent of all replies came from French and from German services (37 and 28% respectively). PHBP were mainly used for trauma related emergencies. France has the highest uptake of use of blood products at 89%, whereas the rate in Germany was far lower at 6%. Fifty five percent of the service leads felt that PHBP are beneficial, and even lifesaving in individual cases despite being needed infrequently. Conclusions We found remarkable dissimilarities in practice between the different European countries. Even if there is not an absolute consensus amongst providers on the benefit of PHBP, the majority feel they are beneficial. The difference in practice is possibly related to the perceived lack of evidence on prehospital blood transfusion. We suggest to include the use of PHBP in trauma registries in order to consolidate the existing evidence.
Collapse
Affiliation(s)
- Karl-Christian Thies
- Dept of Anaesthesiology, Critical Care and Pain Medicine, Greifswald University Medical Centre, Greifswald, Germany.
| | - Anatolij Truhlář
- Emergency Medical Services of the Hradec Kralove Region, Hradec Kralove, Czech Republic.,Department of Anaesthesiology and Intensive Care, Charles University in Prague, Faculty of Medicine, Hradec Kralove, Czech Republic.,University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Damian Keene
- Department of Military Anaesthetics and Critical Care, Royal Centre for Defence Medicine, Birmingham, United Kingdom
| | - Jochen Hinkelbein
- Department of Anaesthesiology and Intensive Care Medicine, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Kurt Rützler
- Departments of General Anaesthesiology and Outcomes Research, Cleveland Clinic, Anaesthesiology Institute, Cleveland, USA
| | - Luca Brazzi
- Department of Surgical Sciences, University of Turin, Turin, Italy.,Italy Department of Anesthesia, Intensive Care and Emergency, Città della Salute e della Scienza' hospital, Turin, Italy.,University of Torino, Turin, Italy
| | - Benoît Vivien
- SAMU de Paris, Anaesthesiology and Critical Care Department, Universitary Hospital Necker - Enfants Malades, APHP Centre - University of Paris, Paris, France
| |
Collapse
|
30
|
Relja B, Land WG. Damage-associated molecular patterns in trauma. Eur J Trauma Emerg Surg 2020; 46:751-775. [PMID: 31612270 PMCID: PMC7427761 DOI: 10.1007/s00068-019-01235-w] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022]
Abstract
In 1994, the "danger model" argued that adaptive immune responses are driven rather by molecules released upon tissue damage than by the recognition of "strange" molecules. Thus, an alternative to the "self versus non-self recognition model" has been provided. The model, which suggests that the immune system discriminates dangerous from safe molecules, has established the basis for the future designation of damage-associated molecular patterns (DAMPs), a term that was coined by Walter G. Land, Seong, and Matzinger. The pathological importance of DAMPs is barely somewhere else evident as in the posttraumatic or post-surgical inflammation and regeneration. Since DAMPs have been identified to trigger specific immune responses and inflammation, which is not necessarily detrimental but also regenerative, it still remains difficult to describe their "friend or foe" role in the posttraumatic immunogenicity and healing process. DAMPs can be used as biomarkers to indicate and/or to monitor a disease or injury severity, but they also may serve as clinically applicable parameters for optimized indication of the timing for, i.e., secondary surgeries. While experimental studies allow the detection of these biomarkers on different levels including cellular, tissue, and circulatory milieu, this is not always easily transferable to the human situation. Thus, in this review, we focus on the recent literature dealing with the pathophysiological importance of DAMPs after traumatic injury. Since dysregulated inflammation in traumatized patients always implies disturbed resolution of inflammation, so-called model of suppressing/inhibiting inducible DAMPs (SAMPs) will be very briefly introduced. Thus, an update on this topic in the field of trauma will be provided.
Collapse
Affiliation(s)
- Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany.
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590, Frankfurt, Germany.
| | - Walter Gottlieb Land
- Molecular ImmunoRheumatology, INSERM UMR_S1109, Laboratory of Excellence Transplantex, University of Strasbourg, Strasbourg, France
| |
Collapse
|
31
|
Weinstock LD, Forsmo JE, Wilkinson A, Ueda J, Wood LB. Experimental Control of Macrophage Pro-Inflammatory Dynamics Using Predictive Models. Front Bioeng Biotechnol 2020; 8:666. [PMID: 32766211 PMCID: PMC7381235 DOI: 10.3389/fbioe.2020.00666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022] Open
Abstract
Macrophage activity is a major component of the healthy response to infection and injury that consists of tightly regulated early pro-inflammatory activation followed by anti-inflammatory and regenerative activity. In numerous diseases, however, macrophage polarization becomes dysregulated and can not only impair recovery, but can promote further injury and pathogenesis, e.g., after trauma or in diabetic ulcers. Dysregulated macrophages may either fail to polarize or become chronically polarized, resulting in increased production of cytotoxic factors, diminished capacity to clear pathogens, or failure to promote tissue regeneration. In these cases, a method of predicting and dynamically controlling macrophage polarization will enable a new strategy for treating diverse inflammatory diseases. In this work, we developed a model-predictive control framework to temporally regulate macrophage polarization. Using RAW 264.7 macrophages as a model system, we enabled temporal control by identifying transfer function models relating the polarization marker iNOS to exogenous pro- and anti-inflammatory stimuli. These stimuli-to-iNOS response models were identified using linear autoregressive with exogenous input terms (ARX) equations and were coupled with non-linear elements to account for experimentally identified supra-additive and hysteretic effects. Using this model architecture, we were able to reproduce experimentally observed temporal iNOS dynamics induced by lipopolysaccharides (LPS) and interferon gamma (IFN-γ). Moreover, the identified model enabled the design of time-varying input trajectories to experimentally sustain the duration and magnitude of iNOS expression. By designing transfer function models with the intent to predict cell behavior, we were able to predict and experimentally obtain temporal regulation of iNOS expression using LPS and IFN-γ from both naïve and non-naïve initial states. Moreover, our data driven models revealed decaying magnitude of iNOS response to LPS stimulation over time that could be recovered using combined treatment with both LPS and IFN-γ. Given the importance of dynamic tissue macrophage polarization and overall inflammatory regulation to a broad number of diseases, the temporal control methodology presented here will have numerous applications for regulating immune activity dynamics in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Laura D. Weinstock
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - James E. Forsmo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alexis Wilkinson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jun Ueda
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Levi B. Wood
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
32
|
Machine learning for the detection of early immunological markers as predictors of multi-organ dysfunction. Sci Data 2019; 6:328. [PMID: 31857590 PMCID: PMC6923383 DOI: 10.1038/s41597-019-0337-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
The immune response to major trauma has been analysed mainly within post-hospital admission settings where the inflammatory response is already underway and the early drivers of clinical outcome cannot be readily determined. Thus, there is a need to better understand the immediate immune response to injury and how this might influence important patient outcomes such as multi-organ dysfunction syndrome (MODS). In this study, we have assessed the immune response to trauma in 61 patients at three different post-injury time points (ultra-early (<=1 h), 4-12 h, 48-72 h) and analysed relationships with the development of MODS. We developed a pipeline using Absolute Shrinkage and Selection Operator and Elastic Net feature selection methods that were able to identify 3 physiological features (decrease in neutrophil CD62L and CD63 expression and monocyte CD63 expression and frequency) as possible biomarkers for MODS development. After univariate and multivariate analysis for each feature alongside a stability analysis, the addition of these 3 markers to standard clinical trauma injury severity scores yields a Generalized Liner Model (GLM) with an average Area Under the Curve value of 0.92 ± 0.06. This performance provides an 8% improvement over the Probability of Survival (PS14) outcome measure and a 13% improvement over the New Injury Severity Score (NISS) for identifying patients at risk of MODS.
Collapse
|
33
|
Bielen K, 's Jongers B, Boddaert J, Lammens C, Jorens PG, Malhotra-Kumar S, Goossens H, Kumar-Singh S. Mechanical Ventilation Induces Interleukin 4 Secretion in Lungs and Reduces the Phagocytic Capacity of Lung Macrophages. J Infect Dis 2019; 217:1645-1655. [PMID: 29140452 DOI: 10.1093/infdis/jix573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/06/2017] [Indexed: 12/24/2022] Open
Abstract
Patients receiving mechanical ventilation are at risk of developing ventilator-associated pneumonia. Here, we show that clinically utilized ventilation protocols in rats with 5 mL/kg or 8 mL/kg tidal volumes cause increased interleukin 4 (IL-4) expression, lowered ratio of TH1:TH2 transcriptional factors (Tbet:Gata3), and increased arginase 1-positive (Arg1+) macrophages and eosinophils in lungs. Macrophages from ventilated lungs had reduced ex vivo capacity toward phagocytosing bacteria. Ventilated animals, when further challenged with bacterial pneumonia, continued to show persistence of Arg1+ M2 macrophages as well as an increased bacterial burden compared with spontaneously breathing animals receiving the same bacterial dose. Increased IL-4 expression also occurred in a mouse ventilation model, and abrogation of IL-4 signaling restored lung bacterial burden in an IL-4Rα-/- ventilator-associated pneumonia model. Our data suggest that mechanical ventilation induces an immunosuppressive state in lungs, providing new insight in the development of ventilator-associated pneumonia.
Collapse
Affiliation(s)
- Kenny Bielen
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp Wilrijk Belgium.,Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk Belgium
| | - Bart 's Jongers
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp Wilrijk Belgium.,Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk Belgium
| | - Jan Boddaert
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp Wilrijk Belgium
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk Belgium
| | - Philippe G Jorens
- Department of Critical Care Medicine, Antwerp University Hospital and University of Antwerp, Laboratory of Experimental Medicine and Pediatrics (LEMP), Edegem, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk Belgium
| | - Samir Kumar-Singh
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp Wilrijk Belgium.,Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk Belgium
| |
Collapse
|
34
|
Cavaillon JM, Giamarellos-Bourboulis EJ. Immunosuppression is Inappropriately Qualifying the Immune Status of Septic and SIRS Patients. Shock 2019; 52:307-317. [PMID: 30239420 DOI: 10.1097/shk.0000000000001266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunosuppression is the most commonly used concept to qualify the immune status of patients with either sterile systemic inflammatory response syndrome (SIRS) or sepsis. In this review we attempt to demonstrate that the concept of immunosuppression is an oversimplification of the complex anti-inflammatory response that occurs in patients dealing with a severe sterile or infectious insult. Particularly, the immune status of leukocytes varies greatly depending on the compartment from where they are derived from. Furthermore, although certain functions of immune cells present in the blood stream or in the hematopoietic organs can be significantly diminished, other functions are either unchanged or even enhanced. This juxtaposition illustrates that there is no global defect. The mechanisms called reprogramming or trained innate immunity are probably aimed at preventing a generalized deleterious inflammatory reaction, and work to maintain the defense mechanisms at their due levels.
Collapse
|
35
|
Immunostimulatory functions of adoptively transferred MDSCs in experimental blunt chest trauma. Sci Rep 2019; 9:7992. [PMID: 31142770 PMCID: PMC6541619 DOI: 10.1038/s41598-019-44419-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/14/2019] [Indexed: 01/15/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) expand during inflammation and exhibit immunomodulatory functions on innate and adaptive immunity. However, their impact on trauma-induced immune responses, characterized by an early pro-inflammatory phase and dysregulated adaptive immunity involving lymphocyte apoptosis, exhaustion and unresponsiveness is less clear. Therefore, we adoptively transferred in vitro-generated MDSCs shortly before experimental blunt chest trauma (TxT). MDSCs preferentially homed into spleen and liver, but were undetectable in the injured lung, although pro-inflammatory mediators transiently increased in the bronchoalveolar lavage (BAL). Surprisingly, MDSC treatment strongly increased splenocyte numbers, however, without altering the percentage of splenic leukocyte populations. T cells of MDSC-treated TxT mice exhibited an activated phenotype characterized by expression of activation markers and elevated proliferative capacity in vitro, which was not accompanied by up-regulated exhaustion markers or unresponsiveness towards in vitro activation. Most importantly, also T cell expansion after staphylococcal enterotoxin B (SEB) stimulation in vivo was unchanged between MDSC-treated or untreated mice. After MDSC transfer, T cells preferentially exhibited a Th1 phenotype, a prerequisite to circumvent post-traumatic infectious complications. Our findings reveal a totally unexpected immunostimulatory role of adoptively transferred MDSCs in TxT and might offer options to interfere with post-traumatic malfunction of the adaptive immune response.
Collapse
|
36
|
|
37
|
The Potential for Cancer Immunotherapy in Targeting Surgery-Induced Natural Killer Cell Dysfunction. Cancers (Basel) 2018; 11:cancers11010002. [PMID: 30577463 PMCID: PMC6356325 DOI: 10.3390/cancers11010002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
Natural Killer (NK) cells are granular lymphocytes of the innate immune system that are able to recognize and kill tumor cells without undergoing clonal selection. Discovered over 40 years ago, they have since been recognized to possess both cytotoxic and cytokine-producing effector functions. Following trauma, NK cells are suppressed and their effector functions are impaired. This is especially important for cancer patients undergoing the removal of solid tumors, as surgery has shown to contribute to the development of metastasis and cancer recurrence postoperatively. We have recently shown that NK cells are critical mediators in the formation of metastasis after surgery. While research into the mechanism(s) responsible for NK cell dysfunction is ongoing, knowledge of these mechanisms will pave the way for perioperative therapeutics with the potential to improve cancer outcomes by reversing NK cell dysfunction. This review will discuss mechanisms of suppression in the postoperative environment, including hypercoagulability, suppressive soluble factors, the expansion of suppressive cell populations, and how this affects NK cell biology, including modulation of cell surface receptors, the potential for anergy, and immunosuppressive NK cell functions. This review will also outline potential immunotherapies to reverse postoperative NK dysfunction, with the goal of preventing surgery-induced metastasis.
Collapse
|
38
|
Yu MB, Guerra J, Firek A, Langridge WHR. Extracellular vimentin modulates human dendritic cell activation. Mol Immunol 2018; 104:37-46. [PMID: 30399492 DOI: 10.1016/j.molimm.2018.09.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 08/04/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022]
Abstract
Vimentin is an intermediate filament protein traditionally considered to be an intracellular protein with a structural role. However, recent evidence suggests that vimentin can also be found outside the cell in disease conditions such as cancer, traumatic tissue injury, and inflammation. Extracellular vimentin was previously found to stimulate innate immunity by increasing monocyte and macrophage ability to kill bacteria. However, vimentin has also been previously found to decrease neutrophil infiltration into inflamed tissue. How extracellular vimentin affects the initiation of adaptive immune responses is unknown. Initiation of adaptive immunity involves priming of naïve T cells by antigen-presenting cells, the most effective of which are dendritic cells (DCs). In this study, we demonstrate how extracellular vimentin modulates lipopolysaccharide (LPS) - induced activation of human DCs. Using cytometric bead arrays, we show that extracellular vimentin decreases LPS-activated DC secretion of pro-inflammatory cytokines IL-6 and IL-12 while increasing secretion of the anti-inflammatory cytokine IL-10. Using flow cytometry, we show that extracellular vimentin does not significantly affect LPS-induced DC surface expression of MHC I (HLA-ABC) or MHC II (HLA-DR) presentation molecules, costimulatory factors (CD80, CD86), or the DC maturation marker (CD83). Further, LPS-stimulated DCs co-cultured with allogeneic naïve CD4 + T cells (Th0) induced less secretion of the pro-inflammatory Th1 effector cytokine IFN-γ in the presence of vimentin than in the presence of LPS alone. This result suggests that vimentin reduces Th1 differentiation. Taken together, our data suggest that extracellular vimentin may inhibit pro-inflammatory adaptive immune responses, by blocking DC secretion of pro-inflammatory cytokines. Thus, extracellular vimentin may play an important role in cancer or trauma-complications by inducing suppression of the adaptive immune response. In a positive sense, the presence of extracellular vimentin may prevent tissue-damage from contributing to the development of autoimmunity. Consequently, extracellular vimentin may become a novel drug target for treatment of a variety of pro- and anti-inflammatory disease conditions.
Collapse
Affiliation(s)
- Mary Beth Yu
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda, University School of Medicine, Loma Linda, CA, 92354, USA; Division of Biochemistry, Department of Basic Sciences, Loma Linda, University School of Medicine, Loma Linda, CA, 92354, USA
| | - Joshua Guerra
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda, University School of Medicine, Loma Linda, CA, 92354, USA; University of Texas at San Antonio, San Antonio, TX, USA
| | - Anthony Firek
- Section of Endocrinology, Riverside University Health System Medical Center, Moreno Valley, CA, USA
| | - William H R Langridge
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda, University School of Medicine, Loma Linda, CA, 92354, USA; Division of Biochemistry, Department of Basic Sciences, Loma Linda, University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
39
|
Wang Y, Kim J, Chan A, Whyne C, Nam D. A two phase regulation of bone regeneration: IL-17F mediates osteoblastogenesis via C/EBP-β in vitro. Bone 2018; 116:47-57. [PMID: 30010083 DOI: 10.1016/j.bone.2018.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/28/2018] [Accepted: 07/10/2018] [Indexed: 01/15/2023]
Abstract
T lymphocytes and pro-inflammatory cytokines, specifically interleukin-17F (IL-17F) have been identified as important regulators in bone regeneration during fracture repair. To better understand the molecular mechanisms of IL-17F-mediated osteoblastogenesis, a mouse pre-osteoblast cell line (MC3T3-E1) was utilized to characterize the intracellular signal transduction of IL-17F. Comparisons to the established canonical Wnt signaling pathway were made using Wnt3a ligand. Our results demonstrated greater bone marker gene expression in IL-17F-treated cells, compared to cells treated with Wnt3a. Western blot analysis confirmed degradation of β-catenin and up-regulation of two key proteins in osteoblast differentiation, Runx2 and C/EBP-β, in response to IL-17F treatment. RNA silencing of IL-17F receptors, IL-17Ra and IL-17Rc via siRNA transfection resulted in decreased expression of Act2, Runx2, and C/EBP-β, demonstrating the direct ligand-receptor interaction between IL-17F and IL-17Ra/c as an activator of osteoblastogenesis. Our findings suggest that IL-17F promotes osteoblast differentiation independent of the canonical Wnt pathway and β-catenin signaling, presenting new insights on modulating the adaptive immune response in the inflammatory phase, temporally distinct from the reparative and remodeling phases of fracture healing.
Collapse
Affiliation(s)
- Yufa Wang
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jieun Kim
- MD/PhD Program, University of Toronto, Toronto, ON, Canada
| | - Andrea Chan
- Division of Orthopaedic Surgery, University of Toronto, Toronto, ON, Canada
| | - Cari Whyne
- Sunnybrook Research Institute, Toronto, ON, Canada; Division of Orthopaedic Surgery, University of Toronto, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada
| | - Diane Nam
- Sunnybrook Research Institute, Toronto, ON, Canada; Division of Orthopaedic Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
40
|
Vieyra-Garcia PA, Wolf P. From Early Immunomodulatory Triggers to Immunosuppressive Outcome: Therapeutic Implications of the Complex Interplay Between the Wavebands of Sunlight and the Skin. Front Med (Lausanne) 2018; 5:232. [PMID: 30250844 PMCID: PMC6139367 DOI: 10.3389/fmed.2018.00232] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Phototherapy is an efficient treatment for many cutaneous diseases that involve the activation of inflammatory pathways or the overgrowth of cells with aberrant phenotype. In this review, we discuss recent advances in photoimmunology, focusing on the effects of UV-based therapies currently used in dermatology. We describe the molecular responses to the main forms of photo(chemo)therapy such as UVB, UVA-1, and PUVA that include the triggering of apoptotic or immunosuppressive pathways and help to clear diseased skin. The early molecular response to UV involves DNA photoproducts, the isomerization of urocanic acid, the secretion of biophospholipids such as platelet activating factor (PAF), the activation of aryl hydrocarbon receptor and inflammasome, and vitamin D synthesis. The simultaneous and complex interaction of these events regulates the activity of the immune system both locally and systemically, resulting in apoptosis of neoplastic and/or benign cells, reduction of cellular infiltrate, and regulation of cytokines and chemokines. Regulatory T-cells and Langerhans cells, among other skin-resident cellular populations, are deeply affected by UV exposure and are therefore important players in the mechanisms of immunomodulation and the therapeutic value of UV in all its forms. We weigh the contribution of these cells to the therapeutic application of UV and how they may participate in transferring the direct impact of UV on the skin into local and systemic immunomodulation. Moreover, we review the therapeutic mechanisms revealed by clinical and laboratory animal investigations in the most common cutaneous diseases treated with phototherapy such as psoriasis, atopic dermatitis, vitiligo, and cutaneous T-cell lymphoma. Better understanding of phototherapeutic mechanisms in these diseases will help advance treatment in general and make future therapeutic strategies more precise, targeted, personalized, safe, and efficient.
Collapse
Affiliation(s)
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Graz, Austria
| |
Collapse
|
41
|
Månsson E, Söderquist B, Nilsdotter-Augustinsson Å, Särndahl E, Demirel I. Staphylococcus epidermidis from prosthetic joint infections induces lower IL-1β release from human neutrophils than isolates from normal flora. APMIS 2018; 126:678-684. [PMID: 30168623 DOI: 10.1111/apm.12861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/22/2018] [Indexed: 11/27/2022]
Abstract
The aim of this study was to test the hypothesis that Staphylococcus epidermidis isolated from prosthetic joint infections (PJIs) differs from S. epidermidis isolated from normal flora in terms of its capacity to induce activation of caspase-1 and release of IL-1β in human neutrophils. The amount of active caspase-1 was determined over 6 h by detecting Ac-YVAD-AMC fluorescence in human neutrophils incubated with S. epidermidis isolates from PJIs (ST2) or normal flora. The amount of IL-1β was detected by ELISA in neutrophil supernatants after 6 h of incubation. Mean IL-1β release was lower after incubation with S. epidermidis from PJIs compared to isolates from normal flora, but no statistically significant difference was found in active caspase-1. Substantial inter-individual differences in both active caspase-1 and IL-1β were noted. These results suggest that evasion of innate immune response, measured as reduced capacity to induce release of IL-1β from human neutrophils, might be involved in the predominance of ST2 in S. epidermidis PJIs, but that other microbe-related factors are probably also important.
Collapse
Affiliation(s)
- Emeli Månsson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Region Västmanland - Uppsala University, Centre for Clinical Research, Hospital of Västmanland, Västerås, Sweden
| | - Bo Söderquist
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Åsa Nilsdotter-Augustinsson
- Department of Infectious Diseases, Department of Clinical and Experimental Medicine, Linköping University, Norrköping, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
42
|
Bortolotti P, Faure E, Kipnis E. Inflammasomes in Tissue Damages and Immune Disorders After Trauma. Front Immunol 2018; 9:1900. [PMID: 30166988 PMCID: PMC6105702 DOI: 10.3389/fimmu.2018.01900] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/31/2018] [Indexed: 01/15/2023] Open
Abstract
Trauma remains a leading cause of death worldwide. Hemorrhagic shock and direct injury to vital organs are responsible for early mortality whereas most delayed deaths are secondary to complex pathophysiological processes. These processes result from imbalanced systemic reactions to the multiple aggressions associated with trauma. Trauma results in the uncontrolled local and systemic release of endogenous mediators acting as danger signals [damage-associated molecular patterns (DAMPs)]. Their recognition by the innate immune system triggers a pro-inflammatory immune response paradoxically associated with concomitant immunosuppression. These responses, ranging in intensity from inappropriate to overwhelming, promote the propagation of injuries to remote organs, leading to multiple organ failure and death. Some of the numerous DAMPs released after trauma trigger the assembly of intracellular multiprotein complexes named inflammasomes. Once activated by a ligand, inflammasomes lead to the activation of a caspase. Activated caspases allow the release of mature forms of interleukin-1β and interleukin-18 and trigger a specific pro-inflammatory cell death termed pyroptosis. Accumulating data suggest that inflammasomes, mainly NLRP3, NLRP1, and AIM2, are involved in the generation of tissue damage and immune dysfunction after trauma. Following trauma-induced DAMP(s) recognition, inflammasomes participate in multiple ways in the development of exaggerated systemic and organ-specific inflammatory response, contributing to organ damage. Inflammasomes are involved in the innate responses to traumatic brain injury and contribute to the development of acute respiratory distress syndrome. Inflammasomes may also play a role in post-trauma immunosuppression mediated by dysregulated monocyte functions. Characterizing the involvement of inflammasomes in the pathogenesis of post-trauma syndrome is a key issue as they may be potential therapeutic targets. This review summarizes the current knowledge on the roles of inflammasomes in trauma.
Collapse
Affiliation(s)
- Perrine Bortolotti
- Meakins-Christie Laboratories, Department of Medicine, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Emmanuel Faure
- Meakins-Christie Laboratories, Department of Medicine, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Eric Kipnis
- Surgical Critical Care Unit, Department of Anesthesiology and Critical Care, Centre Hospitalier Regional et Universitaire de Lille, Lille, France.,Host-Pathogen Translational Research, Faculté de Médecine, Université Lille 2 Droit et Santé, Lille, France
| |
Collapse
|
43
|
Magne B, Lataillade JJ, Trouillas M. Mesenchymal Stromal Cell Preconditioning: The Next Step Toward a Customized Treatment For Severe Burn. Stem Cells Dev 2018; 27:1385-1405. [PMID: 30039742 DOI: 10.1089/scd.2018.0094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the last century, the clinical management of severe skin burns significantly progressed with the development of burn care units, topical antimicrobials, resuscitation methods, early eschar excision surgeries, and skin grafts. Despite these considerable advances, the present treatment of severe burns remains burdensome, and patients are highly susceptible to skin engraftment failure, infections, organ dysfunction, and hypertrophic scarring. Recent researches have focused on mesenchymal stromal cell (MSC) therapy and hold great promises for tissue repair, as reported in several animal studies and clinical cases. In the present review, we will provide an up-to-date outlook of the pathophysiology of severe skin burns, clinical treatment modalities and current limitations. We will then focus on MSCs and their potential in the burn wound healing both in in vitro and in vivo studies. A specific attention will be paid to the cell preconditioning approach, as a means of improving the MSC efficacy in the treatment of major skin burns. In particular, we will debate how several preconditioning cues would modulate the MSC properties to better match up with the burn pathophysiology in the course of the cell therapy. Finally, we will discuss the clinical interest and feasibility of a MSC-based therapy in comparison to their paracrine derivatives, including microvesicles and conditioned media for the treatment of major skin burn injuries.
Collapse
Affiliation(s)
- Brice Magne
- INSERM U1197-Institut de Recherche Biomédicale des Armées (IRBA)/Antenne Centre de Transfusion Sanguine des Armées (CTSA) , Clamart, France
| | - Jean-Jacques Lataillade
- INSERM U1197-Institut de Recherche Biomédicale des Armées (IRBA)/Antenne Centre de Transfusion Sanguine des Armées (CTSA) , Clamart, France
| | - Marina Trouillas
- INSERM U1197-Institut de Recherche Biomédicale des Armées (IRBA)/Antenne Centre de Transfusion Sanguine des Armées (CTSA) , Clamart, France
| |
Collapse
|
44
|
Kopan C, Tucker T, Alexander M, Mohammadi MR, Pone EJ, Lakey JRT. Approaches in Immunotherapy, Regenerative Medicine, and Bioengineering for Type 1 Diabetes. Front Immunol 2018; 9:1354. [PMID: 29963051 PMCID: PMC6011033 DOI: 10.3389/fimmu.2018.01354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Recent advances on using immune and stem cells as two-pronged approaches for type 1 diabetes mellitus (T1DM) treatment show promise for advancement into clinical practice. As T1DM is thought to arise from autoimmune attack destroying pancreatic β-cells, increasing treatments that use biologics and cells to manipulate the immune system are achieving better results in pre-clinical and clinical studies. Increasingly, focus has shifted from small molecule drugs that suppress the immune system nonspecifically to more complex biologics that show enhanced efficacy due to their selectivity for specific types of immune cells. Approaches that seek to inhibit only autoreactive effector T cells or enhance the suppressive regulatory T cell subset are showing remarkable promise. These modern immune interventions are also enabling the transplantation of pancreatic islets or β-like cells derived from stem cells. While complete immune tolerance and body acceptance of grafted islets and cells is still challenging, bioengineering approaches that shield the implanted cells are also advancing. Integrating immunotherapy, stem cell-mediated β-cell or islet production and bioengineering to interface with the patient is expected to lead to a durable cure or pave the way for a clinical solution for T1DM.
Collapse
Affiliation(s)
- Christopher Kopan
- Department of Surgery, University of California Irvine, Irvine, CA, United States
| | - Tori Tucker
- Department of Cell and Molecular Biosciences, University of California Irvine, Irvine, CA, United States
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA, United States
| | - M. Rezaa Mohammadi
- Department of Chemical Engineering and Materials Science, University of California Irvine, Irvine, CA, United States
| | - Egest J. Pone
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, United States
| | - Jonathan Robert Todd Lakey
- Department of Surgery, University of California Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
45
|
Abstract
This review summarizes a short list of currently discussed trauma-induced danger-associated molecular patterns (DAMP). Due to the bivalent character and often pleiotropic effects of a DAMP, it is difficult to describe its "friend or foe" role in post-traumatic inflammation and regeneration, both systemically as well locally in tissues. DAMP can be used as biomarkers to indicate or monitor disease or injury severity, but also may serve as clinically applicable parameters for better indication and timing of surgery. Due to the inflammatory processes at the local tissue level or the systemic level, the precise role of DAMP is not always clear to define. While in vitro and experimental studies allow for the detection of these biomarkers at the different levels of an organism-cellular, tissue, circulation-this is not always easily transferable to the human setting. Increased knowledge exploring the dual role of DAMP after trauma, and concentrating on their nuclear functions, transcriptional targets, release mechanisms, cellular sources, multiple functions, their interactions and potential therapeutic targeting is warranted.
Collapse
Affiliation(s)
- Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60590, Frankfurt, Germany.
| | - Katharina Mörs
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60590, Frankfurt, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60590, Frankfurt, Germany
| |
Collapse
|
46
|
Autologous white blood cell infusion for trauma, brain trauma, stroke and select immune dysfunction co-morbidities: A promising and timely proposal? Med Hypotheses 2018; 117:7-15. [PMID: 30077201 DOI: 10.1016/j.mehy.2018.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 11/21/2022]
Abstract
All traumas suppress the immune system, resulting in higher morbidity and mortality. Infections, poor nutritional status, chronic illness, fatigue, therapies or procedures performed during and after transport also negatively affect the immune system. Large populations are impacted by trauma worldwide and suffer enormous costs in both direct and indirect expenditures from physical, psychological and functional losses. Most therapies and studies of trauma, brain trauma, stroke, immune suppression and their co-morbidities do not address nor discuss methods that promote immune system resuscitation or efficacy to support its role in post-trauma healing and rehabilitation. These omissions present an opportunity for using autologous stored naïve (unexposed to the current trauma and co-morbidities) white blood cell infusions (autologous white blood cell infusion) (AWBCI) to supplement treatment of most traumas, trauma-associated infections, other co-morbidities and immune suppression derived problems in order to improve the global standard of trauma care. We hypothesize to give the traumatized patients back their own immune system that has been 'stored' in some fashion, either cryogenically or just after or during the trauma event [surgery, etc for example]. We emphasize that other treatments should not be replaced - rather we suggest AWBCI as concurrent therapy. We present focused select animal and human studies as proofs of concept to arrive at and support our therapeutic suggestion and hypotheses, flowing historically from donor white blood cell therapy [DLI] to close cohort white blood cell therapy to autologous white blood cell infusion [AWBCI]. We integrate the concept of personalized medicine from an evidence-based framework while maintaining scientific rigor and statistical proof as a basis of our hypotheses.
Collapse
|
47
|
Peiseler M, Kubes P. Macrophages play an essential role in trauma-induced sterile inflammation and tissue repair. Eur J Trauma Emerg Surg 2018; 44:335-349. [DOI: 10.1007/s00068-018-0956-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022]
|
48
|
Abstract
Traumatic injury as one of the world's most relevant but neglected health concerns results in modulated inflammasome activity, which is closely linked to the development of post-injury complications. Cytokine-producing capacity of cells is important for the appropriate immune response to trauma and requires not only synthesis and transcription of inflammasome components but also their activation. Unfortunately, the precise role of inflammasome in trauma is still largely unknown. However, in the following chapter, we provide an overview on the best described inflammasomes in the various settings of trauma, introducing the recent findings on the up-to-date best described NLRP inflammasomes and underlying cytokines in the inflammatory response to trauma.
Collapse
Affiliation(s)
- Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.
| | | |
Collapse
|
49
|
Medam S, Zieleskiewicz L, Duclos G, Baumstarck K, Loundou A, Alingrin J, Hammad E, Vigne C, Antonini F, Leone M. Risk factors for death in septic shock: A retrospective cohort study comparing trauma and non-trauma patients. Medicine (Baltimore) 2017; 96:e9241. [PMID: 29390356 PMCID: PMC5815768 DOI: 10.1097/md.0000000000009241] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The aim of this study was to compare septic shock directly associated-mortality between severe trauma patients and nontrauma patients to assess the role of comorbidities and age. We conducted a retrospective study in an intensive care unit (ICU) (15 beds) of a university hospital (928 beds). From January 2009 to May 2015, we reviewed 2 anonymized databases including severe trauma patients and nontrauma patients. We selected the patients with a septic shock episode. Among 385 patients (318 nontrauma patients and 67 severe trauma patients), the ICU death rate was 43%. Septic shock was directly responsible for death among 35% of our cohort, representing 123 (39%) nontrauma patients and 10 (15%) trauma patients (P < 0.0). A sequential organ failure assessment score above 12 (odds ratio [OR]: 6.8; 95% confident interval (CI) [1.3-37], P = 0.025) was independently associated with septic shock associated-mortality, whereas severe trauma was a protective factor (OR: 0.26; 95% CI [0.08-0.78], P = 0.01). From these independent risk factors, we determined the probability of septic shock associated-mortality. The receiver-operating characteristics curve has an area under the curve at 0.76 with sensitivity of 55% and specificity of 86%. Trauma appears as a protective factor, whereas the severity of organ failure has a major role in the mortality of septic shock. However, because of the study's design, unmeasured confounding factors should be taken into account in our findings.
Collapse
Affiliation(s)
- Sophie Medam
- Aix Marseille Université, Service d’anesthésie et de réanimation, Hôpital Nord, AP-HM
| | - Laurent Zieleskiewicz
- Aix Marseille Université, Service d’anesthésie et de réanimation, Hôpital Nord, AP-HM
| | - Gary Duclos
- Aix Marseille Université, Service d’anesthésie et de réanimation, Hôpital Nord, AP-HM
| | - Karine Baumstarck
- Unité d’Aide Méthodologique à la Recherche Clinique et Epidémiologique, Aix Marseille Université, Marseille, France
| | - Anderson Loundou
- Unité d’Aide Méthodologique à la Recherche Clinique et Epidémiologique, Aix Marseille Université, Marseille, France
| | - Julie Alingrin
- Aix Marseille Université, Service d’anesthésie et de réanimation, Hôpital Nord, AP-HM
| | - Emmanuelle Hammad
- Aix Marseille Université, Service d’anesthésie et de réanimation, Hôpital Nord, AP-HM
| | - Coralie Vigne
- Aix Marseille Université, Service d’anesthésie et de réanimation, Hôpital Nord, AP-HM
| | - François Antonini
- Aix Marseille Université, Service d’anesthésie et de réanimation, Hôpital Nord, AP-HM
| | - Marc Leone
- Aix Marseille Université, Service d’anesthésie et de réanimation, Hôpital Nord, AP-HM
| |
Collapse
|
50
|
Schimunek L, Serve R, Teuben MPJ, Störmann P, Auner B, Woschek M, Pfeifer R, Horst K, Simon TP, Kalbitz M, Sturm R, Pape HC, Hildebrand F, Marzi I, Relja B. Early decreased TLR2 expression on monocytes is associated with their reduced phagocytic activity and impaired maturation in a porcine polytrauma model. PLoS One 2017; 12:e0187404. [PMID: 29125848 PMCID: PMC5681268 DOI: 10.1371/journal.pone.0187404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/27/2017] [Indexed: 11/19/2022] Open
Abstract
In their post-traumatic course, trauma patients suffering from multiple injuries have a high risk for immune dysregulation, which may contribute to post-injury complications and late mortality. Monocytes as specific effector cells of the innate immunity play a crucial role in inflammation. Using their Pattern Recognition Receptors (PRRs), notably Toll-Like Receptors (TLR), the monocytes recognize pathogens and/or pathogen-associated molecular patterns (PAMPs) and organize their clearance. TLR2 is the major receptor for particles of gram-positive bacteria, and initiates their phagocytosis. Here, we investigated the phagocytizing capability of monocytes in a long-term porcine severe trauma model (polytrauma, PT) with regard to their TLR2 expression. Polytrauma consisted of femur fracture, unilateral lung contusion, liver laceration, hemorrhagic shock with subsequent resuscitation and surgical fracture fixation. After induction of PT, peripheral blood was withdrawn before (-1 h) and directly after trauma (0 h), as well as 3.5 h, 5.5 h, 24 h and 72 h later. CD14+ monocytes were identified and the expression levels of H(S)LA-DR and TLR2 were investigated by flow cytometry. Additionally, the phagocytizing activity of monocytes by applying S. aureus particles labelled with pHrodo fluorescent reagent was also assessed by flow cytometry. Furthermore, blood samples from 10 healthy pigs were exposed to a TLR2-neutralizing antibody and subsequently to S. aureus particles. Using flow cytometry, phagocytizing activity was determined. P below 0.05 was considered significant. The number of CD14+ monocytes of all circulating leukocytes remained constant during the observational time period, while the percentage of CD14+H(S)LA-DR+ monocytes significantly decreased directly, 3.5 h and 5.5 h after trauma. The percentage of TLR2+ expressing cells out of all monocytes significantly decreased directly, 3.5 h and 5.5 h after trauma. The percentage of phagocytizing monocytes decreased immediately and remained lower during the first 3.5 h after trauma, but increased after 24 h. Antagonizing TLR2 significantly decreased the phagocytizing activity of monocytes. Both, decreased percentage of activated as well as TLR2 expressing monocytes persisted as long as the reduced phagocytosis was observed. Moreover, neutralizing TLR2 led to a reduced capability of phagocytosis as well. Therefore, we assume that reduced TLR2 expression may be responsible for the decreased phagocytizing capacity of circulating monocytes in the early post-traumatic phase.
Collapse
Affiliation(s)
- Lukas Schimunek
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Rafael Serve
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Michel P. J. Teuben
- Department of Orthopaedic Trauma Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Philipp Störmann
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Birgit Auner
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Mathias Woschek
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Roman Pfeifer
- Department of Orthopaedic Trauma Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Klemens Horst
- Department of Orthopaedic Trauma, RWTH Aachen University, Aachen, Germany
| | - Tim-P. Simon
- Department of Intensive Care and Intermediate Care, RWTH Aachen University, Aachen, Germany
| | - Miriam Kalbitz
- Department of Orthopedic Trauma, Hand, Plastic, and Reconstructive Surgery, University of Ulm, Ulm, Germany
| | - Ramona Sturm
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Hans-C. Pape
- Department of Orthopaedic Trauma Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Frank Hildebrand
- Department of Orthopaedic Trauma, RWTH Aachen University, Aachen, Germany
| | - Ingo Marzi
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Borna Relja
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|