1
|
Sun B, Reynolds KS, Garland MA, McMahon M, Saha SK, Zhou CJ. Epigenetic implications in maternal diabetes and metabolic syndrome-associated risk of orofacial clefts. Birth Defects Res 2023; 115:1835-1850. [PMID: 37497595 PMCID: PMC11526419 DOI: 10.1002/bdr2.2226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
Orofacial clefts (OFCs) are one of the most common types of structural birth defects. The etiologies are complicated, involving with genetic, epigenetic, and environmental factors. Studies have found that maternal diabetes and metabolic syndrome are associated with a higher risk of OFCs in offspring. Metabolic syndrome is a clustering of several disease risk factors, including hyperglycemia, dyslipidemia, obesity, and hypertension. Metabolic disease during pregnancy can increase risk of adverse outcomes and significantly influence fetal development, including orofacial formation and fusion. An altered metabolic state may contribute to developmental disorders or congenital defects including OFCs, potentially through epigenetic modulations, such as histone modification, DNA methylation, and noncoding RNA expression to alter activities of critical morphogenetic signaling or related developmental genes. This review summarizes the currently available evidence and underlying mechanisms of how the maternal metabolic syndrome is associated with OFCs in mostly human and some animal studies. It may provide a better understanding of the interactions between intrauterine metabolic status and fetal orofacial development which might be applied toward prevention and treatments of OFCs.
Collapse
Affiliation(s)
- Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Kurt S. Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Michael A. Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Moira McMahon
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Subbroto K. Saha
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Chengji J. Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| |
Collapse
|
2
|
Gui Y, Zheng H, Cao RY. Foam Cells in Atherosclerosis: Novel Insights Into Its Origins, Consequences, and Molecular Mechanisms. Front Cardiovasc Med 2022; 9:845942. [PMID: 35498045 PMCID: PMC9043520 DOI: 10.3389/fcvm.2022.845942] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Foam cells play a vital role in the initiation and development of atherosclerosis. This review aims to summarize the novel insights into the origins, consequences, and molecular mechanisms of foam cells in atherosclerotic plaques. Foam cells are originated from monocytes as well as from vascular smooth muscle cells (VSMC), stem/progenitor cells, and endothelium cells. Novel technologies including lineage tracing and single-cell RNA sequencing (scRNA-seq) have revolutionized our understanding of subtypes of monocyte- and VSMC-derived foam cells. By using scRNA-seq, three main clusters including resident-like, inflammatory, and triggering receptor expressed on myeloid cells-2 (Trem2 hi ) are identified as the major subtypes of monocyte-derived foam cells in atherosclerotic plaques. Foam cells undergo diverse pathways of programmed cell death including apoptosis, autophagy, necroptosis, and pyroptosis, contributing to the necrotic cores of atherosclerotic plaques. The formation of foam cells is affected by cholesterol uptake, efflux, and esterification. Novel mechanisms including nuclear receptors, non-coding RNAs, and gut microbiota have been discovered and investigated. Although the heterogeneity of monocytes and the complexity of non-coding RNAs make obstacles for targeting foam cells, further in-depth research and therapeutic exploration are needed for the better management of atherosclerosis.
Collapse
Affiliation(s)
- Yuzhou Gui
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai, China
| | - Hongchao Zheng
- Department of Cardiovascular, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Richard Y. Cao
- Department of Cardiovascular, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Kaub PA, Sharp PC, Ranieri E, Fletcher JM. Isolated autism is not an indication for Smith-Lemli-Opitz syndrome biochemical testing. J Paediatr Child Health 2022; 58:630-635. [PMID: 34773316 DOI: 10.1111/jpc.15795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 09/09/2021] [Accepted: 09/26/2021] [Indexed: 12/01/2022]
Abstract
UNLABELLED Several studies have demonstrated a high incidence of autistic spectrum features in individuals with Smith-Lemli-Opitz syndrome (SLOS). However, do these findings imply a converse relationship that has diagnostic utility? Is SLOS testing implicated when autism spectrum disorder (ASD) is the only clinical indication? AIM To determine if there is any correlation with a clinical indication of ASD and a biochemical diagnosis of SLOS, based on historical test request and assay data. METHODS Six years (2008-2013) of clinical test requests for 7-dehydrocholesterol (7-DHC) level were classified and summarised according to indication and final test result. RESULTS From the audit period, 988 valid test results from post-natal samples were identified. In plasma/serum, mean 7-DHC level was 264.7 μmol/L (normal range < 2.0) for confirmed SLOS cases. No tests performed due to an isolated clinical indication of ASD or where no clinical information was supplied were associated with 7-DHC levels diagnostic for SLOS. CONCLUSIONS Historical test data analysis supports the recommendation that autism/ASD as a single clinical feature is not an appropriate indication for SLOS (7-DHC) biochemical testing.
Collapse
Affiliation(s)
- Peter A Kaub
- Genetics and Molecular Pathology, SA Pathology, Women's and Children's Hospital, North Adelaide, South Australia, Australia.,Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Peter C Sharp
- Genetics and Molecular Pathology, SA Pathology, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Enzo Ranieri
- Genetics and Molecular Pathology, SA Pathology, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Janice M Fletcher
- Genetics and Molecular Pathology, SA Pathology, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Wilkins-Haug L. Genetic innovations and our understanding of stillbirth. Hum Genet 2020; 139:1161-1172. [PMID: 32318853 DOI: 10.1007/s00439-020-02146-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Stillbirth after 20 weeks gestation happens in 1 in 200 pregnancies and occurs more commonly than neonatal loss and sudden infant death syndrome (SIDs) combined. The stillbirth rate is several times greater in low as opposed to high-resource countries. However, among high-resource countries, although a lower overall stillbirth rate exists, there has been little change for several decades. Molecular genetic technologies are emerging as important contributors to our understanding of stillbirth. Initially, genetic etiologies included alterations in chromosome number or structure such as aneuploidy and microduplications and deletions. More recently, next-generation sequencing analysis in two genetic conditions, Smith Lemli Optiz Syndrome (SLOs) and the channelopathy disorders (such as long QT syndrome (LQTS)) provide examples into the association of pathogenic gene variants with stillbirth. Although these specific conditions individually account for only a small number of stillbirths, investigating these disorders provides a new and innovative approach for further understanding genetic contributors to adverse pregnancy outcomes. Our knowledge of the role of genetic disease as an etiology for stillbirth is elementary. Genomic interrogation of maternal-fetal genotypes, gene-gene, and genotype-environment interaction is lacking in stillbirth research. At the DNA sequence level, further investigation of variants of unknown significance is an opportunity for exploration of biologic pathways of importance to pregnancy loss. This review concentrates on SLO as an example of a single gene disorder with a high carrier but low affected liveborn proband rate. The channelopathy disorders are included as initial examples of genetic conditions with variable presentation including an association with sudden infant death syndrome. Highlighted are the challenges when numerous genes and variants are involved, and the task of assigning pathogenicity. The advantages and limitations of genetic evaluations are presented and avenues for further research considered.
Collapse
Affiliation(s)
- Louise Wilkins-Haug
- Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 01770, USA.
| |
Collapse
|
5
|
Smith-Lemli-Opitz syndrome: what is the actual risk for couples carriers of the DHCR7:c.964-1G>C variant? Eur J Hum Genet 2020; 28:938-942. [PMID: 32055014 DOI: 10.1038/s41431-020-0577-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 11/28/2019] [Accepted: 01/22/2020] [Indexed: 11/09/2022] Open
Abstract
The founder variant DHCR7:c.964-1G>C causing autosomal recessive Smith-Lemli-Opitz (SLOS) was introduced into the Israeli preconception carrier program for Ashkenazi Jews in 2017 because of the high carrier frequency in this population (2.3%). Other disease-causing variants in DHCR7 are relatively rare in Israeli population. Discrepancy between the carrier frequency and disease prevalence raises the question of the actual risks for affected offspring for couples detected by the screening program. We performed a literature review of all relevant publications regarding homozygous DHCR7:c.964-1G>C fetuses/patients. We also collected clinical data about couples identified in the national screening program, including reproductive history. Out of 32 homozygous fetuses, six died in utero, 11 pregnancies were terminated during second trimester, and 15 children were born. All died between first days of life till 3 months of age. Reproductive history of SLOS-at-risk couples showed that after correction for ascertainment bias, out of 61 pregnancies, there was an absence of affected fetuses/children and an excess of miscarriages even if assumed that all the homozygous fetuses were miscarried. Out of these, eight families were Israelis, they had a total of one sick child, 21 healthy children, and 21 miscarriages. Our observations support the previous knowledge that homozygosity for c.964-1G>C in DHCR7 leads to a severe phenotype or early miscarriage. An unexpected observation was the excess of early miscarriages. This phenomenon is unclear and awaits further studies.
Collapse
|
6
|
Barboza-Cerda MC, Barboza-Quintana O, Martínez-Aldape G, Garza-Guajardo R, Déctor MA. Phenotypic severity in a family with MEND syndrome is directly associated with the accumulation of potentially functional variants of cholesterol homeostasis genes. Mol Genet Genomic Med 2019; 7:e931. [PMID: 31397093 PMCID: PMC6732292 DOI: 10.1002/mgg3.931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 07/23/2019] [Indexed: 11/19/2022] Open
Abstract
Background Male EBP disorder with neurologic defects (MEND) syndrome is an X‐linked disease caused by hypomorphic mutations in the EBP (emopamil‐binding protein) gene. Modifier genes may explain the clinical variability among individuals who share a primary mutation. Methods We studied four males (Patient 1 to Patient 4) exhibiting a descending degree of phenotypic severity from a family with MEND syndrome. To identify candidate modifier genes that explain the phenotypic variability, variants of homeostasis cholesterol genes identified by whole‐exome sequencing (WES) were ranked according to the predicted magnitude of their effect through an in‐house scoring system. Results Twenty‐seven from 105 missense variants found in 45 genes of the four exomes were considered significant (−5 to −9 scores). We found a direct genotype–phenotype association based on the differential accumulation of potentially functional gene variants among males. Patient 1 exhibited 17 variants, both Patients 2 and 3 exhibited nine variants, and Patient 4 exhibited only five variants. Conclusion We conclude that APOA5 (rs3135506), ABCA1 (rs9282541), and APOB (rs679899 and rs12714225) are the most relevant candidate modifier genes in this family. Relative accumulation of the deficiencies associated with variants of these genes along with other lesser deficiencies in other genes appears to explain the variable expressivity in MEND syndrome.
Collapse
Affiliation(s)
- María Carmen Barboza-Cerda
- Facultad de Medicina y Hospital Universitario "Dr. José E. González", Servicio de Anatomía Patológica y Citopatología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico.,Facultad de Medicina y Hospital Universitario "Dr. José E. González", Departamento de Bioquímica y Medicina Molecular, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Oralia Barboza-Quintana
- Facultad de Medicina y Hospital Universitario "Dr. José E. González", Servicio de Anatomía Patológica y Citopatología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Gerardo Martínez-Aldape
- Facultad de Medicina y Hospital Universitario "Dr. José E. González", Servicio de Anatomía Patológica y Citopatología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Raquel Garza-Guajardo
- Facultad de Medicina y Hospital Universitario "Dr. José E. González", Servicio de Anatomía Patológica y Citopatología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Miguel Angel Déctor
- Facultad de Medicina y Hospital Universitario "Dr. José E. González", Servicio de Anatomía Patológica y Citopatología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico.,Facultad de Medicina y Hospital Universitario "Dr. José E. González", Departamento de Bioquímica y Medicina Molecular, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| |
Collapse
|
7
|
Kallol S, Huang X, Müller S, Ontsouka CE, Albrecht C. Novel Insights into Concepts and Directionality of Maternal⁻Fetal Cholesterol Transfer across the Human Placenta. Int J Mol Sci 2018; 19:ijms19082334. [PMID: 30096856 PMCID: PMC6121295 DOI: 10.3390/ijms19082334] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/14/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
Cholesterol is indispensable for cellular membrane composition and function. It is also a precursor for the synthesis of steroid hormones, which promote, among others, the maturation of fetal organs. A role of the ATP-binding-cassette-transporter-A1 (ABCA1) in the transport of maternal cholesterol to the fetus was suggested by transferring cholesterol to apolipoprotein-A-1 (apo-A1), but the directionality of the apoA-1/ABCA1-dependent cholesterol transport remains unclear. We isolated primary trophoblasts from term placentae to test the hypotheses that (1) apoA-1/ABCA1 dispatches cholesterol mainly towards the fetus to support fetal developmental maturation at term, and (2) differentiated syncytiotrophoblasts (STB) exert higher cholesterol transport activity than undifferentiated cytotrophoblasts (CTB). As experimental models, we used (1) trophoblast monolayers grown on Transwell® system consisting of apical (maternal-like) and basal (fetal-like) compartments, and (2) trophoblasts grown on conventional culture plates at CTB and STB stages. Surprisingly, apoA-1-mediated cholesterol efflux operated almost exclusively at the apical-maternal side, where ABCA1 was also localized by immunofluorescence. We found greater cholesterol efflux capacity in STB, which was increased by liver-X-receptor agonist treatment and decreased by ABCA1 inhibition. We conclude that at term the apoA-1/ABCA1 pathway is rather involved in cholesterol transport to the mother than in transfer to the fully developed fetus.
Collapse
Affiliation(s)
- Sampada Kallol
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
| | - Xiao Huang
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland.
| | - Stefan Müller
- Department of BioMedical Research, University of Bern, CH-3012 Bern, Switzerland.
| | - Corneille Edgar Ontsouka
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland.
| |
Collapse
|
8
|
Stocchi L, Giardina E, Varriale L, Sechi A, Vagnini A, Parri G, Valentini M, Capalbo M. Can Tangier disease cause male infertility? A case report and an overview on genetic causes of male infertility and hormonal axis involved. Mol Genet Metab 2018; 123:43-49. [PMID: 29198592 DOI: 10.1016/j.ymgme.2017.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 11/18/2022]
Abstract
Tangier disease is an autosomal recessive disorder caused by mutations in the ABCA1 gene and characterized by the accumulation of cholesteryl ester in various tissues and a near absence of high-density lipoprotein. The subject in this investigation was a 36-year-old Italian man with Tangier disease. He and his wife had come to the In Vitro Fertilization Unit, Pesaro Hospital (Azienda Ospedaliera Ospedali Riuniti Marche Nord) seeking help regarding fertility issues. The man was diagnosed with severe oligoasthenoteratozoospermia. Testosterone is the sex hormone necessary for spermatogenesis and cholesterol is its precursor; hence, we hypothesized that the characteristic cholesterol deficiency in Tangier disease patients could compromise their fertility. The aim of the study was to therefore to determine if there is an association between Tangier disease and male infertility. After excluding viral, infectious, genetic and anatomical causes of the subject's oligoasthenoteratozoospermia, we performed a hormonal analysis to verify our hypothesis. The patient was found to be negative for frequent bacteria and viruses. The subject showed a normal male karyotype and tested negative for Yq microdeletions and Cystic Fibrosis Transmembrane Conductance Regulator gene mutations. A complete urological examination was performed, and primary hypogonadism was also excluded. Conversely, hormonal analyses showed that the subject had a high level of follicle stimulating hormone and luteinizing hormone, low total testosterone and a significant decline in inhibin B. We believe that the abnormally low cholesterol levels typically found in subjects with Tangier disease may result in a reduced testosterone production which in turn could affect the hormonal axis responsible for spermatogenesis leading to a defective maturation of spermatozoa.
Collapse
Affiliation(s)
- Laura Stocchi
- Pathophysiology of Reproduction, U.O.C., IVF Unit, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy.
| | - Emiliano Giardina
- Laboratory of Genomic Medicine-UILDM, Fondazione Santa Lucia IRCCS, Univ. Tor Vergata; Rome, Italy.
| | - Luigia Varriale
- Department of Clinical Pathology, U.O.S.D. D.A.L.T., Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy.
| | - Annalisa Sechi
- Regional Center for Rare Diseases, Academic Hospital of Udine, Italy.
| | - Andrea Vagnini
- Department of Clinical Pathology, U.O.S.D. D.A.L.T., Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy.
| | - Gianni Parri
- Department of Urology, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy.
| | - Massimo Valentini
- Department of Clinical Pathology, U.O.S.D. D.A.L.T., Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy.
| | - Maria Capalbo
- General Director of Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy.
| |
Collapse
|
9
|
Eroglu Y, Nguyen-Driver M, Steiner RD, Merkens L, Merkens M, Roullet JB, Elias E, Sarphare G, Porter FD, Li C, Tierney E, Nowaczyk MJ, Freeman KA. Normal IQ is possible in Smith-Lemli-Opitz syndrome. Am J Med Genet A 2017; 173:2097-2100. [PMID: 28349652 PMCID: PMC6016830 DOI: 10.1002/ajmg.a.38125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/28/2016] [Accepted: 12/08/2016] [Indexed: 12/19/2022]
Abstract
Children with Smith-Lemli-Opitz syndrome (SLOS) are typically reported to have moderate to severe intellectual disability. This study aims to determine whether normal cognitive function is possible in this population and to describe clinical, biochemical and molecular characteristics of children with SLOS and normal intelligent quotient (IQ). The study included children with SLOS who underwent cognitive testing in four centers. All children with at least one IQ composite score above 80 were included in the study. Six girls, three boys with SLOS were found to have normal or low-normal IQ in a cohort of 145 children with SLOS. Major/multiple organ anomalies and low serum cholesterol levels were uncommon. No correlation with IQ and genotype was evident and no specific developmental profile were observed. Thus, normal or low-normal cognitive function is possible in SLOS. Further studies are needed to elucidate factors contributing to normal or low-normal cognitive function in children with SLOS.
Collapse
Affiliation(s)
- Yasemen Eroglu
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon
| | - Mina Nguyen-Driver
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon
- Institute on Development and Disability, Oregon Health and Science University, Portland, Oregon
| | - Robert D Steiner
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon
- Institute on Development and Disability, Oregon Health and Science University, Portland, Oregon
- Department of Molecular and Medical Genetics, Institute on Development and Disability, Doernbecher Children's Hospital, Portland, Oregon
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin
| | - Louise Merkens
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon
| | - Mark Merkens
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon
| | - Jean-Baptiste Roullet
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon
- Department of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington
| | - Ellen Elias
- Children's Hospital Colorado, Aurora, Colorado
| | | | - Forbes D Porter
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institution of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Chumei Li
- Department of Pathology and Medicine, and Pediatrics, McMaster University, Hamilton, ON, Canada
| | | | - Małgorzata J Nowaczyk
- Department of Pathology and Medicine, and Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Kurt A Freeman
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon
- Institute on Development and Disability, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
10
|
Zeng Z, Liu F, Li S. Metabolic Adaptations in Pregnancy: A Review. ANNALS OF NUTRITION AND METABOLISM 2017; 70:59-65. [PMID: 28297696 DOI: 10.1159/000459633] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/02/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Pregnancy is a dynamic state involving multiple adaptations that are necessary in order to ensure a continuous supply of essential metabolites to support the growth and the development of the fetus. OBJECTIVES This review article is aimed to discuss important adaptations in metabolism that take place during non-complicated pregnancy. MATERIALS AND METHODS We searched the electronic database PubMed for pre-clinical as well as clinical controlled trials reporting the importance of metabolic adaptations during a non-complicated pregnancy. The preferred language was English and the most recent reports were selected to get an updated review. RESULTS It was observed clearly in the searched literature that metabolic adaptations are a crucial part of pregnancy, as they provide the mother with sufficient energy stores to meet the demands of pregnancy. These adaptions also help in preparing the mother for lactation and also help in providing proper environment for the proper growth of fetus in the womb. Moreover, multiple biomolecules including glucose, fatty acids, ketone bodies, hormones collectively contribute toward these metabolic adaptations. CONCLUSIONS This review article concludes that metabolic adaptations are crucial for proper fetus development.
Collapse
Affiliation(s)
- Zhandong Zeng
- Department of Pediatric Surgery, Xuzhou Children's Hospital, Xuzhou, PR China
| | | | | |
Collapse
|
11
|
Prabhu AV, Luu W, Li D, Sharpe LJ, Brown AJ. DHCR7: A vital enzyme switch between cholesterol and vitamin D production. Prog Lipid Res 2016; 64:138-151. [PMID: 27697512 DOI: 10.1016/j.plipres.2016.09.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 01/07/2023]
Abstract
The conversion of 7-dehydrocholesterol to cholesterol, the final step of cholesterol synthesis in the Kandutsch-Russell pathway, is catalyzed by the enzyme 7-dehydrocholesterol reductase (DHCR7). Homozygous or compound heterozygous mutations in DHCR7 lead to the developmental disease Smith-Lemli-Opitz syndrome, which can also result in fetal mortality, highlighting the importance of this enzyme in human development and survival. Besides serving as a substrate for DHCR7, 7-dehydrocholesterol is also a precursor of vitamin D via the action of ultraviolet light on the skin. Thus, DHCR7 exerts complex biological effects, involved in both cholesterol and vitamin D production. Indeed, we argue that DHCR7 can act as a switch between cholesterol and vitamin D synthesis. This review summarizes current knowledge about the critical enzyme DHCR7, highlighting recent findings regarding its structure, transcriptional and post-transcriptional regulation, and its links to vitamin D synthesis. Greater understanding about DHCR7 function, regulation and its place within cellular metabolism will provide important insights into its biological roles.
Collapse
Affiliation(s)
- Anika V Prabhu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Winnie Luu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Dianfan Li
- National Center for Protein Sciences, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Boland MR, Tatonetti NP. Investigation of 7-dehydrocholesterol reductase pathway to elucidate off-target prenatal effects of pharmaceuticals: a systematic review. THE PHARMACOGENOMICS JOURNAL 2016; 16:411-29. [PMID: 27401223 PMCID: PMC5028238 DOI: 10.1038/tpj.2016.48] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 04/15/2016] [Accepted: 05/02/2016] [Indexed: 12/18/2022]
Abstract
Mendelian diseases contain important biological information regarding developmental effects of gene mutations that can guide drug discovery and toxicity efforts. In this review, we focus on Smith–Lemli–Opitz syndrome (SLOS), a rare Mendelian disease characterized by compound heterozygous mutations in 7-dehydrocholesterol reductase (DHCR7) resulting in severe fetal deformities. We present a compilation of SLOS-inducing DHCR7 mutations and the geographic distribution of those mutations in healthy and diseased populations. We observed that several mutations thought to be disease causing occur in healthy populations, indicating an incomplete understanding of the condition and highlighting new research opportunities. We describe the functional environment around DHCR7, including pharmacological DHCR7 inhibitors and cholesterol and vitamin D synthesis. Using PubMed, we investigated the fetal outcomes following prenatal exposure to DHCR7 modulators. First-trimester exposure to DHCR7 inhibitors resulted in outcomes similar to those of known teratogens (50 vs 48% born-healthy). DHCR7 activity should be considered during drug development and prenatal toxicity assessment.
Collapse
Affiliation(s)
- M R Boland
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.,Observational Health Data Sciences and Informatics, Columbia University, New York, NY, USA
| | - N P Tatonetti
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.,Observational Health Data Sciences and Informatics, Columbia University, New York, NY, USA.,Department of Systems Biology, Columbia University, New York, NY, USA.,Department of Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
13
|
Smith–Lemli–Opitz Syndrome (SLOS) and the Fetus. JOURNAL OF FETAL MEDICINE 2016. [DOI: 10.1007/s40556-016-0089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Abstract
Inborn errors of metabolism (IEM) are not unlike common diseases. They often present as a spectrum of disease phenotypes that correlates poorly with the severity of the disease-causing mutations. This greatly impacts patient care and reveals fundamental gaps in our knowledge of disease modifying biology. Systems biology approaches that integrate multi-omics data into molecular networks have significantly improved our understanding of complex diseases. Similar approaches to study IEM are rare despite their complex nature. We highlight that existing common disease-derived datasets and networks can be repurposed to generate novel mechanistic insight in IEM and potentially identify candidate modifiers. While understanding disease pathophysiology will advance the IEM field, the ultimate goal should be to understand per individual how their phenotype emerges given their primary mutation on the background of their whole genome, not unlike personalized medicine. We foresee that panomics and network strategies combined with recent experimental innovations will facilitate this.
Collapse
Affiliation(s)
- Carmen A Argmann
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA.
| | - Sander M Houten
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| | - Jun Zhu
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA.
| |
Collapse
|
15
|
Bianconi SE, Cross JL, Wassif CA, Porter FD. Pathogenesis, Epidemiology, Diagnosis and Clinical Aspects of Smith-Lemli-Opitz Syndrome. Expert Opin Orphan Drugs 2015; 3:267-280. [PMID: 25734025 PMCID: PMC4343216 DOI: 10.1517/21678707.2015.1014472] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Smith-Lemli-Opitz Syndrome (SLOS) is a malformation syndrome inherited in an autosomal recessive fashion. It is due to a metabolic defect in the conversion of 7-dehydrocholesterol to cholesterol, which leads to an accumulation of 7-dehydrocholesterol and frequently a deficiency of cholesterol. The syndrome is characterized by typical dysmorphic facial features, multiple malformations, and intellectual disability. AREAS COVERED In this paper we provide an overview of the clinical phenotype and discuss how the manifestations of the syndrome vary depending on the age of the patients. We then explore the underlying biochemical defect and pathophysiological alterations that may contribute to the many disease manifestations. Subsequently we explore the epidemiology and succinctly discuss population genetics as they relate to SLOS. The next section presents the diagnostic possibilities. Thereafter, the treatment and management as is standard of care are presented. EXPERT OPINION Even though the knowledge of the underlying molecular mutations and the biochemical alterations is being rapidly accumulated, there is currently no efficacious therapy addressing neurological dysfunction. We discuss the difficulty of treating this disorder, which manifests as a combination of a malformation syndrome and an inborn error of metabolism. A very important factor in developing new therapies is the need to rigorously establish efficacy in controlled trials.
Collapse
Affiliation(s)
- Simona E Bianconi
- National Institute of Child Health and Human Development, Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology, 10 Center Drive, Bld 10 Rm 9D42, Bethesda, MD 20892,
| | - Joanna L Cross
- National Institute of Child Health and Human Development, Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology, 10 Center Drive, Bld 10 CRC, Rm 1-3288, Bethesda, MD 20892
| | - Christopher A Wassif
- National Institute of Child Health and Human Development, Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology, 10 Center Drive, Bld 10 CRC, Rm 1-3288, Bethesda, MD 20892
| | - Forbes D Porter
- National Institute of Child Health and Human Development, Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology, 10 Center Drive, Bld 10, CRC, Rm 2571, Bethesda, MD 20892,
| |
Collapse
|
16
|
Lanthaler B, Wieser S, Deutschmann A, Schossig A, Fauth C, Zschocke J, Witsch-Baumgartner M. Genotype-based databases for variants causing rare diseases. Gene 2014; 550:136-40. [DOI: 10.1016/j.gene.2014.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/23/2014] [Accepted: 08/07/2014] [Indexed: 11/25/2022]
|
17
|
Witsch-Baumgartner M, Lanthaler B. Birthday of a syndrome: 50 years anniversary of Smith-Lemli-Opitz Syndrome. Eur J Hum Genet 2014; 23:277-8. [PMID: 24824134 DOI: 10.1038/ejhg.2014.87] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Martina Witsch-Baumgartner
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Division of Human Genetics, Innsbruck, Austria
| | - Barbara Lanthaler
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Division of Human Genetics, Innsbruck, Austria
| |
Collapse
|