1
|
Yuan T, Kumar S, Skinner ME, Victor-Joseph R, Abuaita M, Keijer J, Zhang J, Kunkel TJ, Liu Y, Petrunak EM, Saunders TL, Lieberman AP, Stuckey JA, Neamati N, Al-Murshedi F, Alfadhel M, Spelbrink JN, Rodenburg R, de Boer VC, Lombard DB. Human SIRT5 variants with reduced stability and activity do not cause neuropathology in mice. iScience 2024; 27:109991. [PMID: 38846003 PMCID: PMC11154205 DOI: 10.1016/j.isci.2024.109991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/06/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
SIRT5 is a sirtuin deacylase that removes negatively charged lysine modifications, in the mitochondrial matrix and elsewhere in the cell. In benign cells and mouse models, under basal conditions, the phenotypes of SIRT5 deficiency are quite subtle. Here, we identify two homozygous SIRT5 variants in patients suspected to have mitochondrial disease. Both variants, P114T and L128V, are associated with reduced SIRT5 protein stability and impaired biochemical activity, with no evidence of neomorphic or dominant negative properties. The crystal structure of the P114T enzyme was solved and shows only subtle deviations from wild-type. Via CRISPR-Cas9, we generated a mouse model that recapitulates the human P114T mutation; homozygotes show reduced SIRT5 levels and activity, but no obvious metabolic abnormalities, neuropathology, or other gross phenotypes. We conclude that these human SIRT5 variants most likely represent severe hypomorphs, but are likely not by themselves the primary pathogenic cause of the neuropathology observed in the patients.
Collapse
Affiliation(s)
- Taolin Yuan
- Human and Animal Physiology, Wageningen University, De Elst 1, Wageningen, the Netherlands
| | - Surinder Kumar
- Department of Pathology & Laboratory Medicine, Miller School of Medicine, and Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mary E. Skinner
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryan Victor-Joseph
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Majd Abuaita
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, De Elst 1, Wageningen, the Netherlands
| | - Jessica Zhang
- Department of Pathology & Laboratory Medicine, Miller School of Medicine, and Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Thaddeus J. Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yanghan Liu
- Department of Medicinal Chemistry, College of Pharmacy and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elyse M. Petrunak
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas L. Saunders
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Jeanne A. Stuckey
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fathiya Al-Murshedi
- Genetic and Developmental Medicine Clinic, Department of Genetics, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman
| | - Majid Alfadhel
- Medical Genomic Research Department, King Abdullah International Medical Research Center(KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Genetics and Precision Medicine Department (GPM), King Abdullah Specialized Children’s Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Johannes N. Spelbrink
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Richard Rodenburg
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vincent C.J. de Boer
- Human and Animal Physiology, Wageningen University, De Elst 1, Wageningen, the Netherlands
| | - David B. Lombard
- Department of Pathology & Laboratory Medicine, Miller School of Medicine, and Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Miami VA Healthcare System, Miami, FL 33125, USA
| |
Collapse
|
2
|
Yuan T, Kumar S, Skinner M, Victor-Joseph R, Abuaita M, Keijer J, Zhang J, Kunkel TJ, Liu Y, Petrunak EM, Saunders TL, Lieberman AP, Stuckey JA, Neamati N, Al-Murshedi F, Alfadhel M, Spelbrink JN, Rodenburg R, de Boer VCJ, Lombard DB. SIRT5 variants from patients with mitochondrial disease are associated with reduced SIRT5 stability and activity, but not with neuropathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570371. [PMID: 38105987 PMCID: PMC10723467 DOI: 10.1101/2023.12.06.570371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
SIRT5 is a sirtuin deacylase that represents the major activity responsible for removal of negatively-charged lysine modifications, in the mitochondrial matrix and elsewhere in the cell. In benign cells and mouse models, under basal non-stressed conditions, the phenotypes of SIRT5 deficiency are generally quite subtle. Here, we identify two homozygous SIRT5 variants in human patients suffering from severe mitochondrial disease. Both variants, P114T and L128V, are associated with reduced SIRT5 protein stability and impaired biochemical activity, with no evidence of neomorphic or dominant negative properties. The crystal structure of the P114T enzyme was solved and shows only subtle deviations from wild-type. Via CRISPR-Cas9, we generate a mouse model that recapitulates the human P114T mutation; homozygotes show reduced SIRT5 levels and activity, but no obvious metabolic abnormalities, neuropathology or other gross evidence of severe disease. We conclude that these human SIRT5 variants most likely represent severe hypomorphs, and are likely not the primary pathogenic cause of the neuropathology observed in the patients.
Collapse
Affiliation(s)
- Taolin Yuan
- Human and Animal Physiology, Wageningen University, De Elst 1, Wageningen, The Netherlands
| | - Surinder Kumar
- Department of Pathology & Laboratory Medicine, Miller School of Medicine, and Sylvester Comprehensive Cancer Center, University of Miami, Miami FL 33136
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Mary Skinner
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | | | - Majd Abuaita
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, De Elst 1, Wageningen, The Netherlands
| | - Jessica Zhang
- Department of Pathology & Laboratory Medicine, Miller School of Medicine, and Sylvester Comprehensive Cancer Center, University of Miami, Miami FL 33136
| | | | - Yanghan Liu
- Department of Medicinal Chemistry, College of Pharmacy and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109
| | - Elyse M. Petrunak
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas L. Saunders
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | | | - Jeanne A. Stuckey
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109
| | - Fathiya Al-Murshedi
- Genetic and Developmental Medicine Clinic, Department of Genetics, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman
| | - Majid Alfadhel
- Medical Genomic Research Department, King Abdullah International Medical Research Center(KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Genetics and Precision Medicine department (GPM), King Abdullah Specialized Children’s Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Johannes N. Spelbrink
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Richard Rodenburg
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vincent C. J. de Boer
- Human and Animal Physiology, Wageningen University, De Elst 1, Wageningen, The Netherlands
| | - David B. Lombard
- Department of Pathology & Laboratory Medicine, Miller School of Medicine, and Sylvester Comprehensive Cancer Center, University of Miami, Miami FL 33136
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
- Miami VA Healthcare System, Miami FL 33125
| |
Collapse
|
3
|
Wu L, Yan X, Sun R, Ma Y, Yao W, Gao B, Zhang Q, You J, Wang H, Han Q, Sun X. Sirt3 restricts tumor initiation via promoting LONP1 deacetylation and K63 ubiquitination. J Transl Med 2023; 21:81. [PMID: 36739437 PMCID: PMC9899405 DOI: 10.1186/s12967-023-03925-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/25/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sirtuin 3 (Sirt3) is a controversial regulator of carcinogenesis. It residents in the mitochondria and gradually decays during aging. In this study, we tried to investigate the role of Sirt3 in carcinogenesis and to explore its involvement in metabolic alteration. METHODS We generated conditional intestinal epithelium Sirt3-knockout mice by crossing ApcMin/+; Villin-Cre with Sirt3fl/fl (AVS) mice. The deacetylation site of Lon protease-1 (LONP1) was identified with Mass spectrometry. The metabolic flux phenotype was determined by Seahorse bioanalyzer. RESULTS We found that intestinal epithelial cell-specific ablation of Sirt3 promotes primary tumor growth via stabilizing mitochondrial LONP1. Notably, we newly identified that Sirt3 deacetylates human oncogene LONP1 at N terminal residue lysine 145 (K145). The LONP1 hyperacetylation-mutant K145Q enhances oxidative phosphorylation to accelerate tumor growth, whereas the deacetylation-mutant K145R produces calorie-restriction like phenotype to restrain tumorigenesis. Sirt3 deacetylates LONP1 at K145 and subsequently facilitates the ESCRT0 complex sorting and K63-ubiquitination that resulted in the degradation of LONP1. Our results sustain the notion that Sirt3 is a tumor-suppressor to maintain the appropriate ubiquitination and degradation of oncogene LONP1. CONCLUSION Sirt3 represents a targetable metabolic checkpoint of oncogenesis, which produces energy restriction effects via maintaining LONP1 K145 deacetylation and subsequent K63 ubiquitination.
Collapse
Affiliation(s)
- Liyi Wu
- grid.284723.80000 0000 8877 7471The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Xinyi Yan
- grid.284723.80000 0000 8877 7471The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Ruibo Sun
- grid.284723.80000 0000 8877 7471The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Ye Ma
- grid.284723.80000 0000 8877 7471The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Wanyu Yao
- grid.284723.80000 0000 8877 7471The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Baogui Gao
- grid.284723.80000 0000 8877 7471The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Qingyuan Zhang
- grid.284723.80000 0000 8877 7471The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Junxiong You
- grid.284723.80000 0000 8877 7471The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Hao Wang
- grid.284723.80000 0000 8877 7471The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Qinrui Han
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Xuegang Sun
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Traditional Chinese Medicine, Zhujing Hospital, Southern Medical University, Guangzhou, 510260, Guangdong, China.
| |
Collapse
|
4
|
Aventaggiato M, Vernucci E, Barreca F, Russo MA, Tafani M. Sirtuins' control of autophagy and mitophagy in cancer. Pharmacol Ther 2020; 221:107748. [PMID: 33245993 DOI: 10.1016/j.pharmthera.2020.107748] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Mammalian cells use a specialized and complex machinery for the removal of altered proteins or dysfunctional organelles. Such machinery is part of a mechanism called autophagy. Moreover, when autophagy is specifically employed for the removal of dysfunctional mitochondria, it is called mitophagy. Autophagy and mitophagy have important physiological implications and roles associated with cellular differentiation, resistance to stresses such as starvation, metabolic control and adaptation to the changing microenvironment. Unfortunately, transformed cancer cells often exploit autophagy and mitophagy for sustaining their metabolic reprogramming and growth to a point that autophagy and mitophagy are recognized as promising targets for ongoing and future antitumoral therapies. Sirtuins are NAD+ dependent deacylases with a fundamental role in sensing and modulating cellular response to external stresses such as nutrients availability and therefore involved in aging, oxidative stress control, inflammation, differentiation and cancer. It is clear, therefore, that autophagy, mitophagy and sirtuins share many common aspects to a point that, recently, sirtuins have been linked to the control of autophagy and mitophagy. In the context of cancer, such a control is obtained by modulating transcription of autophagy and mitophagy genes, by post translational modification of proteins belonging to the autophagy and mitophagy machinery, by controlling ROS production or major metabolic pathways such as Krebs cycle or glutamine metabolism. The present review details current knowledge on the role of sirtuins, autophagy and mitophagy in cancer to then proceed to discuss how sirtuins can control autophagy and mitophagy in cancer cells. Finally, we discuss sirtuins role in the context of tumor progression and metastasis indicating glutamine metabolism as an example of how a concerted activation and/or inhibition of sirtuins in cancer cells can control autophagy and mitophagy by impinging on the metabolism of this fundamental amino acid.
Collapse
Affiliation(s)
- Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Enza Vernucci
- Department of Internistic, Anesthesiologic and Cardiovascular Clinical Sciences, Italy; MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy
| | - Federica Barreca
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Matteo A Russo
- MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy; IRCCS San Raffaele, Via val Cannuta 247, 00166 Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
5
|
Zhao L, Cao J, Hu K, He X, Yun D, Tong T, Han L. Sirtuins and their Biological Relevance in Aging and Age-Related Diseases. Aging Dis 2020; 11:927-945. [PMID: 32765955 PMCID: PMC7390530 DOI: 10.14336/ad.2019.0820] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Sirtuins, initially described as histone deacetylases and gene silencers in yeast, are now known to have many more functions and to be much more abundant in living organisms. The increasing evidence of sirtuins in the field of ageing and age-related diseases indicates that they may provide novel targets for treating diseases associated with aging and perhaps extend human lifespan. Here, we summarize some of the recent discoveries in sirtuin biology that clearly implicate the functions of sirtuins in the regulation of aging and age-related diseases. Furthermore, human sirtuins are considered promising therapeutic targets for anti-aging and ageing-related diseases and have attracted interest in scientific communities to develop small molecule activators or drugs to ameliorate a wide range of ageing disorders. In this review, we also summarize the discovery and development status of sirtuin-targeted drug and further discuss the potential medical strategies of sirtuins in delaying aging and treating age-related diseases.
Collapse
Affiliation(s)
- Lijun Zhao
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Jianzhong Cao
- 2Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kexin Hu
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Xiaodong He
- 2Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dou Yun
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Tanjun Tong
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Limin Han
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| |
Collapse
|
6
|
Park HK, Hong JH, Oh YT, Kim SS, Yin J, Lee AJ, Chae YC, Kim JH, Park SH, Park CK, Park MJ, Park JB, Kang BH. Interplay between TRAP1 and Sirtuin-3 Modulates Mitochondrial Respiration and Oxidative Stress to Maintain Stemness of Glioma Stem Cells. Cancer Res 2019; 79:1369-1382. [PMID: 30683653 DOI: 10.1158/0008-5472.can-18-2558] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/15/2018] [Accepted: 01/22/2019] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) cancer stem cells (CSC) are primarily responsible for metastatic dissemination, resistance to therapy, and relapse of GBM, the most common and aggressive brain tumor. Development and maintenance of CSCs require orchestrated metabolic rewiring and metabolic adaptation to a changing microenvironment. Here, we show that cooperative interplay between the mitochondrial chaperone TRAP1 and the major mitochondria deacetylase sirtuin-3 (SIRT3) in glioma stem cells (GSC) increases mitochondrial respiratory capacity and reduces production of reactive oxygen species. This metabolic regulation endowed GSCs with metabolic plasticity, facilitated adaptation to stress (particularly reduced nutrient supply), and maintained "stemness." Inactivation of TRAP1 or SIRT3 compromised their interdependent regulatory mechanisms, leading to metabolic alterations, loss of stemness, and suppression of tumor formation by GSC in vivo. Thus, targeting the metabolic mechanisms regulating interplay between TRAP1 and SIRT3 may provide a novel therapeutic option for intractable patients with GBM. SIGNIFICANCE: Discovery and functional analysis of a TRAP1-SIRT3 complex in glioma stem cells identify potential target proteins for glioblastoma treatment.
Collapse
Affiliation(s)
- Hye-Kyung Park
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jun-Hee Hong
- Division of Clinical Research, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Young Taek Oh
- Division of Clinical Research, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Sung Soo Kim
- Division of Clinical Research, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Jinlong Yin
- Division of Clinical Research, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - An-Jung Lee
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jong Heon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chul-Kee Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Myung-Jin Park
- Division of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jong Bae Park
- Division of Clinical Research, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea. .,Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Byoung Heon Kang
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, Republic of Korea.
| |
Collapse
|
7
|
SIRT3 a Major Player in Attenuation of Hepatic Ischemia-Reperfusion Injury by Reducing ROS via Its Downstream Mediators: SOD2, CYP-D, and HIF-1 α. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2976957. [PMID: 30538800 PMCID: PMC6258096 DOI: 10.1155/2018/2976957] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) production in hepatic ischemia-reperfusion injury (IRI) is a complex process where multiple cellular and molecular pathways are involved. Few of those molecular pathways are under the direct influence of SIRT3 and its downstream mediators. SIRT3 plays a major role in the mechanism of IRI, and its activation has been shown to attenuate the deleterious effect of ROS during IRI via SOD2-, CYP-D-, and HIF-1α-mediated pathways. The objective of this review is to analyze the current knowledge on SIRT3 and its downstream mediators: SOD2, CYP-D, and HIF-1α, and their role in IRI. For the references of this review article, we have searched the bibliographic databases of PubMed, Web of Science databases, MEDLINE, and EMBASE with the headings "SIRT3," "SOD2," "CYP-D," "HIF-1α," and "liver IRI." Priority was given to recent experimental articles that provide information on ROS modulation by these proteins. All the recent advancement demonstrates that activation of SIRT3 can suppress ROS production during IRI through various pathways and few of those are via SOD2, CYP-D, and HIF-1α. This effect can improve the quality of the remnant liver following resection as well as a transplanted liver. More research is warranted to disclose its role in IRI attenuation via this pathway.
Collapse
|
8
|
Andrade RC, Dos Santos ACE, de Aguirre Neto JC, Nevado J, Lapunzina P, Vargas FR. TP53 and CDKN1A mutation analysis in families with Li-Fraumeni and Li-Fraumeni like syndromes. Fam Cancer 2017; 16:243-248. [PMID: 27714481 DOI: 10.1007/s10689-016-9935-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Li-Fraumeni and Li-Fraumeni like syndromes (LFS/LFL) represent rare cancer-prone conditions associated mostly with sarcomas, breast cancer, brain tumors, and adrenocortical carcinomas. TP53 germline mutations are present in up to 80 % of families with classic Li-Fraumeni syndrome, and in 20-60 % of families with Li-Fraumeni like phenotypes. The frequency of LFS/LFL families with no TP53 mutations detected suggests the involvement of other genes in the syndrome. In this study, we searched for mutations in TP53 in 39 probands from families with criteria for LFS/LFL. We also searched for mutations in the gene encoding the main mediator of p53 in cell cycle arrest, CDKN1A/p21, in all patients with no mutations in TP53. Eight probands carried germline disease-causing mutations in TP53: six missense mutations and two partial gene deletions. No mutations in CDKN1A coding region were detected. TP53 partial deletions in our cohort represented 25 % (2/8) of the mutations found, a much higher frequency than usually reported, emphasizing the need to search for TP53 rearrangements in patients with LFS/LFL phenotypes. Two benign tumors were detected in two TP53 mutation carriers: an adrenocortical adenoma and a neurofibroma, which raises a question about the possible implication of TP53 mutations on the development of such lesions.
Collapse
Affiliation(s)
| | | | | | - Julián Nevado
- INGEMM, Instituto de Genética Médica y Molecular, IdiPAZ-CIBERER, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Lapunzina
- INGEMM, Instituto de Genética Médica y Molecular, IdiPAZ-CIBERER, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fernando Regla Vargas
- Genetics Division, Instituto Nacional de Câncer, Rio de Janeiro, Brazil. .,Genetics and Molecular Biology Department, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil. .,Birth Defects Epidemiology Laboratory, Fundação Oswaldo Cruz, Av. Brasil 4365 - Pavilhão Leônidas Deane Sala 617, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil.
| |
Collapse
|
9
|
Villacis RAR, Basso TR, Canto LM, Pinheiro M, Santiago KM, Giacomazzi J, de Paula CAA, Carraro DM, Ashton-Prolla P, Achatz MI, Rogatto SR. Rare germline alterations in cancer-related genes associated with the risk of multiple primary tumor development. J Mol Med (Berl) 2017; 95:523-533. [PMID: 28093616 DOI: 10.1007/s00109-017-1507-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/07/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022]
Abstract
Multiple primary tumors (MPT) have been described in carriers of inherited cancer predisposition genes. However, the genetic etiology of a large proportion of MPT cases remains unclear. We reviewed 267 patients with hereditary cancer predisposition syndromes (HCPS) that underwent genetic counseling and selected 22 patients with MPT to perform genomic analysis (CytoScan HD Array, Affymetrix) aiming to identify new alterations related to a high risk of developing MPT. Twenty patients had a positive family history of cancer and 11 met phenotypic criteria for HCPS. Genetic testing for each of the genes associated with these syndromes revealed negative results for pathogenic mutations. Seventeen rare germline copy number variations (CNVs) covering 40 genes were identified in 11 patients, including an EPCAM/MSH2 deletion in one Lynch syndrome patient. An enrichment analysis revealed a significant number of genes (where the CNVs are mapped) associated with carcinogenesis and/or related to functions implicated with tumor development, such as proliferation and cell survival. An interaction network analysis highlighted the importance of TP53 pathway in cancer emergence. A high number of germline copy-neutral loss of heterozygosity (cnLOH) was identified in nine cases, particularly in two patients. Eighteen genes were covered by both rare CNVs and cnLOH, including 14 related to tumorigenesis and seven genes (ABCC1, KDM4C, KIAA0430, MYH11, NDE1, PIWIL2, and ULK2) specifically associated with cellular growth and proliferation. Overall, we identified 14 cases with rare CNVs and/or cnLOH that may contribute to the risk of MPT development. KEY MESSAGE CNVs may explain the risk of hereditary cancer syndromes in MPT patients. CNVs affecting genes related to cancer are candidates to be involved in MPT risk. EPCAM/MSH2 deletions should be investigated in patients suspected to have LS. Gene enrichment related to the TP53 network is associated with MPT development. cnLOH and CNVs contribute to the risk of MPT development.
Collapse
Affiliation(s)
- Rolando A R Villacis
- International Center for Research (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Tatiane R Basso
- International Center for Research (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Luisa M Canto
- International Center for Research (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Maísa Pinheiro
- International Center for Research (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Karina M Santiago
- Department of Oncogenetics, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Juliana Giacomazzi
- Department of Genetics, Federal University of Rio Grande do Sul (UFRGS) and Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Cláudia A A de Paula
- International Center for Research (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Dirce M Carraro
- International Center for Research (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Patrícia Ashton-Prolla
- Department of Genetics, Federal University of Rio Grande do Sul (UFRGS) and Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Maria I Achatz
- Department of Oncogenetics, A.C. Camargo Cancer Center, São Paulo, SP, Brazil.,Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI)/National Institutes of Health (NIH), Bethesda, MD, USA
| | - Silvia R Rogatto
- International Center for Research (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil. .,Department of Clinical Genetics, Vejle Sygehus, Kabbeltoft 25, 7100, Vejle, Denmark. .,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
10
|
Mei Z, Zhang X, Yi J, Huang J, He J, Tao Y. Sirtuins in metabolism, DNA repair and cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:182. [PMID: 27916001 PMCID: PMC5137222 DOI: 10.1186/s13046-016-0461-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/19/2016] [Indexed: 12/12/2022]
Abstract
The mammalian sirtuin family has attracted tremendous attention over the past few years as stress adaptors and post-translational modifier. They have involved in diverse cellular processes including DNA repair, energy metabolism, and tumorigenesis. Notably, genomic instability and metabolic reprogramming are two of characteristic hallmarks in cancer. In this review, we summarize current knowledge on the functions of sirtuins mainly regarding DNA repair and energy metabolism, and further discuss the implication of sirtuins in cancer specifically by regulating genome integrity and cancer-related metabolism.
Collapse
Affiliation(s)
- Zhen Mei
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Xian Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Jiarong Yi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Junjie Huang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Jian He
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China. .,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
11
|
Tsigelny IF, Kouznetsova VL, Lian N, Kesari S. Molecular mechanisms of OLIG2 transcription factor in brain cancer. Oncotarget 2016; 7:53074-53101. [PMID: 27447975 PMCID: PMC5288170 DOI: 10.18632/oncotarget.10628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/03/2016] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocyte lineage transcription factor 2 (OLIG2) plays a pivotal role in glioma development. Here we conducted a comprehensive study of the critical gene regulatory networks involving OLIG2. These include the networks responsible for OLIG2 expression, its translocation to nucleus, cell cycle, epigenetic regulation, and Rho-pathway interactions. We described positive feedback loops including OLIG2: loops of epigenetic regulation and loops involving receptor tyrosine kinases. These loops may be responsible for the prolonged oncogenic activity of OLIG2. The proposed schemes for epigenetic regulation of the gene networks involving OLIG2 are confirmed by patient survival (Kaplan-Meier) curves based on the cancer genome atlas (TCGA) datasets. Finally, we elucidate the Coherent-Gene Modules (CGMs) networks-framework of OLIG2 involvement in cancer. We showed that genes interacting with OLIG2 formed eight CGMs having a set of intermodular connections. We showed also that among the genes involved in these modules the most connected hub is EGFR, then, on lower level, HSP90 and CALM1, followed by three lower levels including epigenetic genes KDM1A and NCOR1. The genes on the six upper levels of the hierarchy are involved in interconnections of all eight CGMs and organize functionally defined gene-signaling subnetworks having specific functions. For example, CGM1 is involved in epigenetic control. CGM2 is significantly related to cell proliferation and differentiation. CGM3 includes a number of interconnected helix-loop-helix transcription factors (bHLH) including OLIG2. Many of these TFs are partially controlled by OLIG2. The CGM4 is involved in PDGF-related: angiogenesis, tumor cell proliferation and differentiation. These analyses provide testable hypotheses and approaches to inhibit OLIG2 pathway and relevant feed-forward and feedback loops to be interrogated. This broad approach can be applied to other TFs.
Collapse
Affiliation(s)
- Igor F. Tsigelny
- Department of Neurosciences, University of California San Diego, La Jolla, 92093-0752, CA, USA
- San Diego Supercomputer Center, University of California San Diego, La Jolla, 92093-0505, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, 92093, CA, USA
| | - Valentina L. Kouznetsova
- San Diego Supercomputer Center, University of California San Diego, La Jolla, 92093-0505, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, 92093, CA, USA
| | - Nathan Lian
- REHS, San Diego Supercomputer Center, University of California San Diego, La Jolla, 92093-0505, CA, USA
| | - Santosh Kesari
- John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, 90404, CA, USA
- Pacific Neuroscience Institute at Providence Saint John's Health Center, Santa Monica, 90404, CA, USA
| |
Collapse
|
12
|
Abstract
The nutrient demands of cancer cannot be met by normal cell metabolism. Cancer cells undergo dramatic alteration of metabolic pathways in a process called reprogramming, characterized by increased nutrient uptake and re-purposing of these fuels for biosynthetic, bioenergetic or signaling pathways. Partitioning carbon sources toward growth and away from ATP production necessitates other means of generating energy for biosynthetic reactions. Additionally, cancer cell adaptations frequently lead to increased production of reactive oxygen species and lactic acid, which can be beneficial to cancer growth but also are potentially toxic and must be appropriately cleared. Sirtuins are a family of deacylases and ADP-ribosyltransferases with clear links to regulation of cancer metabolism. Through their unique ability to integrate cellular stress and nutrient status with coordination of metabolic outputs, sirtuins are well poised to play pivotal roles in tumor progression and survival. Here, we review the multi-faceted duties of sirtuins in tackling the metabolic hurdles in cancer. We focus on both beneficial and adverse effects of sirtuins in the regulation of energetic, biosynthetic and toxicity barriers faced by cancer cells.
Collapse
Affiliation(s)
- Natalie J German
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Marcia C Haigis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Wątroba M, Szukiewicz D. The role of sirtuins in aging and age-related diseases. Adv Med Sci 2016; 61:52-62. [PMID: 26521204 DOI: 10.1016/j.advms.2015.09.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 02/09/2023]
Abstract
Sirtuins, initially described as histone deacetylases and gene silencers in yeast, are now known to have much more functions and to be much more abundant in living organisms. Sirtuins gained much attention when they were first acknowledged to be responsible for some beneficial and longevity-promoting effects of calorie restriction in many species of animals - from fruit flies to mammals. In this paper, we discuss some detailed molecular mechanisms of inducing these effects, and wonder if they could be possibly mimicked without actually applying calorie restriction, through induction of sirtuin activity. It is known now that sirtuins, when adjusting the pattern of cellular metabolism to nutrient availability, can regulate many metabolic functions significant from the standpoint of aging research - including DNA repair, genome stability, inflammatory response, apoptosis, cell cycle, and mitochondrial functions. While carrying out these regulations, sirtuins cooperate with many transcription factors, including PGC-1a, NFKB, p53 and FoxO. This paper contains some considerations about possible use of facilitating activity of the sirtuins in prevention of aging, metabolic syndrome, chronic inflammation, and other diseases.
Collapse
|
14
|
Villacis RAR, Miranda PM, Gomy I, Santos EMM, Carraro DM, Achatz MI, Rossi BM, Rogatto SR. Contribution of rare germline copy number variations and common susceptibility loci in Lynch syndrome patients negative for mutations in the mismatch repair genes. Int J Cancer 2015; 138:1928-35. [PMID: 26620301 DOI: 10.1002/ijc.29948] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023]
Abstract
In colorectal carcinoma (CRC), 35% of cases are known to have a hereditary component, while a lower proportion (∼ 5%) can be explained by known genetic factors. In this study, copy number variations (CNVs) were evaluated in 45 unrelated patients with clinical hypothesis of Lynch syndrome (Amsterdam or Bethesda criteria); negative for MLH1, MSH2, MSH6, PMS2, CHEK2*1100delC and TP53 pathogenic mutations; aiming to reveal new predisposing genes. Analyses with two different microarray platforms (Agilent 180K and Affymetrix CytoScan HD) revealed 35 rare CNVs covering 67 known genes in 22 patients. Gains (GALNT6 and GALNT11) and losses (SEMA3C) involving the same gene families related to CRC susceptibility were found among the rare CNVs. Segregation analysis performed on four relatives from one family suggested the involvement of GALNT11 and KMT2C in those at risk of developing CRC. Notably, in silico molecular analysis revealed that 61% (41/67) of the genes covered by rare CNVs were associated with cancer, mainly colorectal (17 genes). Ten common SNPs, previously associated with CRC, were genotyped in 39 index patients and 100 sporadic CRC cases. Although no significant, an increased number of risk alleles was detected in the index cases compared with the sporadic CRC patients. None of the SNPs were covered by CNVs, suggesting an independent effect of each alteration in cancer susceptibility. In conclusion, rare germline CNVs and common SNPs may contribute to an increased risk for hereditary CRC in patients with mismatch repair proficiency.
Collapse
Affiliation(s)
- Rolando A R Villacis
- International Research Center (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Priscila M Miranda
- International Research Center (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Israel Gomy
- Institute of Hematology and Oncology, Faculties Little Prince, Curitiba, PR, Brazil
| | | | - Dirce M Carraro
- International Research Center (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Maria I Achatz
- Department of Oncogenetics, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | | | - Silvia R Rogatto
- International Research Center (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil.,Department of Urology, Faculty of Medicine, University of São Paulo State (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
15
|
Abstract
The sirtuins (SIRTs; of which there are seven in mammals) are NAD(+)-dependent enzymes that regulate a large number of cellular pathways and forestall the progression of ageing and age-associated diseases. In recent years, the role of sirtuins in cancer biology has become increasingly apparent, and growing evidence demonstrates that sirtuins regulate many processes that go awry in cancer cells, such as cellular metabolism, the regulation of chromatin structure and the maintenance of genomic stability. In this article, we review recent advances in our understanding of how sirtuins affect cancer metabolism, DNA repair and the tumour microenvironment and how activating or inhibiting sirtuins may be important in preventing or treating cancer.
Collapse
Affiliation(s)
- Angeliki Chalkiadaki
- Department of Biology, The Paul F. Glenn Center for the Science of Aging, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Bldg 68-280 Cambridge, Massachusetts 02139, USA
| | - Leonard Guarente
- Department of Biology, The Paul F. Glenn Center for the Science of Aging, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Bldg 68-280 Cambridge, Massachusetts 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Kendall Square, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
16
|
Sebastián C, Mostoslavsky R. The role of mammalian sirtuins in cancer metabolism. Semin Cell Dev Biol 2015; 43:33-42. [DOI: 10.1016/j.semcdb.2015.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/29/2015] [Indexed: 12/26/2022]
|
17
|
Kumar S, Lombard DB. Mitochondrial sirtuins and their relationships with metabolic disease and cancer. Antioxid Redox Signal 2015; 22:1060-77. [PMID: 25545135 PMCID: PMC4389911 DOI: 10.1089/ars.2014.6213] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Maintenance of metabolic homeostasis is critical for cellular and organismal health. Proper regulation of mitochondrial functions represents a crucial element of overall metabolic homeostasis. Mitochondrial sirtuins (SIRT3, SIRT4, and SIRT5) play pivotal roles in promoting this homeostasis by regulating numerous aspects of mitochondrial metabolism in response to environmental stressors. RECENT ADVANCES New work has illuminated multiple links between mitochondrial sirtuins and cancer. SIRT5 has been shown to regulate the recently described post-translational modifications succinyl-lysine, malonyl-lysine, and glutaryl-lysine. An understanding of these modifications is still in its infancy. Enumeration of SIRT3 and SIRT5 targets via advanced proteomic techniques promises to dramatically enhance insight into functions of these proteins. CRITICAL ISSUES In this review, we highlight the roles of mitochondrial sirtuins and their targets in cellular and organismal metabolic homeostasis. Furthermore, we discuss emerging roles for mitochondrial sirtuins in suppressing and/or promoting tumorigenesis, depending on the cellular and molecular context. FUTURE DIRECTIONS Currently, hundreds of potential SIRT3 and SIRT5 molecular targets have been identified in proteomic experiments. Future studies will need to validate the major targets of these enzymes, and elucidate how acetylation and/or acylation modulate their functionality. A great deal of interest exists in targeting sirtuins pharmacologically; this endeavor will require development of sirtuin-specific modulators (activators and inhibitors) as potential treatments for cancer and metabolic disease.
Collapse
Affiliation(s)
- Surinder Kumar
- 1 Department of Pathology, University of Michigan , Ann Arbor, Michigan
| | | |
Collapse
|
18
|
Id Said B, Malkin D. A functional variant in miR-605 modifies the age of onset in Li-Fraumeni syndrome. Cancer Genet 2015; 208:47-51. [DOI: 10.1016/j.cancergen.2014.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 02/04/2023]
|
19
|
Basta J, Rauchman M. The nucleosome remodeling and deacetylase complex in development and disease. Transl Res 2015; 165:36-47. [PMID: 24880148 PMCID: PMC4793962 DOI: 10.1016/j.trsl.2014.05.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 02/07/2023]
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex is one of the major chromatin remodeling complexes found in cells. It plays an important role in regulating gene transcription, genome integrity, and cell cycle progression. Through its impact on these basic cellular processes, increasing evidence indicates that alterations in the activity of this macromolecular complex can lead to developmental defects, oncogenesis, and accelerated aging. Recent genetic and biochemical studies have elucidated the mechanisms of NuRD action in modifying the chromatin landscape. These advances have the potential to lead to new therapeutic approaches to birth defects and cancer.
Collapse
Affiliation(s)
- Jeannine Basta
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri; Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri; John Cochran Division, VA St. Louis Health Care System, St. Louis, Missouri
| | - Michael Rauchman
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri; Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri; John Cochran Division, VA St. Louis Health Care System, St. Louis, Missouri.
| |
Collapse
|
20
|
Zwaans BMM, Lombard DB. Interplay between sirtuins, MYC and hypoxia-inducible factor in cancer-associated metabolic reprogramming. Dis Model Mech 2014; 7:1023-32. [PMID: 25085992 PMCID: PMC4142723 DOI: 10.1242/dmm.016287] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the early twentieth century, Otto Heinrich Warburg described an elevated rate of glycolysis occurring in cancer cells, even in the presence of atmospheric oxygen (the Warburg effect). Despite the inefficiency of ATP generation through glycolysis, the breakdown of glucose into lactate provides cancer cells with a number of advantages, including the ability to withstand fluctuations in oxygen levels, and the production of intermediates that serve as building blocks to support rapid proliferation. Recent evidence from many cancer types supports the notion that pervasive metabolic reprogramming in cancer and stromal cells is a crucial feature of neoplastic transformation. Two key transcription factors that play major roles in this metabolic reprogramming are hypoxia inducible factor-1 (HIF1) and MYC. Sirtuin-family deacetylases regulate diverse biological processes, including many aspects of tumor biology. Recently, the sirtuin SIRT6 has been shown to inhibit the transcriptional output of both HIF1 and MYC, and to function as a tumor suppressor. In this Review, we highlight the importance of HIF1 and MYC in regulating tumor metabolism and their regulation by sirtuins, with a main focus on SIRT6.
Collapse
Affiliation(s)
- Bernadette M M Zwaans
- Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA
| | - David B Lombard
- Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
21
|
Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet 2014; 30:271-86. [PMID: 24877878 PMCID: PMC4077918 DOI: 10.1016/j.tig.2014.04.007] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 12/12/2022]
Abstract
The first link between sirtuins and longevity was made 15 years ago in yeast. These initial studies sparked efforts by many laboratories working in diverse model organisms to elucidate the relations between sirtuins, lifespan, and age-associated dysfunction. Here, we discuss the current understanding of how sirtuins relate to aging. We focus primarily on mammalian sirtuins SIRT1, SIRT3, and SIRT6, the three sirtuins for which the most relevant data are available. Strikingly, a large body of evidence now indicates that these and other mammalian sirtuins suppress a variety of age-related pathologies and promote healthspan. Moreover, increased expression of SIRT1 or SIRT6 extends mouse lifespan. Overall, these data point to important roles for sirtuins in promoting mammalian health, and perhaps in modulating the aging process.
Collapse
Affiliation(s)
- William Giblin
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mary E Skinner
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - David B Lombard
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
22
|
Abstract
The roles of p53 as "guardian of the genome" are extensive, encompassing regulation of the cell cycle, DNA repair, apoptosis, cellular metabolism, and senescence - ultimately steering cells through a balance of death and proliferation. The majority of sporadic cancers exhibit loss of p53 activity due to mutations or deletions of TP53, and alterations in its signaling pathway. Germline TP53 mutations have been identified in a group of families exhibiting a rare but highly penetrant familial cancer syndrome, called the Li-Fraumeni syndrome (LFS). Between 60-80% of 'classic' LFS families carry mutant Trp53. The most frequent cancers observed are premenopausal breast cancer, bone and soft-tissue sarcomas, adrenal cortical carcinomas, and brain tumors. Penetrance is nearly 100% by age 70. Although TP53 is currently the only validated susceptibility locus recognized for LFS, recent studies have focused on the identification of genetic modifiers that may explain the wide phenotypic variability observed in LFS patients. Analyses of single nucleotide polymorphisms (SNPs), genome-wide copy number and telomere length have provided greater insight into the potential genetic modifiers of LFS. Moreover, the study of Trp53 mutant heterozygous mouse models has elucidated novel functions of p53, and offers insight into the mechanisms governing tumorigenesis in LFS. The key findings outlined in this chapter provide an overview of the molecular basis of LFS and the role of p53 in this unique heritable cancer syndrome.
Collapse
Affiliation(s)
- Diana Merino
- Division of Hematology/Oncology, Program in Genetics and Genome Biology, The Hospital for Sick Children, 555 University Avenue, M5G 1X8, Toronto, ON, Canada
| | | |
Collapse
|
23
|
Lombard DB, Zwaans BMM. SIRT3: as simple as it seems? Gerontology 2013; 60:56-64. [PMID: 24192814 DOI: 10.1159/000354382] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/16/2013] [Indexed: 12/19/2022] Open
Abstract
Identification of conserved pathways regulating longevity holds out the eventual possibility of pharmacologic health- and lifespan extension in humans. Members of the sirtuin deacetylase/ADP-ribosyltransferase/deacylase family extend longevity in invertebrates and promote various aspects of mammalian healthspan. The mitochondrial sirtuin SIRT3 deacetylates numerous proteins in this organelle, regulating mitochondrial functions and suppressing diverse age-associated pathologies. However, recent findings raise the possibility that SIRT3 may regulate some mitochondrial functions indirectly, rather than by direct deacetylation of specific mitochondrial substrates. Specifically, it has been found that SIRT3 promotes activities of the upstream mitochondrial regulators adenosine monophosphate-activated protein kinase and PGC1α. In addition, studies of tissue-specific SIRT3 knockouts suggest non-tissue-autonomous roles for SIRT3. Thus, mitochondrial regulation by SIRT3 is likely much more complex than initially appreciated, potentially involving both direct and indirect mechanisms. Unraveling these may reveal novel aspects of how the functional status of the mitochondria is communicated to the rest of the cell, and to the organism overall.
Collapse
Affiliation(s)
- David B Lombard
- Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, Mich., USA
| | | |
Collapse
|