1
|
Bulduk BK, Tortajada J, Torres‐Egurrola L, Valiente‐Pallejà A, Martínez‐Leal R, Vilella E, Torrell H, Muntané G, Martorell L. High frequency of mitochondrial DNA rearrangements in the peripheral blood of adults with intellectual disability. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2025; 69:137-152. [PMID: 39506491 PMCID: PMC11735882 DOI: 10.1111/jir.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) rearrangements are recognised factors in mitochondrial disorders and ageing, but their involvement in neurodevelopmental disorders, particularly intellectual disability (ID) and autism spectrum disorder (ASD), remains poorly understood. Previous studies have reported mitochondrial dysfunction in individuals with both ID and ASD. The aim of this study was to investigate the prevalence of large-scale mtDNA rearrangements in ID and ID with comorbid ASD (ID-ASD). METHOD We used mtDNA-targeted next-generation sequencing and the MitoSAlt high-throughput computational pipeline in peripheral blood samples from 76 patients with ID (mean age 52.5 years, 37% female), 59 patients with ID-ASD (mean age 41.3 years, 46% female) and 32 healthy controls (mean age 42.4 years, 47% female) from Catalonia. RESULTS The study revealed a high frequency of mtDNA rearrangements in patients with ID, with 10/76 (13.2%) affected individuals. However, the prevalence was significantly lower in patients with ID-ASD 1/59 (1.7%) and in HC 1/32 (3.1%). Among the mtDNA rearrangements, six were identified as deletions (median size 6937 bp and median heteroplasmy level 2.3%) and six as duplications (median size 10 455 bp and median heteroplasmy level 1.9%). One of the duplications, MT-ATP6 m.8765-8793dup (29 bp), was present in four individuals with ID with a median heteroplasmy level of 3.9%. CONCLUSIONS Our results show that mtDNA rearrangements are frequent in patients with ID, but not in those with ID-ASD, when compared to HC. Additionally, MitoSAlt has demonstrated high sensitivity and accuracy in detecting mtDNA rearrangements, even at very low heteroplasmy levels in blood samples. While the high frequency of mtDNA rearrangements in ID is noteworthy, the role of these rearrangements is currently unclear and needs to be confirmed with further data, particularly in post-mitotic tissues and through age-matched control studies.
Collapse
Affiliation(s)
- B. K. Bulduk
- Àrea de RecercaHospital Universitari Institut Pere Mata (HUIPM)ReusCataloniaSpain
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
| | - J. Tortajada
- Àrea de RecercaHospital Universitari Institut Pere Mata (HUIPM)ReusCataloniaSpain
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
| | - L. Torres‐Egurrola
- Àrea de RecercaHospital Universitari Institut Pere Mata (HUIPM)ReusCataloniaSpain
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
| | - A. Valiente‐Pallejà
- Àrea de RecercaHospital Universitari Institut Pere Mata (HUIPM)ReusCataloniaSpain
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
- CIBER de Salud Mental (CIBERSAM)Instituto de Salud Carlos IIIMadridSpain
| | - R. Martínez‐Leal
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
- CIBER de Salud Mental (CIBERSAM)Instituto de Salud Carlos IIIMadridSpain
- Genètica i Ambient en PsiquiatriaIntellectual Disability and Developmental Disorders Research Unit (UNIVIDD), Fundació VillablancaReusCataloniaSpain
| | - E. Vilella
- Àrea de RecercaHospital Universitari Institut Pere Mata (HUIPM)ReusCataloniaSpain
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
- CIBER de Salud Mental (CIBERSAM)Instituto de Salud Carlos IIIMadridSpain
| | - H. Torrell
- Centre for Omic Sciences (COS)Joint Unit Universitat Rovira i Virgili‐EURECAT Technology Centre of Catalonia, Unique Scientific and Technical InfrastructuresReusCataloniaSpain
| | - G. Muntané
- Àrea de RecercaHospital Universitari Institut Pere Mata (HUIPM)ReusCataloniaSpain
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
- CIBER de Salud Mental (CIBERSAM)Instituto de Salud Carlos IIIMadridSpain
- Institut de Biologia Evolutiva (UPF‐CSIC), Department of Medicine and Life SciencesUniversitat Pompeu Fabra, Parc de Recerca Biomèdica de BarcelonaBarcelonaCataloniaSpain
| | - L. Martorell
- Àrea de RecercaHospital Universitari Institut Pere Mata (HUIPM)ReusCataloniaSpain
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
- CIBER de Salud Mental (CIBERSAM)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
2
|
Alqahtani T, Deore SL, Kide AA, Shende BA, Sharma R, Chakole RD, Nemade LS, Kale NK, Borah S, Deokar SS, Behera A, Dhawal Bhandari D, Gaikwad N, Azad AK, Ghosh A. Mitochondrial dysfunction and oxidative stress in Alzheimer's disease, and Parkinson's disease, Huntington's disease and Amyotrophic Lateral Sclerosis -An updated review. Mitochondrion 2023:S1567-7249(23)00051-X. [PMID: 37269968 DOI: 10.1016/j.mito.2023.05.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Misfolded proteins in the central nervous system can induce oxidative damage, which can contribute to neurodegenerative diseases in the mitochondria. Neurodegenerative patients face early mitochondrial dysfunction, impacting energy utilization. Amyloid-ß and tau problems both have an effect on mitochondria, which leads to mitochondrial malfunction and, ultimately, the onset of Alzheimer's disease. Cellular oxygen interaction yields reactive oxygen species within mitochondria, initiating oxidative damage to mitochondrial constituents. Parkinson's disease, linked to oxidative stress, α-synuclein aggregation, and inflammation, results from reduced brain mitochondria activity. Mitochondrial dynamics profoundly influence cellular apoptosis via distinct causative mechanisms. The condition known as Huntington's disease is characterized by an expansion of polyglutamine, primarily impactingthe cerebral cortex and striatum. Research has identified mitochondrial failure as an early pathogenic mechanism contributing to HD's selective neurodegeneration. The mitochondria are organelles that exhibit dynamism by undergoing fragmentation and fusion processes to attain optimal bioenergetic efficiency. They can also be transported along microtubules and regulateintracellular calcium homeostasis through their interaction with the endoplasmic reticulum. Additionally, the mitochondria produce free radicals. The functions of eukaryotic cells, particularly in neurons, have significantly deviated from the traditionally assigned role of cellular energy production. Most of them areimpaired in HD, which may lead to neuronal dysfunction before symptoms manifest. This article summarises the most important changes in mitochondrial dynamics that come from neurodegenerative diseases including Alzheimer's, Parkinson's, Huntington's and Amyotrophic Lateral Sclerosis. Finally, we discussed about novel techniques that can potentially treat mitochondrial malfunction and oxidative stress in four most dominating neuro disorders.
Collapse
Affiliation(s)
- Taha Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | | | | | | | - Ritika Sharma
- University institute of pharma sciences, Chandigarh University, Mohali, Punjab.
| | - Rita Dadarao Chakole
- Government College of Pharmacy Vidyanagar Karad Dist Satara Maharashtra Pin 415124.
| | - Lalita S Nemade
- Govindrao Nikam College of Pharmacy Sawarde Maharashtra 415606.
| | | | - Sudarshana Borah
- Department of Pharmacognosy, University of Science and Technology Meghalaya Technocity, Ri-Bhoi District Meghalaya.
| | | | - Ashok Behera
- Faculty of Pharmacy, DIT University, Dehradun,Uttarakhand.
| | - Divya Dhawal Bhandari
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014. India.
| | - Nikita Gaikwad
- Department of Pharmaceutics, P.E.S. Modern College of Pharmacy, Nigdi, Pune-411044.
| | - Abul Kalam Azad
- Faculty of Pharmacy MAHSA University Bandar Saujana putra, 42610, Selangor, Malaysia
| | - Arabinda Ghosh
- Department of Botany, Gauhati University, Guwahati, 781014, Assam, India
| |
Collapse
|
3
|
Mahmud S, Biswas S, Afrose S, Mita MA, Hasan MR, Shimu MSS, Paul GK, Chung S, Saleh MA, Alshehri S, Ghoneim MM, Alruwaily M, Kim B. Use of Next-Generation Sequencing for Identifying Mitochondrial Disorders. Curr Issues Mol Biol 2022; 44:1127-1148. [PMID: 35723297 PMCID: PMC8947152 DOI: 10.3390/cimb44030074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/06/2022] Open
Abstract
Mitochondria are major contributors to ATP synthesis, generating more than 90% of the total cellular energy production through oxidative phosphorylation (OXPHOS): metabolite oxidation, such as the β-oxidation of fatty acids, and the Krebs's cycle. OXPHOS inadequacy due to large genetic lesions in mitochondrial as well as nuclear genes and homo- or heteroplasmic point mutations in mitochondrially encoded genes is a characteristic of heterogeneous, maternally inherited genetic disorders known as mitochondrial disorders that affect multisystemic tissues and organs with high energy requirements, resulting in various signs and symptoms. Several traditional diagnostic approaches, including magnetic resonance imaging of the brain, cardiac testing, biochemical screening, variable heteroplasmy genetic testing, identifying clinical features, and skeletal muscle biopsies, are associated with increased risks, high costs, a high degree of false-positive or false-negative results, or a lack of precision, which limits their diagnostic abilities for mitochondrial disorders. Variable heteroplasmy levels, mtDNA depletion, and the identification of pathogenic variants can be detected through genetic sequencing, including the gold standard Sanger sequencing. However, sequencing can be time consuming, and Sanger sequencing can result in the missed recognition of larger structural variations such as CNVs or copy-number variations. Although each sequencing method has its own limitations, genetic sequencing can be an alternative to traditional diagnostic methods. The ever-growing roster of possible mutations has led to the development of next-generation sequencing (NGS). The enhancement of NGS methods can offer a precise diagnosis of the mitochondrial disorder within a short period at a reasonable expense for both research and clinical applications.
Collapse
Affiliation(s)
- Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Suvro Biswas
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Md. Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Mst. Sharmin Sultana Shimu
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Gobindo Kumar Paul
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Sanghyun Chung
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Md. Abu Saleh
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Momammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Maha Alruwaily
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| |
Collapse
|
4
|
Emser SV, Schaschl H, Millesi E, Steinborn R. Extension of Mitogenome Enrichment Based on Single Long-Range PCR: mtDNAs and Putative Mitochondrial-Derived Peptides of Five Rodent Hibernators. Front Genet 2021; 12:685806. [PMID: 35027919 PMCID: PMC8749263 DOI: 10.3389/fgene.2021.685806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Enriching mitochondrial DNA (mtDNA) for sequencing entire mitochondrial genomes (mitogenomes) can be achieved by single long-range PCR. This avoids interference from the omnipresent nuclear mtDNA sequences (NUMTs). The approach is currently restricted to the use of samples collected from humans and ray-finned fishes. Here, we extended the use of single long-range PCR by introducing back-to-back oligonucleotides that target a sequence of extraordinary homology across vertebrates. The assay was applied to five hibernating rodents, namely alpine marmot, Arctic and European ground squirrels, and common and garden dormice, four of which have not been fully sequenced before. Analysis of the novel mitogenomes focussed on the prediction of mitochondrial-derived peptides (MDPs) providing another level of information encoded by mtDNA. The comparison of MOTS-c, SHLP4 and SHLP6 sequences across vertebrate species identified segments of high homology that argue for future experimentation. In addition, we evaluated four candidate polymorphisms replacing an amino acid in mitochondrially encoded subunits of the oxidative phosphorylation (OXPHOS) system that were reported in relation to cold-adaptation. No obvious pattern was found for the diverse sets of mammalian species that either apply daily or multiday torpor or otherwise cope with cold. In summary, our single long-range PCR assay applying a pair of back-to-back primers that target a consensus sequence motif of Vertebrata has potential to amplify (intact) mitochondrial rings present in templates from a taxonomically diverse range of vertebrates. It could be promising for studying novel mitogenomes, mitotypes of a population and mitochondrial heteroplasmy in a sensitive, straightforward and flexible manner.
Collapse
Affiliation(s)
- Sarah V. Emser
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Helmut Schaschl
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Eva Millesi
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
5
|
Aiewsakun P, Nilplub P, Wongtrakoongate P, Hongeng S, Thitithanyanont A. SARS-CoV-2 genetic variations associated with COVID-19 pathogenicity. Microb Genom 2021; 7. [PMID: 34870573 PMCID: PMC8767342 DOI: 10.1099/mgen.0.000734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this study, we performed genome-wide association analyses on SARS-CoV-2 genomes to identify genetic mutations associated with pre-symptomatic/asymptomatic COVID-19 cases. Various potential covariates and confounding factors of COVID-19 severity, including patient age, gender and country, as well as virus phylogenetic relatedness were adjusted for. In total, 3021 full-length genomes of SARS-CoV-2 generated from original clinical samples and whose patient status could be determined conclusively as either ‘pre-symptomatic/asymptomatic’ or ‘symptomatic’ were retrieved from the GISAID database. We found that the mutation 11 083G>T, located in the coding region of non-structural protein 6, is significantly associated with asymptomatic COVID-19. Patient age is positively correlated with symptomatic infection, while gender is not significantly correlated with the development of the disease. We also found that the effects of the mutation, patient age and gender do not vary significantly among countries, although each country appears to have varying baseline chances of COVID-19 symptom development.
Collapse
Affiliation(s)
- Pakorn Aiewsakun
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Patrawee Nilplub
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.,Center for Neuroscience, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| |
Collapse
|
6
|
Lu W, Yu K, Li X, Ge Q, Liang G, Bai Y. Identification of full-length circular nucleic acids using long-read sequencing technologies. Analyst 2021; 146:6102-6113. [PMID: 34549740 DOI: 10.1039/d1an01147b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unlike the traditional perception in genomic DNA or linear RNA, circular nucleic acids are a class of functional biomolecules with a circular configuration and are often observed in nature. These circular molecules encompass the full spectrum of size and play an important role in organisms, making circular nucleic acids research worthy. Due to the low abundance of most types of circular nucleic acids and the disadvantages of short-read sequencing platforms, accurate and full-length circular nucleic acid sequencing and identification is difficult. In this review, we have provided insights into full-length circular nucleic acid detection methods using long-read sequencing technologies, with a focus on the experimental and bioinformatics strategies to obtain accurate sequences.
Collapse
Affiliation(s)
- Wenxiang Lu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Kequan Yu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Xiaohan Li
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Qinyu Ge
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Yunfei Bai
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
7
|
Macken WL, Vandrovcova J, Hanna MG, Pitceathly RDS. Applying genomic and transcriptomic advances to mitochondrial medicine. Nat Rev Neurol 2021; 17:215-230. [PMID: 33623159 DOI: 10.1038/s41582-021-00455-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) has increased our understanding of the molecular basis of many primary mitochondrial diseases (PMDs). Despite this progress, many patients with suspected PMD remain without a genetic diagnosis, which restricts their access to in-depth genetic counselling, reproductive options and clinical trials, in addition to hampering efforts to understand the underlying disease mechanisms. Although they represent a considerable improvement over their predecessors, current methods for sequencing the mitochondrial and nuclear genomes have important limitations, and molecular diagnostic techniques are often manual and time consuming. However, recent advances in genomics and transcriptomics offer realistic solutions to these challenges. In this Review, we discuss the current genetic testing approach for PMDs and the opportunities that exist for increased use of whole-genome NGS of nuclear and mitochondrial DNA (mtDNA) in the clinical environment. We consider the possible role for long-read approaches in sequencing of mtDNA and in the identification of novel nuclear genomic causes of PMDs. We examine the expanding applications of RNA sequencing, including the detection of cryptic variants that affect splicing and gene expression and the interpretation of rare and novel mitochondrial transfer RNA variants.
Collapse
Affiliation(s)
- William L Macken
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
8
|
Wang W, Sun Y, Lin Y, Xu X, Zhao D, Ji K, Li W, Zhao Y, Yan C. A novel nonsense variant in MT-CO3 causes MELAS syndrome. Neuromuscul Disord 2021; 31:558-565. [PMID: 33863631 DOI: 10.1016/j.nmd.2021.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 11/18/2022]
Abstract
Both mitochondrial and nuclear gene mutations can cause cytochrome c oxidase (COX, complex Ⅳ) dysfunction, leading to mitochondrial diseases. Although numerous diseases caused by defects of the COX subunits or COX assembly factors have been documented, clinical cases directly related to mitochondrial cytochrome c oxidase subunit 3 gene (MT-CO3) mutations are relatively rare. Here, we report a 47-year-old female patient presented with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. Muscle pathology revealed ragged-red fibres and remarkable COX-deficient muscle fibres. Muscle mitochondrial DNA sequencing analysis identified a novel MT-CO3 variant (m.9553G>A) that changed a highly conserved amino acid to a stop codon (p.Trp116*). This variant was heteroplasmic in multiple tissues, where the mutation load was 13% in oral epithelial cells, 89% in muscle samples, and not detectable in the peripheral blood lymphocytes. Single muscle fiber PCR analysis showed clear segregation of the mutation load with COX deficient fibres. Western blot analysis of the muscle samples revealed a significant decrease in the levels of COX1, COX2, COX3, COX4 and UQCRC2. COX respiration activity was remarkably reduced (58.84%) relative to the controls according to spectrophotometric assays. Taken together, our results indicated that this m.9553G>A variant may be responsible for the MELAS symdrome in the proband by affecting the stability and function of COX. The study expands the clinical and molecular spectrum of COX3-specific mitochondrial diseases.
Collapse
Affiliation(s)
- Wei Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road Jinan, Jinan, Shandong 250012 China
| | - Yuan Sun
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong 266035 China
| | - Yan Lin
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road Jinan, Jinan, Shandong 250012 China
| | - Xuebi Xu
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou 325000, China
| | - Dandan Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road Jinan, Jinan, Shandong 250012 China
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road Jinan, Jinan, Shandong 250012 China.
| | - Wei Li
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road Jinan, Jinan, Shandong 250012 China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road Jinan, Jinan, Shandong 250012 China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road Jinan, Jinan, Shandong 250012 China; Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong 266035 China; Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, Shandong 266035 China; Brain Science Research Institute, Shandong University, Jinan, Shandong 250000, China.
| |
Collapse
|
9
|
Hjelm BE, Rollins B, Morgan L, Sequeira A, Mamdani F, Pereira F, Damas J, Webb MG, Weber MD, Schatzberg AF, Barchas JD, Lee FS, Akil H, Watson SJ, Myers RM, Chao EC, Kimonis V, Thompson PM, Bunney WE, Vawter MP. Splice-Break: exploiting an RNA-seq splice junction algorithm to discover mitochondrial DNA deletion breakpoints and analyses of psychiatric disorders. Nucleic Acids Res 2019; 47:e59. [PMID: 30869147 PMCID: PMC6547454 DOI: 10.1093/nar/gkz164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
Deletions in the 16.6 kb mitochondrial genome have been implicated in numerous disorders that often display muscular and/or neurological symptoms due to the high-energy demands of these tissues. We describe a catalogue of 4489 putative mitochondrial DNA (mtDNA) deletions, including their frequency and relative read rate, using a combinatorial approach of mitochondria-targeted PCR, next-generation sequencing, bioinformatics, post-hoc filtering, annotation, and validation steps. Our bioinformatics pipeline uses MapSplice, an RNA-seq splice junction detection algorithm, to detect and quantify mtDNA deletion breakpoints rather than mRNA splices. Analyses of 93 samples from postmortem brain and blood found (i) the 4977 bp ‘common deletion’ was neither the most frequent deletion nor the most abundant; (ii) brain contained significantly more deletions than blood; (iii) many high frequency deletions were previously reported in MitoBreak, suggesting they are present at low levels in metabolically active tissues and are not exclusive to individuals with diagnosed mitochondrial pathologies; (iv) many individual deletions (and cumulative metrics) had significant and positive correlations with age and (v) the highest deletion burdens were observed in major depressive disorder brain, at levels greater than Kearns–Sayre Syndrome muscle. Collectively, these data suggest the Splice-Break pipeline can detect and quantify mtDNA deletions at a high level of resolution.
Collapse
Affiliation(s)
- Brooke E Hjelm
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA.,Department of Translational Genomics, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Brandi Rollins
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Ling Morgan
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Adolfo Sequeira
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Firoza Mamdani
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Filipe Pereira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos 4050-123, Portugal
| | - Joana Damas
- The Genome Center, University of California-Davis, Davis, CA 95616, USA
| | - Michelle G Webb
- Department of Translational Genomics, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Matthieu D Weber
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Alan F Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Jack D Barchas
- Department of Psychiatry, Weill Cornell Medical College at Cornell University, New York, NY 10065, USA
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College at Cornell University, New York, NY 10065, USA
| | - Huda Akil
- The Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stanley J Watson
- The Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Elizabeth C Chao
- Division of Genetics and Genomic Medicine, Department of Pediatrics, UCI, Irvine, CA, USA
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, UCI, Irvine, CA, USA
| | - Peter M Thompson
- Southwest Brain Bank, Department of Psychiatry, Texas Tech University Health Sciences Center (TTUHSC), El Paso, TX 79905, USA
| | - William E Bunney
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Marquis P Vawter
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| |
Collapse
|
10
|
Kim MY, Cho S, Lee JH, Seo HJ, Lee SD. Detection of Innate and Artificial Mitochondrial DNA Heteroplasmy by Massively Parallel Sequencing: Considerations for Analysis. J Korean Med Sci 2018; 33:e337. [PMID: 30584415 PMCID: PMC6300661 DOI: 10.3346/jkms.2018.33.e337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/02/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Mitochondrial heteroplasmy, the co-existence of different mitochondrial polymorphisms within an individual, has various forensic and clinical implications. But there is still no guideline on the application of massively parallel sequencing (MPS) in heteroplasmy detection. We present here some critical issues that should be considered in heteroplasmy studies using MPS. METHODS Among five samples with known innate heteroplasmies, two pairs of mixture were generated for artificial heteroplasmies with target minor allele frequencies (MAFs) ranging from 50% to 1%. Each sample was amplified by two-amplicon method and sequenced by Ion Torrent system. The outcomes of two different analysis tools, Torrent Suite Variant Caller (TVC) and mtDNA-Server (mDS), were compared. RESULTS All the innate heteroplasmies were detected correctly by both analysis tools. Average MAFs of artificial heteroplasmies correlated well to the target values. The detection rates were almost 90% for high-level heteroplasmies, but decreased for low-level heteroplasmies. TVC generally showed lower detection rates than mDS, which seems to be due to their own computation algorithms which drop out some reference-dominant heteroplasmies. Meanwhile, mDS reported several unintended low-level heteroplasmies which were suggested as nuclear mitochondrial DNA sequences. The average coverage depth of each sample placed on the same chip showed considerable variation. The increase of coverage depth had no effect on the detection rates. CONCLUSION In addition to the general accuracy of the MPS application on detecting heteroplasmy, our study indicates that the understanding of the nature of mitochondrial DNA and analysis algorithm would be crucial for appropriate interpretation of MPS results.
Collapse
Affiliation(s)
- Moon-Young Kim
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sohee Cho
- Institute of Forensic Science, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hyun Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Jin Seo
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Soong Deok Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, Korea
- Institute of Forensic Science, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Bris C, Goudenege D, Desquiret-Dumas V, Charif M, Colin E, Bonneau D, Amati-Bonneau P, Lenaers G, Reynier P, Procaccio V. Bioinformatics Tools and Databases to Assess the Pathogenicity of Mitochondrial DNA Variants in the Field of Next Generation Sequencing. Front Genet 2018; 9:632. [PMID: 30619459 PMCID: PMC6297213 DOI: 10.3389/fgene.2018.00632] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/27/2018] [Indexed: 11/13/2022] Open
Abstract
The development of next generation sequencing (NGS) has greatly enhanced the diagnosis of mitochondrial disorders, with a systematic analysis of the whole mitochondrial DNA (mtDNA) sequence and better detection sensitivity. However, the exponential growth of sequencing data renders complex the interpretation of the identified variants, thereby posing new challenges for the molecular diagnosis of mitochondrial diseases. Indeed, mtDNA sequencing by NGS requires specific bioinformatics tools and the adaptation of those developed for nuclear DNA, for the detection and quantification of mtDNA variants from sequence alignment to the calling steps, in order to manage the specific features of the mitochondrial genome including heteroplasmy, i.e., coexistence of mutant and wildtype mtDNA copies. The prioritization of mtDNA variants remains difficult, relying on a limited number of specific resources: population and clinical databases, and in silico tools providing a prediction of the variant pathogenicity. An evaluation of the most prominent bioinformatics tools showed that their ability to predict the pathogenicity was highly variable indicating that special efforts should be directed at developing new bioinformatics tools dedicated to the mitochondrial genome. In addition, massive parallel sequencing raised several issues related to the interpretation of very low mtDNA mutational loads, discovery of variants of unknown significance, and mutations unrelated to patient phenotype or the co-occurrence of mtDNA variants. This review provides an overview of the current strategies and bioinformatics tools for accurate annotation, prioritization and reporting of mtDNA variations from NGS data, in order to carry out accurate genetic counseling in individuals with primary mitochondrial diseases.
Collapse
Affiliation(s)
- Céline Bris
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - David Goudenege
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Valérie Desquiret-Dumas
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Majida Charif
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France
| | - Estelle Colin
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Dominique Bonneau
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Patrizia Amati-Bonneau
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Guy Lenaers
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France
| | - Pascal Reynier
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Vincent Procaccio
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| |
Collapse
|
12
|
Goudenège D, Bris C, Hoffmann V, Desquiret-Dumas V, Jardel C, Rucheton B, Bannwarth S, Paquis-Flucklinger V, Lebre AS, Colin E, Amati-Bonneau P, Bonneau D, Reynier P, Lenaers G, Procaccio V. eKLIPse: a sensitive tool for the detection and quantification of mitochondrial DNA deletions from next-generation sequencing data. Genet Med 2018; 21:1407-1416. [PMID: 30393377 DOI: 10.1038/s41436-018-0350-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/17/2018] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Accurate detection of mitochondrial DNA (mtDNA) alterations is essential for the diagnosis of mitochondrial diseases. The development of high-throughput sequencing technologies has enhanced the detection sensitivity of mtDNA pathogenic variants, but the detection of mtDNA rearrangements, especially multiple deletions, is still poorly processed. Here, we present eKLIPse, a sensitive and specific tool allowing the detection and quantification of large mtDNA rearrangements from single and paired-end sequencing data. METHODS The methodology was first validated using a set of simulated data to assess the detection sensitivity and specificity, and second with a series of sequencing data from mitochondrial disease patients carrying either single or multiple deletions, related to pathogenic variants in nuclear genes involved in mtDNA maintenance. RESULTS eKLIPse provides the precise breakpoint positions and the cumulated percentage of mtDNA rearrangements at a given gene location with a detection sensitivity lower than 0.5% mutant. eKLIPse software is available either as a script to be integrated in a bioinformatics pipeline, or as user-friendly graphical interface to visualize the results through a Circos representation ( https://github.com/dooguypapua/eKLIPse ). CONCLUSION Thus, eKLIPse represents a useful resource to study the causes and consequences of mtDNA rearrangements, for further genotype/phenotype correlations in mitochondrial disorders.
Collapse
Affiliation(s)
- David Goudenège
- MitoLab, UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Celine Bris
- MitoLab, UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Virginie Hoffmann
- MitoLab, UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France
| | - Valerie Desquiret-Dumas
- MitoLab, UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Claude Jardel
- Biochemistry Department and Genetics Center, APHP, GHU Pitié-Salpêtrière, Paris, France
| | - Benoit Rucheton
- Biochemistry Department and Genetics Center, APHP, GHU Pitié-Salpêtrière, Paris, France
| | - Sylvie Bannwarth
- Université Côte d'Azur, CHU de Nice, INSERM, CNRS, IRCAN, Nice, France
| | | | - Anne Sophie Lebre
- CHU Reims, Hôpital Maison Blanche, Pole de biologie, Service de génétique, Reims, France
| | - Estelle Colin
- MitoLab, UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Patrizia Amati-Bonneau
- MitoLab, UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Dominique Bonneau
- MitoLab, UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Pascal Reynier
- MitoLab, UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Guy Lenaers
- MitoLab, UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France
| | - Vincent Procaccio
- MitoLab, UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France. .,Biochemistry and Genetics Department, Angers Hospital, Angers, France.
| |
Collapse
|
13
|
Ivády G, Madar L, Dzsudzsák E, Koczok K, Kappelmayer J, Krulisova V, Macek M, Horváth A, Balogh I. Analytical parameters and validation of homopolymer detection in a pyrosequencing-based next generation sequencing system. BMC Genomics 2018; 19:158. [PMID: 29466940 PMCID: PMC5822529 DOI: 10.1186/s12864-018-4544-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/13/2018] [Indexed: 01/14/2023] Open
Abstract
Background Current technologies in next-generation sequencing are offering high throughput reads at low costs, but still suffer from various sequencing errors. Although pyro- and ion semiconductor sequencing both have the advantage of delivering long and high quality reads, problems might occur when sequencing homopolymer-containing regions, since the repeating identical bases are going to incorporate during the same synthesis cycle, which leads to uncertainty in base calling. The aim of this study was to evaluate the analytical performance of a pyrosequencing-based next-generation sequencing system in detecting homopolymer sequences using homopolymer-preintegrated plasmid constructs and human DNA samples originating from patients with cystic fibrosis. Results In the plasmid system average correct genotyping was 95.8% in 4-mers, 87.4% in 5-mers and 72.1% in 6-mers. Despite the experienced low genotyping accuracy in 5- and 6-mers, it was possible to generate amplicons with more than a 90% adequate detection rate in every homopolymer tract. When homopolymers in the CFTR gene were sequenced average accuracy was 89.3%, but varied in a wide range (52.2 – 99.1%). In all but one case, an optimal amplicon-sequencing primer combination could be identified. In that single case (7A tract in exon 14 (c.2046_2052)), none of the tested primer sets produced the required analytical performance. Conclusions Our results show that pyrosequencing is the most reliable in case of 4-mers and as homopolymer length gradually increases, accuracy deteriorates. With careful primer selection, the NGS system was able to correctly genotype all but one of the homopolymers in the CFTR gene. In conclusion, we configured a plasmid test system that can be used to assess genotyping accuracy of NGS devices and developed an accurate NGS assay for the molecular diagnosis of CF using self-designed primers for amplification and sequencing. Electronic supplementary material The online version of this article (10.1186/s12864-018-4544-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gergely Ivády
- Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - László Madar
- Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Erika Dzsudzsák
- Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Katalin Koczok
- Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.,Division of Clinical Genetics, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - János Kappelmayer
- Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Veronika Krulisova
- Department of Biology and Medical Genetics, Second Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Milan Macek
- Department of Biology and Medical Genetics, Second Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Attila Horváth
- Genomic Medicine and Bioinformatic Core Facility, University of Debrecen, Debrecen, Hungary
| | - István Balogh
- Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary. .,Division of Clinical Genetics, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.
| |
Collapse
|
14
|
Cho S, Kim MY, Lee JH, Lee SD. Assessment of mitochondrial DNA heteroplasmy detected on commercial panel using MPS system with artificial mixture samples. Int J Legal Med 2017; 132:1049-1056. [PMID: 29279961 DOI: 10.1007/s00414-017-1755-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/30/2017] [Indexed: 01/05/2023]
Abstract
Mitochondrial DNA (mtDNA) heteroplasmy is a potential genetic marker for forensic mtDNA analysis as well as phylogenic studies. Frequency of mtDNA heteroplasmy has been investigated in different populations through massively parallel sequencing (MPS) analysis, revealing various levels of frequency based on different MPS systems. For accurate heteroplasmy identification, it is essential to explore reliable detection threshold on various MPS systems. In addition, software solutions and pipelines need to be evaluated to analyze data effectively. In this study, heteroplasmy analysis was conducted on a commercially available mtDNA analysis system developed for forensic caseworks with artificially mixed DNA samples known for ratios and variant positions for assessment. mtDNA heteroplasmy > 10% was detectable with Torrent Variant Caller (TVC) while lower levels were identified using GeneMarker® HTS specialized software for minor variant detection. This study implies that analytical parameters and tools need to be optimized and evaluated for low-level heteroplasmy identification. Automated system with simple and efficient workflow is needed for forensic caseworks.
Collapse
Affiliation(s)
- Sohee Cho
- Institute of Forensic Science, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Moon Young Kim
- Department of Forensic Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Ji Hyun Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Soong Deok Lee
- Institute of Forensic Science, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea. .,Department of Forensic Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
15
|
Mordel P, Schaeffer S, Dupas Q, Laville MA, Gérard M, Chapon F, Allouche S. A 2 bp deletion in the mitochondrial ATP 6 gene responsible for the NARP (neuropathy, ataxia, and retinitis pigmentosa) syndrome. Biochem Biophys Res Commun 2017; 494:133-137. [PMID: 29054413 DOI: 10.1016/j.bbrc.2017.10.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 10/13/2017] [Indexed: 01/12/2023]
Abstract
Mitochondrial (mt) DNA-associated NARP (neurogenic muscle weakness, ataxia, and retinitis pigmentosa) syndrome is due to mutation in the MT-ATP6 gene. We report the case of a 18-year-old man who presented with deafness, a myoclonic epilepsy, muscle weakness since the age of 10 and further developed a retinitis pigmentosa and ataxia. The whole mtDNA analysis by next-generation sequencing revealed the presence of the 2 bp microdeletion m.9127-9128 del AT in the ATP6 gene at 82% heteroplasmy in muscle and to a lower load in blood (10-20%) and fibroblasts (50%). Using the patient's fibroblasts, we demonstrated a 60% reduction of the oligomycin-sensitive ATPase hydrolytic activity, a 40% decrease in the ATP synthesis and determination of the mitochondrial membrane potential using the fluorescent probe tetramethylrhodamine, ethyl ester indicated a significant reduction in oligomycin sensitivity. In conclusion, we demonstrated that this novel AT deletion in the ATP6 gene is pathogenic and responsible for the NARP syndrome.
Collapse
Affiliation(s)
- Patrick Mordel
- Normandie Univ, UNICAEN, CHU Caen, Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Caen, F-14032, France
| | | | - Quentin Dupas
- Normandie Univ, UNICAEN, CHU Caen, Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Caen, F-14032, France
| | | | - Marion Gérard
- CHU de Caen, Department of medical genetics, Caen, F-14032, France
| | - Françoise Chapon
- CHU de Caen, Neuromuscular Competence Center, Caen, F-14032, France; CHU de Caen, Department of Pathology, Caen, F-14032, France
| | - S Allouche
- Normandie Univ, UNICAEN, CHU Caen, Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Caen, F-14032, France; CHU de Caen, Department of biochemistry, Caen, F-14032, France.
| |
Collapse
|
16
|
Accurate and comprehensive analysis of single nucleotide variants and large deletions of the human mitochondrial genome in DNA and single cells. Eur J Hum Genet 2017; 25:1229-1236. [PMID: 28832570 DOI: 10.1038/ejhg.2017.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/30/2017] [Accepted: 07/18/2017] [Indexed: 01/18/2023] Open
Abstract
Massive parallel sequencing (MPS) can accurately quantify mitochondrial DNA (mtDNA) single nucleotide variants (SNVs), but no MPS methods are currently validated to simultaneously and accurately establish the breakpoints and frequency of large deletions at low heteroplasmic loads. Here we present the thorough validation of an MPS protocol to quantify the load of very low frequency, large mtDNA deletions in bulk DNA and single cells, along with SNV calling by standard methods. We used a set of well-characterized DNA samples, DNA mixes and single cells to thoroughly control the study. We developed a custom script for the detection of mtDNA rearrangements that proved to be more accurate in detecting and quantifying deletions than pre-existing tools. We also show that PCR conditions and primersets must be carefully chosen to avoid biases in the retrieved variants and an increase in background noise, and established a lower detection limit of 0.5% heteroplasmic load for large deletions, and 1.5 and 2% for SNVs, for bulk DNA and single cells, respectively. Finally, the analysis of different single cells provided novel insights into mtDNA cellular mosaicism.
Collapse
|
17
|
Riman S, Kiesler KM, Borsuk LA, Vallone PM. Characterization of NIST human mitochondrial DNA SRM-2392 and SRM-2392-I standard reference materials by next generation sequencing. Forensic Sci Int Genet 2017; 29:181-192. [DOI: 10.1016/j.fsigen.2017.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/17/2017] [Accepted: 04/04/2017] [Indexed: 12/12/2022]
|
18
|
MitoRS, a method for high throughput, sensitive, and accurate detection of mitochondrial DNA heteroplasmy. BMC Genomics 2017; 18:326. [PMID: 28441938 PMCID: PMC5405551 DOI: 10.1186/s12864-017-3695-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 04/10/2017] [Indexed: 01/23/2023] Open
Abstract
Background Mitochondrial dysfunction is linked to numerous pathological states, in particular related to metabolism, brain health and ageing. Nuclear encoded gene polymorphisms implicated in mitochondrial functions can be analyzed in the context of classical genome wide association studies. By contrast, mitochondrial DNA (mtDNA) variants are more challenging to identify and analyze for several reasons. First, contrary to the diploid nuclear genome, each cell carries several hundred copies of the circular mitochondrial genome. Mutations can therefore be present in only a subset of the mtDNA molecules, resulting in a heterogeneous pool of mtDNA, a situation referred to as heteroplasmy. Consequently, detection and quantification of variants requires extremely accurate tools, especially when this proportion is small. Additionally, the mitochondrial genome has pseudogenized into numerous copies within the nuclear genome over the course of evolution. These nuclear pseudogenes, named NUMTs, must be distinguished from genuine mtDNA sequences and excluded from the analysis. Results Here we describe a novel method, named MitoRS, in which the entire mitochondrial genome is amplified in a single reaction using rolling circle amplification. This approach is easier to setup and of higher throughput when compared to classical PCR amplification. Sequencing libraries are generated at high throughput exploiting a tagmentation-based method. Fine-tuned parameters are finally applied in the analysis to allow detection of variants even of low frequency heteroplasmy. The method was thoroughly benchmarked in a set of experiments designed to demonstrate its robustness, accuracy and sensitivity. The MitoRS method requires 5 ng total DNA as starting material. More than 96 samples can be processed in less than a day of laboratory work and sequenced in a single lane of an Illumina HiSeq flow cell. The lower limit for accurate quantification of single nucleotide variants has been measured at 1% frequency. Conclusions The MitoRS method enables the robust, accurate, and sensitive analysis of a large number of samples. Because it is cost effective and simple to setup, we anticipate this method will promote the analysis of mtDNA variants in large cohorts, and may help assessing the impact of mtDNA heteroplasmy on metabolic health, brain function, cancer progression, or ageing. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3695-5) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Qian M, Spada C, Wang X. Approach, Application, and Bioethics of mtDNA Sequencing in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:23-38. [DOI: 10.1007/978-981-10-6674-0_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Lindberg MR, Schmedes SE, Hewitt FC, Haas JL, Ternus KL, Kadavy DR, Budowle B. A Comparison and Integration of MiSeq and MinION Platforms for Sequencing Single Source and Mixed Mitochondrial Genomes. PLoS One 2016; 11:e0167600. [PMID: 27936026 PMCID: PMC5147911 DOI: 10.1371/journal.pone.0167600] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/16/2016] [Indexed: 12/17/2022] Open
Abstract
Single source and multiple donor (mixed) samples of human mitochondrial DNA were analyzed and compared using the MinION and the MiSeq platforms. A generalized variant detection strategy was employed to provide a cursory framework for evaluating the reliability and accuracy of mitochondrial sequences produced by the MinION. The feasibility of long-read phasing was investigated to establish its efficacy in quantitatively distinguishing and deconvolving individuals in a mixture. Finally, a proof-of-concept was demonstrated by integrating both platforms in a hybrid assembly that leverages solely mixture data to accurately reconstruct full mitochondrial genomes.
Collapse
Affiliation(s)
| | - Sarah E. Schmedes
- Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | | | - Jamie L. Haas
- Signature Science, LLC, Austin, Texas, United States of America
| | | | - Dana R. Kadavy
- Signature Science, LLC, Austin, Texas, United States of America
| | - Bruce Budowle
- Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
21
|
De Fanti S, Vianello D, Giuliani C, Quagliariello A, Cherubini A, Sevini F, Iaquilano N, Franceschi C, Sazzini M, Luiselli D. Massive parallel sequencing of human whole mitochondrial genomes with Ion Torrent technology: an optimized workflow for Anthropological and Population Genetics studies. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 28:843-850. [PMID: 27822964 DOI: 10.1080/24701394.2016.1197218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Investigation of human mitochondrial DNA variation patterns and phylogeny has been extensively used in Anthropological and Population Genetics studies and sequencing the whole mitochondrial genome is progressively becoming the gold standard. Among the currently available massive parallel sequencing technologies, Ion Torrent™ semiconductor sequencing represents a promising approach for such studies. Nevertheless, an experimental protocol conceived to enable the achievement of both as high as possible yield and of the most homogeneous sequence coverage through the whole mitochondrial genome is still not available. The present work was thus aimed at improving the overall performance of whole mitochondrial genomes Ion Torrent™ sequencing, with special focus on the capability to obtain robust coverage and highly reliable variants calling. For this purpose, a series of cost-effective modifications in standard laboratory workflows was fine-tuned to optimize them for medium- and large-scale population studies. A total of 54 human samples were thus subjected to sequencing of the whole mitochondrial genome with the Ion Personal Genome Machine™ System in four distinct experiments and using Ion 314 chips. Seven of the selected samples were also characterized by means of conventional Sanger sequencing for the sake of comparison. Obtained results demonstrated that the implemented optimizations had definitely improved sequencing outputs in terms of both variants calling efficiency and coverage uniformity, enabling to setup an effective and accurate protocol for whole mitochondrial genome sequencing and a considerable reduction in experimental time consumption and sequencing costs.
Collapse
Affiliation(s)
- Sara De Fanti
- a Laboratory of Molecular Anthropology, Department of Biological, Geological & Environmental Sciences (BiGeA) , University of Bologna , Bologna , Italy.,b Centre for Genome Biology, Department of Biological, Geological & Environmental Sciences (BiGeA) , University of Bologna , Bologna , Italy
| | - Dario Vianello
- c Department of Experimental, Diagnostic & Specialty Medicine (DIMES) , University of Bologna , Bologna , Italy
| | - Cristina Giuliani
- a Laboratory of Molecular Anthropology, Department of Biological, Geological & Environmental Sciences (BiGeA) , University of Bologna , Bologna , Italy.,b Centre for Genome Biology, Department of Biological, Geological & Environmental Sciences (BiGeA) , University of Bologna , Bologna , Italy
| | - Andrea Quagliariello
- a Laboratory of Molecular Anthropology, Department of Biological, Geological & Environmental Sciences (BiGeA) , University of Bologna , Bologna , Italy.,b Centre for Genome Biology, Department of Biological, Geological & Environmental Sciences (BiGeA) , University of Bologna , Bologna , Italy
| | - Anna Cherubini
- a Laboratory of Molecular Anthropology, Department of Biological, Geological & Environmental Sciences (BiGeA) , University of Bologna , Bologna , Italy.,b Centre for Genome Biology, Department of Biological, Geological & Environmental Sciences (BiGeA) , University of Bologna , Bologna , Italy
| | - Federica Sevini
- c Department of Experimental, Diagnostic & Specialty Medicine (DIMES) , University of Bologna , Bologna , Italy
| | - Nicoletta Iaquilano
- c Department of Experimental, Diagnostic & Specialty Medicine (DIMES) , University of Bologna , Bologna , Italy
| | - Claudio Franceschi
- c Department of Experimental, Diagnostic & Specialty Medicine (DIMES) , University of Bologna , Bologna , Italy
| | - Marco Sazzini
- a Laboratory of Molecular Anthropology, Department of Biological, Geological & Environmental Sciences (BiGeA) , University of Bologna , Bologna , Italy.,b Centre for Genome Biology, Department of Biological, Geological & Environmental Sciences (BiGeA) , University of Bologna , Bologna , Italy
| | - Donata Luiselli
- a Laboratory of Molecular Anthropology, Department of Biological, Geological & Environmental Sciences (BiGeA) , University of Bologna , Bologna , Italy.,b Centre for Genome Biology, Department of Biological, Geological & Environmental Sciences (BiGeA) , University of Bologna , Bologna , Italy
| |
Collapse
|
22
|
Replication Errors Made During Oogenesis Lead to Detectable De Novo mtDNA Mutations in Zebrafish Oocytes with a Low mtDNA Copy Number. Genetics 2016; 204:1423-1431. [PMID: 27770035 DOI: 10.1534/genetics.116.194035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/13/2016] [Indexed: 01/30/2023] Open
Abstract
Of all pathogenic mitochondrial DNA (mtDNA) mutations in humans, ∼25% is de novo, although the occurrence in oocytes has never been directly assessed. We used next-generation sequencing to detect point mutations directly in the mtDNA of 3-15 individual mature oocytes and three somatic tissues from eight zebrafish females. Various statistical and biological filters allowed reliable detection of de novo variants with heteroplasmy ≥1.5%. In total, we detected 38 de novo base substitutions, but no insertions or deletions. These 38 de novo mutations were present in 19 of 103 mature oocytes, indicating that ∼20% of the mature oocytes carry at least one de novo mutation with heteroplasmy ≥1.5%. This frequency of de novo mutations is close to that deducted from the reported error rate of polymerase gamma, the mitochondrial replication enzyme, implying that mtDNA replication errors made during oogenesis are a likely explanation. Substantial variation in the mutation prevalence among mature oocytes can be explained by the highly variable mtDNA copy number, since we previously reported that ∼20% of the primordial germ cells have a mtDNA copy number of ≤73 and would lead to detectable mutation loads. In conclusion, replication errors made during oogenesis are an important source of de novo mtDNA base substitutions and their location and heteroplasmy level determine their significance.
Collapse
|
23
|
Sookoian S, Flichman D, Scian R, Rohr C, Dopazo H, Gianotti TF, Martino JS, Castaño GO, Pirola CJ. Mitochondrial genome architecture in non-alcoholic fatty liver disease. J Pathol 2016; 240:437-449. [PMID: 27577682 DOI: 10.1002/path.4803] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/29/2016] [Accepted: 08/18/2016] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with mitochondrial dysfunction, a decreased liver mitochondrial DNA (mtDNA) content, and impaired energy metabolism. To understand the clinical implications of mtDNA diversity in the biology of NAFLD, we applied deep-coverage whole sequencing of the liver mitochondrial genomes. We used a multistage study design, including a discovery phase, a phenotype-oriented study to assess the mutational burden in patients with steatohepatitis at different stages of liver fibrosis, and a replication study to validate findings in loci of interest. We also assessed the potential protein-level impact of the observed mutations. To determine whether the observed changes are tissue-specific, we compared the liver and the corresponding peripheral blood entire mitochondrial genomes. The nuclear genes POLG and POLG2 (mitochondrial DNA polymerase-γ) were also sequenced. We observed that the liver mtDNA of patients with NAFLD harbours complex genomes with a significantly higher mutational (1.28-fold) rate and degree of heteroplasmy than in controls. The analysis of liver mitochondrial genomes of patients with different degrees of fibrosis revealed that the disease severity is associated with an overall 1.4-fold increase in mutation rate, including mutations in genes of the oxidative phosphorylation (OXPHOS) chain. Significant differences in gene and protein expression patterns were observed in association with the cumulative number of OXPHOS polymorphic sites. We observed a high degree of homology (∼98%) between the blood and liver mitochondrial genomes. A missense POLG p.Gln1236His variant was associated with liver mtDNA copy number. In conclusion, we have demonstrated that OXPHOS genes contain the highest number of hotspot positions associated with a more severe phenotype. The variability of the mitochondrial genomes probably originates from a common germline source; hence, it may explain a fraction of the 'missing heritability' of NAFLD. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Silvia Sookoian
- Department of Clinical and Molecular Hepatology, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires - National Scientific and Technical Research Council (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Diego Flichman
- Department of Virology, School of Pharmacy and Biochemistry, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Romina Scian
- Department of Clinical and Molecular Hepatology, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires - National Scientific and Technical Research Council (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.,Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires - National Scientific and Technical Research Council (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Cristian Rohr
- Biomedical Genomics and Evolution Laboratory. Ecology, Genetics and Evolution Department, Faculty of Science, IEGEBA, University of Buenos Aires - National Scientific and Technical Research Council (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Hernán Dopazo
- Biomedical Genomics and Evolution Laboratory. Ecology, Genetics and Evolution Department, Faculty of Science, IEGEBA, University of Buenos Aires - National Scientific and Technical Research Council (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Tomas Fernández Gianotti
- Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires - National Scientific and Technical Research Council (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Julio San Martino
- Department of Pathology, Hospital Diego Thompson, San Martin, Buenos Aires, Argentina
| | - Gustavo O Castaño
- Liver Unit, Medicine and Surgery Department, Hospital Abel Zubizarreta, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Carlos J Pirola
- Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires - National Scientific and Technical Research Council (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
24
|
Just RS, Irwin JA, Parson W. Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing. Forensic Sci Int Genet 2015; 18:131-9. [PMID: 26009256 PMCID: PMC4550493 DOI: 10.1016/j.fsigen.2015.05.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/24/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Abstract
Long an important and useful tool in forensic genetic investigations, mitochondrial DNA (mtDNA) typing continues to mature. Research in the last few years has demonstrated both that data from the entire molecule will have practical benefits in forensic DNA casework, and that massively parallel sequencing (MPS) methods will make full mitochondrial genome (mtGenome) sequencing of forensic specimens feasible and cost-effective. A spate of recent studies has employed these new technologies to assess intraindividual mtDNA variation. However, in several instances, contamination and other sources of mixed mtDNA data have been erroneously identified as heteroplasmy. Well vetted mtGenome datasets based on both Sanger and MPS sequences have found authentic point heteroplasmy in approximately 25% of individuals when minor component detection thresholds are in the range of 10-20%, along with positional distribution patterns in the coding region that differ from patterns of point heteroplasmy in the well-studied control region. A few recent studies that examined very low-level heteroplasmy are concordant with these observations when the data are examined at a common level of resolution. In this review we provide an overview of considerations related to the use of MPS technologies to detect mtDNA heteroplasmy. In addition, we examine published reports on point heteroplasmy to characterize features of the data that will assist in the evaluation of future mtGenome data developed by any typing method.
Collapse
Affiliation(s)
- Rebecca S Just
- Armed Forces DNA Identification Laboratory, Armed Forces Medical Examiner System, Dover, DE, USA; American Registry of Pathology, Rockville, MD, USA
| | | | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
25
|
A bumpy ride on the diagnostic bench of massive parallel sequencing, the case of the mitochondrial genome. PLoS One 2014; 9:e112950. [PMID: 25383547 PMCID: PMC4226615 DOI: 10.1371/journal.pone.0112950] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/17/2014] [Indexed: 11/19/2022] Open
Abstract
The advent of massive parallel sequencing (MPS) has revolutionized the field of human molecular genetics, including the diagnostic study of mitochondrial (mt) DNA dysfunction. The analysis of the complete mitochondrial genome using MPS platforms is now common and will soon outrun conventional sequencing. However, the development of a robust and reliable protocol is rather challenging. A previous pilot study for the re-sequencing of human mtDNA revealed an uneven coverage, affecting predominantly part of the plus strand. In an attempt to address this problem, we undertook a comparative study of standard and modified protocols for the Ion Torrent PGM system. We could not improve strand representation by altering the recommended shearing methodology of the standard workflow or omitting the DNA polymerase amplification step from the library construction process. However, we were able to associate coverage bias of the plus strand with a specific sequence motif. Additionally, we compared coverage and variant calling across technologies. The same samples were also sequenced on a MiSeq device which showed that coverage and heteroplasmic variant calling were much improved.
Collapse
|
26
|
Whole-mitochondrial genome sequencing in primary open-angle glaucoma using massively parallel sequencing identifies novel and known pathogenic variants. Genet Med 2014; 17:279-84. [PMID: 25232845 DOI: 10.1038/gim.2014.121] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/07/2014] [Indexed: 02/03/2023] Open
Abstract
PURPOSE The aim of this study was to determine whether mutations in mitochondrial DNA play a role in high-pressure primary open-angle glaucoma (OMIM 137760) by analyzing new data from massively parallel sequencing of mitochondrial DNA. METHODS Glaucoma patients with high-tension primary open-angle glaucoma and ethnically matched and age-matched control subjects without glaucoma were recruited. The entire human mitochondrial genome was amplified in two overlapping fragments by long-range polymerase chain reaction and used as a template for massively parallel sequencing on an Ion Torrent Personal Genome Machine. All variants were confirmed by conventional Sanger sequencing. RESULTS Whole-mitochondrial genome sequencing was performed in 32 patients with primary open-angle glaucoma from India (n = 16) and Ireland (n = 16). In 16 of the 32 patients with primary open-angle glaucoma (50% of cases), there were 22 mitochondrial DNA mutations consisting of 7 novel mutations and 8 previously reported disease-associated sequence variants. Eight of 22 (36.4%) of the mitochondrial DNA mutations were in complex I mitochondrial genes. CONCLUSION Massively parallel sequencing using the Ion Torrent Personal Genome Machine with confirmation by Sanger sequencing detected a pathogenic mitochondrial DNA mutation in 50% of the primary open-angle glaucoma cohort. Our findings support the emerging concept that mitochondrial dysfunction results in the development of glaucoma and, more specifically, that complex I defects play a significant role in primary open-angle glaucoma pathogenesis.
Collapse
|
27
|
Greaves LC, Nooteboom M, Elson JL, Tuppen HAL, Taylor GA, Commane DM, Arasaradnam RP, Khrapko K, Taylor RW, Kirkwood TBL, Mathers JC, Turnbull DM. Clonal expansion of early to mid-life mitochondrial DNA point mutations drives mitochondrial dysfunction during human ageing. PLoS Genet 2014; 10:e1004620. [PMID: 25232829 PMCID: PMC4169240 DOI: 10.1371/journal.pgen.1004620] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/21/2014] [Indexed: 01/03/2023] Open
Abstract
Age-related decline in the integrity of mitochondria is an important contributor to the human ageing process. In a number of ageing stem cell populations, this decline in mitochondrial function is due to clonal expansion of individual mitochondrial DNA (mtDNA) point mutations within single cells. However the dynamics of this process and when these mtDNA mutations occur initially are poorly understood. Using human colorectal epithelium as an exemplar tissue with a well-defined stem cell population, we analysed samples from 207 healthy participants aged 17-78 years using a combination of techniques (Random Mutation Capture, Next Generation Sequencing and mitochondrial enzyme histochemistry), and show that: 1) non-pathogenic mtDNA mutations are present from early embryogenesis or may be transmitted through the germline, whereas pathogenic mtDNA mutations are detected in the somatic cells, providing evidence for purifying selection in humans, 2) pathogenic mtDNA mutations are present from early adulthood (<20 years of age), at both low levels and as clonal expansions, 3) low level mtDNA mutation frequency does not change significantly with age, suggesting that mtDNA mutation rate does not increase significantly with age, and 4) clonally expanded mtDNA mutations increase dramatically with age. These data confirm that clonal expansion of mtDNA mutations, some of which are generated very early in life, is the major driving force behind the mitochondrial dysfunction associated with ageing of the human colorectal epithelium.
Collapse
Affiliation(s)
- Laura C. Greaves
- Newcastle University Centre for Brain Ageing and Vitality, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| | - Marco Nooteboom
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joanna L. Elson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Helen A. L. Tuppen
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Geoffrey A. Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daniel M. Commane
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ramesh P. Arasaradnam
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Konstantin Khrapko
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Robert W. Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas B. L. Kirkwood
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - John C. Mathers
- Newcastle University Centre for Brain Ageing and Vitality, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Douglass M. Turnbull
- Newcastle University Centre for Brain Ageing and Vitality, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|