1
|
Morais S, Leal Loureiro J, Brandão E, Sequeiros J, Stevanin G, Santos M. Hereditary Spastic Paraplegia Linked to Abnormal Splicing From an AIMP1 Missense Variant. Clin Genet 2025; 107:668-672. [PMID: 39726207 DOI: 10.1111/cge.14690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Hereditary spastic paraplegias (HSP) are a diverse group of neurodegenerative diseases characterized by lower limb spasticity and weakness. To date, over 80 genes have been associated with HSP, but many families remain without a molecular diagnosis. In this study, linkage analysis and whole-exome sequencing (WES) were performed to identify the causal gene in a HSP family with autosomal recessive inheritance. Multipoint linkage analysis revealed a maximum significant multipoint LOD score of 4.6 on chromosome 4. WES analysis focused on this region led to the identification of a homozygous missense variant in AIMP1 (c.223G>A). Minigene assays showed that the presumed missense variant in AIMP1 caused loss of the exon 3 donor splice site. Ultimately, this led to the use of an alternative splice site within the intron and the insertion of a premature stop codon. The identification of a novel AIMP1 causal variant contributes to the growing list of HSP genes. Furthermore, it shows that, considering also previous reported cases, disruption of AIMP1 causes a spectrum of disorders ranging from intellectual disability to more complex neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Morais
- IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal
- CGPP-Center for Predictive and Preventive Genetics, IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal
| | - José Leal Loureiro
- IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Serviço de Neurologia, Centro Hospitalar de Entre o Douro e Vouga, Santa Maria da Feira, Portugal
| | - Eva Brandão
- Serviço de Neurologia, Centro Hospitalar de Entre o Douro e Vouga, Santa Maria da Feira, Portugal
| | - Jorge Sequeiros
- IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal
- CGPP-Center for Predictive and Preventive Genetics, IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal
| | - Giovanni Stevanin
- CNRS-Centre National de la Recherche Scientifique, EPHE-Ecole Pratique des Hautes Études, INCIA-Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, Bordeaux, France
| | - Mariana Santos
- IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal
| |
Collapse
|
2
|
Noor H, Zheng Y, Itakura H, Gevaert O. Response to anti-angiogenic therapy is affected by AIMP protein family activity in glioblastoma and lower-grade gliomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643116. [PMID: 40161601 PMCID: PMC11952521 DOI: 10.1101/2025.03.13.643116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background Glioblastoma (GBM) is a highly vascularized, heterogeneous tumor, yet anti-angiogenic therapies have yielded limited survival benefits. The lack of validated predictive biomarkers for treatment response stratification remains a major challenge. Aminoacyl tRNA synthetase complex-interacting multicomplex proteins (AIMPs) 1/2/3 have been implicated in CNS diseases, but their roles in gliomas remain unexplored. We investigated their association with angiogenesis and their significance as predictive biomarkers for anti-angiogenic treatment response. Methods In this multi-cohort retrospective study we analyzed glioma samples from TCGA, CGGA, Rembrandt, Gravendeel, BELOB and REGOMA trials, and four single-cell transcriptomic datasets. Multi-omic analyses incorporated transcriptomic, epigenetic, and proteomic data. Kaplan-Meier and Cox proportional hazards models were used to assess the prognostic value of AIMPs in heterogeneous and homogeneous treatment-groups. Using single-cell transcriptomics, we explored spatial and cell-type-specific AIMP2 expression in GBM. Results AIMP1/2/3 expressions correlated significantly with angiogenesis across TCGA cancers. In gliomas, AIMPs were upregulated in tumor vs. normal tissues, higher- vs. lower-grade gliomas, and recurrent vs. primary tumors (p<0.05). Upon retrospective analysis of two clinical trials assessing different anti-angiogenic drugs, we found that high-AIMP2 subgroups had improved response to therapies in GBM (REGOMA: HR 4.75 [1.96-11.5], p<0.001; BELOB: HR 2.3 [1.17-4.49], p=0.015). AIMP2-cg04317940 methylation emerged as a clinically applicable stratification marker. Single-cell analysis revealed homogeneous AIMP2 expression in tumor tissues, particularly in AC-like cells, suggesting a mechanistic link to tumor angiogenesis. Conclusions These findings provide novel insights into the role of AIMPs in angiogenesis, offering improved patient stratification and therapeutic outcomes in recurrent GBM.
Collapse
Affiliation(s)
- Humaira Noor
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuanning Zheng
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Haruka Itakura
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
3
|
Kim Y, Kim SB, Lee H, Kim D, Bak SS, Yoon I, Cho S, Jeong SJ, Jeon Y, Kim J, Kim JH, Oh S, Battogtokh KE, Park MC, Sung YK, Kim S. AIMP1-Derived Peptide Secreted from Hair Follicle Stem Cells Promotes Hair Growth by Activating Dermal Papilla Cells. Int J Biol Sci 2024; 20:5764-5778. [PMID: 39494335 PMCID: PMC11528461 DOI: 10.7150/ijbs.101127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
Hair follicle stem cells (HFSCs) and dermal papilla cells (DPCs) are crucial in the biogenesis and maintenance of hair follicles (HFs). This study demonstrated that a fragment derived from aminoacyl-tRNA synthetase-interacting multifunctional protein1 (AIMP1) secreted from HFSCs activated DPCs and maintained HF homeostasis. A histological analysis revealed that AIMP1 levels in HF decreased with hair loss. Hair regrowth in AIMP1-induced mice was faster than in non-induced mice. Deletion mapping revealed 41 amino acids (TN41, aa 6-46) as the active region of AIMP1. The N-terminal peptide fragment of AIMP1 generated by MMP1 was secreted from Wnt-treated HFSCs to activate DPCs. TN41 activated Akt and ERK, increased β-catenin, and enhanced DPC activation. TN41 promoted hair shaft elongation in cultured human HFs and improved the hair-inducing activity of cultured DPC spheroids. Our findings suggest that the AIMP1 fragment secreted from HFSCs stimulates active hair regrowth through activating DPCs.
Collapse
Affiliation(s)
- YounHa Kim
- Department of Integrative Biotechnology, Interdisciplinary Graduate Program, College of Pharmacy, Medicinal Bioconver-gence Research Center, Institute for Artificial Intelligence and Biomedical Research, Gangnam Severance Hospital, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, South Korea
- CureBio Therapeutics Co., Ltd, 12fl, 91, Changnyong-daero 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, South Korea
| | - Sang Bum Kim
- College of Pharmacy, Sahmyook University, Seoul, South Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi 10408, South Korea
| | - Doyeun Kim
- Department of Integrative Biotechnology, Interdisciplinary Graduate Program, College of Pharmacy, Medicinal Bioconver-gence Research Center, Institute for Artificial Intelligence and Biomedical Research, Gangnam Severance Hospital, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, South Korea
| | - Soon Sun Bak
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Ina Yoon
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Seongmin Cho
- Department of Integrative Biotechnology, Interdisciplinary Graduate Program, College of Pharmacy, Medicinal Bioconver-gence Research Center, Institute for Artificial Intelligence and Biomedical Research, Gangnam Severance Hospital, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, South Korea
| | - Seung Jae Jeong
- Department of Integrative Biotechnology, Interdisciplinary Graduate Program, College of Pharmacy, Medicinal Bioconver-gence Research Center, Institute for Artificial Intelligence and Biomedical Research, Gangnam Severance Hospital, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, South Korea
| | - Yoon Jeon
- Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi 10408, South Korea
| | - Jina Kim
- CureBio Therapeutics Co., Ltd, 12fl, 91, Changnyong-daero 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, South Korea
| | - Ji-hee Kim
- College of Pharmacy, Sahmyook University, Seoul, South Korea
| | - Soohwan Oh
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, South Korea
| | | | - Min Chul Park
- College of Pharmacy and Inje institute of pharmaceutical sciences and research, Inje university, Gimhae, South Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Sunghoon Kim
- Department of Integrative Biotechnology, Interdisciplinary Graduate Program, College of Pharmacy, Medicinal Bioconver-gence Research Center, Institute for Artificial Intelligence and Biomedical Research, Gangnam Severance Hospital, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, South Korea
| |
Collapse
|
4
|
Gupta S, Jani J, Vijayasurya, Mochi J, Tabasum S, Sabarwal A, Pappachan A. Aminoacyl-tRNA synthetase - a molecular multitasker. FASEB J 2023; 37:e23219. [PMID: 37776328 DOI: 10.1096/fj.202202024rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are valuable "housekeeping" enzymes that ensure the accurate transmission of genetic information in living cells, where they aminoacylated tRNA molecules with their cognate amino acid and provide substrates for protein biosynthesis. In addition to their translational or canonical function, they contribute to nontranslational/moonlighting functions, which are mediated by the presence of other domains on the proteins. This was supported by several reports which claim that AaRS has a significant role in gene transcription, apoptosis, translation, and RNA splicing regulation. Noncanonical/ nontranslational functions of AaRSs also include their roles in regulating angiogenesis, inflammation, cancer, and other major physio-pathological processes. Multiple AaRSs are also associated with a broad range of physiological and pathological processes; a few even serve as cytokines. Therefore, the multifunctional nature of AaRSs suggests their potential as viable therapeutic targets as well. Here, our discussion will encompass a range of noncanonical functions attributed to Aminoacyl-tRNA Synthetases (AaRSs), highlighting their links with a diverse array of human diseases.
Collapse
Affiliation(s)
- Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jigneshkumar Mochi
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Saba Tabasum
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Akash Sabarwal
- Harvard Medical School, Boston, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
5
|
Quental R, Sampaio M, Alonso I, Quental S, Leão M, Sousa R. A Novel Homozygous Splice Site Variant in AIMP1 Gene Causing Hypomyelinating Leukodystrophy: Case Report and Review of the Literature. Neuropediatrics 2023; 54:120-125. [PMID: 36652953 DOI: 10.1055/s-0042-1760366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Biallelic pathogenic variants in AIMP1 gene cause hypomyelinating leukodystrophy type 3, a severe neurodegenerative disorder with early onset characterized by microcephaly, axial hypotonia, epilepsy, spasticity, and developmental delay. METHODS Clinical exome sequence was performed on patient's DNA and Sanger sequencing was used to confirm the candidate variant. To better characterize the effect of the genetic variant, functional analysis based on Sanger sequencing of the proband's complementary DNA (cDNA) was performed. RESULTS We report a case of 2-year-old girl with microcephaly, significant global developmental delay, refractory epilepsy, flaccid paralysis, hypomyelination, leukodystrophy, and cerebral atrophy on brain magnetic resonance imaging (MRI). Clinical exome sequencing revealed a novel splice site variant c.603 + 1G > A in homozygosity in the AIMP1 gene. Studies on patient's cDNA showed that the variant disrupts the canonical donor splice site of intron 5, with the recognition of a cryptic splice site within exon 5, leading to the skipping of the last 24 nucleotides of this exon together with the flanking intron. This alteration is predicted to cause an in-frame deletion of eight amino acids (p.Val194_Gln201del) belonging to the tRNA-biding domain of the protein. CONCLUSION To the best of our knowledge, this is the first report of a splice site variant in the AIMP1 gene causing hypomyelinating leukodystrophy. The description of this patient not only expands the mutational spectrum of AIMP1 but also provides deeper insights on genotype-phenotype correlation by comparing the clinical features of our patient with previously reported affected individuals.
Collapse
Affiliation(s)
- Rita Quental
- Department of Medical Genetics, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Mafalda Sampaio
- Department of Neuropediatrics, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Isabel Alonso
- Genetyca-ICM, Instituto de Estudos Celulares e Moleculares, Porto, Portugal
| | - Sofia Quental
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Institute for Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Miguel Leão
- Department of Medical Genetics, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Raquel Sousa
- Department of Neuropediatrics, Centro Hospitalar Universitário de São João, Porto, Portugal
| |
Collapse
|
6
|
Khan K, Gogonea V, Fox PL. Aminoacyl-tRNA synthetases of the multi-tRNA synthetase complex and their role in tumorigenesis. Transl Oncol 2022; 19:101392. [PMID: 35278792 PMCID: PMC8914993 DOI: 10.1016/j.tranon.2022.101392] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, 20 aminoacyl-tRNA synthetases (AARS) catalyze the ligation of amino acids to their cognate tRNAs to generate aminoacylated-tRNAs. In higher eukaryotes, 9 of the 20 AARSs, along with 3 auxiliary proteins, join to form the cytoplasmic multi-tRNA synthetase complex (MSC). The complex is absent in prokaryotes, but evolutionary expansion of MSC constituents, primarily by addition of novel interacting domains, facilitates formation of subcomplexes that join to establish the holo-MSC. In some cases, environmental cues direct the release of constituents from the MSC which enables the execution of non-canonical, i.e., "moonlighting", functions distinct from their essential activities in protein translation. These activities are generally beneficial, but can also be deleterious to the cell. Elucidation of the non-canonical activities of several AARSs residing in the MSC suggest they are potential therapeutic targets for cancer, as well as metabolic and neurologic diseases. Here, we describe the role of MSC-resident AARSs in cancer progression, and the factors that regulate their release from the MSC. Also, we highlight recent developments in therapeutic modalities that target MSC AARSs for cancer prevention and treatment.
Collapse
Affiliation(s)
- Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, United States of America
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
7
|
Averdunk L, Sticht H, Surowy H, Lüdecke HJ, Koch-Hogrebe M, Alsaif HS, Kahrizi K, Alzaidan H, Alawam BS, Tohary M, Kraus C, Endele S, Wadman E, Kaplan JD, Efthymiou S, Najmabadi H, Reis A, Alkuraya FS, Wieczorek D. The recurrent missense mutation p.(Arg367Trp) in YARS1 causes a distinct neurodevelopmental phenotype. J Mol Med (Berl) 2021; 99:1755-1768. [PMID: 34536092 PMCID: PMC8599376 DOI: 10.1007/s00109-021-02124-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 11/14/2022]
Abstract
Pathogenic variants in aminoacyl-tRNA synthetases (ARS1) cause a diverse spectrum of autosomal recessive disorders. Tyrosyl tRNA synthetase (TyrRS) is encoded by YARS1 (cytosolic, OMIM*603,623) and is responsible of coupling tyrosine to its specific tRNA. Next to the enzymatic domain, TyrRS has two additional functional domains (N-Terminal TyrRSMini and C-terminal EMAP-II-like domain) which confer cytokine-like functions. Mutations in YARS1 have been associated with autosomal-dominant Charcot-Marie-Tooth (CMT) neuropathy type C and a heterogenous group of autosomal recessive, multisystem diseases. We identified 12 individuals from 6 families with the recurrent homozygous missense variant c.1099C > T;p.(Arg367Trp) (NM_003680.3) in YARS1. This variant causes a multisystem disorder with developmental delay, microcephaly, failure to thrive, short stature, muscular hypotonia, ataxia, brain anomalies, microcytic anemia, hepatomegaly, and hypothyroidism. In silico analyses show that the p.(Arg367Trp) does not affect the catalytic domain responsible of enzymatic coupling, but destabilizes the cytokine-like C-terminal domain. The phenotype associated with p.(Arg367Trp) is distinct from the other biallelic pathogenic variants that reside in different functional domains of TyrRS which all show some common, but also divergent clinical signs [(e.g., p.(Phe269Ser)-retinal anomalies, p.(Pro213Leu)/p.(Gly525Arg)-mild ID, p.(Pro167Thr)-high fatality)]. The diverse clinical spectrum of ARS1-associated disorders is related to mutations affecting the various non-canonical domains of ARS1, and impaired protein translation is likely not the exclusive disease-causing mechanism of YARS1- and ARS1-associated neurodevelopmental disorders. KEY MESSAGES: The missense variant p.(Arg367Trp) in YARS1 causes a distinct multisystem disorder. p.(Arg367Trp) affects a non-canonical domain with cytokine-like functions. Phenotypic heterogeneity associates with the different affected YARS1 domains. Impaired protein translation is likely not the exclusive mechanism of ARS1-associated disorders.
Collapse
Affiliation(s)
- Luisa Averdunk
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Harald Surowy
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Hermann-Josef Lüdecke
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | | | - Hessa S Alsaif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hamad Alzaidan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Bashayer S Alawam
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohamed Tohary
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Cornelia Kraus
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sabine Endele
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Erin Wadman
- Division of Medical Genetics, Department of Pediatrics, Nemours Alfred I, DuPont Hospital for Children, Wilmington, Delaware, DE, USA
| | - Julie D Kaplan
- Division of Medical Genetics, Department of Pediatrics, Nemours Alfred I, DuPont Hospital for Children, Wilmington, Delaware, DE, USA
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Hossein Najmabadi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - André Reis
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
8
|
Hori I, Ieda D, Ito S, Ebe S, Nakamura Y, Ohashi K, Aoyama K, Hattori A, Kokubo M, Saitoh S. Peripheral nerves are involved in hypomyelinating leukodystrophy-3 caused by a homozygous AIMP1 variant. Brain Dev 2021; 43:590-595. [PMID: 33402283 DOI: 10.1016/j.braindev.2020.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1) is a non-catalytic component of the multi-tRNA synthetase complex that catalyzes the ligation of amino acids to their correct tRNAs. Bi-allelic truncating variants in the AIMP1 gene have been associated with hypomyelinating leukodystrophy-3 (HLD3; MIM 260600), which is characterized by hypomyelination, microcephaly, seizures and decreased life expectancy. Although peripheral nerve involvement has been assumed for HLD3, no compelling evidence is available to date. CASE REPORT The case was a first-born Filipino male. He showed profound developmental delay, failure to thrive, and spasticity in his limbs. At three months of age he developed refractory epilepsy. Serial magnetic resonance imaging (MRIs) showed profound myelination delay and progressive cerebral atrophy. He showed abnormal nerve conduction studies. Genetic testing revealed a homozygous pathogenic variant in the AIMP1 gene (NM_004757.3: c.115C > T: p.Gln39*). The parents were heterozygous for the same variant. CONCLUSION Here, we report a patient with a homozygous nonsense AIMP1 variant showing peripheral neuropathy as well as HLD3. Our case suggests that AIMP1 plays a pivotal role in the peripheral nerve as well as the central nervous system.
Collapse
Affiliation(s)
- Ikumi Hori
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Japan; Department of Pediatrics, Aichi Prefectural Welfare Federation of Agricultural Cooperatives Kainan Hospital, Japan
| | - Daisuke Ieda
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Shogo Ito
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Seimi Ebe
- Department of Pediatrics, Aichi Prefectural Welfare Federation of Agricultural Cooperatives Kainan Hospital, Japan
| | - Yuji Nakamura
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Kei Ohashi
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Kohei Aoyama
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Ayako Hattori
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Minoru Kokubo
- Department of Pediatrics, Aichi Prefectural Welfare Federation of Agricultural Cooperatives Kainan Hospital, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Japan.
| |
Collapse
|
9
|
Roles of aminoacyl-tRNA synthetase-interacting multi-functional proteins in physiology and cancer. Cell Death Dis 2020; 11:579. [PMID: 32709848 PMCID: PMC7382500 DOI: 10.1038/s41419-020-02794-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are an important class of enzymes with an evolutionarily conserved mechanism for protein synthesis. In higher eukaryotic systems, eight ARSs and three ARS-interacting multi-functional proteins (AIMPs) form a multi-tRNA synthetase complex (MSC), which seems to contribute to cellular homeostasis. Of these, AIMPs are generally considered as non-enzyme factors, playing a scaffolding role during MSC assembly. Although the functions of AIMPs are not fully understood, increasing evidence indicates that these scaffold proteins usually exert tumor-suppressive activities. In addition, endothelial monocyte-activating polypeptide II (EMAP II), as a cleavage product of AIMP1, and AIMP2-DX2, as a splice variant of AIMP2 lacking exon 2, also have a pivotal role in regulating tumorigenesis. In this review, we summarize the biological functions of AIMP1, EMAP II, AIMP2, AIMP2-DX2, and AIMP3. Also, we systematically introduce their emerging roles in cancer, aiming to provide new ideas for the treatment of cancer.
Collapse
|
10
|
Gupta S, Schwab M, Valdez-Gonzalez K, Segal E. Rare homozygous nonsense variant in AIMP1 causing Early Onset Epileptic Encephalopathy with Burst Suppression (EOEE-BS). Eur J Med Genet 2020; 63:103970. [PMID: 32531460 DOI: 10.1016/j.ejmg.2020.103970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 11/30/2022]
Abstract
Pathogenic variants in AIMP1 gene are rare causes of neurologic disorders. Homozygous frameshift and nonsense variants in AIMP1 have been described in severe neurodegenerative disease. This is the third report of a homozygous nonsense variant in AIMP1 [c.115 C > T (p.Gln39*)] in a girl with severe neonatal onset epileptic encephalopathy. Like the two other cases reported, our patient is also of Filipino descent. Clinical features include microcephaly, poor visual motor development, shallow breathing, severe hypertonia in extremities, severe global developmental delay, poor gag and suck reflex, failure to thrive in the neonatal period, and early onset intractable seizures. Brain MRI showed hypoplasia of corpus callosum as well as cerebellar vermis, global volume loss and diminished myelination for her age. Electroencephalogram at four months of age showed background consisting of synchronous and asynchronous intervals of burst suppression with intermittent multifocal spikes predominantly in the bi-temporal region, suggestive of Early Onset Epileptic Encephalopathy with Burst Suppression (EOEE-BS) which has not been previously associated with the c.115 C > T variant in AIMP1. Of note, she presented to us in super refractory status epilepticus which was eventually controlled after administration of ketogenic diet and Epidiolex (cannabidiol). This report expands the genetic landscape of EOEE-BS. This is the first case of this specific variant in which Epidiolex was administered, which along with Ketogenic diet aided in controlling patient's super refractory status epilepticus.
Collapse
Affiliation(s)
| | - Maria Schwab
- Hackensack University Medical Center, Hackensack, NJ, USA
| | | | - Eric Segal
- Hackensack University Medical Center, Hackensack, NJ, USA; Northeast Regional Epilepsy Group, Hackensack, NJ, USA; Hackensack Meridian School of Medicine, Nutley, NJ, USA
| |
Collapse
|
11
|
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes for protein synthesis with evolutionarily conserved enzymatic mechanisms. Despite their similarity across organisms, scientists have been able to generate effective anti-infective agents based on the structural differences in the catalytic clefts of ARSs from pathogens and humans. However, recent genomic, proteomic and functionomic advances have unveiled unexpected disease-associated mutations and altered expression, secretion and interactions in human ARSs, revealing hidden biological functions beyond their catalytic roles in protein synthesis. These studies have also brought to light their potential as a rich and unexplored source for new therapeutic targets and agents through multiple avenues, including direct targeting of the catalytic sites, controlling disease-associated protein-protein interactions and developing novel biologics from the secreted ARS proteins or their parts. This Review addresses the emerging biology and therapeutic applications of human ARSs in diseases including autoimmune and rare diseases, and cancer.
Collapse
|
12
|
Human diseases linked to cytoplasmic aminoacyl-tRNA synthetases. BIOLOGY OF AMINOACYL-TRNA SYNTHETASES 2020; 48:277-319. [DOI: 10.1016/bs.enz.2020.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Lindholm Carlström E, Halvardson J, Etemadikhah M, Wetterberg L, Gustavson KH, Feuk L. Linkage and exome analysis implicate multiple genes in non-syndromic intellectual disability in a large Swedish family. BMC Med Genomics 2019; 12:156. [PMID: 31694657 PMCID: PMC6833288 DOI: 10.1186/s12920-019-0606-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/18/2019] [Indexed: 01/20/2023] Open
Abstract
Background Non-syndromic intellectual disability is genetically heterogeneous with dominant, recessive and complex forms of inheritance. We have performed detailed genetic studies in a large multi-generational Swedish family, including several members diagnosed with non-syndromic intellectual disability. Linkage analysis was performed on 22 family members, nine affected with mild to moderate intellectual disability and 13 unaffected family members. Methods Family members were analyzed with Affymetrix Genome-Wide Human SNP Array 6.0 and the genetic data was used to detect copy number variation and to perform genome wide linkage analysis with the SNP High Throughput Linkage analysis system and the Merlin software. For the exome sequencing, the samples were prepared using the Sure Select Human All Exon Kit (Agilent Technologies, Santa Clara, CA, USA) and sequenced using the Ion Proton™ System. Validation of identified variants was performed with Sanger sequencing. Results The linkage analysis results indicate that intellectual disability in this family is genetically heterogeneous, with suggestive linkage found on chromosomes 1q31-q41, 4q32-q35, 6p25 and 14q24-q31 (LOD scores of 2.4, simulated p-value of 0.000003 and a simulated genome-wide p-value of 0.06). Exome sequencing was then performed in 14 family members and 7 unrelated individuals from the same region. The analysis of coding variation revealed a pathogenic and candidate variants in different branches of the family. In three patients we find a known homozygous pathogenic mutation in the Homo sapiens solute carrier family 17 member 5 (SLC17A5), causing Salla disease. We also identify a deletion overlapping KDM3B and a duplication overlapping MAP3K4 and AGPAT4, both overlapping variants previously reported in developmental disorders. Conclusions DNA samples from the large family analyzed in this study were initially collected based on a hypothesis that affected members shared a major genetic risk factor. Our results show that a complex phenotype such as mild intellectual disability in large families from genetically isolated populations may show considerable genetic heterogeneity.
Collapse
Affiliation(s)
- Eva Lindholm Carlström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Box 815, SE-751 08, Uppsala, Sweden.
| | - Jonatan Halvardson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Box 815, SE-751 08, Uppsala, Sweden
| | - Mitra Etemadikhah
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Box 815, SE-751 08, Uppsala, Sweden
| | - Lennart Wetterberg
- Department of Clinical Neuroscience (CNS), K8, Karolinska Institutet, Stockholm, Sweden
| | - Karl-Henrik Gustavson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Box 815, SE-751 08, Uppsala, Sweden
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Box 815, SE-751 08, Uppsala, Sweden
| |
Collapse
|
14
|
Jensen LR, Garrett L, Hölter SM, Rathkolb B, Rácz I, Adler T, Prehn C, Hans W, Rozman J, Becker L, Aguilar-Pimentel JA, Puk O, Moreth K, Dopatka M, Walther DJ, von Bohlen und Halbach V, Rath M, Delatycki M, Bert B, Fink H, Blümlein K, Ralser M, Van Dijck A, Kooy F, Stark Z, Müller S, Scherthan H, Gecz J, Wurst W, Wolf E, Zimmer A, Klingenspor M, Graw J, Klopstock T, Busch D, Adamski J, Fuchs H, Gailus-Durner V, de Angelis MH, von Bohlen und Halbach O, Ropers HH, Kuss AW. A mouse model for intellectual disability caused by mutations in the X-linked 2′‑O‑methyltransferase Ftsj1 gene. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2083-2093. [DOI: 10.1016/j.bbadis.2018.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 01/13/2023]
|
15
|
Accogli A, Russell L, Sébire G, Rivière JB, St-Onge J, Addour-Boudrahem N, Laporte AD, Rouleau GA, Saint-Martin C, Srour M. Pathogenic variants in AIMP1 cause pontocerebellar hypoplasia. Neurogenetics 2019; 20:103-108. [PMID: 30924036 DOI: 10.1007/s10048-019-00572-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
Aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1) is a non-catalytic component of the multi-tRNA synthetase complex which catalyzes the ligation of amino acids to the correct tRNAs. Pathogenic variants in several aminoacyl-tRNA synthetases genes have been linked to various neurological disorders, including leukodystrophies and pontocerebellar hypoplasias (PCH). To date, loss-of-function variants in AIMP1 have been associated with hypomyelinating leukodystrophy-3 (MIM 260600). Here, we report a novel frameshift AIMP1 homozygous variant (c.160delA,p.Lys54Asnfs) in a child with pontocerebellar hypoplasia and simplified gyral pattern, a phenotype not been previously described with AIMP1 variants, thus expanding the phenotypic spectrum. AIMP1 should be included in diagnostic PCH gene panels.
Collapse
Affiliation(s)
- Andrea Accogli
- Departments of Pediatrics, Neurology & Neurosurgery, MUHC-Research Institute, McGill University, 1001 Blvd Décarie, Montreal, H4A 3J1, Canada.,IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy.,DINOGMI-Università degli Studi di Genova, 16126, Genoa, Italy
| | - Laura Russell
- Division of Medical Genetics, Department of Medicine, McGill University, Montreal, Canada
| | - Guillaume Sébire
- Departments of Pediatrics, Neurology & Neurosurgery, MUHC-Research Institute, McGill University, 1001 Blvd Décarie, Montreal, H4A 3J1, Canada
| | | | - Judith St-Onge
- McGill University Health Center (MUHC) Research Institute, Montreal, Canada
| | | | | | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Christine Saint-Martin
- Department of Radiology, Montreal Children's Hospital, McGill University Health Center, Montreal, Canada
| | - Myriam Srour
- Departments of Pediatrics, Neurology & Neurosurgery, MUHC-Research Institute, McGill University, 1001 Blvd Décarie, Montreal, H4A 3J1, Canada. .,McGill University Health Center (MUHC) Research Institute, Montreal, Canada.
| |
Collapse
|
16
|
Khan A, Bennett J, Scantlebury MH, Wei XC, Kerr M. AIMP1 Mutation Long-Term Follow-Up, With Decreased Brain N-Acetylaspartic Acid and Secondary Mitochondrial Abnormalities. Child Neurol Open 2019; 6:2329048X19829520. [PMID: 30828585 PMCID: PMC6388456 DOI: 10.1177/2329048x19829520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/13/2019] [Indexed: 01/14/2023] Open
Abstract
Aminoacyl transfer RNA (tRNA) synthetase complex-interacting multifunctional protein I is a noncatalytic component of tRNA multi-synthetase complexes. Although important in joining tRNAs to their cognate amino acids, AIMP1 has several other functions including axonal growth, cytokine activity, and interactions with N-acetylaspartic acid in ribosomal tRNA synthetase complexes. Further, N-acetylaspartic acid donates an aspartate during myelination and is therefore important to axonal integrity. Mutations in AIMP1 can disrupt these functions, as demonstrated in this clinical case study of 2 monozygotic twins, who display congenital opisthotonus, microcephaly, severe developmental delay, and seizures. Whole exome sequencing was used to identify a premature stop codon in the AIMP1 gene (g. 107248613_c.115C>T; p.(Gln39). In the absence of whole exome sequencing, we propose that decreased N-acetylaspartic acid peaks on magnetic resonance spectroscopy could act as a biomarker for AIMP1 mutations.
Collapse
Affiliation(s)
- Aneal Khan
- Department of Medical Genetics and Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer Bennett
- Department of Medical Genetics and Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Morris H Scantlebury
- Departments of Pediatrics Clinical Neuroscience, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Xing-Chang Wei
- Department of Medical Genetics and Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marina Kerr
- Department of Medical Genetics and Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
BoAli A, Tlili-Graiess K, AlHashem A, AlShahwan S, Zuccoli G, Tabarki B. Novel Homozygous Mutation of the AIMP1 Gene: A Milder Neuroimaging Phenotype With Preservation of the Deep White Matter. Pediatr Neurol 2019; 91:57-61. [PMID: 30477741 DOI: 10.1016/j.pediatrneurol.2018.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/05/2018] [Accepted: 09/22/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Mutations in AIMP1, which plays an important role in the development and maintenance of axon-cytoskeleton integrity and regulating neurofilaments, cause neurodegeneration of variable severity and white matter abnormalities. METHODS From the patient records we analyzed the clinical evaluation, molecular genetics, neurodiagnostic, and neuroradiological investigations. RESULTS We describe six members of a large consanguineous family with a phenotype of severe neurodegeneration in the form of developmental delays, progressive microcephaly, epilepsy, and failure to thrive. MRI showed callosal atrophy and T2 hyperintensity in the superficial white matter. The periventricular and deep white matter structures were, however, preserved. MR spectroscopy demonstrated N-acetylaspartate preservation without evidence of neuroinflammation. Exome sequencing showed a novel homozygous mutation of the AIMP1 gene in all individuals: c.917A>G (p.(Asp306Gly)). CONCLUSIONS This novel homozygous mutation of the AIMP1 gene is characterized by preserved development of the periventricular and deep white matter structures as demonstrated by MRI and MR spectroscopy correlation.
Collapse
Affiliation(s)
- Ahmed BoAli
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Kalthoum Tlili-Graiess
- Division of Neuroradiology, Department of Radiology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Amal AlHashem
- Division of Genetics, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Saad AlShahwan
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Giulio Zuccoli
- Division of Neuroradiology, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Brahim Tabarki
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.
| |
Collapse
|
18
|
Accogli A, Guerrero K, D'Agostino MD, Tran L, Cieuta-Walti C, Thiffault I, Chénier S, Schwartzentruber J, Majewski J, Bernard G. Biallelic Loss-of-Function Variants in AIMP1 Cause a Rare Neurodegenerative Disease. J Child Neurol 2019; 34:74-80. [PMID: 30486714 DOI: 10.1177/0883073818811223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
AIMP1/p43, is a noncatalytic component of the mammalian multi-tRNA synthetase complex that catalyzes the ligation of amino acids to their cognate tRNAs. AIMP1 is largely expressed in the central nervous system, where it is part of the regulatory machine of the neurofilament assembly, playing a crucial role in neuronal development and function. To date, nonsense mutations in AIMP1 have been associated with a primary neurodegenerative disorder consisting of cerebral atrophy, hypomyelination, microcephaly and epilepsy, whereas missense mutations have recently been linked to intellectual disability without neurodegeneration. Here, we report the first French-Canadian patient with a novel frameshift AIMP1 homozygous mutation (c.191_192delAA, p.Gln64Argfs*25), resulting in a severe neurodegenerative phenotype. We review and discuss the phenotypic spectrum associated with AIMP1 pathogenic variants.
Collapse
Affiliation(s)
- Andrea Accogli
- 1 Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, Canada.,2 UOC Neurochirurgia, Istituto Giannina Gaslini, Genova, Italy.,3 Università degli Studi di Genova, Genoa, Italy
| | - Kether Guerrero
- 1 Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, Canada.,4 Department of Internal Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, Canada.,5 Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, Canada
| | - Maria Daniela D'Agostino
- 4 Department of Internal Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, Canada.,6 Department of Human Genetics, McGill University, Montreal, Canada
| | - Luan Tran
- 1 Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, Canada.,4 Department of Internal Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, Canada.,5 Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, Canada
| | - Cécile Cieuta-Walti
- 7 Service de Neuropédiatre, Université de Sherbrooke, Quebec, Canada.,8 Institut Lejeune, Paris, France
| | - Isabelle Thiffault
- 9 Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA.,10 University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Sébastien Chénier
- 11 Department of Pediatrics, Division of Medical Genetics, Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
| | | | - Jacek Majewski
- 6 Department of Human Genetics, McGill University, Montreal, Canada
| | | | - Geneviève Bernard
- 1 Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, Canada.,4 Department of Internal Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, Canada.,5 Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, Canada
| |
Collapse
|
19
|
Musante L, Püttmann L, Kahrizi K, Garshasbi M, Hu H, Stehr H, Lipkowitz B, Otto S, Jensen LR, Tzschach A, Jamali P, Wienker T, Najmabadi H, Ropers HH, Kuss AW. Mutations of the aminoacyl-tRNA-synthetases SARS and WARS2 are implicated in the etiology of autosomal recessive intellectual disability. Hum Mutat 2017; 38:621-636. [PMID: 28236339 DOI: 10.1002/humu.23205] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/06/2017] [Accepted: 02/17/2017] [Indexed: 12/16/2022]
Abstract
Intellectual disability (ID) is the hallmark of an extremely heterogeneous group of disorders that comprises a wide variety of syndromic and non-syndromic phenotypes. Here, we report on mutations in two aminoacyl-tRNA synthetases that are associated with ID in two unrelated Iranian families. In the first family, we identified a homozygous missense mutation (c.514G>A, p.Asp172Asn) in the cytoplasmic seryl-tRNA synthetase (SARS) gene. The mutation affects the enzymatic core domain of the protein and impairs its enzymatic activity, probably leading to reduced cytoplasmic tRNASer concentrations. The mutant protein was predicted to be unstable, which could be substantiated by investigating ectopic mutant SARS in transfected HEK293T cells. In the second family, we found a compound heterozygous genotype of the mitochondrial tryptophanyl-tRNA synthetase (WARS2) gene, comprising a nonsense mutation (c.325delA, p.Ser109Alafs*15), which very likely entails nonsense-mediated mRNA decay and a missense mutation (c.37T>G, p.Trp13Gly). The latter affects the mitochondrial localization signal of WARS2, causing protein mislocalization. Including AIMP1, which we have recently implicated in the etiology of ID, three genes with a role in tRNA-aminoacylation are now associated with this condition. We therefore suggest that the functional integrity of tRNAs in general is an important factor in the development and maintenance of human cognitive functions.
Collapse
Affiliation(s)
- Luciana Musante
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lucia Püttmann
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Hao Hu
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Henning Stehr
- Stanford Cancer Institute, Stanford University, Stanford, California
| | | | - Sabine Otto
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars R Jensen
- Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | | | - Thomas Wienker
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Andreas W Kuss
- Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|