1
|
Mademont-Soler I, Castells-Sarret N, Cisneros A, Foj L, Benavent-Bofill C, Xunclà M, Viñas-Jornet M, Ros A, Rey N, Blanco I, López-Ortega R, Obón M, Plaja A. Incidental Findings Identified by Prenatal Microarray Analysis and Consensus Reporting Criteria of the Catalan Public Health Network XIGENICS. Prenat Diagn 2025; 45:326-347. [PMID: 39815072 DOI: 10.1002/pd.6746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/25/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
OBJECTIVE The study aimed to evaluate the frequency of pathogenic copy number variants (CNVs) classified as incidental findings (IFs) in prenatal diagnosis and to develop consensus recommendations for standardizing their reporting across six centers within the Catalan public health system (XIGENICS network). METHOD A retrospective review of 4219 consecutive prenatal microarrays performed within the network from 2018 to 2023 was conducted, including all referral reasons. To develop consensus recommendations, several discussion meetings were held along with an extensive review of the existing literature. RESULTS A total of 69 IFs were identified in 68 samples, revealing a detection rate of 1.6%. They included: 5 CNVs associated with neurodevelopmental disorders and/or congenital defects with complete penetrance, 41 CNVs for neurodevelopmental disorders and/or congenital defects with incomplete penetrance, 4 disorders that can potentially be prevented or treated, 5 non-childhood onset neurological disorders, 13 X-linked disorders (mainly STS and DMD deletions), and 1 deletion of the SHOX gene. Long-term follow-up revealed that newborns with high penetrance neurosusceptibility CNVs exhibited clinical manifestations more frequently than those with low penetrance CNVs. At the time of reporting, 52 IFs were disclosed, while 17 were not. According to the new consensus criteria, 43 IFs would now be reported, 17 would not, and 9 would depend on parental decision. CNVs consistent with the referral reason were identified in 4% of cases. CONCLUSION This study represents the largest series rigorously documenting all identified IFs in consecutive pregnancies evaluated by microarray, including both reported and unreported findings. IFs were found at a higher frequency than previously recognized, underscoring the need for specific clinical attention. Comprehensive consensus reporting recommendations were developed to ensure uniformity of criteria, and an ad hoc committee was established to manage complex cases.
Collapse
Affiliation(s)
- Irene Mademont-Soler
- Àrea de Genètica Clínica i Consell Genètic, Laboratori Clínic Territorial ICS Girona, Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
- Grup de Trastorns del Neurodesenvolupament, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Girona, Spain
| | - Neus Castells-Sarret
- Àrea de Genètica Clínica i Molecular, Hospital Universitari Vall d'Hebron, Institut Català de la Salut, Barcelona, Spain
- Grup de Medicina Genètica, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Adela Cisneros
- Servei Hematologia Laboratori, Laboratori Clínic Territorial ICS Metropolitana Nord, ICO-Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Laura Foj
- Unitat de Citogenètica i Genètica Mèdica, Laboratori Clínic Territorial ICS Lleida, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Clara Benavent-Bofill
- Unitat de Genètica Clínica, Laboratori Clínic Territorial ICS Camp de Tarragona i Terres de l'Ebre, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Mar Xunclà
- Àrea de Genètica Clínica i Molecular, Hospital Universitari Vall d'Hebron, Institut Català de la Salut, Barcelona, Spain
- Grup de Medicina Genètica, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marina Viñas-Jornet
- Àrea de Genètica Clínica i Molecular, Hospital Universitari Vall d'Hebron, Institut Català de la Salut, Barcelona, Spain
- Grup de Medicina Genètica, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrea Ros
- Servei de Genètica Clínica, Laboratori Clínic Territorial ICS Metropolitana Nord, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Unitat de Recerca en Genòmica Clínica, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Natalia Rey
- Àrea de Genètica Clínica i Molecular, Hospital Universitari Vall d'Hebron, Institut Català de la Salut, Barcelona, Spain
- Grup de Medicina Genètica, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Blanco
- Servei de Genètica Clínica, Laboratori Clínic Territorial ICS Metropolitana Nord, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Unitat de Recerca en Genòmica Clínica, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Ricard López-Ortega
- Unitat de Citogenètica i Genètica Mèdica, Laboratori Clínic Territorial ICS Lleida, Hospital Universitari Arnau de Vilanova, Lleida, Spain
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - María Obón
- Àrea de Genètica Clínica i Consell Genètic, Laboratori Clínic Territorial ICS Girona, Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
- Grup de Trastorns del Neurodesenvolupament, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Girona, Spain
| | - Alberto Plaja
- Àrea de Genètica Clínica i Molecular, Hospital Universitari Vall d'Hebron, Institut Català de la Salut, Barcelona, Spain
- Grup de Medicina Genètica, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Li H, Hu J, Wu Q, Qiu J, Zhang L, Zhu J. Chromosomal abnormalities detected by chromosomal microarray analysis and pregnancy outcomes of 4211 fetuses with high-risk prenatal indications. Sci Rep 2024; 14:15920. [PMID: 38987582 PMCID: PMC11237145 DOI: 10.1038/s41598-024-67123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/08/2024] [Indexed: 07/12/2024] Open
Abstract
With the gradual liberalization of the three-child policy and the development of assisted reproductive technology in China, the number of women with high-risk pregnancies is gradually increasing. In this study, 4211 fetuses who underwent chromosomal microarray analysis (CMA) with high-risk prenatal indications were analysed. The results showed that the overall prenatal detection rate of CMA was 11.4% (480/4211), with detection rates of 5.82% (245/4211) for abnormal chromosome numbers and 5.58% (235/4211) for copy number variants. Additionally, the detection rates of clinically significant copy number variants were 3.78% (159/4211) and 1.8% (76/4211) for variants of uncertain significance. The detection rates of fetal chromosomal abnormalities were 6.42% (30/467) for pregnant women with advanced maternal age (AMA), 6.01% (50/832) for high-risk maternal serum screening (MSS) results, 39.09% (224/573) with abnormal non-invasive prenatal testing (NIPT) results, 9.21% (127/1379) with abnormal ultrasound results, and 5.1% (49/960) for other indications. Follow-up results were available for 4211 patients, including 3677 (3677/4211, 87.32%) whose infants were normal after birth, 462 (462/4211, 10.97%) who terminated their pregnancy, 51 (51/4211, 1.21%) whose infants were abnormal after birth, and 21 (21/4211, 0.50%) who refused follow-up. The results of this study demonstrate significant variation in the diagnostic rate of chromosomal microarray analysis across different indications, providing valuable guidance for clinicians to assess the applicability of CMA technology in prenatal diagnosis.
Collapse
Affiliation(s)
- Huafeng Li
- Genetic Medical Center, Women and Children's Health Care Hospital of Linyi, Liyin, 276014, China
| | - Juan Hu
- Genetic Medical Center, Women and Children's Health Care Hospital of Linyi, Liyin, 276014, China
| | - Qingyu Wu
- Genetic Medical Center, Women and Children's Health Care Hospital of Linyi, Liyin, 276014, China
| | - Jigang Qiu
- Genetic Medical Center, Women and Children's Health Care Hospital of Linyi, Liyin, 276014, China
| | - Li Zhang
- Genetic Medical Center, Women and Children's Health Care Hospital of Linyi, Liyin, 276014, China
| | - Jinping Zhu
- Genetic Medical Center, Women and Children's Health Care Hospital of Linyi, Liyin, 276014, China.
| |
Collapse
|
3
|
Wu X, He S, Shen Q, Xu S, Guo D, Liang B, Wang X, Cao H, Huang H, Xu L. Etiologic evaluation and pregnancy outcomes of fetal growth restriction (FGR) associated with structural malformations. Sci Rep 2024; 14:9220. [PMID: 38649697 PMCID: PMC11035600 DOI: 10.1038/s41598-024-59422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
This study aimed to evaluate the etiology and pregnancy outcomes of fetuses underwent invasive prenatal diagnosis for fetal growth restriction (FGR) accompanied by structural malformations. Data from 130 pregnancies referred for prenatal diagnosis for FGR accompanied by structural malformations were obtained between July 2011 and July 2023. Traditional karyotyping was conducted for all the subjects. A total of 37 (28.5%) cases of chromosomal abnormalities were detected by karyotyping, including 30 cases of numerical anomalies and seven cases of unbalanced structural anomalies. Trisomy 18 was the most common abnormalities, accounting for 51.4%, significantly higher than any other chromosomal abnormality. The cohort was predominantly comprised of early-onset FGR (88.5%) compared to late-onset FGR (11.5%). The incidences of chromosomal abnormalities in this two groups were 29.6% (34/115) and 20.0% (3/15), respectively (p > 0.05). The majority (74.6%, 97/130) of the cohort were affected by a single system malformation, with chromosomal abnormalities found in 19.6% (19/97) of cases. In pregnancies of structural malformations involving two and multiple systems, the frequencies were 56.5% (13/23), and 50.0% (5/10), respectively. Single nucleotide polymorphism array (SNP array) was performed in parallel for 65 cases, revealing additional 7.7% cases of copy number variants (CNVs) compared to karyotyping. Polymerase chain reaction (PCR) was used for detection of cytomegalovirus (CMV) DNA in 92 cases. All fetuses with FGR associated with two or more system malformations were either terminated or stillborn, irrespective of chromosomal aberrations. Conversely, 71.8% of pregnancies with a single-system malformation and normal genetic testing results resulted in live births. Furthermore, two (2.2%) cases tested positive for CMV DNA, leading to one termination and one case of serious developmental disorder after birth. Our study suggests that structural malformations associated with FGR are more likely to affect a single organ system. When multiple systems are involved, the incidence of chromosomal abnormalities and termination rates are notably high. We advocate for the use of CMA and CMV DNA examinations in FGR cases undergo invasive prenatal diagnosis, as these tests can provide valuable insights for etiological exploration and pregnancy management guidance.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou City, 350001, Fujian Province, China
- Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fuzhou, China
| | - Shuqiong He
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou City, 350001, Fujian Province, China
- Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Qingmei Shen
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou City, 350001, Fujian Province, China
- Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Shiyi Xu
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou City, 350001, Fujian Province, China
| | - Danhua Guo
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou City, 350001, Fujian Province, China
- Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Bin Liang
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou City, 350001, Fujian Province, China
- Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Xinrui Wang
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou City, 350001, Fujian Province, China
- Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Hua Cao
- Fujian Provincial Hospital, Fuzhou, China.
| | - Hailong Huang
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou City, 350001, Fujian Province, China.
- Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China.
| | - Liangpu Xu
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou City, 350001, Fujian Province, China.
- Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China.
| |
Collapse
|
4
|
Su H, Liu S, Xu H, Shen C, Xu M, Zhang J, Li D. A rapid PCR-free next-generation sequencing method for comprehensive diagnosis of chromosome disease syndromes in prenatal samples. Medicine (Baltimore) 2024; 103:e37610. [PMID: 38552051 PMCID: PMC10977541 DOI: 10.1097/md.0000000000037610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
The aim of this study is to investigate the application performance of rapid copy number variation sequencing (rCNV-seq) technology for the detection of chromosomal abnormalities during prenatal diagnosis. Samples were collected from 424 pregnant women who were at high-risk for noninvasive prenatal screening in Kunming Maternal and Child Care Hospital from January 2018 to May 2022. rCNV-seq technique was used to detect fetal chromosome abnormalities and compare the results with that of chromosomal karyotype analysis. The Result showed that 330 (77.83%, 330/424) cases indicated chromosomal abnormalities among 424 high-risk pregnant women who underwent rCNV-seq. Moreover, 94 (22.17%, 94/424) cases were discovered to have copy number variations. Among the 330 fetuses with chromosomal abnormalities, common autosomal aneuploidy was observed in 203 cases (47.87%, 203/424) and sex chromosome aneuploidy was observed in 91 cases (21.46%, 91/424). Moreover, the abnormalities in multiple chromosomes were discovered in 33 cases (7.78%, 33/424), and the rare autosomal aneuploidy was observed in 3 cases (0.71%, 3/424). There were 63 fetuses (14.86%, 63/424) with pathogenic CNVs among the 94 fetuses with variable copy numbers. Of the 245 pregnant women who voluntarily selected G-band karyotyping, 1 fetus with copy number variation had normal karyotype results, and the remaining women were consistent with rCNV-seq. Our study revealed that rCNV-seq has higher accuracy in detecting common trisomy and can also detect chromosomal microdeletions or microduplications that cannot be detected by G-banding karyotype analysis. There is no effective treatment for chromosomal diseases, so it is particularly important to prevent chromosomal diseases through genetic counseling and prenatal diagnosis of chromosomal diseases.
Collapse
Affiliation(s)
- Hong Su
- Department of Obstetrics, Kunming Maternal and Child Care Hospital, Kunming, Yunnan, China
| | - Shengni Liu
- BSc(Hons) Biomedical Science, University of Bristol, Bristol, England
| | - Hongxia Xu
- Department of Reproductive Medicine, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China, National Health Commission Key Laboratory of Preconception Health Birth in Western China, Kunming, Yunnan, China
| | - Cuihua Shen
- Department of Obstetrics, Kunming Maternal and Child Care Hospital, Kunming, Yunnan, China
| | - Min Xu
- Department of Obstetrics, Kunming Maternal and Child Care Hospital, Kunming, Yunnan, China
| | - Jing Zhang
- Department of Obstetrics, Kunming Maternal and Child Care Hospital, Kunming, Yunnan, China
| | - Dongyun Li
- Department of Obstetrics, Kunming Maternal and Child Care Hospital, Kunming, Yunnan, China
| |
Collapse
|
5
|
Libman V, Macarov M, Friedlander Y, Hochner-Celnikier D, Sompolinsky Y, Dior UP, Osovsky M, Basel-Salmon L, Wiznitzer A, Neumark Y, Meiner V, Frumkin A, Hochner H, Shkedi-Rafid S. Women's attitudes towards disclosure of genetic information in pregnancy with varying levels of penetrance. Prenat Diagn 2024; 44:270-279. [PMID: 38221678 DOI: 10.1002/pd.6518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Chromosomal-microarray-analysis (CMA) may reveal susceptibility-loci (SL) of varied penetrance for autism-spectrum-disorder (ASD) and other neurodevelopmental conditions. Attitudes of women/parents to disclosure of SL during pregnancy are understudied. METHODS A multiple-choice questionnaire was distributed to postpartum women. Data were collected on women's interest to receive prenatal genetic information with various levels of penetrance. RESULTS Women's (n = 941) disclosure choices were dependent on the magnitude of risk: approximately 70% supported disclosure of either full or 40% penetrance, 53% supported disclosure at a 20% risk threshold, and 40% supported disclosure at 10% or less. Although most women supported, rejected or were indecisive about disclosure consistently across all risk levels, nearly one-quarter (24%) varied their responses based on penetrance, and this was associated with religiosity, education, parity and concern about fetal health (p-values <0.04). Among those who varied their choices, the risk threshold was lower among secular women (20%) than among ultraorthodox women (40%). In a multivariable analysis, ultraorthodox women were much less likely to vary their choices on ASD disclosure compared with secular women (aOR = 0.37, p < 0.001). CONCLUSION Women's attitudes toward disclosure are influenced by the level of risk and their individual characteristics. We therefore encourage engaging women/couples in disclosure decisions regarding uncertain and probabilistic results from prenatal genomic tests.
Collapse
Affiliation(s)
- Vitalia Libman
- Braun School of Public Health, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Macarov
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Yechiel Friedlander
- Braun School of Public Health, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Drorith Hochner-Celnikier
- Department of Obstetrics and Gynecology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yishai Sompolinsky
- Department of Obstetrics and Gynecology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Uri P Dior
- Department of Obstetrics and Gynecology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Osovsky
- Department of Neonatology, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Lina Basel-Salmon
- The Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- Felsenstein Medical Research Center, Petah Tikva, Israel
- Pediatric Genetics Unit, Schneider Children Medical Center, Petah Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arnon Wiznitzer
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Helen Schneider Hospital for Women, Rabin Medical Center, Petah Tikva, Israel
| | - Yehuda Neumark
- Braun School of Public Health, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vardiella Meiner
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Ayala Frumkin
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Hagit Hochner
- Braun School of Public Health, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
6
|
Husen SC, Visser EF, Srebniak MI, Diderich KEM, Groenenberg IAL, Steegers-Theunissen RPM, Go ATJI. Prenatal counseling of an isolated fetal small head circumference during the second trimester expert ultrasound examination. Eur J Obstet Gynecol Reprod Biol 2024; 294:58-64. [PMID: 38218159 DOI: 10.1016/j.ejogrb.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/15/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
OBJECTIVE To evaluate perinatal and postnatal outcomes of fetuses with an isolated small head circumference (HC) on expert ultrasound examination in the second trimester for further recommendations in prenatal care. STUDY DESIGN In a retrospective cohort we included singleton-pregnancies with a fetal HC > -3.0 SD and ≤ -1.64 SD determined on expert ultrasound examination between 18 and 24 weeks of gestational age. Three subgroups were determined: "isolated small HC (ISHC)", "small HC plus abdominal circumference (AC) ≤ p10 (SHC+)" and "small HC plus AC ≤ p10 and Doppler abnormalities (SHC + D)". After ultrasound examination, genetic testing was sometimes offered and postnatally genetic tests were performed on indication. RESULTS We included 252 pregnancies: 109 ISHC, 104 SHC+, and 39 SHC + D. In the ISHC and SHC+ subgroup, 96 % of the fetuses were born alive and did not die neonatal. In the SH + D group this was only 38 %. In the SHC+ subgroup, less fetuses were delivered vaginal (non-instrumental) compared to the ISHC subgroup (61 % vs. 73 %, p < 0.01). In the ISHC and SHC+ subgroup s some fetuses were diagnosed with congenital defects (4 % vs. 10 %, p = 0.08) and with a genetic anomaly (6.4 % vs. 7.7 %, p = 0.13) after 24 weeks or postnatally. In SHC + D subgroups 5 % presented with congenital defects and 2.6 % with a genetic anomaly. CONCLUSION We conclude that fetuses with a small HC without structural anomalies on second trimester expert ultrasound require follow-up and special medical attention. We recommend differentiating between ISHC, SHC+, and SHC + D for prenatal counseling. Genetic testing and referral to a clinical geneticist should be considered.
Collapse
Affiliation(s)
- Sofie C Husen
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| | - Eline F Visser
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Malgorzata I Srebniak
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Karin E M Diderich
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Irene A L Groenenberg
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | | - Attie T J I Go
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
7
|
Diderich KEM, Klapwijk JE, van der Schoot V, Brüggenwirth HT, Joosten M, Srebniak MI. Challenges and Pragmatic Solutions in Pre-Test and Post-Test Genetic Counseling for Prenatal Exome Sequencing. Appl Clin Genet 2023; 16:89-97. [PMID: 37216148 PMCID: PMC10198275 DOI: 10.2147/tacg.s411185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
The yield of genetic prenatal diagnosis has been notably improved by introducing whole genome chromosomal microarray (CMA) and prenatal exome sequencing (pES). However, together with increased numbers of diagnoses made, the need to manage challenging findings such as variants of unknown significance (VUS) and incidental findings (IF) also increased. We have summarized the current guidelines and recommendations and we have shown current solutions used in our tertiary center in the Netherlands. We discuss four of the most common clinical situations: fetus with normal pES results, fetus with a pathogenic finding explaining the fetal phenotype, fetus with a variant of uncertain clinical significance fitting the phenotype and fetus with a variant leading to an incidental diagnosis. Additionally, we reflect on solutions in order to facilitate genetic counseling in an NGS-era.
Collapse
Affiliation(s)
| | | | | | | | - Marieke Joosten
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | | |
Collapse
|
8
|
Cai M, Lin N, Guo N, Su L, Wu X, Xie X, Li Y, He S, Fu X, Xu L, Huang H. Using single nucleotide polymorphism array for prenatal diagnosis in a large multicenter study in Southern China. Sci Rep 2023; 13:7242. [PMID: 37142625 PMCID: PMC10160013 DOI: 10.1038/s41598-023-33668-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
Numerous studies have evaluated the use of single nucleotide polymorphism array (SNP-array) in prenatal diagnostics, but very few have evaluated its application under different risk conditions. Here, SNP-array was used for the retrospective analysis of 8386 pregnancies and the cases were categorized into seven groups. Pathogenic copy number variations (pCNVs) were found in 699 (8.3%, 699/8386) cases. Among the seven different risk factor groups, the non-invasive prenatal testing-positive group had the highest pCNVs rate (35.3%), followed by the abnormal ultrasound structure group (12.8%), and then the chromosomal abnormalities in the couples group (9.5%). Notably the adverse pregnancy history group presented with the lowest pCNVs rate (2.8%). Further evaluation of the 1495 cases with ultrasound abnormalities revealed that the highest pCNV rates were recorded in those cases with multiple system structure abnormalities (22.6%), followed by the groups with skeletal system (11.6%) and urinary system abnormalities (11.2%). A total of 3424 fetuses with ultrasonic soft markers were classified as having one, two, or three ultrasonic soft markers. The different pCNV rates in the three groups were statistically significant. There was little correlation between pCNVs and a previous history of adverse pregnancy outcomes, suggesting that genetic screening under these conditions should be evaluated on a case-by-case basis.
Collapse
Affiliation(s)
- Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Nan Guo
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Linjuan Su
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Xiaoqing Wu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Xiaorui Xie
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Ying Li
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Shuqiong He
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Xianguo Fu
- Department of Prenatal Diagnosis, Ningde Municipal Hospital, Ningde Normal University, Ningde, China.
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China.
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China.
| |
Collapse
|
9
|
Lejamtel F, Oheix C, Morales E, Martinovic J, Labrune P, Petit FM, Receveur A, Achour-Frydman N, Benachi A, Puisney-Dakhli C, Vivanti AJ. Management of copy number variants associated with incomplete penetrance and variable expressivity-Results of a French survey. Clin Genet 2023; 103:335-340. [PMID: 36273389 DOI: 10.1111/cge.14252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/19/2022] [Accepted: 10/18/2022] [Indexed: 02/04/2023]
Abstract
Increasing interest regarding neurodevelopmental disorders and democratization of chromosomal microarray analysis have led to growing identification of neuro-susceptibility copy number variations (CNVs). These CNVs have incomplete penetrance and variable expressivity (PIEV), which makes phenotypic features hard to predict. The French Consortium "AchroPuce" has provided a list of 17 CNVs that should be considered as PIEV CNVs. This list led to consensual French practices of healthcare professionals in postnatal diagnosis. However, no consensus was established in prenatal diagnosis and fetal pathology. 121 French health professionals were surveyed their opinions and practices regarding reporting of PIEV CNVs to patients, in order to identify key points so as to establish French recommendations. The survey showed that professionals in favor of reporting PIEV CNVs to patients in prenatal diagnosis and fetal pathology (respectively, 76% and 84% of respondents) considered highlighted that multidisciplinary consultation is the main point-of-care management before family survey. This statement is close to recommendations published worldwide. As a consequence, multidisciplinary expertise should be the basis of French recommendations concerning the reporting of PIEV CNVs and genetic counseling in prenatal diagnosis and fetal pathology.
Collapse
Affiliation(s)
- Floriane Lejamtel
- Histology, Embryology and Cytogenetics Department, Antoine Béclère Hospital, GHU Paris Saclay, AP-HP, Clamart, France
- Obstetrics and Gynecology Department, Antoine Béclère Hospital, GHU Paris Saclay, AP-HP, Clamart, France
- Fetal pathology Unit, Antoine Béclère Hospital, GHU Paris Saclay, AP-HP, Clamart, France
- Pediatric Department, Antoine Béclère Hospital, GHU Paris Saclay, AP-HP, Clamart, France
| | - Cécile Oheix
- Histology, Embryology and Cytogenetics Department, Antoine Béclère Hospital, GHU Paris Saclay, AP-HP, Clamart, France
- Obstetrics and Gynecology Department, Antoine Béclère Hospital, GHU Paris Saclay, AP-HP, Clamart, France
- Fetal pathology Unit, Antoine Béclère Hospital, GHU Paris Saclay, AP-HP, Clamart, France
- Pediatric Department, Antoine Béclère Hospital, GHU Paris Saclay, AP-HP, Clamart, France
| | - Elisa Morales
- Histology, Embryology and Cytogenetics Department, Antoine Béclère Hospital, GHU Paris Saclay, AP-HP, Clamart, France
- Obstetrics and Gynecology Department, Antoine Béclère Hospital, GHU Paris Saclay, AP-HP, Clamart, France
- Fetal pathology Unit, Antoine Béclère Hospital, GHU Paris Saclay, AP-HP, Clamart, France
- Pediatric Department, Antoine Béclère Hospital, GHU Paris Saclay, AP-HP, Clamart, France
| | - Jelena Martinovic
- Fetal pathology Unit, Antoine Béclère Hospital, GHU Paris Saclay, AP-HP, Clamart, France
| | - Philippe Labrune
- Pediatric Department, Antoine Béclère Hospital, GHU Paris Saclay, AP-HP, Clamart, France
| | - François Mickaël Petit
- Molecular Genetics Unit, Antoine Béclère Hospital, GHU Paris Saclay, AP-HP, Clamart, France
| | - Aline Receveur
- Histology, Embryology and Cytogenetics Department, Antoine Béclère Hospital, GHU Paris Saclay, AP-HP, Clamart, France
| | - Nelly Achour-Frydman
- Reproductive Biology Unit CECOS, Paris-Saclay University, Antoine Béclère Hospital, AP-HP, Clamart, France
| | - Alexandra Benachi
- Obstetrics and Gynecology Department, Antoine Béclère Hospital, GHU Paris Saclay, AP-HP, Clamart, France
| | - Chloé Puisney-Dakhli
- Histology, Embryology and Cytogenetics Department, Antoine Béclère Hospital, GHU Paris Saclay, AP-HP, Clamart, France
| | - Alexandre Joseph Vivanti
- Obstetrics and Gynecology Department, Antoine Béclère Hospital, GHU Paris Saclay, AP-HP, Clamart, France
| |
Collapse
|
10
|
van Bever Y, Groenenberg IAL, Knapen MFCM, Dessens AB, Hannema SE, Wolffenbuttel KP, Diderich KEM, Hoefsloot LH, Srebniak MI, Bruggenwirth HT. Prenatal ultrasound finding of atypical genitalia: Counseling, genetic testing and outcomes. Prenat Diagn 2023; 43:162-182. [PMID: 35808910 DOI: 10.1002/pd.6205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To report uptake of genetic counseling (GC) and prenatal genetic testing after the finding of atypical genitalia on prenatal ultrasound (US) and the clinical and genetic findings of these pregnancies. METHODS A retrospective cohort study (2017-2019) of atypical fetal genitalia in a large expert center for disorders/differences of sex development. We describe counseling aspects, invasive prenatal testing, genetic and clinical outcome of fetuses apparently without [group 1, n = 22 (38%)] or with [group 2, n = 36 (62%)] additional anomalies on US. RESULTS In group 1, 86% of parents opted for GC versus 72% in group 2, and respectively 58% and 15% of these parents refrained from invasive testing. Atypical genitalia were postnatally confirmed in 91% (group 1) and 64% (group 2), indicating a high rate of false positive US diagnosis of ambiguous genitalia. Four genetic diagnoses were established in group 1 (18%) and 10 in group 2 (28%). The total genetic diagnostic yield was 24%. No terminations of pregnancy occurred in group 1. CONCLUSIONS For optimal care, referral for an expert fetal US scan, GC and invasive diagnostics including broad testing should be offered after prenatal detection of isolated atypical genitalia.
Collapse
Affiliation(s)
- Yolande van Bever
- DSD-Expert Center, Erasmus MC, Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Irene A L Groenenberg
- DSD-Expert Center, Erasmus MC, Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.,Department of Obstetrics and Prenatal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Maarten F C M Knapen
- DSD-Expert Center, Erasmus MC, Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.,Department of Obstetrics and Prenatal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Arianne B Dessens
- DSD-Expert Center, Erasmus MC, Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.,Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Sabine E Hannema
- DSD-Expert Center, Erasmus MC, Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.,Department of Pediatric Endocrinology, Erasmus MC, University Medical Center Rotterdam, The Netherlands.,Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Paediatric Endocrinology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Katja P Wolffenbuttel
- DSD-Expert Center, Erasmus MC, Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.,Department of Urology and Pediatric Urology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Karin E M Diderich
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Lies H Hoefsloot
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Malgorzata I Srebniak
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Hennie T Bruggenwirth
- DSD-Expert Center, Erasmus MC, Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
11
|
The Value of a Comprehensive Genomic Evaluation in Prenatal Diagnosis of Genetic Diseases: A Retrospective Study. Genes (Basel) 2022; 13:genes13122365. [PMID: 36553632 PMCID: PMC9778469 DOI: 10.3390/genes13122365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Currently, there are still many challenges in prenatal diagnosis, such as limited or uncertain fetal phenotyping, variant interpretation, and rapid turnaround times. The aim of this study was to illustrate the value of a comprehensive genomic evaluation in prenatal diagnosis. We retrospectively reviewed 20 fetuses with clinically significant copy number variants (CNVs) detected by chromosomal microarray analysis (CMA) and no further exome sequencing testing in our tertiary center between 2019 and 2020. The residual DNA from the prenatal cases was used for the parallel implementation of CNV sequencing (CNV-seq) and trio-based clinical exome sequencing (trio-CES). CMA revealed 26 clinically significant CNVs (18 deletions and eight duplications) in 20 fetuses, in which five fetuses had two or more CNVs. There were eight fetuses with pathogenic CNVs (e.g., del 1p36), nine fetuses with likely pathogenic CNVs (e.g., dup 22q11.21), and three fetuses with variants of unknown significance (VOUS, e.g., dup 1q21.1q21.2). Trio-CES identified four fetuses with likely pathogenic mutations (SNV/InDels). Of note, a fetus was detected with a maternally inherited hemizygous variant in the SLX4 gene due to a 16p13.3 deletion on the paternal chromosome. The sizes of CNVs detected by CNV-seq were slightly larger than that of the SNP array, and four cases with mosaic CNVs were all identified by CNV-seq. In conclusion, microdeletion/duplication syndromes and monogenic disorders may co-exist in a subject, and CNV deletion may contribute to uncovering additional recessive disease alleles. The application of a comprehensive genomic evaluation (CNVs and SNV/InDels) has great value in the prenatal diagnosis arena. CNV-seq based on NGS technology is a reliable and a cost-effective technique for identifying CNVs.
Collapse
|
12
|
Shi Y, Li X, Ju D, Li Y, Zhang X, Zhang Y. Abnormal chromosomes identification using chromosomal microarray. J OBSTET GYNAECOL 2022; 42:2025-2032. [PMID: 35659171 DOI: 10.1080/01443615.2022.2074786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, we presented a case series to highlight the chromosomal microarray (CMA) in identifying chromosomal abnormalities which is undetectable by conventional karyotyping or known abnormal chromosomes without clear diagnosis. Extensive studies showed that CMA was gradually accepted as a prenatal invasive testing during pregnancy. The aim of this study was to evaluate the diagnostic effect of CMA for foetuses with abnormal chromosomes unrecognised by conventional karyotyping. Pregnant women who need prenatal diagnosis with all indications were enrolled in this study. For aberrant cytogenetic findings that cannot be defined by routine karyotyping, single nucleotide polymorphism array (SNP-array) was used. Six cases with abnormal karyotype were included in the study. With higher resolution of translocation breakpoints, CMA could detect smaller chromosomal imbalances that were undetectable by karyotyping. This study highlights the value of CMA for the detection of submicroscopic abnormalities in foetuses that cannot be detected by conventional karyotyping. Impact StatementWhat is already known on this subject? Chromosomal microarray (CMA) offers additional diagnostic benefits by revealing submicroscopic imbalances or copy number variations (CNVs) that are too small to be identified on a standard G-banded chromosome preparation.What do the results of this study add? We added a case series to highlight the CMA in identifying chromosomal abnormalities not detectable by conventional karyotyping or known abnormal chromosomes without clear diagnosis.What are the implications of these findings for clinical practice and/or further research? This study highlights the value of CMA in the case of associated foetuses with submicroscopic abnormalities that cannot detect by conventional karyotyping.
Collapse
Affiliation(s)
- Yunfang Shi
- Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaozhou Li
- Tianjin Medical University General Hospital, Tianjin, China
| | - Duan Ju
- Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Li
- Tianjin Medical University General Hospital, Tianjin, China
| | - Xiuling Zhang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Zhang
- Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
13
|
Huang H, Cai M, Xue H, Xu L, Lin N. Single nucleotide polymorphism array in genetic evaluation of fetal ultrasound abnormalities: a retrospective follow-up study. Am J Transl Res 2022; 14:3516-3524. [PMID: 35702125 PMCID: PMC9185077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Fetal ultrasound abnormalities may be complicated by cognitive dysfunction or developmental retardation, and ultrasonography cannot detect these problems; therefore, chromosome detection is required in fetuses with ultrasound abnormalities. To examine the effectiveness of single nucleotide polymorphism (SNP) array in genetic diagnosis of fetal ultrasound abnormalities, the prenatal samples of 805 pregnant women with fetal ultrasound abnormalities were collected for SNP array and karyotyping analysis. A 95.5% percentage of normal karyotypes and 4.5% percentage of abnormal karyotypes were observed, and aneuploidy was detected in 28 fetuses with abnormal karyotypes. SNP array identified 89 positives, including 55 cases (6.8%) with pathogenic copy number variation (CNVs) and 34 (4.2%) with variants of unknown significance (VOUS). In addition to 36 cases showing consistent results with karyotyping, SNP array detected 19 additional cases with pathogenic CNVs, including microdeletion/microduplication syndromes in 18 cases and uniparental disomy in one case. The detection rate of pathogenic CNVs was highest in fetuses with structural abnormalities of multiple systems complicated by non-structural abnormalities (13.7%) and lowest in those with structural abnormalities of a single system (4.2%). Presence of pathogenic CNVs was 12.2% in fetuses with structural abnormalities in the urinary system, followed by in the skeletal system (10.3%), while no pathogenic CNVs were identified in fetuses with structural abnormalities in the head and face, the respiratory system or the digestive system. An 89.6% follow-up rate was seen in the study sample, and 55 fetuses with pathogenic CNVs identified by SNP array were all given induction of labor. Our data demonstrate that SNP array improves the detection of genetics aberrations in fetuses with prenatal ultrasound abnormality relative to karyotyping.
Collapse
Affiliation(s)
- Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect Fuzhou 350001, Fujian, China
| | - Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect Fuzhou 350001, Fujian, China
| | - Huili Xue
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect Fuzhou 350001, Fujian, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect Fuzhou 350001, Fujian, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect Fuzhou 350001, Fujian, China
| |
Collapse
|
14
|
Comparative Genomic Hybridization to Microarrays in Fetuses with High-Risk Prenatal Indications: Polish Experience with 7400 Pregnancies. Genes (Basel) 2022; 13:genes13040690. [PMID: 35456496 PMCID: PMC9032831 DOI: 10.3390/genes13040690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to determine the suitability of the comparative genomic hybridization to microarray (aCGH) technique for prenatal diagnosis, but also to assess the frequency of chromosomal aberrations that may lead to fetal malformations but are not included in the diagnostic report. We present the results of the aCGH in a cohort of 7400 prenatal cases, indicated for invasive testing due to ultrasound abnormalities, high-risk for serum screening, thickened nuchal translucency, family history of genetic abnormalities or congenital abnormalities, and advanced maternal age (AMA). The overall chromosomal aberration detection rate was 27.2% (2010/7400), including 71.2% (1431/2010) of numerical aberrations and 28.8% (579/2010) of structural aberrations. Additionally, the detection rate of clinically significant copy number variants (CNVs) was 6.8% (505/7400) and 0.7% (57/7400) for variants of unknown clinical significance. The detection rate of clinically significant submicroscopic CNVs was 7.9% (334/4204) for fetuses with structural anomalies, 5.4% (18/336) in AMA, 3.1% (22/713) in the group of abnormal serum screening and 6.1% (131/2147) in other indications. Using the aCGH method, it was possible to assess the frequency of pathogenic chromosomal aberrations, of likely pathogenic and of uncertain clinical significance, in the groups of cases with different indications for an invasive test.
Collapse
|
15
|
Mastromoro G, Guadagnolo D, Khaleghi Hashemian N, Marchionni E, Traversa A, Pizzuti A. Molecular Approaches in Fetal Malformations, Dynamic Anomalies and Soft Markers: Diagnostic Rates and Challenges-Systematic Review of the Literature and Meta-Analysis. Diagnostics (Basel) 2022; 12:575. [PMID: 35328129 PMCID: PMC8947110 DOI: 10.3390/diagnostics12030575] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Fetal malformations occur in 2-3% of pregnancies. They require invasive procedures for cytogenetics and molecular testing. "Structural anomalies" include non-transient anatomic alterations. "Soft markers" are often transient minor ultrasound findings. Anomalies not fitting these definitions are categorized as "dynamic". This meta-analysis aims to evaluate the diagnostic yield and the rates of variants of uncertain significance (VUSs) in fetuses undergoing molecular testing (chromosomal microarray (CMA), exome sequencing (ES), genome sequencing (WGS)) due to ultrasound findings. The CMA diagnostic yield was 2.15% in single soft markers (vs. 0.79% baseline risk), 3.44% in multiple soft markers, 3.66% in single structural anomalies and 8.57% in multiple structural anomalies. Rates for specific subcategories vary significantly. ES showed a diagnostic rate of 19.47%, reaching 27.47% in multiple structural anomalies. WGS data did not allow meta-analysis. In fetal structural anomalies, CMA is a first-tier test, but should be integrated with karyotype and parental segregations. In this class of fetuses, ES presents a very high incremental yield, with a significant VUSs burden, so we encourage its use in selected cases. Soft markers present heterogeneous CMA results from each other, some of them with risks comparable to structural anomalies, and would benefit from molecular analysis. The diagnostic rate of multiple soft markers poses a solid indication to CMA.
Collapse
Affiliation(s)
- Gioia Mastromoro
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (D.G.); (N.K.H.); (E.M.); (A.T.); (A.P.)
| | | | | | | | | | | |
Collapse
|
16
|
Meng X, Jiang L. Prenatal detection of chromosomal abnormalities and copy number variants in fetuses with congenital gastrointestinal obstruction. BMC Pregnancy Childbirth 2022; 22:50. [PMID: 35045821 PMCID: PMC8772214 DOI: 10.1186/s12884-022-04401-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background Congenital gastrointestinal obstruction (CGIO) mainly refers to the stenosis or atresia of any part from the esophagus to the anus and is one of the most common surgical causes in the neonatal period. The concept of genetic factors as an etiology of CGIO has been accepted, but investigations about CGIO have mainly focused on aneuploidy, and the focus has been on duodenal obstruction. The objective of this study was to evaluate the risk of chromosome aberrations (including numeric and structural aberrations) in different types of CGIO. A second objective was to assess the risk of abnormal CNVs detected by copy number variation sequencing (CNV-seq) in fetuses with different types of CGIO. Methods Data from pregnancies referred for invasive testing and CNV-seq due to sonographic diagnosis of fetal CGIO from 2015 to 2020 were obtained retrospectively from the computerized database. The rates of chromosome aberrations and abnormal CNV-seq findings for isolated CGIOs and complicated CGIOs and different types of CGIOs were calculated. Results Of the 240 fetuses with CGIO that underwent karyotyping, the detection rate of karyotype abnormalities in complicated CGIO was significantly higher than that of the isolated group (33.8% vs. 10.8%, p < 0.01). Ninety-three cases with normal karyotypes further underwent CNV-seq, and CNV-seq revealed an incremental diagnostic value of 9.7% over conventional karyotyping. In addition, the incremental diagnostic yield of CNV-seq analysis in complicated CGIOs (20%) was higher than that in isolated CGIOs (4.8%), and the highest prevalence of pathogenic CNVs/likely pathogenic CNVs was found in the duodenal stenosis/atresia group (17.5%), followed by the anorectal malformation group (15.4%). The 13q deletion, 10q26 deletion, 4q24 deletion, and 2p24 might be additional genetic etiologies of duodenal stenosis/atresia. Conclusions The risk of pathogenic chromosomal abnormalities and CNVs increased in the complicated CGIO group compared to that in the isolated CGIO group, especially when fetuses presented duodenal obstruction (DO) and anorectal malformation. CNV-seq was recommended to detect submicroscopic chromosomal aberrations for DO and anorectal malformation when the karyotype was normal. The relationship between genotypes and phenotypes needs to be explored in the future to facilitate prenatal diagnosis of fetal CGIO and yield new clues into their etiologies.
Collapse
|
17
|
Ottema S, Mulet-Lazaro R, Erpelinck-Verschueren C, van Herk S, Havermans M, Arricibita Varea A, Vermeulen M, Beverloo HB, Gröschel S, Haferlach T, Haferlach C, J. Wouters B, Bindels E, Smeenk L, Delwel R. The leukemic oncogene EVI1 hijacks a MYC super-enhancer by CTCF-facilitated loops. Nat Commun 2021; 12:5679. [PMID: 34584081 PMCID: PMC8479123 DOI: 10.1038/s41467-021-25862-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
Chromosomal rearrangements are a frequent cause of oncogene deregulation in human malignancies. Overexpression of EVI1 is found in a subgroup of acute myeloid leukemia (AML) with 3q26 chromosomal rearrangements, which is often therapy resistant. In AMLs harboring a t(3;8)(q26;q24), we observed the translocation of a MYC super-enhancer (MYC SE) to the EVI1 locus. We generated an in vitro model mimicking a patient-based t(3;8)(q26;q24) using CRISPR-Cas9 technology and demonstrated hyperactivation of EVI1 by the hijacked MYC SE. This MYC SE contains multiple enhancer modules, of which only one recruits transcription factors active in early hematopoiesis. This enhancer module is critical for EVI1 overexpression as well as enhancer-promoter interaction. Multiple CTCF binding regions in the MYC SE facilitate this enhancer-promoter interaction, which also involves a CTCF binding site upstream of the EVI1 promoter. We hypothesize that this CTCF site acts as an enhancer-docking site in t(3;8) AML. Genomic analyses of other 3q26-rearranged AML patient cells point to a common mechanism by which EVI1 uses this docking site to hijack enhancers active in early hematopoiesis.
Collapse
Affiliation(s)
- Sophie Ottema
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands ,grid.499559.dOncode Institute, Utrecht, The Netherlands
| | - Roger Mulet-Lazaro
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands ,grid.499559.dOncode Institute, Utrecht, The Netherlands
| | - Claudia Erpelinck-Verschueren
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands ,grid.499559.dOncode Institute, Utrecht, The Netherlands
| | - Stanley van Herk
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands ,grid.499559.dOncode Institute, Utrecht, The Netherlands
| | - Marije Havermans
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands ,grid.499559.dOncode Institute, Utrecht, The Netherlands
| | - Andrea Arricibita Varea
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands ,grid.499559.dOncode Institute, Utrecht, The Netherlands
| | - Michael Vermeulen
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - H. Berna Beverloo
- grid.5645.2000000040459992XDepartment of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stefan Gröschel
- grid.7497.d0000 0004 0492 0584A380, German Cancer Research Center, Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Torsten Haferlach
- grid.420057.40000 0004 7553 8497Munich Leukemia Laboratory, Munich, Germany
| | - Claudia Haferlach
- grid.420057.40000 0004 7553 8497Munich Leukemia Laboratory, Munich, Germany
| | - Bas J. Wouters
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands ,grid.499559.dOncode Institute, Utrecht, The Netherlands
| | - Eric Bindels
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Leonie Smeenk
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands ,grid.499559.dOncode Institute, Utrecht, The Netherlands
| | - Ruud Delwel
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands ,grid.499559.dOncode Institute, Utrecht, The Netherlands
| |
Collapse
|
18
|
Wang J, Zhang B, Zhou L, Zhou Q, Chen Y, Yu B. Comprehensive Evaluation of Non-invasive Prenatal Screening to Detect Fetal Copy Number Variations. Front Genet 2021; 12:665589. [PMID: 34335682 PMCID: PMC8322773 DOI: 10.3389/fgene.2021.665589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022] Open
Abstract
Objective To evaluate the effectiveness of non-invasive prenatal screening (NIPS) in prenatal screening of fetal pathogenic copy number variants (CNVs). Materials and Methods We evaluated the prenatal screening capacity using traditional and retrospective approaches. For the traditional method, we evaluated 24,613 pregnant women who underwent NIPS; cases which fetal CNVs were suggested underwent prenatal diagnosis with chromosomal microarray analysis (CMA). For the retrospective method, we retrospectively evaluated 47 cases with fetal pathogenic CNVs by NIPS. A systematic literature search was performed to compare the evaluation efficiency. Results Among the 24,613 pregnant women who received NIPS, 124 (0.50%) were suspected to have fetal CNVs. Of these, 66 women underwent prenatal diagnosis with CMA and 13 had true-positive results. The positive predictive value (PPV) of NIPS for fetal CNVs was 19.7%. Among 1,161 women who did not receive NIPS and underwent prenatal diagnosis by CMA, 47 were confirmed to have fetal pathogenic CNVs. Retesting with NIPS indicated that 24 of these 47 cases could also be detected by NIPS, representing a detection rate (DR) of 51.1%. In total, 10 publications, namely, six retrospective studies and four prospective studies, met our criteria and were selected for a detailed full-text review. The reported DRs were 61.10–97.70% and the PPVs were 36.11–80.56%. The sizes of CNVs were closely related to the accuracy of NIPS detection. The DR was 41.9% (13/31) in fetuses with CNVs ≤ 3 Mb, but was 55.0% (11/20) in fetuses with CNVs > 3 Mb. Finally, to intuitively show the CNVs accurately detected by NIPS, we mapped all CNVs to chromosomes according to their location, size, and characteristics. NIPS detected fetal CNVs in 2q13 and 4q35. Conclusion The DR and PPV of NIPS for fetal CNVs were approximately 51.1% and 19.7%, respectively. Follow-up molecular prenatal diagnosis is recommended in cases where NIPS suggests fetal CNVs.
Collapse
Affiliation(s)
- Jing Wang
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Bin Zhang
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Lingna Zhou
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Qin Zhou
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Yingping Chen
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Bin Yu
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, China
| |
Collapse
|
19
|
Benefit versus risk of chromosomal microarray analysis performed in pregnancies with normal and positive prenatal screening results: A retrospective study. PLoS One 2021; 16:e0250734. [PMID: 33901244 PMCID: PMC8075189 DOI: 10.1371/journal.pone.0250734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/12/2021] [Indexed: 11/19/2022] Open
Abstract
Background Most studies on chromosomal microarray analysis (CMA) and amniocentesis risks have not evaluated pregnancies with low risk for genetic diseases; therefore, the efficacy and safety of CMA and amniocentesis in this population are unclear. This study aimed to examine the benefits and risks of prenatal genetic diagnostic tests in pregnancies having low risk for chromosomal diseases. Methods and findings In this retrospective study, we used clinical data from a large database of 30,830 singleton pregnancies at gestational age 16–23 weeks who underwent amniocentesis for karyotyping with or without CMA. We collected socio-demographic, medical and obstetric information, along with prenatal screening, CMA and karyotyping results. Fetal loss events were also analysed. CMA was performed in 5,837 pregnancies with normal karyotype (CMA cohort). In this cohort, 4,174 women had normal prenatal screening results and the risk for identifying genetic abnormalities with >10% risk for intellectual disability by CMA was 1:102, with no significant difference between maternal age groups. The overall post-amniocentesis fetal loss rate was 1:1,401 for the entire cohort (n = 30,830) and 1:1,945 for the CMA cohort (n = 5,837). The main limitation of this study is the relatively short follow-up of 3 weeks, which may not have been sufficient for detecting all fetal loss events. Conclusion The low risk for post-amniocentesis fetal loss, compared to the rate of severe genetic abnormalities detected by CMA, suggests that even pregnant women with normal prenatal screening results should consider amniocentesis with CMA.
Collapse
|
20
|
Atypical 3q26/MECOM rearrangements genocopy inv(3)/t(3;3) in acute myeloid leukemia. Blood 2021; 136:224-234. [PMID: 32219447 DOI: 10.1182/blood.2019003701] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) with inv(3)/t(3;3)(q21q26) is a distinct World Health Organization recognized entity, characterized by its aggressive course and poor prognosis. In this subtype of AML, the translocation of a GATA2 enhancer (3q21) to MECOM (3q26) results in overexpression of the MECOM isoform EVI1 and monoallelic expression of GATA2 from the unaffected allele. The full-length MECOM transcript, MDS1-EVI1, is not expressed as the result of the 3q26 rearrangement. Besides the classical inv(3)/t(3;3), a number of other 3q26/MECOM rearrangements with poor treatment response have been reported in AML. Here, we demonstrate, in a group of 33 AML patients with atypical 3q26 rearrangements, MECOM involvement with EVI1 overexpression but no or low MDS1-EVI1 levels. Moreover, the 3q26 translocations in these AML patients often involve superenhancers of genes active in myeloid development (eg, CD164, PROM1, CDK6, or MYC). In >50% of these cases, allele-specific GATA2 expression was observed, either by copy-number loss or by an unexplained allelic imbalance. Altogether, atypical 3q26 recapitulate the main leukemic mechanism of inv(3)/t(3;3) AML, namely EVI1 overexpression driven by enhancer hijacking, absent MDS1-EVI1 expression and potential GATA2 involvement. Therefore, we conclude that both atypical 3q26/MECOM and inv(3)/t(3;3) can be classified as a single entity of 3q26-rearranged AMLs. Routine analyses determining MECOM rearrangements and EVI1 and MDS1-EVI1 expression are required to recognize 3q-rearranged AML cases.
Collapse
|
21
|
A Rapid PCR-Free Next-Generation Sequencing Method for the Detection of Copy Number Variations in Prenatal Samples. Life (Basel) 2021; 11:life11020098. [PMID: 33525582 PMCID: PMC7911416 DOI: 10.3390/life11020098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022] Open
Abstract
Next-generation sequencing (NGS) is emerging as a new method for the detection of clinically significant copy number variants (CNVs). In this study, we developed and validated rapid CNV-sequencing (rCNV-seq) for clinical application in prenatal diagnosis. Low-pass whole-genome sequencing was performed on PCR libraries prepared from amniocyte genomic DNA. From 10-40 ng of input DNA, PCR-free libraries consistently produced sequencing data with high unique read mapping ratios, low read redundancy, low coefficient of variation for all chromosomes and high genomic coverage. In validation studies, reliable and accurate CNV detection using PCR-free-based rCNV-seq was demonstrated for a range of common trisomies and sex chromosome aneuploidies as well as microdeletion and duplication syndromes. In reproducibility studies, CNV copy number and genomic intervals closely matched those defined by chromosome microarray analysis. Clinical testing of genomic DNA samples from 217 women referred for prenatal diagnosis identified eight samples (3.7%) with known chromosome disorders. We conclude that PCR-free-based rCNV-seq is a sensitive, specific, reproducible and efficient method that can be used in any NGS-based diagnostic laboratory for detection of clinically significant CNVs.
Collapse
|
22
|
Chen Y, Xie Y, Jiang Y, Luo Q, Shi L, Zeng S, Zhuang J, Lyu G. The Genetic Etiology Diagnosis of Fetal Growth Restriction Using Single-Nucleotide Polymorphism-Based Chromosomal Microarray Analysis. Front Pediatr 2021; 9:743639. [PMID: 34722424 PMCID: PMC8555260 DOI: 10.3389/fped.2021.743639] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background: An increase in pathogenic copy number variants (pCNVs) has been recognized to associate with fetal growth restriction (FGR). Here, we aim to explore the application value of chromosomal microarray analysis (CMA) in prenatal diagnosis of FGR. Methods: Prenatal ultrasound was applied to identify FGR. A total of 149 pregnant women with FGR were enrolled in our study. All subjects underwent karyotype analysis and CMA to reveal the chromosomal abnormalities. Results: In this study, all subjects were successfully detected by karyotype and CMA analyses. Of these subjects, the chromosomal abnormalities detection rate was 5.37% (8/149) for karyotyping and 13.42% (20/149) for CMA, respectively. Among them, an 8.05% (12/149) incremental yield of CMA over karyotype analysis was observed (p = 0.004). In addition, a significant difference of pCNV detection rate was observed between the groups with different high-risk factors (p = 0.005). The FGR with structural anomalies group showed the highest pCNV detection rate (33.33%), followed by the FGR with non-structural anomalies group (8.77%) and the isolated FGR group (8.06%). Conclusion: In conclusion, CMA technology showed an effective application value in etiology diagnosis of FGR. We believe that CMA should be recommended as first-line detection technology for prenatal diagnosis in FGR.
Collapse
Affiliation(s)
- Yu'e Chen
- Ultrasonography, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuying Jiang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Qi Luo
- Department of Public Health for Women and Children, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Lijing Shi
- Ultrasonography, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Shuhong Zeng
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Jianlong Zhuang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Guorong Lyu
- Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
23
|
Pratt M, Garritty C, Thuku M, Esmaeilisaraji L, Hamel C, Hartley T, Millar K, Skidmore B, Dougan S, Armour CM. Application of exome sequencing for prenatal diagnosis: a rapid scoping review. Genet Med 2020; 22:1925-1934. [PMID: 32747765 DOI: 10.1038/s41436-020-0918-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/20/2020] [Indexed: 01/03/2023] Open
Abstract
Genetic diagnosis provides important information for prenatal decision-making and management. Promising results from exome sequencing (ES) for genetic diagnosis in fetuses with structural anomalies are emerging. The objective of this scoping review was to identify what is known about the use of ES for genetic testing in prenatal cases with known or suspected genetic disease. A rapid scoping review was conducted over a six-week timeframe of English-language peer-reviewed studies. Search strategies for major databases (e.g., Medline) and gray literature were developed, and peer reviewed by information specialists. Identified studies were categorized and charted using tables and diagrams. Twenty-four publications were included from seven countries published between 2014 and 2019. Most commonly reported outcomes were diagnostic yields, which varied widely from 5% to 57%, and prenatal phenotype. Few studies reported clinical outcomes related to impact, decision-making, and clinical utility. Qualitative studies (n = 6) provided useful insights into patient and health-care provider experiences with ES. Findings suggest prenatal ES is beneficial, but more research is needed to better understand the clinical utility, circumstances for ideal use, feasibility, and costs of offering rapid ES as a routine option for prenatal genetic testing.
Collapse
Affiliation(s)
- Misty Pratt
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.
| | - Chantelle Garritty
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Micere Thuku
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Leila Esmaeilisaraji
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Candyce Hamel
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Kathryn Millar
- Better Outcomes Registry Network (BORN) Ontario, Ottawa, ON, Canada
| | | | - Shelley Dougan
- Better Outcomes Registry Network (BORN) Ontario, Ottawa, ON, Canada
| | - Christine M Armour
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Better Outcomes Registry Network (BORN) Ontario, Ottawa, ON, Canada
- Regional Genetics Unit, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| |
Collapse
|
24
|
Copy number variations in ultrasonically abnormal late pregnancy fetuses with normal karyotypes. Sci Rep 2020; 10:15094. [PMID: 32934329 PMCID: PMC7493916 DOI: 10.1038/s41598-020-72157-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022] Open
Abstract
Many fetuses are found to have ultrasonic abnormalities in the late pregnancy. The association of fetal ultrasound abnormalities in late pregnancy with copy number variations (CNVs) is unclear. We attempted to explore the relationship between types of ultrasonically abnormal late pregnancy fetuses and CNVs. Fetuses (n = 713) with ultrasound-detected abnormalities in late pregnancy and normal karyotypes were analyzed. Of these, 237 showed fetal sonographic structural malformations and 476 showed fetal non-structural abnormalities. Single nucleotide polymorphism (SNP)-based chromosomal microarray (CMA) was performed on the Affymetrix CytoScan HD platform. Using the SNP array, abnormal CNVs were detected in 8.0% (57/713) of the cases, with pathogenic CNVs in 32 cases and variants of uncertain clinical significance (VUS) in 25 cases. The detection rate of abnormal CNVs in fetuses with sonographic structural malformations (12.7%, 30/237) was significantly higher (P = 0.001) than that in the fetuses with non-structural abnormalities (5.7%, 27/476). Overall, we observed that when fetal sonographic structural malformations or non-structural abnormalities occurred in the third trimester of pregnancy, the use of SNP analysis could improve the accuracy of prenatal diagnosis and reduce the rate of pregnancy termination.
Collapse
|
25
|
Wang Y, Zhang M, Chen L, Huang H, Xu L. Prenatal diagnosis of BACs-on-Beads assay in 1520 cases from Fujian Province, China. Mol Genet Genomic Med 2020; 8:e1446. [PMID: 32767744 PMCID: PMC7549593 DOI: 10.1002/mgg3.1446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 11/25/2022] Open
Abstract
Background The aim of this study was to evaluate the application of BACs‐on‐Beads (BoBs™) assay for rapid detection of chromosomal abnormalities for prenatal diagnosis (PND). Methods A total of 1520 samples, including seven chorionic villi biopsy samples, 1328 amniotic fluid samples, and 185 umbilical cord samples from pregnant women were collected to detect the chromosomal abnormalities using BoBs™ assay and karyotyping. Furthermore, abnormal specimens were verified by chromosome microarray analysis (CMA) and fluorescence in situ hybridization (FISH). Results The results demonstrated that the success rate of karyotyping and BoBs™ assay in PND was 98.09% and 100%, respectively. BoBs™ assay was concordant with karyotyping for Trisomy 21, Trisomy 18, and Trisomy 13, sex chromosomal aneuploidy, Wolf–Hirschhorn syndrome, and mosaicism. BoBs™ assay also detected Smith–Magenis syndrome, Williams–Beuren syndrome, DiGeorge syndrome, Miller–Dieker syndrome, Prader–Willi syndrome, Xp22.31 microdeletions, 22q11.2, and 17p11.2 microduplications. However, karyotyping failed to show these chromosomal abnormalities. A case of 8q21.2q23.3 duplication which was found by karyotyping was not detected by BoBs™ assay. Furthermore, all these chromosomal abnormalities were consistent with CMA and FISH verifications. According to the reports, we estimated that the detection rates of karyotyping, BoBs™, and CMA in the present study were 4.28%, 4.93%, and 5%, respectively, which is consistent with the results of a previous study. The respective costs for the three methods were about $135–145, $270–290, and $540–580. Conclusion BoBs™ assay is considered a reliable, rapid test for use in PND. A variety of comprehensive technological applications can complement each other in PND, in order to maximize the diagnosis rate and reduce the occurrence of birth defects.
Collapse
Affiliation(s)
- Yan Wang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Min Zhang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lingji Chen
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hailong Huang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Liangpu Xu
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
26
|
Muys J, Jacquemyn Y, Blaumeiser B, Bourlard L, Brison N, Bulk S, Chiarappa P, De Leener A, De Rademaeker M, Désir J, Destrée A, Devriendt K, Dheedene A, Duquenne A, Fieuw A, Fransen E, Gatot J, Jamar M, Janssens S, Kerstjens J, Keymolen K, Lederer D, Menten B, Pichon B, Rombout S, Sznajer Y, Van Den Bogaert A, Van Den Bogaert K, Vermeesch J, Janssens K. Prenatally detected copy number variants in a national cohort: A postnatal follow‐up study. Prenat Diagn 2020; 40:1272-1283. [DOI: 10.1002/pd.5751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Joke Muys
- Department of Gynaecology University Hospital Antwerp Edegem Belgium
- Center for Medical Genetics, Universiteit Antwerpen Antwerpen Belgium
| | - Yves Jacquemyn
- Department of Gynaecology University Hospital Antwerp Edegem Belgium
- ASTARC and Global Health Institute Universiteit Antwerpen Antwerpen Belgium
| | - Bettina Blaumeiser
- Department of Gynaecology University Hospital Antwerp Edegem Belgium
- Center for Medical Genetics, Universiteit Antwerpen Antwerpen Belgium
| | - Laura Bourlard
- Center for Medical Genetics Université Libre de Bruxelles Bruxelles Belgium
| | - Nathalie Brison
- Center for Medical Genetics Katholieke Universiteit Leuven Leuven Belgium
| | - Saskia Bulk
- Center for Medical Genetics Centre Hospitalier Universitaire de Liège Liege Belgium
| | - Patrizia Chiarappa
- Center for Medical Genetics Université Catholique de Louvain Louvain‐la‐Neuve Belgium
| | - Anne De Leener
- Center for Medical Genetics Université Catholique de Louvain Louvain‐la‐Neuve Belgium
| | | | - Julie Désir
- Center for Medical Genetics Université Libre de Bruxelles Bruxelles Belgium
| | - Anne Destrée
- Center for Medical Genetics Institut de Pathologie et de Génétique Gosselies Gosselies Belgium
| | - Koenraad Devriendt
- Center for Medical Genetics Katholieke Universiteit Leuven Leuven Belgium
| | | | - Armelle Duquenne
- Center for Medical Genetics Université Catholique de Louvain Louvain‐la‐Neuve Belgium
| | - Annelies Fieuw
- Center for Medical Genetics Vrije Universiteit Brussel Brussel Belgium
| | - Erik Fransen
- Center for Medical Genetics, Universiteit Antwerpen Antwerpen Belgium
| | - Jean‐Stéphane Gatot
- Center for Medical Genetics Centre Hospitalier Universitaire de Liège Liege Belgium
| | - Mauricette Jamar
- Center for Medical Genetics Centre Hospitalier Universitaire de Liège Liege Belgium
| | | | - Jorien Kerstjens
- Faculty for Medical Sciences Rijksuniversteit Groningen Groningen The Netherlands
| | | | - Damien Lederer
- Center for Medical Genetics Institut de Pathologie et de Génétique Gosselies Gosselies Belgium
| | - Björn Menten
- Center for Medical Genetics Universiteit Gent Gent Belgium
| | - Bruno Pichon
- Center for Medical Genetics Université Libre de Bruxelles Bruxelles Belgium
| | - Sonia Rombout
- Center for Medical Genetics Institut de Pathologie et de Génétique Gosselies Gosselies Belgium
| | - Yves Sznajer
- Center for Medical Genetics Université Catholique de Louvain Louvain‐la‐Neuve Belgium
| | | | | | - Joris Vermeesch
- Center for Medical Genetics Katholieke Universiteit Leuven Leuven Belgium
| | - Katrien Janssens
- Center for Medical Genetics, Universiteit Antwerpen Antwerpen Belgium
| |
Collapse
|
27
|
Lin YH, Jong YJ, Huang PC, Tsai C. Detection of copy number variants with chromosomal microarray in 10 377 pregnancies at a single laboratory. Acta Obstet Gynecol Scand 2020; 99:775-782. [PMID: 32346853 PMCID: PMC7383919 DOI: 10.1111/aogs.13886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 11/30/2022]
Abstract
Introduction Invasive prenatal testing with chromosomal microarray analysis may be a relevant option for all pregnant women, but there is only moderate‐quality evidence for such an offer. We intended to study the prevalence of copy number variants (CNVs) in prenatal samples using a single SNP‐array platform stratified by indication. Material and methods A cross‐sectional study was performed based on a cohort. From January 2015 to December 2017, a total of 10 377 prenatal samples were received for prenatal single nucleotide polymorphism (SNP)‐array in the laboratory of the Genetics Generation Advancement Corporation. Indications for chromosomal microarray analysis studies included the confirmation of an abnormal karyotype, ultrasound abnormalities, advanced maternal age and parental anxiety. CNVs and region of homozygosity identified by the SNP‐array were analyzed. Results Of 10 377 cases, 689 had ultrasound abnormalities and 9688 were ascertained to have other indications. The overall prevalence of CNVs was 2.1% (n = 223/10 377, 95% confidence interval [CI] 1.9‐2.4), but the prevalence was 4.4% (95% CI 3.0‐6.1) for cases referred with abnormal ultrasound findings and 2.0% (95% CI 1.7‐2.3) for other indications. Of the 223 CNVs detected, 42/10 377 were pathogenic (0.4%, 95% CI 0.3‐0.6), 84 were susceptibility CNV (0.8%, 95% CI 0.6‐1.0) and 97 were variants of uncertain significance (0.9%, 95% CI 0.8‐1.1). Using an SNP‐based platform allowed for the detection of paternal uniparental disomy of chromosome 14 in a fetus with ultrasound abnormality. Conclusions With an indication of advanced maternal age but normal ultrasound scans, the prevalence of pathogenic CNVs was 0.4% and that of susceptibility CNV 0.7%. As CNVs are independent of maternal age, the prevalence is likely the same for younger women. Thus, this study provides further evidence that chromosomal microarray analysis should be available for all women who wish to receive diagnostic testing, as this risk is above the cut‐off of 1:300 for Down syndrome, leading to the suggestion of invasive testing. A chromosomal microarray analysis based on SNP‐array platform is preferable, as it can also detect uniparental disomy in addition to copy number variants.
Collapse
Affiliation(s)
- Yi-Hui Lin
- Department of Obstetrics and Gynecology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Genetics Generation Advancement Corporation (GGA Corp.), Taipei, Taiwan
| | - Yiin-Jeng Jong
- Genetics Generation Advancement Corporation (GGA Corp.), Taipei, Taiwan
| | - Pin-Chia Huang
- Genetics Generation Advancement Corporation (GGA Corp.), Taipei, Taiwan
| | - Chris Tsai
- Genetics Generation Advancement Corporation (GGA Corp.), Taipei, Taiwan
| |
Collapse
|
28
|
Recent Advances in the Noninvasive Prenatal Testing for Chromosomal Abnormalities Using Maternal Plasma DNA. JOURNAL OF FETAL MEDICINE 2020. [DOI: 10.1007/s40556-019-00229-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
Muys J, Blaumeiser B, Janssens K, Loobuyck P, Jacquemyn Y. Chromosomal microarray analysis in prenatal diagnosis: ethical considerations of the Belgian approach. JOURNAL OF MEDICAL ETHICS 2020; 46:104-109. [PMID: 31527144 DOI: 10.1136/medethics-2018-105186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/25/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
Detection of genetic aberrations in prenatal samples, obtained through amniocentesis or chorion villus biopsy, is increasingly performed using chromosomal microarray (CMA), a technique that can uncover both aneuploidies and copy number variants throughout the genome. Despite the obvious benefits of CMA, the decision on implementing the technology is complicated by ethical issues concerning variant interpretation and reporting. In Belgium, uniform guidelines were composed and a shared database for prenatal CMA findings was established. This Belgian approach sparks discussion: it is evidence-based, prevents inconsistencies and avoids parental anxiety, but can be considered paternalistic. Here, we reflect on the cultural and moral bases of the Belgian reporting system of prenatally detected variants.
Collapse
Affiliation(s)
- Joke Muys
- Department of Obstetrics and Gynaecology, Universitair Ziekenhuis Antwerpen, Edegem, Belgium
- Center for Medical Genetics, Universiteit Antwerpen, Edegem, Belgium
| | - Bettina Blaumeiser
- Center for Medical Genetics, Universiteit Antwerpen, Edegem, Belgium
- Department of Medical Genetics, Universitair Ziekenhuis Antwerpen, Edegem, Belgium
| | - Katrien Janssens
- Center for Medical Genetics, Universiteit Antwerpen, Edegem, Belgium
| | | | - Yves Jacquemyn
- Department of Obstetrics and Gynaecology, Universitair Ziekenhuis Antwerpen, Edegem, Belgium
- Global Health Institute, Universiteit Antwerpen, Edegem, Belgium
| |
Collapse
|
30
|
Pasternak Y, Daykan Y, Tenne T, Reinstein E, Miller N, Shechter-Maor G, Maya I, Biron-Shental T, Sukenik Halevy R. The yield of chromosomal microarray analysis among pregnancies terminated due to fetal malformations. J Matern Fetal Neonatal Med 2020; 35:336-340. [PMID: 31973614 DOI: 10.1080/14767058.2020.1716722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Chromosomal microarray analysis (CMA) is preferred for genetic work-up when fetal malformations are detected prenatally.Objectives: To assess the detection rate of CMA after pregnancy termination due to abnormal ultrasound findings.Methods: CMA was successfully performed in 71 pregnancies using fetal DNA (mainly from skin) or placenta. Data regarding clinical background, pregnancy work-up, and CMA were analyzed.Results: Findings were abnormal in 17 cases (23.9%), of which 13 were detectable by karyotype. The incremental yield of CMA was 4/71 (5.6%); 1/32 (3.1%) for cases with an isolated anomaly and 3/39 (7.7%) for cases with nonisolated anomalies.Conclusions: CMA yield from terminated pregnancies was 23.9%. Although most chromosomal abnormalities are detectable by karyotype, CMA does not require viable dividing cells; hence, it is more practical for work-up after termination. In most cases, the diagnosis was followed by consultation regarding the risk of recurrence and recommendations for testing in subsequent pregnancies.
Collapse
Affiliation(s)
- Yael Pasternak
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yair Daykan
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Tenne
- Meir Medical Center, Genetics Institute, Kfar Saba, Israel
| | - Eyal Reinstein
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Meir Medical Center, Genetics Institute, Kfar Saba, Israel
| | - Netanella Miller
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gil Shechter-Maor
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Idit Maya
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Biron-Shental
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rivka Sukenik Halevy
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Rabin Medical Center, Recanati Genetic Institute, Petah Tikva, Israel
| |
Collapse
|
31
|
Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet 2019; 20:467-484. [PMID: 31068683 DOI: 10.1038/s41576-019-0127-1] [Citation(s) in RCA: 1113] [Impact Index Per Article: 185.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genome-wide association studies (GWAS) involve testing genetic variants across the genomes of many individuals to identify genotype-phenotype associations. GWAS have revolutionized the field of complex disease genetics over the past decade, providing numerous compelling associations for human complex traits and diseases. Despite clear successes in identifying novel disease susceptibility genes and biological pathways and in translating these findings into clinical care, GWAS have not been without controversy. Prominent criticisms include concerns that GWAS will eventually implicate the entire genome in disease predisposition and that most association signals reflect variants and genes with no direct biological relevance to disease. In this Review, we comprehensively assess the benefits and limitations of GWAS in human populations and discuss the relevance of performing more GWAS.
Collapse
Affiliation(s)
- Vivian Tam
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Nikunj Patel
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Michelle Turcotte
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Québec City, Québec, Canada.,Department of Molecular Medicine, Laval University, Québec City, Quebec, Canada
| | - Guillaume Paré
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - David Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada. .,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada. .,Inserm UMRS 954 N-GERE (Nutrition-Genetics-Environmental Risks), University of Lorraine, Faculty of Medicine, Nancy, France.
| |
Collapse
|
32
|
Chai H, DiAdamo A, Grommisch B, Xu F, Zhou Q, Wen J, Mahoney M, Bale A, McGrath J, Spencer-Manzon M, Li P, Zhang H. A Retrospective Analysis of 10-Year Data Assessed the Diagnostic Accuracy and Efficacy of Cytogenomic Abnormalities in Current Prenatal and Pediatric Settings. Front Genet 2019; 10:1162. [PMID: 31850057 PMCID: PMC6902283 DOI: 10.3389/fgene.2019.01162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/23/2019] [Indexed: 01/01/2023] Open
Abstract
Background: Array comparative genomic hybridization (aCGH), karyotyping and fluorescence in situ hybridization (FISH) analyses have been used in a clinical cytogenetic laboratory. A systematic analysis on diagnostic findings of cytogenomic abnormalities in current prenatal and pediatric settings provides approaches for future improvement. Methods: A retrospective analysis was performed on abnormal findings by aCGH, karyotyping, and FISH from 3,608 prenatal cases and 4,509 pediatric cases during 2008–2017. The diagnostic accuracy was evaluated by comparing the abnormality detection rate (ADR) and the relative frequency (RF) of different types of cytogenomic abnormalities between prenatal and pediatric cases. A linear regression correlation between known prevalence and ADR of genomic disorders was used to extrapolate the prevalence of other genomic disorders. The diagnostic efficacy was estimated as percentage of detected abnormal cases by expected abnormal cases from served population. Results: The composite ADR for numerical chromosome abnormalities, structural chromosome abnormalities, recurrent genomic disorders, and sporadic pathogenic copy number variants (pCNVs) in prenatal cases were 13.03%, 1.77%, 1.69%, and 0.9%, respectively, and were 5.13%, 2.84%, 7.08%, and 2.69% in pediatric cases, respectively. The chromosomal abnormalities detected in prenatal cases (14.80%) were significantly higher than that of pediatric cases (7.97%) (p < 0.05), while the pCNVs detected in prenatal cases (2.59%) were significantly lower than that of pediatric cases (9.77%) (p < 0.05). The prevalence of recurrent genomic disorders and total pCNVs was estimated to be 1/396 and 1/291, respectively. Approximately, 29% and 35% of cytogenomic abnormalities expected from the population served were detected in current prenatal and pediatric diagnostic practice, respectively. Conclusion: For chromosomal abnormalities, effective detection of Down syndrome (DS) and Turner syndrome (TS) and under detection of sex chromosome numerical abnormalities in both prenatal and pediatric cases were noted. For pCNVs, under detection of pCNVs in prenatal cases and effective detection of DiGeorge syndrome (DGS) and variable efficacy in detecting other pCNVs in pediatric cases were noted. Extend aCGH analysis to more prenatal cases with fetal ultrasonographic anomalies, enhanced non-invasive prenatal (NIPT) testing screening for syndromic genomic disorders, and better clinical indications for pCNVs are approaches that could improve diagnostic yield of cytogenomic abnormalities.
Collapse
Affiliation(s)
- Hongyan Chai
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States
| | - Autumn DiAdamo
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States
| | - Brittany Grommisch
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States
| | - Fang Xu
- Prevention Genetics, Marshfield, WI, United States
| | - Qinghua Zhou
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Jiadi Wen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States
| | - Maurice Mahoney
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States
| | - Allen Bale
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States
| | - James McGrath
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States
| | - Michele Spencer-Manzon
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States
| | - Peining Li
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States
| | - Hui Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
33
|
Krstić N, Običan SG. Current landscape of prenatal genetic screening and testing. Birth Defects Res 2019; 112:321-331. [PMID: 31633301 DOI: 10.1002/bdr2.1598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/17/2019] [Indexed: 12/25/2022]
Abstract
Pregnant patients should be offered the option of prenatal genetic screening and diagnostic testing. The type of screening and testing offered to a patient may depend on various factors including but not limited to age, family history, fetal findings, exposures, and patient preferences. Prenatal screening is available for a variety of genetic conditions including aneuploidy, congenital abnormalities, and carrier status. Diagnostic testing options include karyotype, prenatal microarray, as well as next-generation sequencing. The various options differ in methodology, accuracy, timing and indication for testing, and information they provide. Given that the technologies related to prenatal testing are rapidly evolving and improving, the array of available screening and testing modalities are increasing. This article reviews the current offerings in prenatal screening and diagnosis.
Collapse
Affiliation(s)
- Nevena Krstić
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, Florida
| | - Sarah G Običan
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, Florida
| |
Collapse
|
34
|
Tidrenczel Z, Tardy EP, Pikó H, Sarkadi E, Böjtös I, Demeter J, Simon J, Kósa JP, Beke A. Prenatal Diagnosis of 4q Terminal Deletion and Review of the Literature. Cytogenet Genome Res 2019; 158:63-73. [PMID: 31261151 DOI: 10.1159/000500735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2019] [Indexed: 12/13/2022] Open
Abstract
Terminal deletion of chromosome 4 (4q deletion syndrome) is a rare genetic condition that is characterized by a broad clinical spectrum and phenotypic variability. Diagnosis of the distinct condition can be identified by conventional chromosome analysis and small deletions by novel molecular cytogenetic methods such as microarray comparative genome hybridization (aCGH). Prenatal diagnosis is challenging; to date 10 cases have been described. We report a prenatally diagnosed case of de novo 4q deletion syndrome confirmed by conventional karyotyping and FISH due to an elevated combined risk for Down syndrome and prenatal ultrasound findings. aCGH validated the diagnosis and offered exact characterization of the disorder. Cytogenetic and microarray results described a 4q32.1qter terminal deletion of the fetus. Prenatal ultrasound detected multiple nonstructural findings (micrognathia, choroid plexus cysts, echogenic fetal bowel, short femur, and cardiac axis deviation). Pregnancy was terminated at 20 weeks. In addition to the index patient, we reviewed the 10 prenatally published cases of 4q deletion syndrome in the literature and compared these with our results. We summarize the patients' characteristics and prenatal clinical findings. Alterations of maternal serum biochemical factors, an elevated combined risk for trisomies, and distinct ultrasonographic findings can often be observed in cases of prenatal 4q deletion syndrome and may facilitate the otherwise difficult prenatal diagnosis.
Collapse
|
35
|
Rudolf G, Lovrečić L, Tul N, Teran N, Peterlin B. The frequency of CNVs in a cohort population of consecutive fetuses with congenital anomalies after the termination of pregnancy. Mol Genet Genomic Med 2019; 7:e658. [PMID: 31004418 PMCID: PMC6565594 DOI: 10.1002/mgg3.658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The implementation of molecular karyotyping has resulted in an improved diagnostic yield in the genetic diagnostics of congenital anomalies, detected prenatally or after the termination of pregnancy. However, the systematic epidemiologic ascertainment of copy number variations in the etiology of congenital anomalies has not yet been sufficiently explored. METHODS Consecutive fetuses, altogether 204, with major single or multiple congenital anomalies were ascertained by using the SLOCAT registry for the period from 2011 to 2015. After excluding aneuploidies by using conventional karyotyping or Quantitative Fluorescence-Polymerase Chain Reaction, array comparative genomic hybridization was performed for the detection of copy number variations. RESULTS We identified pathogenic or likely pathogenic copy number variations in 14 fetuses (6.8%); 2.9% in fetuses with isolated, and 3.9% in fetuses with multiple congenital anomalies. Additionally, aneuploidies and major structural chromosomal abnormalities were detected in 40.2%. CONCLUSION Our systematic approach of ascertaining congenital anomalies resulted in explaining the etiology of congenital anomalies in 47% of fetuses after the termination of pregnancy. By using array comparative genomic hybridization, we found that copy number variations represent an important part in the etiology of multiple, as well as isolated congenital anomalies, which indicates the importance of analyzing copy number variations in the diagnostic approach of fetuses with congenital anomalies after the termination of pregnancy.
Collapse
Affiliation(s)
- Gorazd Rudolf
- Clinical Institute of Medical Genetics (CIMG), University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Luca Lovrečić
- Clinical Institute of Medical Genetics (CIMG), University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Nataša Tul
- Department of Perinatology, Division of Gynaecology and Obstetrics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Nataša Teran
- Clinical Institute of Medical Genetics (CIMG), University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Medical Genetics (CIMG), University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
36
|
Labrijn-Marks I, Somers-Bolman GM, In 't Groen SLM, Hoogeveen-Westerveld M, Kroos MA, Ala-Mello S, Amaral O, Miranda CS, Mavridou I, Michelakakis H, Naess K, Verheijen FW, Hoefsloot LH, Dijkhuizen T, Benjamins M, van den Hout HJM, van der Ploeg AT, Pijnappel WWMP, Saris JJ, Halley DJ. Segmental and total uniparental isodisomy (UPiD) as a disease mechanism in autosomal recessive lysosomal disorders: evidence from SNP arrays. Eur J Hum Genet 2019; 27:919-927. [PMID: 30737479 PMCID: PMC6777471 DOI: 10.1038/s41431-019-0348-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/29/2018] [Accepted: 01/08/2019] [Indexed: 12/13/2022] Open
Abstract
Analyses in our diagnostic DNA laboratory include genes involved in autosomal recessive (AR) lysosomal storage disorders such as glycogenosis type II (Pompe disease) and mucopolysaccharidosis type I (MPSI, Hurler disease). We encountered 4 cases with apparent homozygosity for a disease-causing sequence variant that could be traced to one parent only. In addition, in a young child with cardiomyopathy, in the absence of other symptoms, a diagnosis of Pompe disease was considered. Remarkably, he presented with different enzymatic and genotypic features between leukocytes and skin fibroblasts. All cases were examined with microsatellite markers and SNP genotyping arrays. We identified one case of total uniparental disomy (UPD) of chromosome 17 leading to Pompe disease and three cases of segmental uniparental isodisomy (UPiD) causing Hurler-(4p) or Pompe disease (17q). One Pompe patient with unusual combinations of features was shown to have a mosaic segmental UPiD of chromosome 17q. The chromosome 17 UPD cases amount to 11% of our diagnostic cohort of homozygous Pompe patients (plus one case of pseudoheterozygosity) where segregation analysis was possible. We conclude that inclusion of parental DNA is mandatory for reliable DNA diagnostics. Mild or unusual phenotypes of AR diseases should alert physicians to the possibility of mosaic segmental UPiD. SNP genotyping arrays are used in diagnostic workup of patients with developmental delay. Our results show that even small Regions of Homozygosity that include telomeric areas are worth reporting, regardless of the imprinting status of the chromosome, as they might indicate segmental UPiD.
Collapse
Affiliation(s)
- Ineke Labrijn-Marks
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Galhana M Somers-Bolman
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stijn L M In 't Groen
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Pediatrics, Division of Metabolic Diseases and Genetics, Erasmus University Medical Center-Sophia, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marianne Hoogeveen-Westerveld
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marian A Kroos
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sirpa Ala-Mello
- Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
| | - Olga Amaral
- Department of Human Genetics, Unit of Research and Development, National Institute of Health Dr Ricardo Jorge, Porto, Portugal
| | | | - Irene Mavridou
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| | - Helen Michelakakis
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| | - Karin Naess
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Frans W Verheijen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lies H Hoefsloot
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Trijnie Dijkhuizen
- Department of Genetics, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Marloes Benjamins
- Department of Genetics, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Hannerieke J M van den Hout
- Department of Pediatrics, Division of Metabolic Diseases and Genetics, Erasmus University Medical Center-Sophia, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Division of Metabolic Diseases and Genetics, Erasmus University Medical Center-Sophia, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - W W M Pim Pijnappel
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Pediatrics, Division of Metabolic Diseases and Genetics, Erasmus University Medical Center-Sophia, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jasper J Saris
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dicky J Halley
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
37
|
Brun S, Pennamen P, Mattuizzi A, Coatleven F, Vuillaume ML, Lacombe D, Arveiler B, Toutain J, Rooryck C. Interest of chromosomal microarray analysis in the prenatal diagnosis of fetal intrauterine growth restriction. Prenat Diagn 2018; 38:1111-1119. [PMID: 30328630 DOI: 10.1002/pd.5372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The aim of this study is to evaluate the diagnostic utility of prenatal diagnosis using the chromosomal microarray analysis (CMA) for fetuses presenting with isolated or associated intrauterine growth restriction (IUGR). METHOD We retrospectively included all fetuses with IUGR referred for prenatal testing and studied by rapid fluorescence in situ hybridization (FISH), karyotype, and CMA. RESULTS Among the 162 IUGR fetuses (78 associated and 84 isolated IUGR) included, 15 had an abnormal FISH result: 10 associated and five isolated fetal IUGRs. Among the 143 fetuses studied by CMA, 10 (7%) presented pathogenic copy number variations (CNVs). All 10 were in the associated fetal IUGR group (10/65 or 15.4%; 95% confidence interval [CI]: 8.4%-26.2%) versus 0/78 in the isolated fetal IUGR group (95% CI: 0%-5.6%). Six fetuses (4.2%) carried variants of unknown significance (VOUS) (three associated and three isolated fetal IUGRs). CONCLUSION Our study highlights the added value of CMA in the case of associated fetal IUGR with an incremental yield of 6.1% (4/65) over karyotyping. No pathogenic CNVs were reported in the isolated fetal IUGR group. More studies must be conducted to determine when and whether CMA would be wisely indicated in this population.
Collapse
Affiliation(s)
- Stephanie Brun
- Centre Aliénor d'Aquitaine Maternity, CHU Bordeaux, Bordeaux, France
| | | | | | | | | | - Didier Lacombe
- Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France.,Maladies Rares: Génétique et Métabolisme (MRGM), INSERM, University of Bordeaux, Bordeaux, France
| | - Benoit Arveiler
- Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France.,Maladies Rares: Génétique et Métabolisme (MRGM), INSERM, University of Bordeaux, Bordeaux, France
| | - Jerome Toutain
- Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France
| | - Caroline Rooryck
- Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France.,Maladies Rares: Génétique et Métabolisme (MRGM), INSERM, University of Bordeaux, Bordeaux, France
| |
Collapse
|
38
|
Muys J, Blaumeiser B, Jacquemyn Y, Bandelier C, Brison N, Bulk S, Chiarappa P, Courtens W, De Leener A, De Rademaeker M, Désir J, Destrée A, Devriendt K, Dheedene A, Fieuw A, Fransen E, Gatot JS, Holmgren P, Jamar M, Janssens S, Keymolen K, Lederer D, Menten B, Meuwissen M, Parmentier B, Pichon B, Rombout S, Sznajer Y, Van Den Bogaert A, Van Den Bogaert K, Vanakker O, Vermeesch J, Janssens K. The Belgian MicroArray Prenatal (BEMAPRE) database: A systematic nationwide repository of fetal genomic aberrations. Prenat Diagn 2018; 38:1120-1128. [PMID: 30334587 DOI: 10.1002/pd.5373] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE With the replacement of karyotyping by chromosomal microarray (CMA) in invasive prenatal diagnosis, new challenges have arisen. By building a national database, we standardize the classification and reporting of prenatally detected copy number variants (CNVs) across Belgian genetic centers. This database, which will link genetic and ultrasound findings with postnatal development, forms a unique resource to investigate the pathogenicity of variants of uncertain significance and to refine the phenotypic spectrum of pathogenic and susceptibility CNVs. METHODS The Belgian MicroArray Prenatal (BEMAPRE) consortium is a collaboration of all genetic centers in Belgium. We collected data from all invasive prenatal procedures performed between May 2013 and July 2016. RESULTS In this three-year period, 13 266 prenatal CMAs were performed. By national agreement, a limited number of susceptibility CNVs and no variants of uncertain significance were reported. Added values for using CMA versus conventional karyotyping were 1.8% in the general invasive population and 2.7% in cases with an ultrasound anomaly. Of the reported CNVs, 31.5% would have remained undetected with non-invasive prenatal test as the first-tier test. CONCLUSION The establishment of a national database for prenatal CNV data allows for a uniform reporting policy and the investigation of the prenatal and postnatal genotype-phenotype correlation.
Collapse
Affiliation(s)
- Joke Muys
- Department of Obstetrics and Gynaecology, University Hospital Antwerp, Edegem, Belgium.,Center for Medical Genetics, Universiteit Antwerpen, Antwerp, Belgium
| | - Bettina Blaumeiser
- Center for Medical Genetics, Universiteit Antwerpen, Antwerp, Belgium.,Department of Medical Genetics, University Hospital Antwerp, Edegem, Belgium
| | - Yves Jacquemyn
- Department of Obstetrics and Gynaecology, University Hospital Antwerp, Edegem, Belgium
| | - Claude Bandelier
- Center for Medical Genetics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Nathalie Brison
- Center for Medical Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Saskia Bulk
- Center for Medical Genetics, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Patrizia Chiarappa
- Center for Medical Genetics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Winnie Courtens
- Center for Medical Genetics, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Anne De Leener
- Center for Medical Genetics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marjan De Rademaeker
- Department of Medical Genetics, University Hospital Antwerp, Edegem, Belgium.,Center for Medical Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julie Désir
- Center for Medical Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Destrée
- Center for Medical Genetics, Institut de Pathologie et de Génétique Gosselies, Charleroi, Belgium
| | - Koenraad Devriendt
- Center for Medical Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Annelies Fieuw
- Center for Medical Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Erik Fransen
- Center for Medical Genetics, Universiteit Antwerpen, Antwerp, Belgium
| | - Jean-Stéphane Gatot
- Center for Medical Genetics, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Philip Holmgren
- Center for Medical Genetics, Universiteit Antwerpen, Antwerp, Belgium
| | - Mauricette Jamar
- Center for Medical Genetics, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Sandra Janssens
- Center for Medical Genetics, Universiteit Gent, Ghent, Belgium
| | - Kathelijn Keymolen
- Center for Medical Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Damien Lederer
- Center for Medical Genetics, Institut de Pathologie et de Génétique Gosselies, Charleroi, Belgium
| | - Björn Menten
- Center for Medical Genetics, Universiteit Gent, Ghent, Belgium
| | - Marije Meuwissen
- Center for Medical Genetics, Universiteit Antwerpen, Antwerp, Belgium
| | - Benoit Parmentier
- Center for Medical Genetics, Institut de Pathologie et de Génétique Gosselies, Charleroi, Belgium
| | - Bruno Pichon
- Center for Medical Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Sonia Rombout
- Center for Medical Genetics, Institut de Pathologie et de Génétique Gosselies, Charleroi, Belgium
| | - Yves Sznajer
- Center for Medical Genetics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | - Joris Vermeesch
- Center for Medical Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Katrien Janssens
- Center for Medical Genetics, Universiteit Antwerpen, Antwerp, Belgium
| |
Collapse
|
39
|
Levy B, Wapner R. Prenatal diagnosis by chromosomal microarray analysis. Fertil Steril 2018; 109:201-212. [PMID: 29447663 DOI: 10.1016/j.fertnstert.2018.01.005] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/05/2018] [Indexed: 02/07/2023]
Abstract
Chromosomal microarray analysis (CMA) is performed either by array comparative genomic hybridization or by using a single nucleotide polymorphism array. In the prenatal setting, CMA is on par with traditional karyotyping for detection of major chromosomal imbalances such as aneuploidy and unbalanced rearrangements. CMA offers additional diagnostic benefits by revealing sub-microscopic imbalances or copy number variations that are too small to be seen on a standard G-banded chromosome preparation. These submicroscopic imbalances are also referred to as microdeletions and microduplications, particularly when they include specific genomic regions that are associated with clinical sequelae. Not all microdeletions/duplications are associated with adverse clinical phenotypes and in many cases, their presence is benign. In other cases, they are associated with a spectrum of clinical phenotypes that may range from benign to severe, while in some situations, the clinical significance may simply be unknown. These scenarios present a challenge for prenatal diagnosis, and genetic counseling prior to prenatal CMA greatly facilitates delivery of complex results. In prenatal diagnostic samples with a normal karyotype, chromosomal microarray will diagnose a clinically significant subchromosomal deletion or duplication in approximately 1% of structurally normal pregnancies and 6% with a structural anomaly. Pre-test counseling is also necessary to distinguish the primary differences between the benefits, limitations and diagnostic scope of CMA versus the powerful but limited screening nature of non-invasive prenatal diagnosis using cell-free fetal DNA.
Collapse
Affiliation(s)
- Brynn Levy
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York.
| | - Ronald Wapner
- Department of Obstetrics & Gynecology, Columbia University Medical Center, New York, New York
| |
Collapse
|
40
|
Genome-wide detection of additional fetal chromosomal abnormalities by cell-free DNA testing of 15,626 consecutive pregnant women. SCIENCE CHINA-LIFE SCIENCES 2018; 62:215-224. [PMID: 30076564 DOI: 10.1007/s11427-017-9344-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022]
Abstract
Cell-free DNA (cfDNA) testing for common fetal trisomies (T21, T18, T13) is highly effective. However, the usefulness of cfDNA testing in detecting other chromosomal abnormalities is unclear. We evaluated the performance of cfDNA testing for genome-wide abnormalities, and analyzed the incremental yield by reporting extra abnormalities. We performed genome-wide cfDNA testing in 15,626 consecutive pregnancies prospectively enrolled in this study. cfDNA testing results were reported and counseling was given depending on the presence of extra chromosomal abnormalities. cfDNA testing identified 190 cases (1.2%) of chromosomal abnormalities including 100 common trisomies and 90 additional abnormalities. By expanding the cfDNA reporting range to genome-wide abnormalities, the false positive rate increased to 0.39% (P<0.001) and positive predictive value (PPV) was reduced to 65.58% (P=0.42). However, the detection yield increased from 0.44% to 0.65% (P=0.014), and cfDNA testing detected 38.61% (39/101) additional abnormalities with no ultrasound and biochemical screening findings. cfDNA testing outperformed biochemical screening by showing 60 times higher true positive rate and fewer false negative results. Genome-wide cfDNA testing significantly increased the diagnostic yield by detecting extra abnormalities, especially those without diagnostic indications. Genome-wide cfDNA testing has fewer false positive and false negative results compared with biochemical screening.
Collapse
|
41
|
Srebniak MI, Joosten M, Knapen MFCM, Arends LR, Polak M, van Veen S, Go ATJI, Van Opstal D. Frequency of submicroscopic chromosomal aberrations in pregnancies without increased risk for structural chromosomal aberrations: systematic review and meta-analysis. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2018; 51:445-452. [PMID: 28556491 DOI: 10.1002/uog.17533] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/08/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To establish, based on a systematic literature review, the frequency of pathogenic submicroscopic chromosomal aberrations in fetuses that are not at increased risk for unbalanced structural chromosomal aberrations, with the aim of determining whether high-resolution testing for submicroscopic aberrations is beneficial in a general pregnant population. METHODS EMBASE, PubMed, Web of Science and CENTRAL databases were searched systematically on 3 June 2016 for all relevant articles on the prevalence of pathogenic submicroscopic copy number variants (CNVs) in fetuses referred for prenatal invasive testing because of advanced maternal age (AMA) or parental anxiety (ANX). Relevant full-text articles were analyzed and the prevalence of submicroscopic CNVs was calculated based on the extracted data. Meta-analysis was conducted in a pooled cohort of 10 614 fetuses based on the 10 largest studies (n > 300) of a total of 19 that were relevant. RESULTS Pooled estimate analysis indicated that 0.84% (95% CI, 0.55-1.30%) of fetuses that had invasive testing because of AMA/ANX carried a pathogenic clinically significant submicroscopic aberration. The onset/penetrance of submicroscopic findings was studied in 10 314 fetuses reported in eight papers that presented aberrant cases with all necessary details to allow assessment of the findings. The pooled estimates resulting from meta-analysis of the data indicated that an early-onset syndromic disorder was detected in 0.37% (95% CI, 0.27-0.52%) of cases, a susceptibility CNV was found in 0.30% (95% CI, 0.14-0.67%) and late-onset diseases were reported in 0.11% (95% CI, 0.05%-0.21%). The prevalence of early-onset syndromic disorders caused by a submicroscopic aberration was calculated to be 1:270. When the risk for submicroscopic aberrations is added to the individual risk for microscopic chromosomal aberrations, all pregnant women have a risk of higher than 1 in 180 for a relevant chromosomal aberration, and pregnant women under 36 years of age have a higher risk for submicroscopic pathogenic aberrations than for Down syndrome. CONCLUSION This systematic review shows that a significant proportion of fetuses in a general pregnant population carry a submicroscopic pathogenic CNV. Based on these figures, all women should be informed on their individual risk for all pathogenic chromosomal aberrations and not only for common trisomies. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- M I Srebniak
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - M Joosten
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - M F C M Knapen
- Department of Obstetrics and Gynecology, Erasmus MC, Rotterdam, The Netherlands
- Foundation Prenatal Screening Southwest Region of the Netherlands, Rotterdam, The Netherlands
| | - L R Arends
- Department of Psychology, Education & Child Studies (DPECS), Erasmus University Rotterdam, Rotterdam, The Netherlands
- Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands
| | - M Polak
- Department of Psychology, Education & Child Studies (DPECS), Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - S van Veen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - A T J I Go
- Department of Obstetrics and Gynecology, Erasmus MC, Rotterdam, The Netherlands
| | - D Van Opstal
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
42
|
Vogel I, Petersen OB, Christensen R, Hyett J, Lou S, Vestergaard EM. Chromosomal microarray as primary diagnostic genomic tool for pregnancies at increased risk within a population-based combined first-trimester screening program. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2018; 51:480-486. [PMID: 28608362 DOI: 10.1002/uog.17548] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/24/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To evaluate the performance of high-resolution chromosomal microarray (CMA) as the standard diagnostic approach for genomic imbalances in pregnancies with increased risk based on combined first-trimester screening (cFTS). METHODS This was a retrospective study of genomic findings in a cohort of 575 consecutive pregnancies undergoing invasive testing because of a cFTS risk ≥ 1:300 on a publicly funded population-based screening program in the Central and Northern Regions of Denmark, between September 2015 and September 2016. Women with fetal nuchal translucency thickness ≥ 3.5 mm or opting for non-invasive prenatal testing (NIPT) were excluded. Comparative genomic hybridization was performed using a 180-K oligonucleotide array on DNA extracted directly from chorionic villus/amniocentesis samples. Genomic outcomes were reported in relation to cFTS findings. RESULTS Of the 575 pregnancies that underwent invasive testing, CMA detected 22 (3.8% (95% CI, 2.5-5.7%)) cases of trisomies 21, 18 and 13, 14 (2.4% (95% CI, 1.4-4.0%)) cases of other types of aneuploidy and 15 (2.6% (95% CI, 1.5-4.3%)) cases with a pathogenic or probably pathogenic copy number variant (CNV). Of the 15 CNVs, three were > 10 Mb and would probably have been detected by chromosomal analysis, but the other 12 would most probably not have been detected using conventional cytogenetic techniques; therefore, the overall detection rate of CMA (8.9% (95% CI, 6.8-11.5%)) was significantly higher than that estimated for conventional cytogenetic analysis (6.8% (95% CI, 5.0-9.1%)) (P = 0.0049). Reducing the cFTS risk threshold for invasive diagnostic testing to 1 in 100 or 1 in 50 would have led, respectively, to 60% or 100% of the pathogenic CNVs being missed. CONCLUSIONS CMA is a valuable diagnostic technique that can identify an increased number of genomic aberrations in pregnancies at increased risk on cFTS. Limiting diagnostic testing to pregnancies with a risk above 1 in 100 or 1 in 50, as proposed in contingent NIPT/invasive testing models, would lead to a significant proportion of pathogenic CNVs being missed at first-trimester screening. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- I Vogel
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
- Center for Prenatal Diagnostics, Aarhus University Hospital, Aarhus, Denmark
- Institute of Biomedicine, Aarhus University Hospital, Aarhus, Denmark
| | - O B Petersen
- Center for Prenatal Diagnostics, Aarhus University Hospital, Aarhus, Denmark
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
| | - R Christensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
- Institute of Biomedicine, Aarhus University Hospital, Aarhus, Denmark
| | - J Hyett
- Discipline of Obstetrics, Gynaecology and Neonatology, University of Sydney, Sydney, Australia
| | - S Lou
- Center for Prenatal Diagnostics, Aarhus University Hospital, Aarhus, Denmark
- DEFACTUM, Central Denmark Region, Denmark
| | - E M Vestergaard
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
- Center for Prenatal Diagnostics, Aarhus University Hospital, Aarhus, Denmark
- Institute of Biomedicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
43
|
Stosic M, Levy B, Wapner R. The Use of Chromosomal Microarray Analysis in Prenatal Diagnosis. Obstet Gynecol Clin North Am 2018; 45:55-68. [DOI: 10.1016/j.ogc.2017.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Abstract
The approach to identifying a genetic cause in patients with cerebellar disorders relies on history, examination, consultation, and testing, combined with specialized expertise because they are rare and genetically diverse. Cerebellar disorders can be caused by a variety of DNA alterations including single-nucleotide changes, small insertions or deletions, larger copy number variants, and nucleotide repeat expansions, exhibiting autosomal-recessive, autosomal-dominant (inherited and de novo), X-linked, and mitochondrial modes of inheritance. Imaging findings and a variety of neurologic and nonneurologic clinical features can help direct genetic testing and choose the most appropriate strategy. Clinical and genetic diagnoses are complementary, each providing distinct information for the care of the patient. In this chapter, we provide an overview of inheritance modes for different cerebellar disorders and the variety of genetic testing and tools that are currently available to reach a genetic diagnosis, including conventional and next-generation sequencing, classic, molecular and virtual cytogenetics, testing for repeat expansions, and other techniques. Practical examples are presented in both the text and accompanying vignettes.
Collapse
Affiliation(s)
- Enza Maria Valente
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| | - Sara Nuovo
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Dan Doherty
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, United States
| |
Collapse
|
45
|
Vetro A, Goidin D, Lesende I, Limongelli I, Ranzani GN, Novara F, Bonaglia MC, Rinaldi B, Franchi F, Manolakos E, Lonardo F, Scarano F, Scarano G, Costantino L, Tedeschi S, Giglio S, Zuffardi O. Diagnostic application of a capture based NGS test for the concurrent detection of variants in sequence and copy number as well as LOH. Clin Genet 2017; 93:545-556. [PMID: 28556904 DOI: 10.1111/cge.13060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 01/08/2023]
Abstract
Whole exome sequencing (WES) has made the identification of causative SNVs/InDels associated with rare Mendelian conditions increasingly accessible. Incorporation of softwares allowing CNVs detection into the WES bioinformatics pipelines may increase the diagnostic yield. However, no standard protocols for this analysis are so far available and CNVs in non-coding regions are totally missed by WES, in spite of their possible role in the regulation of the flanking genes expression. So, in a number of cases the diagnostic workflow contemplates an initial investigation by genomic arrays followed, in the negative cases, by WES. The opposite workflow may also be applied, according to the familial segregation of the disease. We show preliminary results for a diagnostic application of a single next generation sequencing panel permitting the concurrent detection of LOH and variations in sequences and copy number. This approach allowed us to highlight compound heterozygosity for a CNV and a sequence variant in a number of cases, the duplication of a non-coding region responsible for sex reversal, and a whole-chromosome isodisomy causing reduction to homozygosity for a WFS1 variant. Moreover, the panel enabled us to detect deletions, duplications, and amplifications with sensitivity comparable to that of the most widely used array-CGH platforms.
Collapse
Affiliation(s)
- A Vetro
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - D Goidin
- Diagnostics and Genomics Group, Agilent Technologies Inc., Santa Clara, California
| | - I Lesende
- Diagnostics and Genomics Group, Agilent Technologies Inc., Santa Clara, California
| | | | - G N Ranzani
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - F Novara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - M C Bonaglia
- Cytogenetics Laboratory, Scientific Institute IRCCS E. Medea, Lecco, Italy
| | - B Rinaldi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - F Franchi
- Laboratorio Genetica, Azienda Ospedaliera Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - E Manolakos
- Clinical Laboratory Genetics, Access to Genome, Athens, Greece.,Clinical Laboratory Genetics, Access to Genome, Thessaloniki, Greece
| | - F Lonardo
- U.O.S.D. Genetica Medica-A.O.R.N, Benevento, Italy
| | - F Scarano
- U.O.S.D. Genetica Medica-A.O.R.N, Benevento, Italy
| | - G Scarano
- U.O.S.D. Genetica Medica-A.O.R.N, Benevento, Italy
| | - L Costantino
- Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - S Tedeschi
- Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - S Giglio
- Medical Genetics Unit, Meyer Children's University Hospital, Firenze, Italy
| | - O Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
46
|
Srebniak MI, Knapen MF, Polak M, Joosten M, Diderich KE, Govaerts LC, Boter M, Kromosoeto JN, van Hassel DAC, Huijbregts G, van IJcken WF, Heydanus R, Dijkman A, Toolenaar T, de Vries FA, Knijnenburg J, Go AT, Galjaard RJH, Van Opstal D. The influence of SNP-based chromosomal microarray and NIPT on the diagnostic yield in 10,000 fetuses with and without fetal ultrasound anomalies. Hum Mutat 2017; 38:880-888. [DOI: 10.1002/humu.23232] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/24/2017] [Accepted: 04/09/2017] [Indexed: 12/11/2022]
Affiliation(s)
| | - Maarten F.C.M. Knapen
- Department of Obstetrics and Gynecology; Erasmus Medical Centre; Rotterdam The Netherlands
- Foundation Prenatal Screening Southwest region of the Netherlands; Rotterdam The Netherlands
| | - Marike Polak
- Institute of Psychology; Erasmus University Rotterdam; Rotterdam The Netherlands
| | - Marieke Joosten
- Department of Clinical Genetics; Erasmus Medical Centre; Rotterdam The Netherlands
| | - Karin E.M. Diderich
- Department of Clinical Genetics; Erasmus Medical Centre; Rotterdam The Netherlands
| | | | - Marjan Boter
- Department of Clinical Genetics; Erasmus Medical Centre; Rotterdam The Netherlands
| | - Joan N.R. Kromosoeto
- Department of Clinical Genetics; Erasmus Medical Centre; Rotterdam The Netherlands
| | | | - Gido Huijbregts
- Department of Clinical Genetics; Erasmus Medical Centre; Rotterdam The Netherlands
| | | | - Roger Heydanus
- Department of Obstetrics and Gynecology; Amphia Hospital; Breda The Netherlands
| | - Anneke Dijkman
- Department of Obstetrics and Gynecology; Reinier de Graaf Gasthuis; Delft The Netherlands
| | - Toon Toolenaar
- Department of Gynecology; Albert Schweitzer Hospital Dordrecht; Dordrecht The Netherlands
| | - Femke A.T. de Vries
- Department of Clinical Genetics; Erasmus Medical Centre; Rotterdam The Netherlands
| | - Jeroen Knijnenburg
- Department of Clinical Genetics; Erasmus Medical Centre; Rotterdam The Netherlands
| | - Attie T.J.I. Go
- Department of Obstetrics and Gynecology; Erasmus Medical Centre; Rotterdam The Netherlands
| | | | - Diane Van Opstal
- Department of Clinical Genetics; Erasmus Medical Centre; Rotterdam The Netherlands
| |
Collapse
|
47
|
Oneda B, Rauch A. Microarrays in prenatal diagnosis. Best Pract Res Clin Obstet Gynaecol 2017; 42:53-63. [PMID: 28215395 DOI: 10.1016/j.bpobgyn.2017.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/13/2016] [Accepted: 01/04/2017] [Indexed: 01/09/2023]
Abstract
In prenatal diagnosis, chromosomal microarray (CMA) has not yet fully replaced conventional karyotyping but has rapidly become the recommended test in pregnancies with ultrasound abnormalities. In this review, we provide an overview of the published data concerning this technology and the controversies concerning its use in the prenatal setting. There is abundant evidence indicating the added detection of pathogenic abnormalities with CMA in comparison to the traditional karyotyping, especially in fetuses with multiple or isolated ultrasound abnormalities such as congenital heart disease, increased nuchal translucency, or oral cleft. On the other hand, there is also a risk to detect variants of unknown significance, late-onset disorders, and variants in susceptibility loci. However, it has been shown that pregnant couples tend to prefer a maximum of information about the health of their unborn child. Taken together, CMA has considerable diagnostic and prognostic values during pregnancy and should therefore be the test of choice.
Collapse
Affiliation(s)
- Beatrice Oneda
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland.
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Govaerts L, Srebniak M, Diderich K, Joosten M, Riedijk S, Knapen M, Go A, Papatsonis D, de Graaf K, Toolenaar T, van der Steen S, Huijbregts G, Knijnenburg J, de Vries F, Van Opstal D, Galjaard RJ. Prenatal diagnosis of susceptibility loci for neurodevelopmental disorders - genetic counseling and pregnancy outcome in 57 cases. Prenat Diagn 2016; 37:73-80. [DOI: 10.1002/pd.4979] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/15/2016] [Accepted: 11/26/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Lutgarde Govaerts
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Malgorzata Srebniak
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Karin Diderich
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Marieke Joosten
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Sam Riedijk
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Maarten Knapen
- Department of Obstetrics and Gynecology; Erasmus Medical Center; Rotterdam The Netherlands
- Foundation Prenatal Screening Southwest region of the Netherlands; Rotterdam The Netherlands
| | - Attie Go
- Department of Obstetrics and Gynecology; Erasmus Medical Center; Rotterdam The Netherlands
| | - Dimitri Papatsonis
- Department of Obstetrics and Gynecology; Amphia Hospital; Breda The Netherlands
| | - Katja de Graaf
- Department of Obstetrics and Gynecology; Reinier de Graaf Gasthuis; Delft The Netherlands
| | - Toon Toolenaar
- Department of Gynecology; Albert Schweitzer Hospital Dordrecht; Dordrecht The Netherlands
| | - Sanne van der Steen
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Gido Huijbregts
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Jeroen Knijnenburg
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Femke de Vries
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Diane Van Opstal
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Robert-Jan Galjaard
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| |
Collapse
|
49
|
Lovrecic L, Remec ZI, Volk M, Rudolf G, Writzl K, Peterlin B. Clinical utility of array comparative genomic hybridisation in prenatal setting. BMC MEDICAL GENETICS 2016; 17:81. [PMID: 27846804 PMCID: PMC5111187 DOI: 10.1186/s12881-016-0345-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 11/06/2016] [Indexed: 12/16/2022]
Abstract
Background The objective of reported study was to evaluate the clinical utility of prenatal microarray testing for submicroscopic genomic imbalances in routine prenatal settings and to stratify the findings according to the type of fetal ultrasound anomaly. Methods From July 2012 to October 2015 chromosomal microarray testing was performed in 218 fetuses with varying indications for invasive prenatal diagnosis: abnormal karyotype, ultrasound anomalies, pathogenic variant in previous pregnancy or carriership in a parent. Results The detection rate in the group of fetuses with ultrasound anomalies was 10,0% for pathogenic copy number variants (CNVs), five of them being larger than 8 Mb and expected to be seen on prenatal karyotype. If only those pathogenic CNVs below the classical karyotype resolution are considered, chromosomal microarray testing provided an additional 7,7% diagnostic yield in here reported series. When stratified according to the ultrasound anomalies, the highest percentage of pathogenic CNVs were detected in the group of fetuses with multiple congenital anomalies (16,7%) and lowest in the group of isolated in utero growth restriction (6,3%). In the group of cases with isolated increased nuchal translucency we identified a small interstitial deletion of 16p24.1 involving FOXF1 gene. Prenatal aCGH also provided important insights into cases with seemingly balanced chromosomal rearrangements found on prenatal karyotype, where additional pathogenic CNV were discovered. Conclusion Prenatal chromosomal microarray testing significantly increases the diagnostic yield when compared with conventional karyotyping. The highest added value is shown in prenatal diagnostics in fetuses with abnormal ultrasound results. Variants of unknown significance and risk factor CNVs present important challenges and should be discussed with parents in advance, therefore pretest counseling prior to prenatal testing is very important.
Collapse
Affiliation(s)
- Luca Lovrecic
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Slajmerjeva 3, SI-1000, Ljubljana, Slovenia.
| | - Ziga Iztok Remec
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Slajmerjeva 3, SI-1000, Ljubljana, Slovenia
| | - Marija Volk
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Slajmerjeva 3, SI-1000, Ljubljana, Slovenia
| | - Gorazd Rudolf
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Slajmerjeva 3, SI-1000, Ljubljana, Slovenia
| | - Karin Writzl
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Slajmerjeva 3, SI-1000, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Slajmerjeva 3, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
50
|
Srebniak MI, de Wit MC, Diderich KEM, Govaerts LCP, Joosten M, Knapen MFCM, Bos MJ, Looye-Bruinsma GAG, Koningen M, Go ATJI, Galjaard RJH, Van Opstal D. Enlarged NT (≥3.5 mm) in the first trimester - not all chromosome aberrations can be detected by NIPT. Mol Cytogenet 2016; 9:69. [PMID: 27610202 PMCID: PMC5015200 DOI: 10.1186/s13039-016-0279-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since non-invasive prenatal testing (NIPT) in maternal blood became available, we evaluated which chromosome aberrations found in our cohort of fetuses with an enlarged NT in the first trimester of pregnancy (tested with SNP microarray) could be detected by NIPT as well. METHOD 362 fetuses were referred for cytogenetic testing due to an enlarged NT (≥3.5 mm). Chromosome aberrations were investigated using QF-PCR, karyotyping and whole genome SNP array. RESULTS After invasive testing a chromosomal abnormality was detected in 137/362 (38 %) fetuses. 100/362 (28 %) cases concerned trisomy 21, 18 or 13, 25/362 (7 %) an aneuploidy of sex chromosomes and 3/362 (0.8 %) triploidy. In 6/362 (1.6 %) a pathogenic structural unbalanced chromosome aberration was seen and in 3/362 (0.8 %) a susceptibility locus for neurodevelopmental disorders was found. We estimated that in 2-10 % of fetuses with enlarged NT a chromosome aberration would be missed by current NIPT approaches. CONCLUSION Based on our cohort of fetuses with enlarged NT we may conclude that NIPT, depending on the approach, will miss chromosome aberrations in a significant percentage of pregnancies. Moreover all abnormal NIPT results require confirmatory studies with invasive testing, which will delay definitive diagnosis in ca. 30 % of patients. These figures are important for pretest counseling enabling pregnant women to make informed choices on the prenatal test. Larger cohorts of fetuses with an enlarged NT should be investigated to assess the additional diagnostic value of high resolution array testing for this indication.
Collapse
Affiliation(s)
- Malgorzata I Srebniak
- Department of Clinical Genetics, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Merel C de Wit
- Department of Obstetrics and Gynecology, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Karin E M Diderich
- Department of Clinical Genetics, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Lutgarde C P Govaerts
- Department of Clinical Genetics, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Marieke Joosten
- Department of Clinical Genetics, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Maarten F C M Knapen
- Department of Obstetrics and Gynecology, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands ; Foundation Prenatal Screening Southwest region of The Netherlands, Wytemaweg 80, Na-1509, 3015 CN Rotterdam, The Netherlands
| | - Marnix J Bos
- Department of Clinical Genetics, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Gerda A G Looye-Bruinsma
- Department of Clinical Genetics, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Mieke Koningen
- Department of Clinical Genetics, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Attie T J I Go
- Department of Obstetrics and Gynecology, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Robert Jan H Galjaard
- Department of Clinical Genetics, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Diane Van Opstal
- Department of Clinical Genetics, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|