1
|
Leung SK, Bamford RA, Jeffries AR, Castanho I, Chioza B, Flaxman CS, Moore K, Dempster EL, Harvey J, Brown JT, Ahmed Z, O'Neill P, Richardson SJ, Hannon E, Mill J. Long-read transcript sequencing identifies differential isoform expression in the entorhinal cortex in a transgenic model of tau pathology. Nat Commun 2024; 15:6458. [PMID: 39095344 PMCID: PMC11297290 DOI: 10.1038/s41467-024-50486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Increasing evidence suggests that alternative splicing plays an important role in Alzheimer's disease (AD) pathology. We used long-read sequencing in combination with a novel bioinformatics tool (FICLE) to profile transcript diversity in the entorhinal cortex of female transgenic (TG) mice harboring a mutant form of human tau. Our analyses revealed hundreds of novel isoforms and identified differentially expressed transcripts - including specific isoforms of Apoe, App, Cd33, Clu, Fyn and Trem2 - associated with the development of tau pathology in TG mice. Subsequent profiling of the human cortex from AD individuals and controls revealed similar patterns of transcript diversity, including the upregulation of the dominant TREM2 isoform in AD paralleling the increased expression of the homologous transcript in TG mice. Our results highlight the importance of differential transcript usage, even in the absence of gene-level expression alterations, as a mechanism underpinning gene regulation in the development of AD neuropathology.
Collapse
Affiliation(s)
- Szi Kay Leung
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK.
| | - Rosemary A Bamford
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | | | - Isabel Castanho
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Barry Chioza
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Christine S Flaxman
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Karen Moore
- Biosciences, University of Exeter, Exeter, UK
| | - Emma L Dempster
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Joshua Harvey
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Jonathan T Brown
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | | | | | - Sarah J Richardson
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Eilis Hannon
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
2
|
Yang Y, Bagyinszky E, An SSA. Patient with PSEN1 Glu318Gly and Other Possible Disease Risk Mutations, Diagnosed with Early Onset Alzheimer's Disease. Int J Mol Sci 2023; 24:15461. [PMID: 37895139 PMCID: PMC10607718 DOI: 10.3390/ijms242015461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
In this manuscript, we introduced a French EOAD patient in Korea who carried the presenilin-1 (PSEN1) Glu318Gly mutations with four possible risk variants, including sortilin-related receptor 1 (SORL1) Glu270Lys, ATP-binding cassette subfamily A member 7 (ABCA7) Val1946Met, translocase of outer mitochondrial membrane 40 (TOMM40) Arg239Trp, and granulin (GRN) Ala505Gly. The patient started to present memory decline and behavioral dysfunction in his early 60s. His brain imaging presented amyloid deposits by positron emission tomography (PET-CT). The multimer detection system (MDS) screening test for plasma for amyloid oligomers was also positive, which supported the AD diagnosis. It was verified that PSEN1 Glu318Gly itself may not impact amyloid production. However, additional variants were found in other AD and non-AD risk genes, as follows: SORL1 Glu270Lys was suggested as a risk mutation for AD and could increase amyloid peptide production and impair endosome functions. ABCA7 Val1946Met was a novel variant that was predicted to be damaging. The GRN Ala505Gly was a variant with uncertain significance; however, it may reduce the granulin levels in the plasma of dementia patients. Pathway analysis revealed that PSEN1 Glu318Gly may work as a risk factor along with the SORL1 and ABCA7 variants since pathway analysis revealed that PSEN1 could directly interact with them through amyloid-related and lipid metabolism pathways. TOMM40 and PSEN1 could have common mechanisms through mitochondrial dysfunction. It may be possible that PSEN1 Glu318Gly and GRN Ala505Gly would impact disease by impairing immune-related pathways, including microglia and astrocyte development, or NFkB-related pathways. Taken together, the five risk factors may contribute to disease-related pathways, including amyloid and lipid metabolism, or impair immune mechanisms.
Collapse
Affiliation(s)
- YoungSoon Yang
- Department of Neurology, Soonchunhyang University College of Medicine, Cheonan Hospital, Cheonan 31151, Republic of Korea;
| | - Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Medical Research Institute, College of Bionano Technology, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
3
|
Salasova A, Monti G, Andersen OM, Nykjaer A. Finding memo: versatile interactions of the VPS10p-Domain receptors in Alzheimer’s disease. Mol Neurodegener 2022; 17:74. [PMID: 36397124 PMCID: PMC9673319 DOI: 10.1186/s13024-022-00576-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
The family of VPS10p-Domain (D) receptors comprises five members named SorLA, Sortilin, SorCS1, SorCS2 and SorCS3. While their physiological roles remain incompletely resolved, they have been recognized for their signaling engagements and trafficking abilities, navigating a number of molecules between endosome, Golgi compartments, and the cell surface. Strikingly, recent studies connected all the VPS10p-D receptors to Alzheimer’s disease (AD) development. In addition, they have been also associated with diseases comorbid with AD such as diabetes mellitus and major depressive disorder. This systematic review elaborates on genetic, functional, and mechanistic insights into how dysfunction in VPS10p-D receptors may contribute to AD etiology, AD onset diversity, and AD comorbidities. Starting with their functions in controlling cellular trafficking of amyloid precursor protein and the metabolism of the amyloid beta peptide, we present and exemplify how these receptors, despite being structurally similar, regulate various and distinct cellular events involved in AD. This includes a plethora of signaling crosstalks that impact on neuronal survival, neuronal wiring, neuronal polarity, and synaptic plasticity. Signaling activities of the VPS10p-D receptors are especially linked, but not limited to, the regulation of neuronal fitness and apoptosis via their physical interaction with pro- and mature neurotrophins and their receptors. By compiling the functional versatility of VPS10p-D receptors and their interactions with AD-related pathways, we aim to further propel the AD research towards VPS10p-D receptor family, knowledge that may lead to new diagnostic markers and therapeutic strategies for AD patients.
Collapse
|
4
|
Korpioja A, Krüger J, Koivuluoma S, Pylkäs K, Moilanen V, Helisalmi S, Hiltunen M, Remes AM. Novel Rare SORL1 Variants in Early-Onset Dementia. J Alzheimers Dis 2021; 82:761-770. [PMID: 34092641 DOI: 10.3233/jad-210207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Rare variants of SORL1 have been associated with an increased risk of early-onset or late-onset Alzheimer's disease (AD). However, a lot remains to be clarified about their significance in the pathogenesis of the disease. OBJECTIVE To evaluate the role of SORL1 variants among Finnish patients with early-onset AD (EOAD). METHODS The rare SORL1variants were screened in a cohort of 115 Finnish EOAD patients (mean age at onset 58.3 years, range 46-65 years) by using the whole-exome sequencing. RESULTS We found one novel nonsense variant (p.Gln290*) and eight missense variants in SORL1. This is the first study reporting the SORL1 variants p.Lys80Arg, p.Ala789Val and p.Arg866Gln in EOAD patients. Furthermore, two of these three missense variants were overrepresented in EOAD patients compared to gnomAD non-neuro Finnish samples. CONCLUSION This study strengthens the earlier findings, that the rare variants in SORL1 are associated with EOAD.
Collapse
Affiliation(s)
- Anita Korpioja
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,MRC, Oulu University Hospital, Oulu, Finland
| | - Johanna Krüger
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,MRC, Oulu University Hospital, Oulu, Finland
| | - Susanna Koivuluoma
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, NordLab Oulu, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, NordLab Oulu, Oulu, Finland
| | - Virpi Moilanen
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,MRC, Oulu University Hospital, Oulu, Finland
| | - Seppo Helisalmi
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Anne M Remes
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,MRC, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
5
|
Kirola L, Budde JP, Wang F, Norton J, Morris JC, Cruchaga C, Fernández MV. Lack of evidence supporting a role for DPP6 sequence variants in Alzheimer's disease in the European American population. Acta Neuropathol 2021; 141:623-624. [PMID: 33591372 PMCID: PMC7952336 DOI: 10.1007/s00401-021-02271-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/29/2023]
Affiliation(s)
- Laxmi Kirola
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO, 63110, USA.,Hope Center for Neurological Disorders, WUSM, 660 S. Euclid Ave. B8111, St. Louis, MO, 63110, USA
| | - John P Budde
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO, 63110, USA.,Hope Center for Neurological Disorders, WUSM, 660 S. Euclid Ave. B8111, St. Louis, MO, 63110, USA.,NeuroGenomics and Informatics Center, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO, USA
| | - Fengxian Wang
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO, 63110, USA.,Hope Center for Neurological Disorders, WUSM, 660 S. Euclid Ave. B8111, St. Louis, MO, 63110, USA.,NeuroGenomics and Informatics Center, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO, USA
| | - Joanne Norton
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO, 63110, USA.,Hope Center for Neurological Disorders, WUSM, 660 S. Euclid Ave. B8111, St. Louis, MO, 63110, USA.,NeuroGenomics and Informatics Center, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO, USA
| | - John C Morris
- Hope Center for Neurological Disorders, WUSM, 660 S. Euclid Ave. B8111, St. Louis, MO, 63110, USA.,Knight Alzheimer Disease Research Center, WUSM, 4488 Forest Park Ave, St. Louis, MO, 63108, USA
| | | | - Carlos Cruchaga
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO, 63110, USA.,Hope Center for Neurological Disorders, WUSM, 660 S. Euclid Ave. B8111, St. Louis, MO, 63110, USA.,NeuroGenomics and Informatics Center, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO, USA
| | - Maria Victoria Fernández
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO, 63110, USA. .,Hope Center for Neurological Disorders, WUSM, 660 S. Euclid Ave. B8111, St. Louis, MO, 63110, USA. .,NeuroGenomics and Informatics Center, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO, USA.
| |
Collapse
|
6
|
Olive C, Ibanez L, Farias FHG, Wang F, Budde JP, Norton JB, Gentsch J, Morris JC, Li Z, Dube U, Del-Aguila J, Bergmann K, Bradley J, Benitez BA, Harari O, Fagan A, Ances B, Cruchaga C, Fernandez MV. Examination of the Effect of Rare Variants in TREM2, ABI3, and PLCG2 in LOAD Through Multiple Phenotypes. J Alzheimers Dis 2020; 77:1469-1482. [PMID: 32894242 PMCID: PMC7927150 DOI: 10.3233/jad-200019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Rare variants in PLCG2 (p.P522R), ABI3 (p.S209F), and TREM2 (p.R47H, p.R62H) have been associated with late onset Alzheimer's disease (LOAD) risk in Caucasians. After the initial report, several studies have found positive results in cohorts of different ethnic background and with different phenotype. OBJECTIVE In this study, we aim to evaluate the association of rare coding variants in PLCG2, ABI3, and TREM2 with LOAD risk and their effect at different time points of the disease. METHODS We used a European American cohort to assess the association of the variants prior onset (using CSF Aβ42, tau, and pTau levels, and amyloid imaging as endophenotypes) and after onset (measured as rate of memory decline). RESULTS We confirm the association with LOAD risk of TREM2 p.R47H, p.R62H and ABI3 p.S209F variants, and the protective effect of PLCG2 p.P522R. In addition, ABI3 and TREM2 gene-sets showed significant association with LOAD risk. TREM2 p.R47H and PLCG2 p.P522R variants were also statistically associated with increase of amyloid imaging and AD progression, respectively. We did not observe any association of ABI3 p.S209F with any of the other AD endophenotypes. CONCLUSION The results of this study highlight the importance of including biomarkers and alternative phenotypes to better understand the role of novel candidate genes with the disease.
Collapse
Affiliation(s)
- Claudia Olive
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Laura Ibanez
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Fabiana H. Geraldo Farias
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Fengxian Wang
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - John P. Budde
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Joanne B. Norton
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jen Gentsch
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John C. Morris
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Zeran Li
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Umber Dube
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Jorge Del-Aguila
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristy Bergmann
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Bradley
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruno A. Benitez
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Oscar Harari
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne Fagan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Beau Ances
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carlos Cruchaga
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Maria Victoria Fernandez
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
7
|
Campion D, Charbonnier C, Nicolas G. SORL1 genetic variants and Alzheimer disease risk: a literature review and meta-analysis of sequencing data. Acta Neuropathol 2019; 138:173-186. [PMID: 30911827 DOI: 10.1007/s00401-019-01991-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022]
Abstract
Massive parallel sequencing recently allowed the identification of three genes carrying a higher burden of rare, protein-truncating and missense predicted damaging variants in Alzheimer disease (AD) cases as compared to controls: TREM2, SORL1, and ABCA7. SORL1 encodes SorLA, a key protein involved in the processing of the amyloid-beta (Aβ) precursor protein (APP) and the secretion of the Aβ peptide, the aggregation of which triggers AD pathophysiology. Common SORL1 single nucleotide polymorphisms had originally been associated with AD with modest odds ratios (ORs). The association of AD with rare SORL1 coding variants has been demonstrated at the gene level by aggregating protein-truncating (PTV) and rare predicted damaging missense variants. In addition to the loss of SorLA function induced by PTVs, a few missense variants were studied in vitro, showing diverse degrees of decreased SorLA function and leading to increased Aβ secretion. However, the exact functional consequences of most of the missense variants remain to be determined as well as corresponding levels of AD risk. Hereby we review the evidence of the association of SORL1 common and rare variants with AD risk and conduct a meta-analysis of published data on SORL1 rare variants in five large sequencing studies. We observe a significant enrichment in PTVs with ORs of 12.29 (95% confidence interval = [4.22-35.78]) among all AD cases and 27.50 [7.38-102.42] among early-onset cases. Rare [minor allele frequency (MAF) < 1%] and ultra-rare (MAF < 10-4) missense variants that are predicted damaging by 3/3 bioinformatics tools also show significant associations with corresponding ORs of 1.87 [1.54-2.28] and 3.14 [2.30-4.28], respectively. Per-domain analyses show significant association with the APP-binding CR cluster class A repeats and the Aβ-binding VPS10P domains, as well as the fibronectin type III domain, the function of which remains to be specified. These results further support a critical role for SORL1 rare coding variants in AD, although functional and segregation analyses are required to allow an accurate use in a clinical setting.
Collapse
Affiliation(s)
- Dominique Campion
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, 76000, Rouen, France.
- Department of Research, Rouvray Psychiatric Hospital, Sotteville-Lès-Rouen, France.
| | - Camille Charbonnier
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, 76000, Rouen, France
| | - Gaël Nicolas
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, 76000, Rouen, France.
| |
Collapse
|
8
|
Del-Aguila JL, Benitez BA, Li Z, Dube U, Mihindukulasuriya KA, Budde JP, Farias FHG, Fernández MV, Ibanez L, Jiang S, Perrin RJ, Cairns NJ, Morris JC, Harari O, Cruchaga C. TREM2 brain transcript-specific studies in AD and TREM2 mutation carriers. Mol Neurodegener 2019; 14:18. [PMID: 31068200 PMCID: PMC6505298 DOI: 10.1186/s13024-019-0319-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Low frequency coding variants in TREM2 are associated with Alzheimer disease (AD) risk and cerebrospinal fluid (CSF) TREM2 protein levels are different between AD cases and controls. Similarly, TREM2 risk variant carriers also exhibit differential CSF TREM2 levels. TREM2 has three different alternative transcripts, but most of the functional studies only model the longest transcript. No studies have analyzed TREM2 expression levels or alternative splicing in brains from AD and cognitively normal individuals. We wanted to determine whether there was differential expression of TREM2 in sporadic-AD cases versus AD-TREM2 carriers vs sex- and aged-matched normal controls; and if this differential expression was due to a particular TREM2 transcript. METHODS We analyzed RNA-Seq data from parietal lobe brain tissue from AD cases with TREM2 variants (n = 33), AD cases (n = 195) and healthy controls (n = 118), from three independent datasets using Kallisto and the R package tximport to determine the read count for each transcript and quantified transcript abundance as transcripts per million. RESULTS The three TREM2 transcripts were expressed in brain cortex in the three datasets. We demonstrate for the first time that the transcript that lacks the transmembrane domain and encodes a soluble form of TREM2 (sTREM2) has an expression level around 60% of the canonical transcript, suggesting that around 25% of the sTREM2 protein levels could be explained by this transcript. We did not observe a difference in the overall TREM2 expression level between cases and controls. However, the isoform which lacks the 5' exon, but includes the transmembrane domain, was significantly lower in TREM2- p.R62H carriers than in AD cases (p = 0.007). CONCLUSION Using bulk RNA-Seq data from three different cohorts, we were able to quantify the expression level of the three TREM2 transcripts, demonstrating: (1) all three transcripts of them are highly expressed in the human cortex, (2) that up to 25% of the sTREM2 may be due to the expression of a specific isoform and not TREM2 cleavage; and (3) that TREM2 risk variants do not affect expression levels, suggesting that the effect of the TREM2 variants on CSF levels occurs at post-transcriptional level.
Collapse
Affiliation(s)
- Jorge L. Del-Aguila
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Bruno A. Benitez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Zeran Li
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Umber Dube
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Kathie A. Mihindukulasuriya
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
| | - John P. Budde
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Fabiana H. G. Farias
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Maria Victoria Fernández
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Shan Jiang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Richard J. Perrin
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO USA
| | - Nigel J. Cairns
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO USA
| | - John C. Morris
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
| |
Collapse
|
9
|
Patel D, Mez J, Vardarajan BN, Staley L, Chung J, Zhang X, Farrell JJ, Rynkiewicz MJ, Cannon-Albright LA, Teerlink CC, Stevens J, Corcoran C, Gonzalez Murcia JD, Lopez OL, Mayeux R, Haines JL, Pericak-Vance MA, Schellenberg G, Kauwe JSK, Lunetta KL, Farrer LA. Association of Rare Coding Mutations With Alzheimer Disease and Other Dementias Among Adults of European Ancestry. JAMA Netw Open 2019; 2:e191350. [PMID: 30924900 PMCID: PMC6450321 DOI: 10.1001/jamanetworkopen.2019.1350] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/01/2019] [Indexed: 12/26/2022] Open
Abstract
Importance Some of the unexplained heritability of Alzheimer disease (AD) may be due to rare variants whose effects are not captured in genome-wide association studies because very large samples are needed to observe statistically significant associations. Objective To identify genetic variants associated with AD risk using a nonstatistical approach. Design, Setting, and Participants Genetic association study in which rare variants were identified by whole-exome sequencing in unrelated individuals of European ancestry from the Alzheimer's Disease Sequencing Project (ADSP). Data were analyzed between March 2017 and September 2018. Main Outcomes and Measures Minor alleles genome-wide and in 95 genes previously associated with AD, AD-related traits, or other dementias were tabulated and filtered for predicted functional impact and occurrence in participants with AD but not controls. Support for several findings was sought in a whole-exome sequencing data set comprising 19 affected relative pairs from Utah high-risk pedigrees and whole-genome sequencing data sets from the ADSP and Alzheimer's Disease Neuroimaging Initiative. Results Among 5617 participants with AD (3202 [57.0%] women; mean [SD] age, 76.4 [9.3] years) and 4594 controls (2719 [59.0%] women; mean [SD] age, 86.5 [4.5] years), a total of 24 variants with moderate or high functional impact from 19 genes were observed in 10 or more participants with AD but not in controls. These variants included a missense mutation (rs149307620 [p.A284T], n = 10) in NOTCH3, a gene in which coding mutations are associated with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), that was also identified in 1 participant with AD and 1 participant with mild cognitive impairment in the whole genome sequencing data sets. Four participants with AD carried the TREM2 rs104894002 (p.Q33X) high-impact mutation that, in homozygous form, causes Nasu-Hakola disease, a rare disorder characterized by early-onset dementia and multifocal bone cysts, suggesting an intermediate inheritance model for the mutation. Compared with controls, participants with AD had a significantly higher burden of deleterious rare coding variants in dementia-associated genes (2314 vs 3354 cumulative variants, respectively; P = .006). Conclusions and Relevance Different mutations in the same gene or variable dose of a mutation may be associated with result in distinct dementias. These findings suggest that minor differences in the structure or amount of protein may be associated with in different clinical outcomes. Understanding these genotype-phenotype associations may provide further insight into the pathogenic nature of the mutations, as well as offer clues for developing new therapeutic targets.
Collapse
Affiliation(s)
- Devanshi Patel
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts
- Bioinformatics Graduate Program, Boston University, Boston, Massachusetts
| | - Jesse Mez
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | | | - Lyndsay Staley
- Department of Biology, Brigham Young University, Provo, Utah
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts
- Bioinformatics Graduate Program, Boston University, Boston, Massachusetts
| | - Xiaoling Zhang
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - John J. Farrell
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts
| | - Michael J. Rynkiewicz
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts
| | - Lisa A. Cannon-Albright
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
| | - Craig C. Teerlink
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
| | - Jeffery Stevens
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
| | | | | | - Oscar L. Lopez
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Richard Mayeux
- Department of Neurology, Columbia University, New York, New York
| | - Jonathan L. Haines
- Department of Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Margaret A. Pericak-Vance
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Gerard Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | | | - Kathryn L. Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts
- Bioinformatics Graduate Program, Boston University, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| |
Collapse
|
10
|
Stepanov VA, Bocharova AV, Vagaitseva KV, Marusin AV, Markova VV, Minaicheva LI, Zhukova IA, Zhukova NG, Alifirova VM, Makeeva OA. [A rare variant in the sortilin-related receptor 1 gene is associated with declined cognitive functions in the elderly]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:92-95. [PMID: 29927411 DOI: 10.17116/jnevro20181185192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To estimate the association of rs11218343 in the sortilin-related receptor 1 (SORL1) gene with cognitive performance in the elderly and with Alzheimer's disease (AD) in the Russian population. MATERIAL AND METHODS A sample included 586 elderly people (mean age 70.9±5.7 years) without AD diagnosis and 100 patients with late-onset AD (mean age 72.1±7.8 years) from the Tomsk population. SORL1 rs11218343 was genotyped using PCR and MALDI-TOF mass spectrometry. Cognitive performance in the sample of elderly without AD was assessed by Montreal Cognitive Assessment (MoCA) test. RESULTS Allele frequencies of the SORL1 polymorphism were not significantly different between the elderly without AD and AD patients. However mean MoCA score in the carriers of the rare allele (19.00±6.61) was significantly lower than in homozygotes for the common variant (22.25±3.89) (F=4.97; p=0.026). CONCLUSION The rare variant in SORL1 gene previously associated with AD in genome-wide association studies and meta-analyses was associated with lower total МоСА scores in the random sample of elderly people that suggests declined cognitive functions in the carriers of this variant in elderly.
Collapse
Affiliation(s)
- V A Stepanov
- Institute of Medical Genetics, Tomsk National Medical Research Centre, Tomsk, Russia; Tomsk State University, Tomsk, Russia
| | - A V Bocharova
- Institute of Medical Genetics, Tomsk National Medical Research Centre, Tomsk, Russia
| | - K V Vagaitseva
- Institute of Medical Genetics, Tomsk National Medical Research Centre, Tomsk, Russia; Tomsk State University, Tomsk, Russia
| | - A V Marusin
- Institute of Medical Genetics, Tomsk National Medical Research Centre, Tomsk, Russia
| | - V V Markova
- Nebbiolo Centre for Clinical Trials, Tomsk, Russia
| | - L I Minaicheva
- Institute of Medical Genetics, Tomsk National Medical Research Centre, Tomsk, Russia; Nebbiolo Centre for Clinical Trials, Tomsk, Russia
| | - I A Zhukova
- Nebbiolo Centre for Clinical Trials, Tomsk, Russia; Siberian Medical University, Tomsk, Russia
| | - N G Zhukova
- Nebbiolo Centre for Clinical Trials, Tomsk, Russia; Siberian Medical University, Tomsk, Russia
| | | | - O A Makeeva
- Institute of Medical Genetics, Tomsk National Medical Research Centre, Tomsk, Russia; Nebbiolo Centre for Clinical Trials, Tomsk, Russia
| |
Collapse
|
11
|
Li Z, Del-Aguila JL, Dube U, Budde J, Martinez R, Black K, Xiao Q, Cairns NJ, Dougherty JD, Lee JM, Morris JC, Bateman RJ, Karch CM, Cruchaga C, Harari O. Genetic variants associated with Alzheimer's disease confer different cerebral cortex cell-type population structure. Genome Med 2018; 10:43. [PMID: 29880032 PMCID: PMC5992755 DOI: 10.1186/s13073-018-0551-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022] Open
Abstract
Background Alzheimer’s disease (AD) is characterized by neuronal loss and astrocytosis in the cerebral cortex. However, the specific effects that pathological mutations and coding variants associated with AD have on the cellular composition of the brain are often ignored. Methods We developed and optimized a cell-type-specific expression reference panel and employed digital deconvolution methods to determine brain cellular distribution in three independent transcriptomic studies. Results We found that neuronal and astrocyte relative proportions differ between healthy and diseased brains and also among AD cases that carry specific genetic risk variants. Brain carriers of pathogenic mutations in APP, PSEN1, or PSEN2 presented lower neuron and higher astrocyte relative proportions compared to sporadic AD. Similarly, the APOE ε4 allele also showed decreased neuronal and increased astrocyte relative proportions compared to AD non-carriers. In contrast, carriers of variants in TREM2 risk showed a lower degree of neuronal loss compared to matched AD cases in multiple independent studies. Conclusions These findings suggest that genetic risk factors associated with AD etiology have a specific imprinting in the cellular composition of AD brains. Our digital deconvolution reference panel provides an enhanced understanding of the fundamental molecular mechanisms underlying neurodegeneration, enabling the analysis of large bulk RNA-sequencing studies for cell composition and suggests that correcting for the cellular structure when performing transcriptomic analysis will lead to novel insights of AD. Electronic supplementary material The online version of this article (10.1186/s13073-018-0551-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zeran Li
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO, 63110, USA
| | - Jorge L Del-Aguila
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO, 63110, USA
| | - Umber Dube
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO, 63110, USA.,Medical Scientist Training Program, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - John Budde
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO, 63110, USA
| | - Rita Martinez
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO, 63110, USA
| | - Kathleen Black
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO, 63110, USA
| | - Qingli Xiao
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Nigel J Cairns
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA.,Department of Pathology & Immunology, Washington University in St. Louis, School of Medicine, 510 S. Kingshighway, MC 8131, Saint Louis, MO, 63110, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | | | - Joseph D Dougherty
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO, 63110, USA.,Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, 660 S. Euclid Ave. B8111, St. Louis, MO, 63110, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, 660 S. Euclid Ave. B8111, St. Louis, MO, 63110, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO, 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO, 63110, USA. .,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, 660 S. Euclid Ave. B8111, St. Louis, MO, 63110, USA.
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO, 63110, USA.
| |
Collapse
|
12
|
Cong L, Kong X, Wang J, Du J, Xu Z, Xu Y, Zhao Q. Association between SORL1 polymorphisms and the risk of Alzheimer’s disease. J Integr Neurosci 2018. [DOI: 10.3233/jin-170051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Lele Cong
- Department of Neurology, China–Japan Union Hospital of Jilin University, Changchun, 130033, Jilin Province, China
| | - Xiangyi Kong
- Institute of Clinical Medicine, Jilin University, Changchun, 130021, China
| | - Jing Wang
- Department of Neurology, China–Japan Union Hospital of Jilin University, Changchun, 130033, Jilin Province, China
| | - Jianshi Du
- Department of Vascular Surgery, China–Japan Union Hospital of Jilin University, Changchun, 130033, Jilin Province, China
| | - Zhongxin Xu
- Department of Neurology, China–Japan Union Hospital of Jilin University, Changchun, 130033, Jilin Province, China
| | - Yanan Xu
- Department of Neurology, China–Japan Union Hospital of Jilin University, Changchun, 130033, Jilin Province, China
| | - Qing Zhao
- Department of Neurology, China–Japan Union Hospital of Jilin University, Changchun, 130033, Jilin Province, China
| |
Collapse
|
13
|
Cruchaga C, Del-Aguila JL, Saef B, Black K, Fernandez MV, Budde J, Ibanez L, Deming Y, Kapoor M, Tosto G, Mayeux RP, Holtzman DM, Fagan AM, Morris JC, Bateman RJ, Goate AM, Harari O. Polygenic risk score of sporadic late-onset Alzheimer's disease reveals a shared architecture with the familial and early-onset forms. Alzheimers Dement 2018; 14:205-214. [PMID: 28943286 PMCID: PMC5803427 DOI: 10.1016/j.jalz.2017.08.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 07/31/2017] [Accepted: 08/18/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To determine whether the extent of overlap of the genetic architecture among the sporadic late-onset Alzheimer's Disease (sLOAD), familial late-onset AD (fLOAD), sporadic early-onset AD (sEOAD), and autosomal dominant early-onset AD (eADAD). METHODS Polygenic risk scores (PRSs) were constructed using previously identified 21 genome-wide significant loci for LOAD risk. RESULTS We found that there is an overlap in the genetic architecture among sEOAD, fLOAD, and sLOAD. The highest association of the PRS and risk (odds ratio [OR] = 2.27; P = 1.29 × 10-7) was observed in sEOAD, followed by fLOAD (OR = 1.75; P = 1.12 × 10-7) and sLOAD (OR = 1.40; P = 1.21 × 10-3). The PRS was associated with cerebrospinal fluid ptau181-Aβ42 on eADAD (P = 4.36 × 10-2). CONCLUSION Our analysis confirms that the genetic factors identified for LOAD modulate risk in sLOAD and fLOAD and also sEOAD cohorts. Specifically, our results suggest that the burden of these risk variants is associated with familial clustering and earlier onset of AD. Although these variants are not associated with risk in the eADAD, they may be modulating age at onset.
Collapse
Affiliation(s)
- Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Jorge L Del-Aguila
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin Saef
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathleen Black
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | - John Budde
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuetiva Deming
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Manav Kapoor
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Giuseppe Tosto
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, NY, USA; Gertrude H. Sergievsky Center, Columbia University College of Physicians and Surgeons, New York, NY, USA; Department of Neurology, Columbia University College of Physicians and Surgeons, New York-Presbyterian Hospital, New York, NY, USA
| | - Richard P Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, NY, USA; Gertrude H. Sergievsky Center, Columbia University College of Physicians and Surgeons, New York, NY, USA; School of Medicine, Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic
| | - David M Holtzman
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne M Fagan
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
14
|
Genetic Risk Factors for Complex Forms of Alzheimer’s Disease. NEURODEGENER DIS 2018. [DOI: 10.1007/978-3-319-72938-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
15
|
Fernández MV, Kim JH, Budde JP, Black K, Medvedeva A, Saef B, Deming Y, Del-Aguila J, Ibañez L, Dube U, Harari O, Norton J, Chasse R, Morris JC, Goate A, NIA-LOAD family study group, NCRAD, Cruchaga C. Analysis of neurodegenerative Mendelian genes in clinically diagnosed Alzheimer Disease. PLoS Genet 2017; 13:e1007045. [PMID: 29091718 PMCID: PMC5683650 DOI: 10.1371/journal.pgen.1007045] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 11/13/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022] Open
Abstract
Alzheimer disease (AD), Frontotemporal lobar degeneration (FTD), Amyotrophic lateral sclerosis (ALS) and Parkinson disease (PD) have a certain degree of clinical, pathological and molecular overlap. Previous studies indicate that causative mutations in AD and FTD/ALS genes can be found in clinical familial AD. We examined the presence of causative and low frequency coding variants in the AD, FTD, ALS and PD Mendelian genes, in over 450 families with clinical history of AD and over 11,710 sporadic cases and cognitive normal participants from North America. Known pathogenic mutations were found in 1.05% of the sporadic cases, in 0.69% of the cognitively normal participants and in 4.22% of the families. A trend towards enrichment, albeit non-significant, was observed for most AD, FTD and PD genes. Only PSEN1 and PINK1 showed consistent association with AD cases when we used ExAC as the control population. These results suggest that current study designs may contain heterogeneity and contamination of the control population, and that current statistical methods for the discovery of novel genes with real pathogenic variants in complex late onset diseases may be inadequate or underpowered to identify genes carrying pathogenic mutations.
Collapse
Affiliation(s)
- Maria Victoria Fernández
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Jong Hun Kim
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
- Department of Neurology, Dementia Center, Ilsan hospital, National Health Insurance Service, Goyang, South Korea
| | - John P. Budde
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Kathleen Black
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Alexandra Medvedeva
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Ben Saef
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Yuetiva Deming
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Jorge Del-Aguila
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Laura Ibañez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Umber Dube
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
- Medical Scientist Training Program, Division of Biology and Biomedical sciences, School of Medicine, Washington University in Saint Louis, St. Louis, MO, United States of America
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Joanne Norton
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Rachel Chasse
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
| | - John C. Morris
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Alison Goate
- Ronald M. Loeb Center for Alzheimer’s disease, Dept of Neuroscience, Icahn School of Medicine at Mount Sinai, ICAHN 10–52, New York, NY, United States of America
| | | | | | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|