1
|
Li Y, Ouyang Q, Chen Z, Zhou D, Li Z, Yang X, Long J, Chen G, Li X, Jia S, Zi H, Qi S, Tang H, Zhang B, Niu Y, Xu A, Tong W, Jia J, Huang J. Novel role of general transcript factor IIH subunit 2 (GTF2H2) in the development and sex disparity of hepatocellular carcinoma. Oncogene 2025; 44:1323-1335. [PMID: 39972070 DOI: 10.1038/s41388-025-03301-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/13/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
Sex disparity is a hepatocellular carcinoma (HCC) hallmark, demonstrating aggressiveness and mortality more frequently in men than in women. However, the components of its basis remain largely unknown. It was identified in HCC frequent loss of heterozygosity of general transcript factor IIH subunit 2 (GTF2H2), a potential estrogen pathway gene. GTF2H2 functions in nucleotide excision repair (NER) and basal transcription, but the function of GTF2H2 in cancer has not been described in depth. Here, it was identified that GTF2H2 inhibited growth and invasive mobility and induced apoptosis of HCC cells, which was up-regulated by estrogen-dependent estrogen receptor alpha (ERα) signaling. Mechanistically, in vitro estrogen-treated HCC models with GTF2H2 knockdown and over-expression showed estrogen-regulated GTF2H2 promoted NER of HCC genomic DNA and inhibited cell cycle progression, and down-regulated PAM/NF-κB pathway. Xenografted HCC mice models showed higher tumor progression of HCC with low GTF2H2 expression in ovariectomized female mice or male mice, but could be rescued by GTF2H2 over-expression, which was also observed in spontaneous tumor mice models. Clinical association analysis of HCC cases showed GTF2H2 expression was higher in female HCC, with correlation positively with ERα expression. Taken together, the estrogen-regulated GTF2H2 may be involved in the development and sex disparity of HCC by maintaining NER-related genomic stability and affecting PAM/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yanmeng Li
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qin Ouyang
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhibin Chen
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Central Laboratory, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Donghu Zhou
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenkun Li
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoxi Yang
- Clinical Research Center, Beijing Children Hospital, Capital Medical University, Beijing, China
| | - Jiang Long
- Department of Oncology Minimally Invasive Interventional Radiology, Beijing You-an Hospital, Capital Medical University, Beijing, China
| | - Guangyong Chen
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaojin Li
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Siyu Jia
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huaduan Zi
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Saiping Qi
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hengcheng Tang
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bei Zhang
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Anjian Xu
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Weimin Tong
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Jian Huang
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Dwornik R, Białkowska K. Insights into genetic modifiers of breast cancer risk in carriers of BRCA1 and BRCA2 pathogenic variants. Hered Cancer Clin Pract 2025; 23:15. [PMID: 40296163 PMCID: PMC12036133 DOI: 10.1186/s13053-025-00313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Pathogenic variants in BRCA1 and BRCA2 are associated with an increased risk of developing several types of cancer, including breast cancer. However, the risk varies by other environmental and genetic factors present in carriers of mutation. To understand the value of these factors more clearly, a number of common genetic susceptibility variants have been studied through genome-wide association studies as potential genetic risk modifiers for BRCA1 and BRCA2 pathogenic variants carriers. Several studies have identified specific polymorphisms that may influence the risk of breast cancer development, either by increasing or reducing susceptibility. These variants are implicated in biological pathways such as DNA damage repair, hormonal regulation or cell proliferation. The identification and understanding of key genetic modifiers may provide valuable insights into development of personalized prevention, targeted therapies and screening strategies for high-risk individuals. This review presents the overview of known genetic risk modifiers for carriers of BRCA1 and BRCA2 pathogenic variants, their potential impact on risk, and their functional roles. Furthermore, it highlights the need for further research directions, including understanding the biological role of genetic modifiers in cancer development and the refinement of risk assessment models.
Collapse
Affiliation(s)
- Roksana Dwornik
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Katarzyna Białkowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| |
Collapse
|
3
|
Manna EDF, Serrano D, Cazzaniga L, Mannucci S, Zanzottera C, Fava F, Aurilio G, Guerrieri-Gonzaga A, Risti M, Calvello M, Feroce I, Marabelli M, Altemura C, Bertario L, Bonanni B, Lazzeroni M. Hereditary Breast Cancer: Comprehensive Risk Assessment and Prevention Strategies. Genes (Basel) 2025; 16:82. [PMID: 39858629 PMCID: PMC11764557 DOI: 10.3390/genes16010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/29/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Women carrying pathogenic/likely pathogenic (P/LP) variants in moderate- or high-penetrance genes have an increased risk of developing breast cancer. However, most P/LP variants associated with breast cancer risk show incomplete penetrance. Age, gender, family history, polygenic risk, lifestyle, reproductive, hormonal, and environmental factors can affect the expressivity and penetrance of the disease. However, there are gaps in translating how individual genomic variation affects phenotypic presentation. The expansion of criteria for genetic testing and the increasing utilization of comprehensive genetic panels may enhance the identification of individuals carrying P/LP variants linked to hereditary breast cancer. Individualized risk assessment could facilitate the implementation of personalized risk-reduction strategies for these individuals. Preventive interventions encompass lifestyle modifications, chemoprevention, enhanced surveillance through breast imaging, and risk-reducing surgeries. This review addresses the current literature's inconsistencies and limitations, particularly regarding risk factors and the intensity of preventive strategies for women with P/LP variants in moderate- and high-penetrance genes. In addition, it synthesizes the latest evidence on risk assessment and primary and secondary prevention in women at high risk of breast cancer.
Collapse
Affiliation(s)
| | - Davide Serrano
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Laura Cazzaniga
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
- Department of Health Sciences, Medical Genetics, University of Milan, 20122 Milan, Italy
| | - Sara Mannucci
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Cristina Zanzottera
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Francesca Fava
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Gaetano Aurilio
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Aliana Guerrieri-Gonzaga
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Matilde Risti
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Mariarosaria Calvello
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
- Department of Health Sciences, Medical Genetics, University of Milan, 20122 Milan, Italy
- Oncology Competence Center, Gruppo Ospedaliero Moncucco, 6900 Lugano, Switzerland
| | - Irene Feroce
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Monica Marabelli
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Cecilia Altemura
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Lucio Bertario
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| | - Matteo Lazzeroni
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.S.); (L.C.); (S.M.); (C.Z.); (F.F.); (G.A.); (A.G.-G.); (M.R.); (M.C.); (I.F.); (M.M.); (C.A.); (L.B.); (B.B.)
| |
Collapse
|
4
|
Langlois AWR, Pouget JG, Knight J, Chenoweth MJ, Tyndale RF. Associating CYP2A6 structural variants with ovarian and lung cancer risk in the UK Biobank: replication and extension. Eur J Hum Genet 2024; 32:357-360. [PMID: 38097766 PMCID: PMC10923790 DOI: 10.1038/s41431-023-01518-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/27/2023] [Accepted: 11/28/2023] [Indexed: 03/10/2024] Open
Abstract
CYP2A6 is a polymorphic enzyme that inactivates nicotine; structural variants (SVs) include gene deletions and hybrids with the neighboring pseudogene CYP2A7. Two studies found that CYP2A7 deletions were associated with ovarian cancer risk. Using their methodology, we aimed to characterize CYP2A6 SVs (which may be misidentified by prediction software as CYP2A7 SVs), then assess CYP2A6 SV-associated risk for ovarian cancer, and extend analyses to lung cancer. An updated reference panel was created to impute CYP2A6 SVs from UK Biobank array data. Logistic regression models analyzed the association between CYP2A6 SVs and cancer risk, adjusting for covariates. Software-predicted CYP2A7 deletions were concordant with known CYP2A6 SVs. Deleterious CYP2A6 SVs were not associated with ovarian cancer (OR = 1.06; 95% CI: 0.80-1.37; p = 0.7) but did reduce the risk of lung cancer (OR = 0.44; 95% CI: 0.29-0.64; p < 0.0001), and a lung cancer subtype. Replication of known lung cancer associations indicates the validity of array-based SV analyses.
Collapse
Affiliation(s)
- Alec W R Langlois
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
| | - Jennie G Pouget
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Jo Knight
- Data Science Institute and Medical School, Lancaster University, Lancaster, UK
| | - Meghan J Chenoweth
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Rachel F Tyndale
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada.
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada.
| |
Collapse
|
5
|
Yang X, Wang X, Zou Y, Zhang S, Xia M, Fu L, Vollger MR, Chen NC, Taylor DJ, Harvey WT, Logsdon GA, Meng D, Shi J, McCoy RC, Schatz MC, Li W, Eichler EE, Lu Q, Mao Y. Characterization of large-scale genomic differences in the first complete human genome. Genome Biol 2023; 24:157. [PMID: 37403156 PMCID: PMC10320979 DOI: 10.1186/s13059-023-02995-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The first telomere-to-telomere (T2T) human genome assembly (T2T-CHM13) release is a milestone in human genomics. The T2T-CHM13 genome assembly extends our understanding of telomeres, centromeres, segmental duplication, and other complex regions. The current human genome reference (GRCh38) has been widely used in various human genomic studies. However, the large-scale genomic differences between these two important genome assemblies are not characterized in detail yet. RESULTS Here, in addition to the previously reported "non-syntenic" regions, we find 67 additional large-scale discrepant regions and precisely categorize them into four structural types with a newly developed website tool called SynPlotter. The discrepant regions (~ 21.6 Mbp) excluding telomeric and centromeric regions are highly structurally polymorphic in humans, where the deletions or duplications are likely associated with various human diseases, such as immune and neurodevelopmental disorders. The analyses of a newly identified discrepant region-the KLRC gene cluster-show that the depletion of KLRC2 by a single-deletion event is associated with natural killer cell differentiation in ~ 20% of humans. Meanwhile, the rapid amino acid replacements observed within KLRC3 are probably a result of natural selection in primate evolution. CONCLUSION Our study provides a foundation for understanding the large-scale structural genomic differences between the two crucial human reference genomes, and is thereby important for future human genomics studies.
Collapse
Affiliation(s)
- Xiangyu Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xuankai Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yawen Zou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shilong Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Manying Xia
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Lianting Fu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Mitchell R Vollger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Nae-Chyun Chen
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Dylan J Taylor
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Dan Meng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Junfeng Shi
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Langlois AWR, El-Boraie A, Pouget JG, Cox LS, Ahluwalia JS, Fukunaga K, Mushiroda T, Knight J, Chenoweth MJ, Tyndale RF. Genotyping, characterization, and imputation of known and novel CYP2A6 structural variants using SNP array data. J Hum Genet 2023:10.1038/s10038-023-01148-y. [PMID: 37059825 DOI: 10.1038/s10038-023-01148-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
CYP2A6 metabolically inactivates nicotine. Faster CYP2A6 activity is associated with heavier smoking and higher lung cancer risk. The CYP2A6 gene is polymorphic, including functional structural variants (SV) such as gene deletions (CYP2A6*4), duplications (CYP2A6*1 × 2), and hybrids with the CYP2A7 pseudogene (CYP2A6*12, CYP2A6*34). SVs are challenging to genotype due to their complex genetic architecture. Our aims were to develop a reliable protocol for SV genotyping, functionally phenotype known and novel SVs, and investigate the feasibility of CYP2A6 SV imputation from SNP array data in two ancestry populations. European- (EUR; n = 935) and African- (AFR; n = 964) ancestry individuals from smoking cessation trials were genotyped for SNPs using an Illumina array and for CYP2A6 SVs using Taqman copy number (CN) assays. SV-specific PCR amplification and Sanger sequencing was used to characterize a novel SV. Individuals with SVs were phenotyped using the nicotine metabolite ratio, a biomarker of CYP2A6 activity. SV diplotype and SNP array data were integrated and phased to generate ancestry-specific SV reference panels. Leave-one-out cross-validation was used to investigate the feasibility of CYP2A6 SV imputation. A minimal protocol requiring three Taqman CN assays for CYP2A6 SV genotyping was developed and known SV associations with activity were replicated. The first domain swap CYP2A6-CYP2A7 hybrid SV, CYP2A6*53, was identified, sequenced, and associated with lower CYP2A6 activity. In both EURs and AFRs, most SV alleles were identified using imputation (>70% and >60%, respectively); importantly, false positive rates were <1%. These results confirm that CYP2A6 SV imputation can identify most SV alleles, including a novel SV.
Collapse
Affiliation(s)
- Alec W R Langlois
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
| | - Ahmed El-Boraie
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
| | - Jennie G Pouget
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Lisa Sanderson Cox
- Department of Population Health, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Jasjit S Ahluwalia
- Departments of Behavioral and Social Sciences and Medicine, Brown University School of Public Health, Providence, RI, 02912, USA
| | - Koya Fukunaga
- Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Taisei Mushiroda
- Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Jo Knight
- Data Science Institute and Medical School, Lancaster University, Lancaster, UK
| | - Meghan J Chenoweth
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada.
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada.
| |
Collapse
|
7
|
Li Z, Li Y, Ouyang Q, Li X, Huang J. Exosome-derived GTF2H2 from Huh7 cells can inhibit endothelial cell viability, migration, tube formation, and permeability. Tissue Cell 2022; 79:101922. [PMID: 36116407 DOI: 10.1016/j.tice.2022.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related morbidity and mortality worldwide. Given that HCC is an extraordinarily heterogeneous malignant disease, finding an effective therapeutic strategy for treating it has been difficult. Because of the importance of angiogenesis in tumorigenesis, targeting the more homogenous HCC endothelial cells may be a better therapeutic strategy. In a unpublished manuscript, we found that the expression levels of vascular endothelial growth factor receptor 2 (VEGFR2) and matrix metalloproteinase 2/9 (MMP2/9) were reduced in human HCC tissues that overexpressed DNA damage repair gene general transcription factor II subunit H2 (GTF2H2). This suggested that GTF2H2 may have an inhibitory effect on angiogenesis. Therefore, we hypothesized that GTF2H2 acts as an anti-angiogenesis gene. However, our results showed that GTF2H2 overexpression had no effect on endothelial cell viability, migration, or permeability. To our surprise, treating human umbilical vein endothelial cells (HUVECs) with the culture medium of Huh 7 cells overexpressing GTF2H2 could inhibit their viability, migration, and permeability. We then isolated the culture medium into exosomes and other components from the culture medium. Only GTF2H2-enriched exosomes could inhibit the viability, migration, tube formation, and permeability of HUVECs. Our results suggest that overexpressing GTF2H2 had no effect on HUVECs, while GTF2H2 enriched exosomes from Huh7 cells could inhibit HUVEC phenotypes such as proliferation and migration. Therefore, GTF2H2-enriched exosomes can possibly be utilized as a novel drug for treating HCC and also serve as a potential molecular target for inhibiting tumor angiogenesis.
Collapse
Affiliation(s)
- Zhenkun Li
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-An Road, Xi-Cheng District, Beijing 100050, People's Republic of China
| | - Yanmeng Li
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-An Road, Xi-Cheng District, Beijing 100050, People's Republic of China
| | - Qin Ouyang
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-An Road, Xi-Cheng District, Beijing 100050, People's Republic of China
| | - Xiaojin Li
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-An Road, Xi-Cheng District, Beijing 100050, People's Republic of China
| | - Jian Huang
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-An Road, Xi-Cheng District, Beijing 100050, People's Republic of China.
| |
Collapse
|
8
|
Hakkaart C, Pearson JF, Marquart L, Dennis J, Wiggins GAR, Barnes DR, Robinson BA, Mace PD, Aittomäki K, Andrulis IL, Arun BK, Azzollini J, Balmaña J, Barkardottir RB, Belhadj S, Berger L, Blok MJ, Boonen SE, Borde J, Bradbury AR, Brunet J, Buys SS, Caligo MA, Campbell I, Chung WK, Claes KBM, Collonge-Rame MA, Cook J, Cosgrove C, Couch FJ, Daly MB, Dandiker S, Davidson R, de la Hoya M, de Putter R, Delnatte C, Dhawan M, Diez O, Ding YC, Domchek SM, Donaldson A, Eason J, Easton DF, Ehrencrona H, Engel C, Evans DG, Faust U, Feliubadaló L, Fostira F, Friedman E, Frone M, Frost D, Garber J, Gayther SA, Gehrig A, Gesta P, Godwin AK, Goldgar DE, Greene MH, Hahnen E, Hake CR, Hamann U, Hansen TVO, Hauke J, Hentschel J, Herold N, Honisch E, Hulick PJ, Imyanitov EN, Isaacs C, Izatt L, Izquierdo A, Jakubowska A, James PA, Janavicius R, John EM, Joseph V, Karlan BY, Kemp Z, Kirk J, Konstantopoulou I, Koudijs M, Kwong A, Laitman Y, Lalloo F, Lasset C, Lautrup C, Lazaro C, Legrand C, Leslie G, Lesueur F, Mai PL, Manoukian S, Mari V, Martens JWM, McGuffog L, Mebirouk N, Meindl A, Miller A, Montagna M, et alHakkaart C, Pearson JF, Marquart L, Dennis J, Wiggins GAR, Barnes DR, Robinson BA, Mace PD, Aittomäki K, Andrulis IL, Arun BK, Azzollini J, Balmaña J, Barkardottir RB, Belhadj S, Berger L, Blok MJ, Boonen SE, Borde J, Bradbury AR, Brunet J, Buys SS, Caligo MA, Campbell I, Chung WK, Claes KBM, Collonge-Rame MA, Cook J, Cosgrove C, Couch FJ, Daly MB, Dandiker S, Davidson R, de la Hoya M, de Putter R, Delnatte C, Dhawan M, Diez O, Ding YC, Domchek SM, Donaldson A, Eason J, Easton DF, Ehrencrona H, Engel C, Evans DG, Faust U, Feliubadaló L, Fostira F, Friedman E, Frone M, Frost D, Garber J, Gayther SA, Gehrig A, Gesta P, Godwin AK, Goldgar DE, Greene MH, Hahnen E, Hake CR, Hamann U, Hansen TVO, Hauke J, Hentschel J, Herold N, Honisch E, Hulick PJ, Imyanitov EN, Isaacs C, Izatt L, Izquierdo A, Jakubowska A, James PA, Janavicius R, John EM, Joseph V, Karlan BY, Kemp Z, Kirk J, Konstantopoulou I, Koudijs M, Kwong A, Laitman Y, Lalloo F, Lasset C, Lautrup C, Lazaro C, Legrand C, Leslie G, Lesueur F, Mai PL, Manoukian S, Mari V, Martens JWM, McGuffog L, Mebirouk N, Meindl A, Miller A, Montagna M, Moserle L, Mouret-Fourme E, Musgrave H, Nambot S, Nathanson KL, Neuhausen SL, Nevanlinna H, Yie JNY, Nguyen-Dumont T, Nikitina-Zake L, Offit K, Olah E, Olopade OI, Osorio A, Ott CE, Park SK, Parsons MT, Pedersen IS, Peixoto A, Perez-Segura P, Peterlongo P, Pocza T, Radice P, Ramser J, Rantala J, Rodriguez GC, Rønlund K, Rosenberg EH, Rossing M, Schmutzler RK, Shah PD, Sharif S, Sharma P, Side LE, Simard J, Singer CF, Snape K, Steinemann D, Stoppa-Lyonnet D, Sutter C, Tan YY, Teixeira MR, Teo SH, Thomassen M, Thull DL, Tischkowitz M, Toland AE, Trainer AH, Tripathi V, Tung N, van Engelen K, van Rensburg EJ, Vega A, Viel A, Walker L, Weitzel JN, Wevers MR, Chenevix-Trench G, Spurdle AB, Antoniou AC, Walker LC. Copy number variants as modifiers of breast cancer risk for BRCA1/BRCA2 pathogenic variant carriers. Commun Biol 2022; 5:1061. [PMID: 36203093 PMCID: PMC9537519 DOI: 10.1038/s42003-022-03978-6] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
The contribution of germline copy number variants (CNVs) to risk of developing cancer in individuals with pathogenic BRCA1 or BRCA2 variants remains relatively unknown. We conducted the largest genome-wide analysis of CNVs in 15,342 BRCA1 and 10,740 BRCA2 pathogenic variant carriers. We used these results to prioritise a candidate breast cancer risk-modifier gene for laboratory analysis and biological validation. Notably, the HR for deletions in BRCA1 suggested an elevated breast cancer risk estimate (hazard ratio (HR) = 1.21), 95% confidence interval (95% CI = 1.09-1.35) compared with non-CNV pathogenic variants. In contrast, deletions overlapping SULT1A1 suggested a decreased breast cancer risk (HR = 0.73, 95% CI 0.59-0.91) in BRCA1 pathogenic variant carriers. Functional analyses of SULT1A1 showed that reduced mRNA expression in pathogenic BRCA1 variant cells was associated with reduced cellular proliferation and reduced DNA damage after treatment with DNA damaging agents. These data provide evidence that deleterious variants in BRCA1 plus SULT1A1 deletions contribute to variable breast cancer risk in BRCA1 carriers.
Collapse
Affiliation(s)
- Christopher Hakkaart
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - John F Pearson
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Public Health, University of Queensland, Brisbane, Australia
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - George A R Wiggins
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Daniel R Barnes
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Bridget A Robinson
- Department of Medicine, University of Otago, Christchurch, New Zealand
- Canterbury Regional Cancer and Haematology Service, Canterbury District Health Board, Christchurch Hospital, Christchurch, New Zealand
| | - Peter D Mace
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kristiina Aittomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Banu K Arun
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jacopo Azzollini
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Judith Balmaña
- Hereditary cancer Genetics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Hospital Campus, Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Rosa B Barkardottir
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
- BMC (Biomedical Centre), Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Sami Belhadj
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lieke Berger
- Department of Clinical Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marinus J Blok
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Susanne E Boonen
- Department of Clinical Genetics, Odense University Hospital, Odence C, Denmark
| | - Julika Borde
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Angela R Bradbury
- Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), ONCOBELL-IDIBELL-IGTP, CIBERONC, Barcelona, Spain
| | - Saundra S Buys
- Department of Medicine, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Maria A Caligo
- SOD Genetica Molecolare, University Hospital, Pisa, Italy
| | - Ian Campbell
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | | | | | - Jackie Cook
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield, UK
| | - Casey Cosgrove
- Gynecologic Oncology, Translational Therapeutics, Department of Obstetrics and Gynecology, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Mary B Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Sita Dandiker
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rosemarie Davidson
- Department of Clinical Genetics, Queen Elizabeth University Hospital, Glasgow, UK
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Robin de Putter
- Centre for Medical Genetics, Ghent University Hospital, Gent, Belgium
| | - Capucine Delnatte
- Oncogénétique, Institut de Cancérologie de l'Ouest siteRené Gauducheau, Saint Herblain, France
| | - Mallika Dhawan
- Cancer Genetics and Prevention Program, University of California San Francisco, San Francisco, CA, USA
| | - Orland Diez
- Hereditary cancer Genetics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Hospital Campus, Barcelona, Spain
- Area of Clinical and Molecular Genetics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Yuan Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Alan Donaldson
- Clinical Genetics Department, St Michael's Hospital, Bristol, UK
| | - Jacqueline Eason
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Hans Ehrencrona
- Department of Clinical Genetics and Pathology, Laboratory Medicine, Skåne University Hospital, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE - Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - D Gareth Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Ulrike Faust
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Lidia Feliubadaló
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), ONCOBELL-IDIBELL-IGTP, CIBERONC, Barcelona, Spain
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Eitan Friedman
- The Susanne Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Megan Frone
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Debra Frost
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Judy Garber
- Cancer Risk and Prevention Clinic, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Simon A Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrea Gehrig
- Department of Human Genetics, University Würzburg, Würzburg, Germany
| | - Paul Gesta
- Service Régional Oncogénétique Poitou-Charentes, CH Niort, Niort, France
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - David E Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Eric Hahnen
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas V O Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jan Hauke
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julia Hentschel
- Institute of Human Genetics, University Hospital Leipzig, Leipzig, Germany
| | - Natalie Herold
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ellen Honisch
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter J Hulick
- Center for Medical Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | | | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Louise Izatt
- Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Angel Izquierdo
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), ONCOBELL-IDIBELL-IGTP, CIBERONC, Barcelona, Spain
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Paul A James
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| | - Ramunas Janavicius
- Faculty of Medicine, Institute of Biomedical Sciences, Dept. Of Human and Medical Genetics, Vilnius University, Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Esther M John
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Vijai Joseph
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Beth Y Karlan
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Zoe Kemp
- Breast and Cancer Genetics Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Judy Kirk
- Familial Cancer Service, Weatmead Hospital, Wentworthville, New South Wales, Australia
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Marco Koudijs
- Department of Medical Genetics, University Medical Center, Utrecht, The Netherlands
| | - Ava Kwong
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, China
- Department of Surgery, The University of Hong Kong, Hong Kong, China
- Department of Surgery and Cancer Genetics Center, Hong Kong Sanatorium and Hospital, Hong Kong, China
| | - Yael Laitman
- The Susanne Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Fiona Lalloo
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Christine Lasset
- Unité de Prévention et d'Epidémiologie Génétique, Centre Léon Bérard, Lyon, France
| | - Charlotte Lautrup
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus N, Denmark
| | - Conxi Lazaro
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), ONCOBELL-IDIBELL-IGTP, CIBERONC, Barcelona, Spain
| | | | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Fabienne Lesueur
- Genetic Epidemiology of Cancer team, Inserm U900, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - Phuong L Mai
- Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Véronique Mari
- Département d'Hématologie-Oncologie Médicale, Centre Antoine Lacassagne, Nice, France
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Lesley McGuffog
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Noura Mebirouk
- Genetic Epidemiology of Cancer team, Inserm U900, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - Alfons Meindl
- Department of Gynecology and Obstetrics, University of Munich, Campus Großhadern, Munich, Germany
| | - Austin Miller
- NRG Oncology, Statistics and Data Management Center, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Lidia Moserle
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | | | - Hannah Musgrave
- Department of Clinical Genetics, Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, UK
| | - Sophie Nambot
- Unité d'oncogénétique, Centre de Lutte Contre le Cancer, Centre Georges-François Leclerc, Dijon, France
| | - Katherine L Nathanson
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Joanne Ngeow Yuen Yie
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Cancer Genetics Service, National Cancer Centre, Singapore, Singapore
| | - Tu Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edith Olah
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | | | - Ana Osorio
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO) and Spanish Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Claus-Eric Ott
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Michael T Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Inge Sokilde Pedersen
- Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ana Peixoto
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - Pedro Perez-Segura
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM ETS - the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Timea Pocza
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Juliane Ramser
- Division of Gynaecology and Obstetrics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | | | - Gustavo C Rodriguez
- Division of Gynecologic Oncology, NorthShore University HealthSystem, University of Chicago, Evanston, IL, USA
| | - Karina Rønlund
- Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle Hospital, Vejle, Denmark
| | - Efraim H Rosenberg
- Department of Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Maria Rossing
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rita K Schmutzler
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Payal D Shah
- Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Saba Sharif
- West Midlands Regional Genetics Service, Birmingham Women's Hospital Healthcare NHS Trust, Birmingham, UK
| | - Priyanka Sharma
- Department of Internal Medicine, Division of Medical Oncology, University of Kansas Medical Center, Westwood, KS, USA
| | | | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Christian F Singer
- Dept of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Katie Snape
- Medical Genetics Unit, St George's, University of London, London, UK
| | - Doris Steinemann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Dominique Stoppa-Lyonnet
- Service de Génétique, Institut Curie, Paris, France
- Department of Tumour Biology, INSERM U830, Paris, France
- Université Paris Cité, Paris, France
| | - Christian Sutter
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Yen Yen Tan
- Dept of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
- Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Soo Hwang Teo
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odence C, Denmark
| | - Darcy L Thull
- Department of Medicine, Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marc Tischkowitz
- Program in Cancer Genetics, Departments of Human Genetics and Oncology, McGill University, Montréal, QC, Canada
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Alison H Trainer
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Department of medicine, University Of Melbourne, Melbourne, Victoria, Australia
| | - Vishakha Tripathi
- South East Thames Regional Genetics Service, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Nadine Tung
- Department of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Klaartje van Engelen
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Ana Vega
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Alessandra Viel
- Division of Functional onco-genomics and genetics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Lisa Walker
- Oxford Regional Genetics Service, Churchill Hospital, Oxford, UK
| | - Jeffrey N Weitzel
- Latin American School of Oncology, Tuxtla Gutiérrez, Chiapas, Mexico
| | | | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
9
|
Liu T, Wang X, Guo W, Shao F, Li Z, Zhou Y, Zhao Z, Xue L, Feng X, Li Y, Tan F, Zhang K, Xue Q, Gao S, Gao Y, He J. RNA Sequencing of Tumor-Educated Platelets Reveals a Three-Gene Diagnostic Signature in Esophageal Squamous Cell Carcinoma. Front Oncol 2022; 12:824354. [PMID: 35615147 PMCID: PMC9124963 DOI: 10.3389/fonc.2022.824354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/29/2022] [Indexed: 12/24/2022] Open
Abstract
There is no cost-effective, accurate, and non-invasive method for the detection of esophageal squamous cell carcinoma (ESCC) in clinical practice. We aimed to investigate the diagnostic potential of tumor-educated platelets in ESCC. In this study, seventy-one ESCC patients and eighty healthy individuals were enrolled and divided into a training cohort (23 patients and 27 healthy individuals) and a validation cohort (48 patients and 53 healthy individuals). Next-generation RNA sequencing was performed on platelets isolated from peripheral blood of all participants, and a support vector machine/leave-one-out cross validation (SVM/LOOCV) approach was used for binary classification. A diagnostic signature composed of ARID1A, GTF2H2, and PRKRIR discriminated ESCC patients from healthy individuals with 91.3% sensitivity and 85.2% specificity in the training cohort and 87.5% sensitivity and 81.1% specificity in the validation cohort. The AUC was 0.924 (95% CI, 0.845–0.956) and 0.893 (95% CI, 0.821–0.966), respectively, in the training cohort and validation cohort. This 3-gene platelet RNA signature could effectively discriminate ESCC from healthy control. Our data highlighted the potential of tumor-educated platelets for the noninvasive diagnosis of ESCC. Moreover, we found that keratin and collagen protein families and ECM-related pathways might be involved in tumor progression and metastasis of ESCC, which might provide insights to understand ESCC pathobiology and advance novel therapeutics.
Collapse
Affiliation(s)
- Tiejun Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Shao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Cancer Institute of the Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Zitong Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihong Zhao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yin Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Zhang
- Department of Medical Examination for Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yibo Gao, ; Jie He,
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yibo Gao, ; Jie He,
| |
Collapse
|
10
|
Molina-Ortiz D, Torres-Zárate C, Santes-Palacios R. Human Orphan Cytochromes P450: An Update. Curr Drug Metab 2022; 23:942-963. [PMID: 36503398 DOI: 10.2174/1389200224666221209153032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022]
Abstract
Orphan cytochromes P450 (CYP) are enzymes whose biological functions and substrates are unknown. However, the use of new experimental strategies has allowed obtaining more information about their relevance in the metabolism of endogenous and exogenous compounds. Likewise, the modulation of their expression and activity has been associated with pathogenesis and prognosis in different diseases. In this work, we review the regulatory pathways and the possible role of orphan CYP to provide evidence that allow us to stop considering some of them as orphan enzymes and to propose them as possible therapeutic targets in the design of new strategies for the treatment of diseases associated with CYP-mediated metabolism.
Collapse
Affiliation(s)
- Dora Molina-Ortiz
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| | - Carmen Torres-Zárate
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| | - Rebeca Santes-Palacios
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| |
Collapse
|
11
|
Na Z, Fan L, Wang X. Gene Signatures and Prognostic Values of N6-Methyladenosine Related Genes in Ovarian Cancer. Front Genet 2021; 12:542457. [PMID: 34484284 PMCID: PMC8416414 DOI: 10.3389/fgene.2021.542457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/19/2021] [Indexed: 12/29/2022] Open
Abstract
N6-Methyladenosine (m6A) is one of the most prominent modification regulating RNA processing and metabolism. Increasing studies have illuminated the vital role of m6A methylation in carcinogenesis. However, little is known about the interaction between m6A-related genes and survival of ovarian cancer (OC) patients. The purpose of this study was to obtain more reliable m6A-related genes that could be used as prognostic markers of OC using bioinformatics analysis performed on the RNA-seq data of OC. Gene expression datasets of all m6A-related genes as well as corresponding clinical data were obtained from the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) databases. We detected differential expressed m6A-related candidate genes as well as their relationship and interaction. m6A RNA methylation regulator ALKBH5 and 35 m6A-related genes are dysregulated in OC. A gene set that could be used as a potential independent prognostic risk feature was further screened including NEBL, PDGFRA, WDR91, and ZBTB4. The results of mRNA expression analysis by PCR were consistent with those of bioinformatics analysis. We applied consensus clustering analysis on the expression of the four prognostic genes and obtained four OC subgroups TM1-TM4. There were significant differences in age, stage and grade among the subgroups, and the overall survival (OS) as well as Disease-free survival (DFS) of TM2 group were shorter than those of the other three groups. Further GO and KEGG enrichment analysis indicated that these differential genes were closely related to biological processes and key signaling pathways involved in OC. In summary, our study has indicated that m6A-related genes are key factors in the progression of OC and have potential effects on the prognostic stratification of OC and the development of treatment strategies.
Collapse
Affiliation(s)
- Zhijing Na
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ling Fan
- Nursing Department, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiuxia Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Lange M, Begolli R, Giakountis A. Non-Coding Variants in Cancer: Mechanistic Insights and Clinical Potential for Personalized Medicine. Noncoding RNA 2021; 7:47. [PMID: 34449663 PMCID: PMC8395730 DOI: 10.3390/ncrna7030047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 12/11/2022] Open
Abstract
The cancer genome is characterized by extensive variability, in the form of Single Nucleotide Polymorphisms (SNPs) or structural variations such as Copy Number Alterations (CNAs) across wider genomic areas. At the molecular level, most SNPs and/or CNAs reside in non-coding sequences, ultimately affecting the regulation of oncogenes and/or tumor-suppressors in a cancer-specific manner. Notably, inherited non-coding variants can predispose for cancer decades prior to disease onset. Furthermore, accumulation of additional non-coding driver mutations during progression of the disease, gives rise to genomic instability, acting as the driving force of neoplastic development and malignant evolution. Therefore, detection and characterization of such mutations can improve risk assessment for healthy carriers and expand the diagnostic and therapeutic toolbox for the patient. This review focuses on functional variants that reside in transcribed or not transcribed non-coding regions of the cancer genome and presents a collection of appropriate state-of-the-art methodologies to study them.
Collapse
Affiliation(s)
- Marios Lange
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Rodiola Begolli
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
- Institute for Fundamental Biomedical Research, B.S.R.C “Alexander Fleming”, 34 Fleming Str., 16672 Vari, Greece
| |
Collapse
|
13
|
Al-Ward H, Liu CY, Liu N, Shaher F, Al-Nusaif M, Mao J, Xu H. Voltage-Gated Sodium Channel β1 Gene: An Overview. Hum Hered 2021; 85:101-109. [PMID: 34038903 DOI: 10.1159/000516388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/01/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Voltage-gated sodium channels are protein complexes composed of 2 subunits, namely, pore-forming α- and regulatory β-subunits. A β-subunit consists of 5 proteins encoded by 4 genes (i.e., SCN1B-SCN4B). SUMMARY β1-Subunits regulate sodium ion channel functions, including gating properties, subcellular localization, and kinetics. Key Message: Sodium channel β1- and its variant β1B-subunits are encoded by SCN1B. These variants are associated with many human diseases, such as epilepsy, Brugada syndrome, Dravet syndrome, and cancers. On the basis of previous research, we aimed to provide an overview of the structure, expression, and involvement of SCN1B in physiological processes and focused on its role in diseases.
Collapse
Affiliation(s)
- Hisham Al-Ward
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| | - Chun-Yang Liu
- Department of Biochemistry and Molecular Biology, Ankang University School of Medicine, Ankang, China
| | - Ning Liu
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| | - Fahmi Shaher
- Department of Pathophysiology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| | - Murad Al-Nusaif
- Department of Neurology, Dalian Medical University, Dalian, China
| | - Jing Mao
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| | - Hui Xu
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| |
Collapse
|
14
|
Yan N, Liu C, Tian F, Wang L, Wang Y, Yang Z, Jiao Y, He M. Downregulated mRNA Expression of ZNF385B Is an Independent Predictor of Breast Cancer. Int J Genomics 2021; 2021:4301802. [PMID: 33614780 PMCID: PMC7876827 DOI: 10.1155/2021/4301802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/13/2020] [Accepted: 01/07/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND ZNF385B, a zinc finger protein, has been known as a potential biomarker in some neurological and hematological studies recently. Although numerous studies have demonstrated the potential function of zinc finger proteins in tumor progression, the effects of ZNF385B in breast cancer (BC) are less studied. METHODS The Oncomine database and "ESurv" tool were used to explore the differential expression of ZNF385B in pan-cancer. Furthermore, data of patients with BC were downloaded from The Cancer Genome Atlas (TCGA). The receiver operating characteristic (ROC) curve of ZNF385B expression was established to explore the diagnostic value of ZNF385B and to obtain the cut-off value of high or low ZNF385B expression in BC. The chi-square test as well as Fisher exact test was used for identification of the relationships between clinical features and ZNF385B expression. Furthermore, the effects of ZNF385B on BC patients' survival were evaluated by the Kaplan-Meier and Cox regression. Data from the Gene Expression Omnibus (GEO) database were employed to validate the results of TCGA. Protein expression of ZNF385B in BC patient specimens was detected by immunohistochemistry (IHC) staining. RESULTS ZNF385B expression was downregulated in most types of cancer including BC. Low ZNF385B expression was related with survival status, overall survival (OS), and recurrence of BC. ZNF385B had modest diagnostic value, which is indicated by the area under the ROC curve (AUC = 0.671). Patients with lower ZNF385B expression had shorter OS and RFS (relapse-free survival). It had been demonstrated that low ZNF385B expression represented independent prognostic value for OS and RFS by multivariate survival analysis. The similar results were verified by datasets from the GEO database as well. The protein expression of ZNF385B was decreased in patients' samples compared with adjacent tissues by IHC. CONCLUSIONS Low ZNF385B expression was an independent predictor for worse prognosis of BC patients.
Collapse
Affiliation(s)
- Ning Yan
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Cong Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Fang Tian
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Ling Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Yimin Wang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Zhaoying Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Miao He
- Department of Anesthesia, The Second Hospital of Jilin University, Changchun, Jilin 130022, China
| |
Collapse
|
15
|
El Ansari FZ, Jouali F, Marchoudi N, Bennani MM, Ghailani NN, Barakat A, Fekkak J. Screening of BRCA1/2 genes mutations and copy number variations in patients with high risk for hereditary breast and ovarian cancer syndrome (HBOC). BMC Cancer 2020; 20:747. [PMID: 32778078 PMCID: PMC7418307 DOI: 10.1186/s12885-020-07250-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background Hereditary breast and ovarian cancer (HBOC) is an autosomal dominant inherited cancer susceptibility disorder. Both BRCA1 and BRCA2 genes are considered as high penetrance genes of this syndrome. The identification of BRCA1/2 genetic alterations before cancer development, grant patients the chance to benefit from various medical cancer prevention approaches. Therefore, the appearance of recent advanced technologies in molecular analysis such as next generation sequencing has simplified full BRCA1/2 analysis. Many attempts took place in hope of understanding the molecular germline spectrum of these two genes in Moroccan HBOC patients. However, most of the past projects focused only on young breast cancer cases, lacked ovarian cancer cases in their cohort and only a limited number of these studies were able to analyze the entire exons or copy number variations for both genes. In attempt of gaining more information regarding the molecular profile of BRCA1/2 in HBOC, we conducted a study in which we analyze their molecular profile on selected Moroccan patients suspected of having HBOC syndrome. Methods In this study we obtained blood samples from 64 selected Moroccan patients, who suffered from Breast and/or ovarian cancer and had a strong family history for cancer. To analyze BRCA1/2 punctual variants and copy number variations, we used the Ion Personal Genome Machine (PGM) and Oncomine BRCA1/2 research assay panel. Afterward, we correlated the molecular results with the clinic-pathologic data using IBM SPSS Statistics ver 2. Results From the 64 selected cases, Forty-six had breast cancer, fifteen had ovarian cancer and three had both breast and ovarian cancer. The molecular analysis revealed that 18 patients from the 64 harbored a pathogenic variant (28%). Twelve had six different BRCA1 pathogenic variants and six had six different BRCA2 pathogenic variants. In this study, we report four pathogenic variants that to the best of our knowledge has never been reported in the Moroccan population before. Regarding copy number variation analysis, No CNV was detected in both genes for all the 64 successfully sequenced and analyzed patients in our cohort. Conclusion Work like the present has an important implication on public health and science. It is critical that molecular profiling studies are performed on underserved and understudied population like Morocco.
Collapse
Affiliation(s)
- Fatima Zahra El Ansari
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, University Abdelmalek Essaâdi, 90000, Tangier, Morocco. .,Molecular Biology Department, ANOUAL Laboratory, Casablanca, Morocco.
| | - Farah Jouali
- Molecular Biology Department, ANOUAL Laboratory, Casablanca, Morocco
| | - Nabila Marchoudi
- Molecular Biology Department, ANOUAL Laboratory, Casablanca, Morocco
| | - Mohcine Mechita Bennani
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, University Abdelmalek Essaâdi, 90000, Tangier, Morocco
| | - Naima Nourouti Ghailani
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, University Abdelmalek Essaâdi, 90000, Tangier, Morocco
| | - Amina Barakat
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, University Abdelmalek Essaâdi, 90000, Tangier, Morocco
| | - Jamal Fekkak
- Molecular Biology Department, ANOUAL Laboratory, Casablanca, Morocco
| |
Collapse
|
16
|
Zheng M, Hu Y, Gou R, Wang J, Nie X, Li X, Liu Q, Liu J, Lin B. Integrated multi-omics analysis of genomics, epigenomics, and transcriptomics in ovarian carcinoma. Aging (Albany NY) 2020; 11:4198-4215. [PMID: 31257224 PMCID: PMC6629004 DOI: 10.18632/aging.102047] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022]
Abstract
In this study, we identified prognostic biomarkers in ovarian carcinoma by integrating multi-omics DNA copy number variation (CNV) and methylation variation (MET) data. CNV, MET, and messenger RNA (mRNA) expression were examined in 351 ovarian carcinoma patients. Genes for which expression was correlated with DNA copy-number or DNA methylation were identified; three ovarian carcinoma gene subtypes were defined based on these correlations. Overall survival and B cell scores were lower, while the macrophage cell score was higher, in the DNA imprinting centre 1 (iC1) subtype than in the iC2 and iC3 subtypes. Comparison of CNV, MET, and mRNA expression among the subtypes identified two genes, ubiquitin B (UBB) and interleukin 18 binding protein (IL18BP), that were associated with prognosis. Mutation spectrum results based on subtype indicated that UBB and IL18BP expression may be influenced by mutation loci. Mutation levels were higher in iC1 samples than in iC2 or iC3 samples, indicating that the iC1 subtype is associated with disease progression. This integrated multi-omics analysis of genomics, epigenomics, and transcriptomics provides new insight into the molecular mechanisms of ovarian carcinoma and may help identify biomolecular markers for early disease diagnosis.
Collapse
Affiliation(s)
- Mingjun Zheng
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Yuexin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Rui Gou
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Xin Nie
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Qing Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| |
Collapse
|
17
|
Molecular karyotyping and gene expression analysis in childhood cancer patients. J Mol Med (Berl) 2020; 98:1107-1123. [PMID: 32577795 PMCID: PMC7769790 DOI: 10.1007/s00109-020-01937-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/20/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Abstract The genetic etiology of sporadic childhood cancer cases remains unclear. We recruited a cohort of 20 patients who survived a childhood malignancy and then developed a second primary cancer (2N), and 20 carefully matched patients who survived a childhood cancer without developing a second malignancy (1N). Twenty matched cancer-free (0N) and additional 1000 (0N) GHS participants served as controls. Aiming to identify new candidate loci for cancer predisposition, we compared the genome-wide DNA copy number variations (CNV) with the RNA-expression data obtained after in vitro irradiation of primary fibroblasts. In 2N patients, we detected a total of 142 genes affected by CNV. A total of 53 genes of these were not altered in controls. Six genes (POLR3F, SEC23B, ZNF133, C16orf45, RRN3, and NTAN1) that we found to be overexpressed after irradiation were also duplicated in the genome of the 2N patients. For the 1N collective, 185 genes were affected by CNV and 38 of these genes were not altered in controls. Five genes (ZCWPW2, SYNCRIP, DHX30, DHRS4L2, and THSD1) were located in duplicated genomic regions and exhibited altered RNA expression after irradiation. One gene (ABCC6) was partially duplicated in one 1N and one 2N patient. Analysis of methylation levels of THSD1 and GSTT2 genes which were detected in duplicated regions and are frequently aberrantly methylated in cancer showed no changes in patient’s fibroblasts. In summary, we describe rare and radiation-sensitive genes affected by CNV in childhood sporadic cancer cases, which may have an impact on cancer development. Key messages • Rare CNV’s may have an impact on cancer development in sporadic, non-familial, non-syndromic childhood cancer cases. • In our cohort, each patient displayed a unique pattern of cancer-related gene CNVs, and only few cases shared similar CNV. • Genes that are transcriptionally regulated after radiation can be located in CNVs in cancer patients and controls. • THSD1 and GSTT2 methylation is not altered by CNV. Electronic supplementary material The online version of this article (10.1007/s00109-020-01937-4) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Qian JX, Yu M, Sun Z, Jiang AM, Long B. A 17-gene expression-based prognostic signature associated with the prognosis of patients with breast cancer: A STROBE-compliant study. Medicine (Baltimore) 2020; 99:e19255. [PMID: 32282693 PMCID: PMC7220332 DOI: 10.1097/md.0000000000019255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Identification of reliable predictive biomarkers for patients with breast cancer (BC).Univariate Cox proportional hazards regression model was conducted to identify genes correlated with the overall survival (OS) of patients in the TCGA-BRCA cohort. Functional enrichment analysis was conducted to investigate the biological meaning of these survival related genes. Then, patients in TCGA-BCRA were randomly divided into training set and test. Least absolute shrinkage and selection operator (LASSO) penalized Cox regression model was performed and the risk score of BC patients in this model was used to build a prognostic signature. The prognostic performance of the signature was evaluated in the training set, test set, and an independent validation set GSE7390.2519 genes were demonstrated to be significantly associated with the OS of BC patients. Functional annotation of the 2519 genes suggested that these genes were associated with immune response and protein synthesis related gene ontology terms and pathways. 17 genes were identified in the LASSO Cox regression model and used to construct a 17-gene signature. Patients in the 17-gene signature low risk group have better OS and event-free survival compared with those in the 17-gene signature high risk group in the TCGA-BRCA cohort. The prognostic role of the 17-gene signature has been confirmed in the validation cohort. Multivariable Cox proportional hazards regression model suggested the 17-gene signature was an independent prognostic factor in BC.The 17-gene signature we developed could successfully classify patients into high- and low-risk groups, indicating that it might serve as candidate biomarker in BC.
Collapse
Affiliation(s)
- Jin-Xian Qian
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, People's Republic of China
| | - Min Yu
- Yangtze University, Jingzhou Central Hospital, Galactophore Department, The Second Clinical Medical College, Jingzhou, People's Republic of China
| | - Zhe Sun
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, People's Republic of China
| | - Ai-Mei Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, People's Republic of China
| | - Bo Long
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
19
|
Reid BM, Permuth JB, Chen YA, Fridley BL, Iversen ES, Chen Z, Jim H, Vierkant RA, Cunningham JM, Barnholtz-Sloan JS, Narod S, Risch H, Schildkraut JM, Goode EL, Monteiro AN, Sellers TA. Genome-wide Analysis of Common Copy Number Variation and Epithelial Ovarian Cancer Risk. Cancer Epidemiol Biomarkers Prev 2019; 28:1117-1126. [PMID: 30948450 DOI: 10.1158/1055-9965.epi-18-0833] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/02/2018] [Accepted: 03/28/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Germline DNA copy number variation (CNV) is a ubiquitous source of genetic variation and remains largely unexplored in association with epithelial ovarian cancer (EOC) risk. METHODS CNV was quantified in the DNA of approximately 3,500 cases and controls genotyped with the Illumina 610k and HumanOmni2.5M arrays. We performed a genome-wide association study of common (>1%) CNV regions (CNVRs) with EOC and high-grade serous (HGSOC) risk and, using The Cancer Genome Atlas (TCGA), performed in silico analyses of tumor-gene expression. RESULTS Three CNVRs were associated (P < 0.01) with EOC risk: two large (∼100 kb) regions within the 610k set and one small (<5 kb) region with the higher resolution 2.5M data. Large CNVRs included a duplication at LILRA6 (OR = 2.57; P = 0.001) and a deletion at CYP2A7 (OR = 1.90; P = 0.007) that were strongly associated with HGSOC risk (OR = 3.02; P = 8.98 × 10-5). Somatic CYP2A7 alterations correlated with EGLN2 expression in tumors (P = 2.94 × 10-47). An intronic ERBB4/HER4 deletion was associated with reduced EOC risk (OR = 0.33; P = 9.5 × 10-2), and somatic deletions correlated with ERBB4 downregulation (P = 7.05 × 10-5). Five CNVRs were associated with HGSOC, including two reduced-risk deletions: one at 1p36.33 (OR = 0.28; P = 0.001) that correlated with lower CDKIIA expression in TCGA tumors (P = 2.7 × 10-7), and another at 8p21.2 (OR = 0.52; P = 0.002) that was present somatically where it correlated with lower GNRH1 expression (P = 5.9 × 10-5). CONCLUSIONS Though CNV appears to not contribute largely to EOC susceptibility, a number of low-to-common frequency variants may influence the risk of EOC and tumor-gene expression. IMPACT Further research on CNV and EOC susceptibility is warranted, particularly with CNVs estimated from high-density arrays.
Collapse
Affiliation(s)
- Brett M Reid
- Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Y Ann Chen
- Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | | | - Zhihua Chen
- Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Heather Jim
- Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | | | | | - Steven Narod
- Center for Research in Women's Health, Toronto, Ontario, Canada
| | - Harvey Risch
- Yale School of Public Health, New Haven, Connecticut
| | | | - Ellen L Goode
- Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | | |
Collapse
|
20
|
Gómez-Acebo I, Dierssen-Sotos T, Palazuelos C, Fernández-Navarro P, Castaño-Vinyals G, Alonso-Molero J, Urtiaga C, Fernández-Villa T, Ardanaz E, Rivas-del-Fresno M, Molina-Barceló A, Jiménez-Moleón JJ, García-Martinez L, Amiano P, Rodriguez-Cundin P, Moreno V, Pérez-Gómez B, Aragonés N, Kogevinas M, Pollán M, Llorca J. Pigmentation phototype and prostate and breast cancer in a select Spanish population-A Mendelian randomization analysis in the MCC-Spain study. PLoS One 2018; 13:e0201750. [PMID: 30106959 PMCID: PMC6091948 DOI: 10.1371/journal.pone.0201750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Phototype has been associated with an increased risk of prostate cancer, and it is yet unknown if it is related to other hormone-dependent cancers, such as breast cancer or whether this association could be considered causal. METHODS We examined the association between the phototype and breast and prostate cancers using a Mendelian randomization analysis. We studied 1,738 incident cases of breast cancer and another 817 cases of prostate cancer. To perform a Mendelian randomization analysis on the phototype-cancer relationship, a genetic pigmentation score was required that met the following criteria: (1) the genetic pigmentation score was associated with phototype in controls; (2) the genetic pigmentation score was not associated with confounders in the relationship between phototype and cancer, and (3) the genetic pigmentation score was associated with cancer only through its association with phototype. Once this genetic score is available, the association between genetic pigmentation score and cancer can be identified as the association between phototype and cancer. RESULTS The association between the genetic pigmentation score and phototype in controls showed that a higher genetic pigmentation score was associated with fair skin, blond hair, blue eyes and the presence of freckles. Applying the Mendelian randomization analysis, we verified that there was no association between the genetic pigmentation score and cancers of the breast and prostate. CONCLUSIONS Phototype is not associated with breast or prostate cancer.
Collapse
Affiliation(s)
- Inés Gómez-Acebo
- CIBER Epidemiología y Salud Pública (CIBERESP),Spain
- University of Cantabria–IDIVAL, Santander, Spain
- * E-mail:
| | - Trinidad Dierssen-Sotos
- CIBER Epidemiología y Salud Pública (CIBERESP),Spain
- University of Cantabria–IDIVAL, Santander, Spain
| | | | - Pablo Fernández-Navarro
- CIBER Epidemiología y Salud Pública (CIBERESP),Spain
- Cancer and Environmental Epidemiology Unit, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Cancer Epidemiology Research Group, Oncology and Hematology Area, IIS Puerta de Hierro (IDIPHIM), Madrid, Spain
| | - Gemma Castaño-Vinyals
- CIBER Epidemiología y Salud Pública (CIBERESP),Spain
- ISGlobal Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| | | | - Carmen Urtiaga
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, San Sebastian, Spain
| | - Tania Fernández-Villa
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud, Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain
| | - Eva Ardanaz
- CIBER Epidemiología y Salud Pública (CIBERESP),Spain
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | | | - Ana Molina-Barceló
- Área de Cáncer y Salud Pública, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO-Salud Pública), Valencia, Spain
| | - José-Juan Jiménez-Moleón
- CIBER Epidemiología y Salud Pública (CIBERESP),Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Lidia García-Martinez
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud, Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain
| | - Pilar Amiano
- CIBER Epidemiología y Salud Pública (CIBERESP),Spain
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, San Sebastian, Spain
| | | | - Víctor Moreno
- CIBER Epidemiología y Salud Pública (CIBERESP),Spain
- Cancer Prevention and Control Program, Catalan Institute of Oncology-IDIBELL, L’Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Beatriz Pérez-Gómez
- CIBER Epidemiología y Salud Pública (CIBERESP),Spain
- Cancer and Environmental Epidemiology Unit, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Cancer Epidemiology Research Group, Oncology and Hematology Area, IIS Puerta de Hierro (IDIPHIM), Madrid, Spain
| | - Nuria Aragonés
- CIBER Epidemiología y Salud Pública (CIBERESP),Spain
- Subdirección General de Epidemiología, Dirección General de Salud Pública, Consejería de Sanidad, Comunidad de Madrid, Spain
| | - Manolis Kogevinas
- CIBER Epidemiología y Salud Pública (CIBERESP),Spain
- ISGlobal Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
- School of Public Health, Athens, Greece
| | - Marina Pollán
- CIBER Epidemiología y Salud Pública (CIBERESP),Spain
- Cancer and Environmental Epidemiology Unit, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Cancer Epidemiology Research Group, Oncology and Hematology Area, IIS Puerta de Hierro (IDIPHIM), Madrid, Spain
| | - Javier Llorca
- CIBER Epidemiología y Salud Pública (CIBERESP),Spain
- University of Cantabria–IDIVAL, Santander, Spain
| |
Collapse
|
21
|
Validating a breast cancer score in Spanish women. The MCC-Spain study. Sci Rep 2018; 8:3036. [PMID: 29445177 PMCID: PMC5813036 DOI: 10.1038/s41598-018-20832-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/23/2018] [Indexed: 12/31/2022] Open
Abstract
A breast-risk score, published in 2016, was developed in white-American women using 92 genetic variants (GRS92), modifiable and non-modifiable risk factors. With the aim of validating the score in the Spanish population, 1,732 breast cancer cases and 1,910 controls were studied. The GRS92, modifiable and non-modifiable risk factor scores were estimated via logistic regression. SNPs without available genotyping were simulated as in the aforementioned 2016 study. The full model score was obtained by combining GRS92, modifiable and non-modifiable risk factor scores. Score performances were tested via the area under the ROC curve (AUROC), net reclassification index (NRI) and integrated discrimination improvement (IDI). Compared with non-modifiable and modifiable factor scores, GRS92 had higher discrimination power (AUROC: 0.6195, 0.5885 and 0.5214, respectively). Adding the non-modifiable factor score to GRS92 improved patient classification by 23.6% (NRI = 0.236), while the modifiable factor score only improved it by 7.2%. The full model AUROC reached 0.6244. A simulation study showed the ability of the full model for identifying women at high risk for breast cancer. In conclusion, a model combining genetic and risk factors can be used for stratifying women by their breast cancer risk, which can be applied to individualizing genetic counseling and screening recommendations.
Collapse
|
22
|
Thean LF, Low YS, Lo M, Teo YY, Koh WP, Yuan JM, Chew MH, Tang CL, Cheah PY. Genome-wide association study identified copy number variants associated with sporadic colorectal cancer risk. J Med Genet 2017; 55:181-188. [DOI: 10.1136/jmedgenet-2017-104913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/19/2017] [Accepted: 10/11/2017] [Indexed: 12/18/2022]
Abstract
BackgroundMultiple single nucleotide polymorphisms (SNPs) have been associated with colorectal cancer (CRC) risk. The role of structural or copy number variants (CNV) in CRC, however, remained unclear. We investigated the role of CNVs in patients with sporadic CRC.MethodsA genome-wide association study (GWAS) was performed on 1000 Singapore Chinese patients aged 50 years or more with no family history of CRC and 1000 ethnicity-matched, age-matched and gender-matched healthy controls using the Affymetrix SNP 6 platform. After 16 principal component corrections, univariate and multivariate segmentations followed by association testing were performed on 1830 samples that passed quality assurance tests.ResultsA rare CNV region (CNVR) at chromosome 14q11 (OR=1.92 (95% CI 1.59 to 2.32), p=2.7e-12) encompassing CHD8, and common CNVR at chromosomes 3q13.12 (OR=1.54 (95% CI 1.33 to 1.77), p=2.9e-9) and 12p12.3 (OR=1.69 (95% CI 1.41 to 2.01), p=2.8e-9) encompassing CD47 and RERG/ARHGDIB, respectively, were significantly associated with CRC risk. CNV loci were validated in an independent replication panel using an optimised copy number assay. Whole-genome expression data in matched tumours of a subset of cases demonstrated that copy number loss at CHD8 was significantly associated with dysregulation of several genes that perturb the Wnt, TP53 and inflammatory pathways.ConclusionsA rare CNVR at 14q11 encompassing the chromatin modifier CHD8 was significantly associated with sporadic CRC risk. Copy number loss at CHD8 altered expressions of genes implicated in colorectal tumourigenesis.
Collapse
|
23
|
Deniz M, Romashova T, Kostezka S, Faul A, Gundelach T, Moreno-Villanueva M, Janni W, Friedl TWP, Wiesmüller L. Increased single-strand annealing rather than non-homologous end-joining predicts hereditary ovarian carcinoma. Oncotarget 2017; 8:98660-98676. [PMID: 29228718 PMCID: PMC5716758 DOI: 10.18632/oncotarget.21720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 08/26/2017] [Indexed: 12/22/2022] Open
Abstract
Mutations in genes encoding DNA double-strand break (DSB) repair components, especially homologous recombination (HR) proteins, were found to predispose to breast and ovarian cancer. Beyond high penetrance risk gene mutations underlying monogenic defects, low risk gene mutations generate polygenic defects, enlarging the fraction of individuals with a predisposing phenotype. DSB repair dysfunction opens new options for targeted therapies; poly (ADP-ribose) polymerase (PARP) inhibitors have been approved for BRCA-mutated and platinum-responsive ovarian cancers. In this work, we performed functional analyses in peripheral blood lymphocytes (PBLs) using a case-control design. We examined 38 women with familial history of breast and/or ovarian cancer, 40 women with primary ovarian cancer and 34 healthy controls. Using a GFP-based test we analyzed error-prone DSB repair mechanisms which are known to compensate for HR defects and to generate chromosomal instabilities. While non-homologous end-joining (NHEJ) did not discriminate between cases and controls, we found increases of single-strand annealing (SSA) in women with familial risk vs. controls (P=0.016) and patients with ovarian cancer vs. controls (P=0.002). Consistent with compromised HR we also detected increased sensitivities to carboplatin in PBLs from high-risk individuals (P<0.0001) as well as patients (P=0.0011) compared to controls. Conversely, neither PARP inhibitor responses nor PARP activities were altered in PBLs from the case groups, but PARP activities increased with age in high-risk individuals, providing novel clues for differential drug mode-of-action. Our findings indicate the great potential of detecting SSA activities to deliver an estimate of ovarian cancer susceptibility and therapeutic responsiveness beyond the limitations of genotyping.
Collapse
Affiliation(s)
- Miriam Deniz
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Tatiana Romashova
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Sarah Kostezka
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Anke Faul
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Theresa Gundelach
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | | | - Wolfgang Janni
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Thomas W P Friedl
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| |
Collapse
|
24
|
Spira A, Yurgelun MB, Alexandrov L, Rao A, Bejar R, Polyak K, Giannakis M, Shilatifard A, Finn OJ, Dhodapkar M, Kay NE, Braggio E, Vilar E, Mazzilli SA, Rebbeck TR, Garber JE, Velculescu VE, Disis ML, Wallace DC, Lippman SM. Precancer Atlas to Drive Precision Prevention Trials. Cancer Res 2017; 77:1510-1541. [PMID: 28373404 PMCID: PMC6681830 DOI: 10.1158/0008-5472.can-16-2346] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
Cancer development is a complex process driven by inherited and acquired molecular and cellular alterations. Prevention is the holy grail of cancer elimination, but making this a reality will take a fundamental rethinking and deep understanding of premalignant biology. In this Perspective, we propose a national concerted effort to create a Precancer Atlas (PCA), integrating multi-omics and immunity - basic tenets of the neoplastic process. The biology of neoplasia caused by germline mutations has led to paradigm-changing precision prevention efforts, including: tumor testing for mismatch repair (MMR) deficiency in Lynch syndrome establishing a new paradigm, combinatorial chemoprevention efficacy in familial adenomatous polyposis (FAP), signal of benefit from imaging-based early detection research in high-germline risk for pancreatic neoplasia, elucidating early ontogeny in BRCA1-mutation carriers leading to an international breast cancer prevention trial, and insights into the intricate germline-somatic-immunity interaction landscape. Emerging genetic and pharmacologic (metformin) disruption of mitochondrial (mt) respiration increased autophagy to prevent cancer in a Li-Fraumeni mouse model (biology reproduced in clinical pilot) and revealed profound influences of subtle changes in mt DNA background variation on obesity, aging, and cancer risk. The elaborate communication between the immune system and neoplasia includes an increasingly complex cellular microenvironment and dynamic interactions between host genetics, environmental factors, and microbes in shaping the immune response. Cancer vaccines are in early murine and clinical precancer studies, building on the recent successes of immunotherapy and HPV vaccine immune prevention. Molecular monitoring in Barrett's esophagus to avoid overdiagnosis/treatment highlights an important PCA theme. Next generation sequencing (NGS) discovered age-related clonal hematopoiesis of indeterminate potential (CHIP). Ultra-deep NGS reports over the past year have redefined the premalignant landscape remarkably identifying tiny clones in the blood of up to 95% of women in their 50s, suggesting that potentially premalignant clones are ubiquitous. Similar data from eyelid skin and peritoneal and uterine lavage fluid provide unprecedented opportunities to dissect the earliest phases of stem/progenitor clonal (and microenvironment) evolution/diversity with new single-cell and liquid biopsy technologies. Cancer mutational signatures reflect exogenous or endogenous processes imprinted over time in precursors. Accelerating the prevention of cancer will require a large-scale, longitudinal effort, leveraging diverse disciplines (from genetics, biochemistry, and immunology to mathematics, computational biology, and engineering), initiatives, technologies, and models in developing an integrated multi-omics and immunity PCA - an immense national resource to interrogate, target, and intercept events that drive oncogenesis. Cancer Res; 77(7); 1510-41. ©2017 AACR.
Collapse
Affiliation(s)
- Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ludmil Alexandrov
- Theoretical Division, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Rafael Bejar
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Madhav Dhodapkar
- Department of Hematology and Immunology, Yale Cancer Center, New Haven, Connecticut
| | - Neil E Kay
- Department of Hematology, Mayo Clinic Hospital, Rochester, Minnesota
| | - Esteban Braggio
- Department of Hematology, Mayo Clinic Hospital, Phoenix, Arizona
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah A Mazzilli
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Timothy R Rebbeck
- Division of Hematology and Oncology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Victor E Velculescu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Mary L Disis
- Department of Medicine, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott M Lippman
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California.
| |
Collapse
|