1
|
Hong S, Wei H, Zhuang X, Huang W, Zhang Y. Prenatal diagnosis of a silver-russell syndrome caused by 11p15 duplication and pedigree analysis. Front Genet 2024; 15:1465521. [PMID: 39741906 PMCID: PMC11686225 DOI: 10.3389/fgene.2024.1465521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Silver-Russell syndrome (SRS) is an imprinting disorder characterized by intrauterine and postnatal growth retardation. The pathogenic alterations and phenotypes are heterogeneous. Methods Here, we present a rare pedigree of duplications with different methylation patterns in 11p15.5, which caused SRS or a normal phenotype across three generations. Results Duplications of maternal IC2 (copy number of 3) with enhanced methylation (methylation index of 0.62) resulted in typical SRS. Conclusion The result added to the complexity of the molecular genetics of SRS.
Collapse
Affiliation(s)
- Shurong Hong
- Department of Molecular Genetic Center, Zhangzhou Municipal Hospital Affiliated to Fujian Medical University, Zhangzhou, China
| | - Hua Wei
- Department of Molecular Genetic Center, Zhangzhou Municipal Hospital Affiliated to Fujian Medical University, Zhangzhou, China
| | - Xueyi Zhuang
- Department of Obstetrics, Zhangzhou Municipal Hospital Affiliated to Fujian Medical University, Zhangzhou, China
| | - Weirong Huang
- Department of Molecular Genetic Center, Zhangzhou Municipal Hospital Affiliated to Fujian Medical University, Zhangzhou, China
| | - Yu Zhang
- Department of Obstetrics, Zhangzhou Municipal Hospital Affiliated to Fujian Medical University, Zhangzhou, China
| |
Collapse
|
2
|
Stampone E, Bencivenga D, Dassi L, Sarnelli S, Campagnolo L, Lacconi V, Della Ragione F, Borriello A. p57 Kip2 Phosphorylation Modulates Its Localization, Stability, and Interactions. Int J Mol Sci 2024; 25:11176. [PMID: 39456957 PMCID: PMC11508627 DOI: 10.3390/ijms252011176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
p57Kip2 is a member of the cyclin-dependent kinase (CDK) Interacting Protein/Kinase Inhibitory Protein (CIP/Kip) family that also includes p21Cip1/WAF1 and p27Kip1. Different from its siblings, few data are available about the p57Kip2 protein, especially in humans. Structurally, p57Kip2 is an intrinsically unstructured protein, a characteristic that confers functional flexibility with multiple transient interactions influencing the metabolism and roles of the protein. Being an IUP, its localization, stability, and binding to functional partners might be strongly modulated by post-translational modifications, especially phosphorylation. In this work, we investigated by two-dimensional analysis the phosphorylation pattern of p57Kip2 in different cellular models, revealing how the human protein appears to be extensively phosphorylated, compared to p21Cip1/WAF1 and p27Kip1. We further observed clear differences in the phosphoisoforms distributed in the cytosolic and nuclear compartments in asynchronous and synchronized cells. Particularly, the unmodified form is detectable only in the nucleus, while the more acidic forms are present in the cytoplasm. Most importantly, we found that the phosphorylation state of p57Kip2 influences the binding with some p57Kip2 partners, such as CDKs, LIMK1 and CRM1. Thus, it is necessary to completely identify the phosphorylated residues of the protein to fully unravel the roles of this CIP/Kip protein, which are still partially identified.
Collapse
Affiliation(s)
- Emanuela Stampone
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| | - Debora Bencivenga
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| | - Luisa Dassi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| | - Sara Sarnelli
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy (V.L.)
| | - Valentina Lacconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy (V.L.)
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| |
Collapse
|
3
|
Romeo DJ, George AM, Sussman JH, Banala M, Wiemken A, Wu M, Ng JJ, Taylor JA, Schwab RJ, Cielo CM, Kalish JM. Morphometric measurements of intraoral anatomy in children with Beckwith-Wiedemann syndrome: a novel approach. Orphanet J Rare Dis 2024; 19:384. [PMID: 39420401 PMCID: PMC11483972 DOI: 10.1186/s13023-024-03350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND An easy-to-use tool to objectively measure intraoral anatomy with meaningful clinical correlations may improve care for patients with Beckwith-Wiedemann syndrome (BWS), who commonly have symptomatic macroglossia. METHODS Children aged 2-17 years with BWS were enrolled between 12/2021 and 01/2024. Digital intraoral photographs with a laser ruler were taken, and morphometric measurements were made using ImageJ software. Relationships between morphometrics and outcomes including BWS clinical score, percentage mosaicism, and incidence of tongue reduction surgery were examined using t-tests and multivariate linear models. RESULTS Pharyngeal morphometric measurements were obtained in 49 patients with BWS. Mouth area, width, and height differed significantly across BWS molecular subtypes. Right-to-left tongue width and mouth width were larger in those with loss of methylation at imprinting control region 2 (IC2 LOM) than other BWS variants. Patients with paternal uniparental isodisomy of chromosome 11p15 (pUPD11) had narrower mouths than others. Those with tongue reduction surgery had more tongue ridging than those without surgery. There were correlations between mouth area and BWS clinical score, tongue width and BWS clinical score, and tongue length and percentage mosaicism. CONCLUSION Intraoral morphometric measurements are associated with phenotypic burden in BWS. Tongue morphology varies across the BWS spectrum, with IC2 LOM having wider tongues and mouths, and pUPD11 having narrower mouths. Tongue ridging is more common in those selected for surgery. Intraoral morphometric measurements may be safely obtained at low costs across centers caring for children with BWS or others at risk of upper airway obstruction.
Collapse
Affiliation(s)
- Dominic J Romeo
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Andrew M George
- Division of Human Genetics, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Jonathan H Sussman
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Manisha Banala
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Andrew Wiemken
- Division of Sleep Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Meagan Wu
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Jinggang J Ng
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Jesse A Taylor
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Richard J Schwab
- Division of Sleep Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christopher M Cielo
- Division of Pulmonary & Sleep Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Jennifer M Kalish
- Division of Human Genetics, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Departments of Pediatrics and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Kurup U, Lim DBN, Palau H, Maharaj AV, Ishida M, Davies JH, Storr HL. Approach to the Patient With Suspected Silver-Russell Syndrome. J Clin Endocrinol Metab 2024; 109:e1889-e1901. [PMID: 38888172 PMCID: PMC11403326 DOI: 10.1210/clinem/dgae423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Silver-Russell syndrome (SRS) is a clinical diagnosis requiring the fulfillment of ≥ 4/6 Netchine-Harbison Clinical Scoring System (NH-CSS) criteria. A score of ≥ 4/6 NH-CSS (or ≥ 3/6 with strong clinical suspicion) warrants (epi)genetic confirmation, identifiable in ∼60% patients. The approach to the investigation and diagnosis of SRS is detailed in the only international consensus guidance, published in 2016. In the intervening years, the clinical, biochemical, and (epi)genetic characteristics of SRS have rapidly expanded, largely attributable to advancing molecular genetic techniques and a greater awareness of related disorders. The most common etiologies of SRS remain loss of methylation of chromosome 11p15 (11p15LOM) and maternal uniparental disomy of chromosome 7 (upd(7)mat). Rarer causes of SRS include monogenic pathogenic variants in imprinted (CDKN1C and IGF2) and non-imprinted (PLAG1 and HMGA2) genes. Although the age-specific NH-CSS can identify more common molecular causes of SRS, its use in identifying monogenic causes is unclear. Preliminary data suggest that NH-CSS is poor at identifying many of these cases. Additionally, there has been increased recognition of conditions with phenotypes overlapping with SRS that may fulfill NH-CSS criteria but have distinct genetic etiologies and disease trajectories. This group of conditions is frequently overlooked and under-investigated, leading to no or delayed diagnosis. Like SRS, these conditions are multisystemic disorders requiring multidisciplinary care and tailored management strategies. Early identification is crucial to improve outcomes and reduce the major burden of the diagnostic odyssey for patients and families. This article aims to enable clinicians to identify key features of rarer causes of SRS and conditions with overlapping phenotypes, show a logical approach to the molecular investigation, and highlight the differences in clinical management strategies.
Collapse
Affiliation(s)
- Uttara Kurup
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - David B N Lim
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Helena Palau
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Avinaash V Maharaj
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Miho Ishida
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Justin H Davies
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| |
Collapse
|
5
|
Urzua A, Catena S, Morales P, Lay-Son G. Silver-Russell syndrome-like features in a child with recombinant chromosome 11 derived from maternal pericentric inversion. Clin Dysmorphol 2024; 33:105-109. [PMID: 38818816 DOI: 10.1097/mcd.0000000000000483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Silver-Russell syndrome (SRS) is a well-known syndrome but with heterogeneous etiologies. We present the case of a child with severe SRS-like features resulting from a complex rearrangement of chromosome 11 inherited from his mother. We studied the index case with karyotyping, MS-MLPA and molecular karyotyping. The mother was studied with karyotyping and subtelomeric FISH. We found a child with marked developmental delay and fatal outcome due to failure to thrive, carrying an 11p15 duplication and an 11q25 deletion of maternal origin. We discovered that the mother was a carrier of a pericentric inversion of chromosome 11, with a history of recurrence in other family members who had severe growth retardation and early death. To our knowledge, no similar SRS-like cases have been described in the literature. This report supports the importance of identification the causative genetic mechanism in SRS-like individuals with duplication in 11p15 region due to high risk of recurrence and to provide an appropriate genetic counseling to the family.
Collapse
Affiliation(s)
- Abraham Urzua
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo
- Current affiliation: Laboratorio de Biología Molecular y Citogenética, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sofía Catena
- Jackson Memorial Hospital, University of Miami, USA
| | - Paulina Morales
- Laboratorio de Citogenética y Genética Molecular, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile
| | - Guillermo Lay-Son
- Hospital Padre Hurtado
- Unidad de Genética y Enfermedades Metabólicas, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Higashimoto K, Sun F, Imagawa E, Saida K, Miyake N, Hara S, Yatsuki H, Kubiura-Ichimaru M, Fujita A, Mizuguchi T, Matsumoto N, Soejima H. Whole-exome sequencing reveals causative genetic variants for several overgrowth syndromes in molecularly negative Beckwith-Wiedemann spectrum. J Med Genet 2024; 61:590-594. [PMID: 38228391 DOI: 10.1136/jmg-2023-109621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Background Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder caused by (epi)genetic alterations at 11p15. Because approximately 20% of patients test negative via molecular testing of peripheral blood leukocytes, the concept of Beckwith-Wiedemann spectrum (BWSp) was established to encompass a broader cohort with diverse and overlapping phenotypes. The prevalence of other overgrowth syndromes concealed within molecularly negative BWSp remains unexplored. Methods We conducted whole-exome sequencing (WES) on 69 singleton patients exhibiting molecularly negative BWSp. Variants were confirmed by Sanger sequencing or quantitative genomic PCR. We compared BWSp scores and clinical features between groups with classical BWS (cBWS), atypical BWS or isolated lateralised overgrowth (aBWS+ILO) and overgrowth syndromes identified via WES. Results Ten patients, one classified as aBWS and nine as cBWS, showed causative gene variants for Simpson-Golabi-Behmel syndrome (five patients), Sotos syndrome (two), Imagawa-Matsumoto syndrome (one), glycosylphosphatidylinositol biosynthesis defect 11 (one) or 8q duplication/9p deletion (one). BWSp scores did not distinguish between cBWS and other overgrowth syndromes. Birth weight and height in other overgrowth syndromes were significantly larger than in aBWS+ILO and cBWS, with varying intergroup frequencies of clinical features. Conclusion Molecularly negative BWSp encapsulates other syndromes, and considering both WES and clinical features may facilitate accurate diagnosis.
Collapse
Affiliation(s)
- Ken Higashimoto
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
| | - Feifei Sun
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Eri Imagawa
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Satoshi Hara
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
| | - Hitomi Yatsuki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
| | - Musashi Kubiura-Ichimaru
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
| |
Collapse
|
7
|
Klein Haneveld MJ, Hieltjes IJ, Langendam MW, Cornel MC, Gaasterland CMW, van Eeghen AM. Improving care for rare genetic neurodevelopmental disorders: A systematic review and critical appraisal of clinical practice guidelines using AGREE II. Genet Med 2024; 26:101071. [PMID: 38224026 DOI: 10.1016/j.gim.2024.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024] Open
Abstract
PURPOSE Rare genetic neurodevelopmental disorders associated with intellectual disability require lifelong multidisciplinary care. Clinical practice guidelines may support healthcare professionals in their daily practice, but guideline development for rare conditions can be challenging. In this systematic review, the characteristics and methodological quality of internationally published recommendations for this population are described to provide an overview of current guidelines and inform future efforts of European Reference Network ITHACA (Intellectual disability, TeleHealth, Autism, and Congenital Anomalies). METHODS MEDLINE, Embase, and Orphanet were systematically searched to identify guidelines for conditions classified as "rare genetic intellectual disability" (ORPHA:183757). Methodological quality was assessed using the Appraisal of Guidelines, Research, and Evaluation II tool. RESULTS Seventy internationally published guidelines, addressing the diagnosis and/or management of 28 conditions, were included. The methodological rigor of development was highly variable with limited reporting of literature searches and consensus methods. Stakeholder involvement and editorial independence varied as well. Implementation was rarely addressed. CONCLUSION Comprehensive, high-quality guidelines are lacking for many rare genetic neurodevelopmental disorders. Use and transparent reporting of sound development methodologies, active involvement of affected individuals and families, robust conflict of interest procedures, and attention to implementation are vital for enhancing the impact of clinical practice recommendations.
Collapse
Affiliation(s)
- Mirthe J Klein Haneveld
- Amsterdam UMC, University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, Clinical Genetics Department, Robert Debré University Hospital, Paris, France; Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Iméze J Hieltjes
- Amsterdam UMC, University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Knowledge Institute of the Dutch Association of Medical Specialists, Utrecht, The Netherlands
| | - Miranda W Langendam
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands; Amsterdam UMC, University of Amsterdam, Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Martina C Cornel
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Human Genetics, Amsterdam, The Netherlands
| | - Charlotte M W Gaasterland
- Amsterdam UMC, University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, Clinical Genetics Department, Robert Debré University Hospital, Paris, France; Knowledge Institute of the Dutch Association of Medical Specialists, Utrecht, The Netherlands
| | - Agnies M van Eeghen
- Amsterdam UMC, University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, Clinical Genetics Department, Robert Debré University Hospital, Paris, France; Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands; Advisium, 's Heeren Loo Zorggroep, Amersfoort, The Netherlands.
| |
Collapse
|
8
|
Moutafi M, Gkiourtzis N, Ververi A, Kavga M, Morichovitou A, Papadopoulou-Legbelou K, Fotoulaki M, Panagopoulou P. Beckwith-Wiedemann syndrome with multiple hepatic and cutaneous hemangiomas in a female patient of Albanian origin: Diagnostic and therapeutic considerations. Am J Med Genet A 2024; 194:88-93. [PMID: 37632712 DOI: 10.1002/ajmg.a.63381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/30/2023] [Accepted: 08/10/2023] [Indexed: 08/28/2023]
Abstract
We describe a 2-month-old female infant with macroglossia, macrosomia, omphalocele, neonatal hypoglycemia, earlobe creases, low nasal bridge, midface retrusion, syndromic facies and multiple cutaneous and hepatic hemangiomas (HH). Genetic evaluation confirmed the diagnosis of Beckwith-Wiedemann Syndrome (BWS) with mosaic uniparental disomy 11 as the underlying genetic mechanism suggested by partial hypermethylation of H19/IGF2:IG-DMR and partial hypomethylation of KCNQ1OT1:TSS-DMR on chromosome 11p15.5. Pediatric endocrinology and cardiology assessments were normal. No malignant liver or renal tumors were detected during the follow-up period. Treatment with propranolol was started for the multiple HH, according to international recommendations. At 3-, 6-, and 9-month follow up, a gradual decrease in the size of the hemangiomas and AFP levels was observed, without side effects. This is the fifth case in the literature combining HH and BWS, and among these, the third case with this specific genetic defect suggesting a possible association between HH and BWS caused by 11 paternal uniparental disomy [upd(11)pat]. The case also highlights that if treatment is warranted, then oral propranolol can be used for the management of infantile HH in BWS patients similarly to non-BWS patients.
Collapse
Affiliation(s)
- Maria Moutafi
- Faculty of Health Sciences, Fourth Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Gkiourtzis
- Faculty of Health Sciences, Fourth Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athina Ververi
- Faculty of Health Sciences, Genetic Unit, First Department of Obstetrics and Gynaecology, Papageorgiou General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Kavga
- Faculty of Health Sciences, Fourth Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anthi Morichovitou
- Department of Radiology, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Kyriaki Papadopoulou-Legbelou
- Faculty of Health Sciences, Fourth Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Fotoulaki
- Faculty of Health Sciences, Fourth Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paraskevi Panagopoulou
- Faculty of Health Sciences, Fourth Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
9
|
Ngo C, Baluyot M, Bennetts B, Carmichael J, Clark A, Darmanian A, Gayagay T, Jones L, Nash B, Clark M, Jose N, Robinson S, St Heaps L, Wright D. SNP chromosome microarray genotyping for detection of uniparental disomy in the clinical diagnostic laboratory. Pathology 2023; 55:818-826. [PMID: 37414616 DOI: 10.1016/j.pathol.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/21/2023] [Accepted: 04/17/2023] [Indexed: 07/08/2023]
Abstract
Single nucleotide polymorphism (SNP) chromosome microarray is well established for investigation of children with intellectual deficit/development delay and prenatal diagnosis of fetal malformation but has also emerged for uniparental disomy (UPD) genotyping. Despite published guidelines on clinical indications for testing there are no laboratory guidelines published for performing SNP microarray UPD genotyping. We evaluated SNP microarray UPD genotyping using Illumina beadchips on family trios/duos within a clinical cohort (n=98) and then explored our findings in a post-study audit (n=123). UPD occurred in 18.6% and 19.5% cases, respectively, with chromosome 15 most frequent (62.5% and 25.0%). UPD was predominantly maternal in origin (87.5% and 79.2%), highest in suspected genomic imprinting disorder cases (56.3% and 41.7%) but absent amongst children of translocation carriers. We assessed regions of homozygosity among UPD cases. The smallest interstitial and terminal regions were 2.5 Mb and 9.3 Mb, respectively. We found regions of homozygosity confounded genotyping in a consanguineous case with UPD15 and another with segmental UPD due to non-informative probes. In a unique case with chromosome 15q UPD mosaicism, we established the detection limit of mosaicism as ∼5%. From the benefits and pitfalls identified in this study, we propose a testing model and recommendations for UPD genotyping by SNP microarray.
Collapse
Affiliation(s)
- Con Ngo
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia.
| | - Maria Baluyot
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Bruce Bennetts
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Sydney Genome Diagnostics, Molecular Genetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Johanna Carmichael
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Alissa Clark
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Artur Darmanian
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Thet Gayagay
- Sydney Genome Diagnostics, Molecular Genetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Luke Jones
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Benjamin Nash
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia; Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Melanie Clark
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Ngaire Jose
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Samantha Robinson
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Luke St Heaps
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia; Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Dale Wright
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia; Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
10
|
Lloveras E, Pérez C, Mendez B, Martin S, Alves C, Reis-Lima M. Tandem Triplication 11p15.5-ICR1 (H19/IGF2) Detected by Microarray and Optical Genome Mapping in a Prenatal Beckwith-Wiedemann Case. Cytogenet Genome Res 2023; 163:32-35. [PMID: 37369188 DOI: 10.1159/000531703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023] Open
Abstract
Optical genome mapping (OGM) appears as a new tool for matching standard cytogenetic methods (karyotype and microarray) into a single assay. The chromosomal region 11p15.5 harbours two differentially methylated regions, the imprinting centre regions 1 and 2 (ICR1, ICR2). Disturbances in both regions alter human growth and are associated with two imprinting disorders, Beckwith-Wiedemann (BWS) and Silver-Russell syndromes. Herein, we present a prenatal case with a triplication in 11p15.5, including the H19/IGF2 imprinted region, detected by microarray and OGM. A 30-year-old pregnant woman of 17 weeks of gestation was referred for prenatal karyotype and microarray study because of increased nuchal translucency, short femur, megabladder, hyperechogenic bowel, and renal ectasia. Microarray, OGM, and MS-MLPA were performed, and a tandem cis-triplication in 11p15.5 and hypermethylation of the ICR1 region, compatible with BWS was detected. OGM, with its power to detect all classes of structural variants, including copy number variants, at a higher resolution than traditional cytogenetic methods can play a significant role in prenatal care and management as a next-generation cytogenomic tool. This study further supports the hypotheses that the amplification/duplication-triplication of the H19/IGF2 region could be related to BWS if it is of paternal origin.
Collapse
Affiliation(s)
- Elisabet Lloveras
- Departamento de Genética, Laboratorio Central Barcelona, SYNLAB International Group, Barcelona, Spain
| | - Cristina Pérez
- Departamento de Genética, Laboratorio Central Barcelona, SYNLAB International Group, Barcelona, Spain
| | - Begoña Mendez
- Departamento de Genética, Laboratorio Central Barcelona, SYNLAB International Group, Barcelona, Spain
| | - Susana Martin
- Departamento de Genética, Laboratorio Central Barcelona, SYNLAB International Group, Barcelona, Spain
| | - Claudia Alves
- Laboratório de Genética Médica, SYNLAB International Group, Porto, Portugal
| | | |
Collapse
|
11
|
Bilo L, Ochoa E, Lee S, Dey D, Kurth I, Kraft F, Rodger F, Docquier F, Toribio A, Bottolo L, Binder G, Fekete G, Elbracht M, Maher ER, Begemann M, Eggermann T. Molecular characterisation of 36 multilocus imprinting disturbance (MLID) patients: a comprehensive approach. Clin Epigenetics 2023; 15:35. [PMID: 36859312 PMCID: PMC9979536 DOI: 10.1186/s13148-023-01453-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Imprinting disorders (ImpDis) comprise diseases which are caused by aberrant regulation of monoallelically and parent-of-origin-dependent expressed genes. A characteristic molecular change in ImpDis patients is aberrant methylation signatures at disease-specific loci, without an obvious DNA change at the specific differentially methylated region (DMR). However, there is a growing number of reports on multilocus imprinting disturbances (MLIDs), i.e. aberrant methylation at different DMRs in the same patient. These MLIDs account for a significant number of patients with specific ImpDis, and several reports indicate a central role of pathogenic maternal effect variants in their aetiology by affecting the maturation of the oocyte and the early embryo. Though several studies on the prevalence and the molecular causes of MLID have been conducted, homogeneous datasets comprising both genomic and methylation data are still lacking. RESULTS Based on a cohort of 36 MLID patients, we here present both methylation data obtained from next-generation sequencing (NGS, ImprintSeq) approaches and whole-exome sequencing (WES). The compilation of methylation data did not reveal a disease-specific MLID episignature, and a predisposition for the phenotypic modification was not obvious as well. In fact, this lack of epigenotype-phenotype correlation might be related to the mosaic distribution of imprinting defects and their functional relevance in specific tissues. CONCLUSIONS Due to the higher sensitivity of NGS-based approaches, we suggest that ImprintSeq might be offered at reference centres in case of ImpDis patients with unusual phenotypes but MLID negative by conventional tests. By WES, additional MLID causes than the already known maternal effect variants could not be identified, neither in the patients nor in the maternal exomes. In cases with negative WES results, it is currently unclear to what extent either environmental factors or undetected genetic variants contribute to MLID.
Collapse
Affiliation(s)
- Larissa Bilo
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Eguzkine Ochoa
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Sunwoo Lee
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Daniela Dey
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Ingo Kurth
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Florian Kraft
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Fay Rodger
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - France Docquier
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Ana Toribio
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Leonardo Bottolo
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - Gerhard Binder
- Pediatric Endocrinology, University Children's Hospital, Universiy of Tuebingen, Tuebingen, Germany
| | - György Fekete
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Miriam Elbracht
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Matthias Begemann
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Thomas Eggermann
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
12
|
Giabicani E, Pham A, Sélénou C, Sobrier ML, Andrique C, Lesieur J, Linglart A, Poliard A, Chaussain C, Netchine I. Dental pulp stem cells as a promising model to study imprinting diseases. Int J Oral Sci 2022; 14:19. [PMID: 35368018 PMCID: PMC8976849 DOI: 10.1038/s41368-022-00169-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/01/2023] Open
Abstract
Parental imprinting is an epigenetic process leading to monoallelic expression of certain genes depending on their parental origin. Imprinting diseases are characterized by growth and metabolic issues starting from birth to adulthood. They are mainly due to methylation defects in imprinting control region that drive the abnormal expression of imprinted genes. We currently lack relevant animal or cellular models to unravel the pathophysiology of growth failure in these diseases. We aimed to characterize the methylation of imprinting regions in dental pulp stem cells and during their differentiation in osteogenic cells (involved in growth regulation) to assess the interest of this cells in modeling imprinting diseases. We collected dental pulp stem cells from five controls and four patients (three with Silver-Russell syndrome and one with Beckwith-Wiedemann syndrome). Methylation analysis of imprinting control regions involved in these syndromes showed a normal profile in controls and the imprinting defect in patients. These results were maintained in dental pulp stem cells cultured under osteogenic conditions. Furthermore, we confirmed the same pattern in six other loci involved in imprinting diseases in humans. We also confirmed monoallelic expression of H19 (an imprinted gene) in controls and its biallelic expression in one patient. Extensive imprinting control regions methylation analysis shows the strong potential of dental pulp stem cells in modeling imprinting diseases, in which imprinting regions are preserved in culture and during osteogenic differentiation. This will allow to perform in vitro functional and therapeutic tests in cells derived from dental pulp stem cells and generate other cell-types.
Collapse
|
13
|
Özer E, Geyik F, Alp Ünkar Z, Ercan O, Tüysüz B. The Methylation Status in the Chromosome 11p15.5 Region and Metabolic Disorders in Children with Syndromic and Nonsyndromic Intrauterine Growth Restriction. Mol Syndromol 2022; 13:108-116. [PMID: 35418826 PMCID: PMC8928180 DOI: 10.1159/000518630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/21/2021] [Indexed: 10/03/2023] Open
Abstract
Loss of methylation (LoM) of the imprinting control region 1 (ICR1) in the chromosome 11p15.5 domain is detected in patients with Silver-Russell syndrome (SRS), characterized by asymmetric pre- and postnatal growth restriction, and typical craniofacial features. The patients with intrauterine growth restriction (IUGR) possess a high risk for adult metabolic problems. This study is aimed to investigate the methylation levels of the chromosome 11p15.5 region and metabolic problems in children with syndromic and nonsyndromic IUGR. Methylation analysis was performed for chromosome 11p15.5 in 49 patients (33 with suspected SRS and 16 nonsyndromic IUGR) with Netchine-Harbison clinical scoring (NHCS); uniparental disomy for chromosomes 6, 7, 14, and 20 was evaluated for those who were negative. LoM of ICR1 was detected in 14 of 33 suspected SRS patients with 3 or more criteria of NHCS, 5 had borderline LoM. Maternal uniparental disomy of the chromosomes 7 and 14 was found in 2 patients. The overall detection rate of SRS was 45.5%. While clinical findings were similar in patients with LoM and borderline LoM of ICR1, typical craniofacial findings were significantly less in the patients with normal methylation. Methylation patterns were not found to be impaired in the nonsyndromic IUGR group. Metabolic complications were evaluated in a total of 63 patients including 33 SRS-suspicious, 16 nonsyndromic IUGR, and 14 patients with 3M or SHORT syndrome. Increased rates of hypercalciuria, insulin resistance, and dyslipidemia were detected in patients with both syndromic and nonsyndromic IUGR. We would like to emphasize that detecting typical facial findings is effective in the diagnosis of SRS and paying attention to metabolic problems in the follow-up of patients with IUGR is recommended.
Collapse
Affiliation(s)
- Emre Özer
- Department of Pediatric Genetics, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Filiz Geyik
- Department of Genetics, Aziz Sancar Experimental Medicine Research Institute, Istanbul University, Istanbul, Turkey
| | - Zeynep Alp Ünkar
- Department of Neonatology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Oya Ercan
- Department of Pediatric Endocrinology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Beyhan Tüysüz
- Department of Pediatric Genetics, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
14
|
Pileggi S, La Vecchia M, Colombo EA, Fontana L, Colapietro P, Rovina D, Morotti A, Tabano S, Porta G, Alcalay M, Gervasini C, Miozzo M, Sirchia SM. Cohesin Mutations Induce Chromatin Conformation Perturbation of the H19/ IGF2 Imprinted Region and Gene Expression Dysregulation in Cornelia de Lange Syndrome Cell Lines. Biomolecules 2021; 11:1622. [PMID: 34827619 PMCID: PMC8615450 DOI: 10.3390/biom11111622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Traditionally, Cornelia de Lange Syndrome (CdLS) is considered a cohesinopathy caused by constitutive mutations in cohesin complex genes. Cohesin is a major regulator of chromatin architecture, including the formation of chromatin loops at the imprinted IGF2/H19 domain. We used 3C analysis on lymphoblastoid cells from CdLS patients carrying mutations in NIPBL and SMC1A genes to explore 3D chromatin structure of the IGF2/H19 locus and evaluate the influence of cohesin alterations in chromatin architecture. We also assessed quantitative expression of imprinted loci and WNT pathway genes, together with DMR methylation status of the imprinted genes. A general impairment of chromatin architecture and the emergence of new interactions were found. Moreover, imprinting alterations also involved the expression and methylation levels of imprinted genes, suggesting an association among cohesin genetic defects, chromatin architecture impairment, and imprinting network alteration. The WNT pathway resulted dysregulated: canonical WNT, cell cycle, and WNT signal negative regulation were the most significantly affected subpathways. Among the deregulated pathway nodes, the key node of the frizzled receptors was repressed. Our study provides new evidence that mutations in genes of the cohesin complex have effects on the chromatin architecture and epigenetic stability of genes commonly regulated by high order chromatin structure.
Collapse
Affiliation(s)
- Silvana Pileggi
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (S.P.); (M.L.V.); (E.A.C.); (L.F.); (D.R.); (C.G.); (S.M.S.)
| | - Marta La Vecchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (S.P.); (M.L.V.); (E.A.C.); (L.F.); (D.R.); (C.G.); (S.M.S.)
| | - Elisa Adele Colombo
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (S.P.); (M.L.V.); (E.A.C.); (L.F.); (D.R.); (C.G.); (S.M.S.)
| | - Laura Fontana
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (S.P.); (M.L.V.); (E.A.C.); (L.F.); (D.R.); (C.G.); (S.M.S.)
- Unit of Medical Genetics, ASST Santi Paolo e Carlo, 20142 Milano, Italy
| | - Patrizia Colapietro
- Department of Pathophysiology and Transplantation, Medical Genetics, Università degli Studi di Milano, 20122 Milan, Italy; (P.C.); (S.T.)
| | - Davide Rovina
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (S.P.); (M.L.V.); (E.A.C.); (L.F.); (D.R.); (C.G.); (S.M.S.)
| | - Annamaria Morotti
- Research Laboratories Coordination Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy;
| | - Silvia Tabano
- Department of Pathophysiology and Transplantation, Medical Genetics, Università degli Studi di Milano, 20122 Milan, Italy; (P.C.); (S.T.)
- Laboratory of Medical Genetics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giovanni Porta
- Centro di Medicina Genomica, Department of Medicine and Surgery, Università degli Studi dell’Insubria, 21100 Varese, Italy;
| | - Myriam Alcalay
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy;
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Cristina Gervasini
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (S.P.); (M.L.V.); (E.A.C.); (L.F.); (D.R.); (C.G.); (S.M.S.)
| | - Monica Miozzo
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (S.P.); (M.L.V.); (E.A.C.); (L.F.); (D.R.); (C.G.); (S.M.S.)
- Unit of Medical Genetics, ASST Santi Paolo e Carlo, 20142 Milano, Italy
| | - Silvia Maria Sirchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (S.P.); (M.L.V.); (E.A.C.); (L.F.); (D.R.); (C.G.); (S.M.S.)
| |
Collapse
|
15
|
Singer S, Gazou A, Sturm M, Demidov G, Mazzola P, Riess O, Ossowski S, Dufke A. New euchromatic variant dup(11)(p15.3p15.1) transmitted through two generations defined by low coverage whole genome sequencing. Am J Med Genet A 2021; 185:3053-3056. [PMID: 34042264 DOI: 10.1002/ajmg.a.62357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/17/2021] [Accepted: 04/30/2021] [Indexed: 11/06/2022]
Abstract
We report on a 14-year old boy, his father, and his paternal uncle, all three carriers of a duplication of chromosomal region 11p15.3-p15.1. The aberration was transmitted by the grandmother, who is carrier of a balanced insertion 46,XX,ins(14;11)(q32.1;p15.3p15.1). In order to determine the precise molecular basis of this structural variant, we performed low-coverage whole genome sequencing on the boy's father. This approach allowed precise determination of the genomic breakpoints and revealed a duplication of 6.9 Mb, centromeric to the Beckwith-Wiedemann/Silver-Russell syndrome critical region in 11p15.5, that inserted in inverse orientation into 14q32.12 (according to HGVS nomenclature: NC_000014.8:g.92871000_92871001ins[NC_000011.9:g.12250642_19165928inv;T]). To our knowledge, this is the first report of a duplication of 11p15.3-p15.1 involving more than 40 genes and transmitted through two generations without apparent clinical effects.
Collapse
Affiliation(s)
- Sylke Singer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Anastasia Gazou
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - German Demidov
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Pascale Mazzola
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Andreas Dufke
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Clinical and Molecular Diagnosis of Beckwith-Wiedemann Syndrome with Single- or Multi-Locus Imprinting Disturbance. Int J Mol Sci 2021; 22:ijms22073445. [PMID: 33810554 PMCID: PMC8036922 DOI: 10.3390/ijms22073445] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is a clinically and genetically heterogeneous overgrowth disease. BWS is caused by (epi)genetic defects at the 11p15 chromosomal region, which harbors two clusters of imprinted genes, IGF2/H19 and CDKN1C/KCNQ1OT1, regulated by differential methylation of imprinting control regions, H19/IGF2:IG DMR and KCNQ1OT1:TSS DMR, respectively. A subset of BWS patients show multi-locus imprinting disturbances (MLID), with methylation defects extended to other imprinted genes in addition to the disease-specific locus. Specific (epi)genotype-phenotype correlations have been defined in order to help clinicians in the classification of patients and referring them to a timely diagnosis and a tailored follow-up. However, specific phenotypic correlations have not been identified among MLID patients, thus causing a debate on the usefulness of multi-locus testing in clinical diagnosis. Finally, the high incidence of BWS monozygotic twins with discordant phenotypes, the high frequency of BWS among babies conceived by assisted reproductive technologies, and the female prevalence among BWS-MLID cases provide new insights into the timing of imprint establishment during embryo development. In this review, we provide an overview on the clinical and molecular diagnosis of single- and multi-locus BWS in pre- and post-natal settings, and a comprehensive analysis of the literature in order to define possible (epi)genotype-phenotype correlations in MLID patients.
Collapse
|
17
|
Tüysüz B, Güneş N, Geyik F, Yeşil G, Celkan T, Vural M. Investigation of (epi)genotype causes and follow-up manifestations in the patients with classical and atypical phenotype of Beckwith-Wiedemann spectrum. Am J Med Genet A 2021; 185:1721-1731. [PMID: 33704912 DOI: 10.1002/ajmg.a.62158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/24/2021] [Accepted: 02/13/2021] [Indexed: 11/05/2022]
Abstract
Beckwith-Wiedemann syndrome (BWS) is a genomic imprinting disorder, characterized by macroglossia, abdominal wall defects, lateralized overgrowth, and predisposition to embryonal tumors. It is caused by the defect of imprinted genes on chromosome 11p15.5, regulated by imprinting control (IC) domains, IC1, and IC2. Rarely, CDKN1C and chromosomal changes can be detected. The aim of this study is to retrospectively evaluate 55 patients with BWS using the new diagnostic criteria developed by the BWS consensus, and to investigate (epi)genetic changes and follow-up findings in classic and atypical phenotypes. Loss of methylation in IC2 region (IC2-LoM), 11p15.5 paternal uniparental disomy (pUPD11), and methylation gain in IC1 region (IC1-GoM) are detected in 31, eight, and five patients, respectively. Eleven patients have had no molecular defects. Thirty-five patients are classified as classical and 20 as atypical phenotype. Patients with classical phenotype are more frequent in the IC2-LoM (25/31), while patients with atypical phenotype are common in the pUPD11 group (5/8). Malignant tumors have developed in six patients (10.9%); three of these patients have IC1-GoM, two pUPD11, one IC2-LoM genotype, and four an atypical phenotype. We observed that the face was round in the infantile period and elongated as the child grew-up, developing prognathism and becoming asymmetrical if hemi-macroglossia was present in the classical phenotype. These findings were mild in the atypical phenotype. These results support the importance of using the new diagnostic criteria to facilitate the diagnosis of patients with atypical phenotype who have higher tumors risk. This study also provides important information about facial gestalt.
Collapse
Affiliation(s)
- Beyhan Tüysüz
- Istanbul University-Cerrahpasa Cerrahpasa, Medical School, Department of Pediatric Genetics, Istanbul, Turkey
| | - Nilay Güneş
- Istanbul University-Cerrahpasa Cerrahpasa, Medical School, Department of Pediatric Genetics, Istanbul, Turkey
| | - Filiz Geyik
- Istanbul University-Cerrahpasa Cerrahpasa, Medical School, Department of Pediatric Genetics, Istanbul, Turkey.,Istanbul University, Aziz Sancar Experimental Medicine Research Institute Department of Genetics, Istanbul, Turkey
| | - Gözde Yeşil
- Bezmialem University Medical School, Department of Medical Genetics, Istanbul, Turkey
| | - Tiraje Celkan
- Istanbul University-Cerrahpasa, Cerrahpasa Medical School, Department of Pediatric Hematology/ Oncology, Istanbul, Turkey
| | - Mehmet Vural
- Istanbul University-Cerrahpasa, Cerrahpasa Medical School, Department of Neonatology, Istanbul, Turkey
| |
Collapse
|
18
|
Meyer R, Begemann M, Hübner CT, Dey D, Kuechler A, Elgizouli M, Schara U, Ambrozaityte L, Burnyte B, Schröder C, Kenawy A, Kroisel P, Demuth S, Fekete G, Opladen T, Elbracht M, Eggermann T. One test for all: whole exome sequencing significantly improves the diagnostic yield in growth retarded patients referred for molecular testing for Silver-Russell syndrome. Orphanet J Rare Dis 2021; 16:42. [PMID: 33482836 PMCID: PMC7821667 DOI: 10.1186/s13023-021-01683-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
Background Silver-Russell syndrome (SRS) is an imprinting disorder which is characterised by severe primordial growth retardation, relative macrocephaly and a typical facial gestalt. The clinical heterogeneity of SRS is reflected by a broad spectrum of molecular changes with hypomethylation in 11p15 and maternal uniparental disomy of chromosome 7 (upd(7)mat) as the most frequent findings. Monogenetic causes are rare, but a clinical overlap with numerous other disorders has been reported. However, a comprehensive overview on the contribution of mutations in differential diagnostic genes to phenotypes reminiscent to SRS is missing due to the lack of appropriate tests. With the implementation of next generation sequencing (NGS) tools this limitation can now be circumvented. Main body We analysed 75 patients referred for molecular testing for SRS by a NGS-based multigene panel, whole exome sequencing (WES), and trio-based WES. In 21/75 patients a disease-causing variant could be identified among them variants in known SRS genes (IGF2, PLAG1, HMGA2). Several patients carried variants in genes which have not yet been considered as differential diagnoses of SRS. Conclusions WES approaches significantly increase the diagnostic yield in patients referred for SRS testing. Several of the identified monogenetic disorders have a major impact on clinical management and genetic counseling.
Collapse
Affiliation(s)
- Robert Meyer
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Christian Thomas Hübner
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Daniela Dey
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Magdeldin Elgizouli
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulrike Schara
- Department of Neuropediatrics, University Children's Hospital, University Duisburg-Essen, Essen, Germany
| | - Laima Ambrozaityte
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Birute Burnyte
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Carmen Schröder
- Zentrum Für Kinder- Und Jugendmedizin, Abt. Allgemeine Pädiatrie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Asmaa Kenawy
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | | | - Gyorgy Fekete
- II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Thomas Opladen
- Division for Child Neurology and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
19
|
Abstract
Abstract
Imprinting disorders are a group of rare diseases with a broad phenotypic spectrum caused by a wide variety of genetic and epigenetic disturbances of imprinted genes or gene clusters. The molecular genetic causes and their respective frequencies vary between the different imprinting disorders so that each has its unique requirements for the diagnostic workflow, making it challenging. To add even more complexity to this field, new molecular genetic causes have been identified over time and new technologies have enhanced the detectability e. g. of mosaic disturbances.
The precise identification of the underlying molecular genetic cause is of utmost importance in regard to recurrence risk in the families, tumour risk, clinical management and conventional and in the future therapeutic managements.
Here we give an overview of the imprinting disorders, their specific requirements for the diagnostic workup and the most common techniques used and point out possible pitfalls.
Collapse
Affiliation(s)
- Jasmin Beygo
- Institute of Human Genetics, University Hospital Essen , University of Duisburg-Essen , Essen , Germany
| | - Deniz Kanber
- Institute of Human Genetics, University Hospital Essen , University of Duisburg-Essen , Essen , Germany
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty , RWTH Aachen University , Aachen , Germany
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty , RWTH Aachen University , Aachen , Germany
| |
Collapse
|
20
|
Need for a precise molecular diagnosis in Beckwith-Wiedemann and Silver-Russell syndrome: what has to be considered and why it is important. J Mol Med (Berl) 2020; 98:1447-1455. [PMID: 32839827 PMCID: PMC7524824 DOI: 10.1007/s00109-020-01966-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/10/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022]
Abstract
Abstract Molecular diagnostic testing of the 11p15.5-associated imprinting disorders Silver-Russell and Beckwith-Wiedemann syndrome (SRS, BWS) is challenging due to the broad spectrum of molecular defects and their mosaic occurrence. Additionally, the decision on the molecular testing algorithm is hindered by their clinical heterogeneity. However, the precise identification of the type of defect is often a prerequisite for the clinical management and genetic counselling. Four major molecular alterations (epimutations, uniparental disomies, copy number variants, single nucleotide variants) have been identified, but their frequencies vary between SRS and BWS. Due to their molecular aetiology, epimutations in both disorders as well as upd(11)pat in BWS are particular prone to mosaicism which might additionally complicate the interpretation of testing results. We report on our experience of molecular analysis in a total cohort of 1448 patients referred for diagnostic testing of BWS and SRS, comprising a dataset from 737 new patients and from 711 cases from a recent study. Though the majority of positively tested patients showed the expected molecular results, we identified a considerable number of clinically unexpected molecular alterations as well as not yet reported changes and discrepant mosaic distributions. Additionally, the rate of multilocus imprinting disturbances among the patients with epimutations and uniparental diploidies could be further specified. Altogether, these cases show that comprehensive testing strategies have to be applied in diagnostic testing of SRS and BWS. The precise molecular diagnosis is required as the basis for a targeted management (e.g. ECG (electrocardiogram) and tumour surveillance in BWS, growth treatment in SRS). The molecular diagnosis furthermore provides the basis for genetic counselling. However, it has to be considered that recurrence risk calculation is determined by the phenotypic consequences of each molecular alteration and mechanism by which the alteration arose. Key messages The detection rates for the typical molecular defects of Beckwith-Wiedemann syndrome or Silver-Russell syndrome (BWS, SRS) are lower in routine cohorts than in clinically well-characterised ones. A broad spectrum of (unexpected) molecular alterations in both disorders can be identified. Multilocus imprinting disturbances (MLID) are less frequent in SRS than expected. The frequency of MLID and uniparental diploidy in BWS is confirmed. Mosaicism is a diagnostic challenge in BWS and SRS. The precise determination of the molecular defects affecting is the basis for a targeted clinical management and genetic counselling.
Collapse
|
21
|
Rovina D, La Vecchia M, Cortesi A, Fontana L, Pesant M, Maitz S, Tabano S, Bodega B, Miozzo M, Sirchia SM. Profound alterations of the chromatin architecture at chromosome 11p15.5 in cells from Beckwith-Wiedemann and Silver-Russell syndromes patients. Sci Rep 2020; 10:8275. [PMID: 32427849 PMCID: PMC7237657 DOI: 10.1038/s41598-020-65082-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/24/2020] [Indexed: 01/12/2023] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS) are imprinting-related disorders associated with genetic/epigenetic alterations of the 11p15.5 region, which harbours two clusters of imprinted genes (IGs). 11p15.5 IGs are regulated by the methylation status of imprinting control regions ICR1 and ICR2. 3D chromatin structure is thought to play a pivotal role in gene expression control; however, chromatin architecture models are still poorly defined in most cases, particularly for IGs. Our study aimed at elucidating 11p15.5 3D structure, via 3C and 3D FISH analyses of cell lines derived from healthy, BWS or SRS children. We found that, in healthy cells, IGF2/H19 and CDKN1C/KCNQ1OT1 domains fold in complex chromatin conformations, that facilitate the control of IGs mediated by distant enhancers. In patient-derived cell lines, we observed a profound impairment of such a chromatin architecture. Specifically, we identified a cross-talk between IGF2/H19 and CDKN1C/KCNQ1OT1 domains, consisting in in cis, monoallelic interactions, that are present in healthy cells but lost in patient cell lines: an inter-domain association that sees ICR2 move close to IGF2 on one allele, and to H19 on the other. Moreover, an intra-domain association within the CDKN1C/KCNQ1OT1 locus seems to be crucial for maintaining the 3D organization of the region.
Collapse
Affiliation(s)
- Davide Rovina
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142, Milano, Italy
| | - Marta La Vecchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142, Milano, Italy
| | - Alice Cortesi
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), 20122, Milano, Italy
| | - Laura Fontana
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milano, Italy.,Medical Genetics, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122, Milano, Italy
| | - Matthieu Pesant
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), 20122, Milano, Italy
| | - Silvia Maitz
- Clinical Pediatric, Genetics Unit, MBBM Foundation, San Gerardo di Monza, 20900, Monza, Italy
| | - Silvia Tabano
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milano, Italy.,Medical Genetics, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122, Milano, Italy
| | - Beatrice Bodega
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), 20122, Milano, Italy
| | - Monica Miozzo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milano, Italy.,Medical Genetics, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122, Milano, Italy
| | - Silvia M Sirchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142, Milano, Italy.
| |
Collapse
|
22
|
Christesen HT, Christensen LG, Löfgren ÅM, Brøndum-Nielsen K, Svensson J, Brusgaard K, Samuelsson S, Elfving M, Jonson T, Grønskov K, Rasmussen L, Backman T, Hansen LK, Larsen AR, Petersen H, Detlefsen S. Tissue variations of mosaic genome-wide paternal uniparental disomy and phenotype of multi-syndromal congenital hyperinsulinism. Eur J Med Genet 2020; 63:103632. [DOI: 10.1016/j.ejmg.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/11/2019] [Accepted: 02/17/2019] [Indexed: 01/12/2023]
|
23
|
Antal Z, Balachandar S. Growth Disturbances in Childhood Cancer Survivors. Horm Res Paediatr 2019; 91:83-92. [PMID: 30739101 DOI: 10.1159/000496354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 12/14/2018] [Indexed: 11/19/2022] Open
Abstract
Survival from childhood cancer has improved dramatically over the last few decades, resulting in an increased need to address the long-term follow-up and care of childhood cancer survivors. Appropriate linear growth is an important measure of health, with alterations of growth in children and short adult height in those who have completed growth serving as potential indicators of the sequelae of the underlying diagnosis or the cancer treatments. It is therefore critical that clinicians, particularly endocrinologists, be familiar with the patterns of altered growth which may be seen following diagnosis and treatment for childhood cancer. In this article, we will review the growth alterations seen in childhood cancer survivors, focusing on risk factors and considerations in evaluation and care.
Collapse
Affiliation(s)
- Zoltan Antal
- Division of Pediatric Endocrinology, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA, .,Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA,
| | - Sadana Balachandar
- Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
24
|
Duffy KA, Cielo CM, Cohen JL, Gonzalez-Gandolfi CX, Griff JR, Hathaway ER, Kupa J, Taylor JA, Wang KH, Ganguly A, Deardorff MA, Kalish JM. Characterization of the Beckwith-Wiedemann spectrum: Diagnosis and management. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:693-708. [PMID: 31469230 DOI: 10.1002/ajmg.c.31740] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 01/20/2023]
Abstract
Beckwith-Wiedemann syndrome (BWS) is the most common epigenetic overgrowth and cancer predisposition disorder. Due to both varying molecular defects involving chromosome 11p15 and tissue mosaicism, patients can present with a variety of clinical features, leading to the newly defined Beckwith-Wiedemann spectrum (BWSp). The BWSp can be further divided into three subsets of patients: those presenting with classic features, those presenting with isolated lateralized overgrowth (ILO) and those not fitting into the previous two categories, termed atypical BWSp. Previous reports of patients with BWS have focused on those with the more recognizable, classic features, and limited information is available on those who fit into the atypical and ILO categories. Here, we present the first cohort of patients recruited across the entire BWSp, describe clinical features and molecular diagnostic characteristics, and provide insight into practical diagnosis and management recommendations that we have gained from this cohort.
Collapse
Affiliation(s)
- Kelly A Duffy
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Christopher M Cielo
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer L Cohen
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Jessica R Griff
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Evan R Hathaway
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jonida Kupa
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jesse A Taylor
- Division of Plastic and Reconstructive Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathleen H Wang
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Arupa Ganguly
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew A Deardorff
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer M Kalish
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet 2019; 20:235-248. [PMID: 30647469 DOI: 10.1038/s41576-018-0092-0] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Genomic imprinting, the monoallelic and parent-of-origin-dependent expression of a subset of genes, is required for normal development, and its disruption leads to human disease. Imprinting defects can involve isolated or multilocus epigenetic changes that may have no evident genetic cause, or imprinting disruption can be traced back to alterations of cis-acting elements or trans-acting factors that control the establishment, maintenance and erasure of germline epigenetic imprints. Recent insights into the dynamics of the epigenome, including the effect of environmental factors, suggest that the developmental outcomes and heritability of imprinting disorders are influenced by interactions between the genome, the epigenome and the environment in germ cells and early embryos.
Collapse
|
26
|
Lekszas C, Nanda I, Vona B, Böck J, Ashrafzadeh F, Donyadideh N, Ebrahimzadeh F, Ahangari N, Maroofian R, Karimiani EG, Haaf T. Unbalanced segregation of a paternal t(9;11)(p24.3;p15.4) translocation causing familial Beckwith-Wiedemann syndrome: a case report. BMC Med Genomics 2019; 12:83. [PMID: 31174542 PMCID: PMC6555757 DOI: 10.1186/s12920-019-0539-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 05/28/2019] [Indexed: 01/29/2023] Open
Abstract
Background The vast majority of cases with Beckwith-Wiedemann syndrome (BWS) are caused by a molecular defect in the imprinted chromosome region 11p15.5. The underlying mechanisms include epimutations, uniparental disomy, copy number variations, and structural rearrangements. In addition, maternal loss-of-function mutations in CDKN1C are found. Despite growing knowledge on BWS pathogenesis, up to 20% of patients with BWS phenotype remain without molecular diagnosis. Case presentation Herein, we report an Iranian family with two females affected with BWS in different generations. Bisulfite pyrosequencing revealed hypermethylation of the H19/IGF2: intergenic differentially methylated region (IG DMR), also known as imprinting center 1 (IC1) and hypomethylation of the KCNQ1OT1: transcriptional start site (TSS) DMR (IC2). Array CGH demonstrated an 8 Mb duplication on chromosome 11p15.5p15.4 (205,827-8,150,933) and a 1 Mb deletion on chromosome 9p24.3 (209,020-1,288,114). Chromosome painting revealed that this duplication-deficiency in both patients is due to unbalanced segregation of a paternal reciprocal t(9;11)(p24.3;p15.4) translocation. Conclusions This is the first report of a paternally inherited unbalanced translocation between the chromosome 9 and 11 short arms underlying familial BWS. Copy number variations involving the 11p15.5 region are detected by the consensus diagnostic algorithm. However, in complex cases which do not only affect the BWS region itself, characterization of submicroscopic chromosome rearrangements can assist to estimate the recurrence risk and possible phenotypic outcomes.
Collapse
Affiliation(s)
- Caroline Lekszas
- Institute of Human Genetics, Julius Maximilians University Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Indrajit Nanda
- Institute of Human Genetics, Julius Maximilians University Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Barbara Vona
- Institute of Human Genetics, Julius Maximilians University Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Julia Böck
- Institute of Human Genetics, Julius Maximilians University Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Farah Ashrafzadeh
- Department of Pediatric Diseases, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nahid Donyadideh
- Department of Pediatric Diseases, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Najmeh Ahangari
- Department of Modern Sciences and Technologies, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Maroofian
- Molecular and Clinical Sciences Institute, St. George's University of London, Cranmer Terrace, London, UK
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's University of London, Cranmer Terrace, London, UK
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
27
|
Next generation sequencing and imprinting disorders: Current applications and future perspectives: Lessons from Silver-Russell syndrome. Mol Cell Probes 2019; 44:1-7. [DOI: 10.1016/j.mcp.2018.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/05/2018] [Accepted: 12/22/2018] [Indexed: 12/28/2022]
|
28
|
Mackay DJ, Bliek J, Lombardi MP, Russo S, Calzari L, Guzzetti S, Izzi C, Selicorni A, Melis D, Temple K, Maher E, Brioude F, Netchine I, Eggermann T. Discrepant molecular and clinical diagnoses in Beckwith-Wiedemann and Silver-Russell syndromes. Genet Res (Camb) 2019; 101:e3. [PMID: 30829192 PMCID: PMC7044970 DOI: 10.1017/s001667231900003x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS) are two imprinting disorders associated with opposite molecular alterations in the 11p15.5 imprinting centres. Their clinical diagnosis is confirmed by molecular testing in 50-70% of patients. The authors from different reference centres for BWS and SRS have identified single patients with unexpected and even contradictory molecular findings in respect to the clinical diagnosis. These patients clinically do not fit the characteristic phenotypes of SRS or BWS, but illustrate their clinical heterogeneity. Thus, comprehensive molecular testing is essential for accurate diagnosis and appropriate management, to avoid premature clinical diagnosis and anxiety for the families.
Collapse
Affiliation(s)
- Deborah J.G. Mackay
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK and Wessex Regional Genetics Laboratory, Salisbury SP2 8BJ, UK
| | - Jet Bliek
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria Paola Lombardi
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Silvia Russo
- Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Luciano Calzari
- Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Sara Guzzetti
- Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Claudia Izzi
- Prenatal Diagnosis Unit, Department of Obstetrics and Gynecology, ASST Spedali Civili of Brescia, Brescia, Italy
| | | | - Daniela Melis
- Department of Pediatrics, University “Federico II”, Napoli, Italy
| | - Karen Temple
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK and Wessex Regional Genetics Laboratory, Salisbury SP2 8BJ, UK
| | - Eamonn Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre and Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Frédéric Brioude
- Sorbonne Université, INSERM, UMR 938, Centre de Recherche Saint-Antoine (CRSA), APHP Hôpital Trousseau, 75012 Paris, France
| | - Irène Netchine
- Sorbonne Université, INSERM, UMR 938, Centre de Recherche Saint-Antoine (CRSA), APHP Hôpital Trousseau, 75012 Paris, France
| | - Thomas Eggermann
- Institute of Human Genetics, University Hospital, Technical University of Aachen, Aachen, Germany
| |
Collapse
|
29
|
Wang KH, Kupa J, Duffy KA, Kalish JM. Diagnosis and Management of Beckwith-Wiedemann Syndrome. Front Pediatr 2019; 7:562. [PMID: 32039119 PMCID: PMC6990127 DOI: 10.3389/fped.2019.00562] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/23/2019] [Indexed: 01/10/2023] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is a human genomic imprinting disorder that presents with a wide spectrum of clinical features including overgrowth, abdominal wall defects, macroglossia, neonatal hypoglycemia, and predisposition to embryonal tumors. It is associated with genetic and epigenetic changes on the chromosome 11p15 region, which includes two imprinting control regions. Here we review strategies for diagnosing and managing BWS and delineate commonly used genetic tests to establish a molecular diagnosis of BWS. Recommended first-line testing assesses DNA methylation and copy number variation of the BWS region. Tissue mosaicism can occur in patients with BWS, posing a challenge for genetic testing, and a negative test result does not exclude a diagnosis of BWS. Further testing should analyze additional tissue samples or employ techniques with higher diagnostic yield. Identifying the BWS molecular subtype is valuable for coordinating patient care because of the (epi)genotype-phenotype correlations, including different risks and types of embryonal tumors.
Collapse
Affiliation(s)
- Kathleen H Wang
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jonida Kupa
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kelly A Duffy
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jennifer M Kalish
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
30
|
Germline Epigenetic Testing of Imprinting Disorders in a Diagnostic Setting. Clin Epigenetics 2019. [DOI: 10.1007/978-981-13-8958-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
31
|
Jouinot A, Bertherat J. Diseases Predisposing to Adrenocortical Malignancy (Li-Fraumeni Syndrome, Beckwith-Wiedemann Syndrome, and Carney Complex). EXPERIENTIA SUPPLEMENTUM (2012) 2019; 111:149-169. [PMID: 31588532 DOI: 10.1007/978-3-030-25905-1_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adrenocortical malignancies can occur in the context of several tumor predisposition syndromes.The Carney complex (CNC) is responsible for the majority of primary pigmented nodular adrenal diseases and is more rarely associated with adrenocortical carcinoma (ACC). Other core manifestations of CNC include cardiac and cutaneous myxomas, lentiginosis, somatotroph pituitary adenomas, Sertoli tumors, melanocytic schwannoma, and thyroid, breast, and bone tumors. CNC is mostly due to germline inactivating mutations of PRKAR1A.The majority of childhood ACC are related to genetic predisposition. The Beckwith-Wiedemann syndrome (BWS) is an overgrowth and tumor predisposition syndrome due to genetic or epigenetic alterations at the 11p15 locus. Classical tumor spectrum of BWS includes embryonal tumors and childhood ACC. The Li-Fraumeni syndrome (LFS) is a devastating tumor predisposition syndrome, due to germline inactivating mutations of TP53, and characterized by a high, various, and early-onset cancer risk. LFS spectrum includes premenopausal breast cancer, soft-tissue sarcoma, osteosarcoma, central nervous system tumor, and ACC, accounting for 50-80% of pediatric cases. Finally, germline predisposition affects up to 10% of adult ACC patients, mostly in part of LFS and Lynch syndrome.This chapter focuses on the diagnosis, screening, and management of adrenal tumors in part of these tumor predisposition syndromes.
Collapse
Affiliation(s)
- Anne Jouinot
- Endocrinology Department, Cochin Hospital, APHP, Paris, France
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris University, Paris, France
| | - Jérôme Bertherat
- Endocrinology Department, Cochin Hospital, APHP, Paris, France.
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris University, Paris, France.
| |
Collapse
|
32
|
Soellner L, Kraft F, Sauer S, Begemann M, Kurth I, Elbracht M, Eggermann T. Search for cis-acting factors and maternal effect variants in Silver-Russell patients with ICR1 hypomethylation and their mothers. Eur J Hum Genet 2018; 27:42-48. [PMID: 30218098 DOI: 10.1038/s41431-018-0269-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/06/2018] [Accepted: 08/09/2018] [Indexed: 11/09/2022] Open
Abstract
Silver-Russell syndrome is an imprinting disorder characterized by severe intrauterine and postnatal growth retardation. The majority of patients show loss of methylation (LOM) of the H19/IGF2 IG-DMR (ICR1) in 11p15.5. In ~10% of these patients aberrant methylation of additional imprinted loci on other chromosomes than 11 can be observed (multilocus imprinting defect - MLID). Recently, genomic variations in the ICR1 have been associated with disturbed methylation of the ICR1. In addition, variants in factors contributing to the life cycle of imprinting are discussed to cause aberrant imprinting, including MLID. These variants can either be identified in the patients with imprinting disorders themselves or in their mothers. We performed comprehensive studies to elucidate the role of both cis-acting variants in 11p15.5 as well as of maternal effect variants in the etiology of ICR1 LOM. Whereas copy number analysis and next generation sequencing in the ICR1 did not provide any evidence for a variant, search for maternal effect variants in 21 mothers of patients with ICR1 LOM identified two carriers of NLRP5 variants. By considering our results as well as those from the literature, we conclude that the causes for epimutations are heterogeneous. MLID might be regarded as an own etiological subgroup, associated with maternal effect variants in NLRP and functionally related genes. In addition, these variants might also contribute to LOM of single imprinted loci. Furthermore, genomic variants in the patients themselves might result in aberrant methylation patterns and need further investigation.
Collapse
Affiliation(s)
- Lukas Soellner
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Florian Kraft
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Sabrina Sauer
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Labor Dr. Wisplinghoff, Köln, Germany
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
33
|
Heldt F, Wallaschek H, Ripperger T, Morlot S, Illig T, Eggermann T, Schlegelberger B, Scholz C, Steinemann D. 12q14 microdeletion syndrome: A family with short stature and Silver-Russell syndrome (SRS)-like phenotype and review of the literature. Eur J Med Genet 2018; 61:421-427. [PMID: 29501611 DOI: 10.1016/j.ejmg.2018.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/07/2018] [Accepted: 02/26/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Frederik Heldt
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.
| | - Hannah Wallaschek
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Susanne Morlot
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | | | - Caroline Scholz
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
34
|
Naujokat H, Möller B, Terheyden H, Birkenfeld F, Caliebe D, Krause MF, Fischer-Brandies H, Wiltfang J. Tongue reduction in Beckwith-Wiedemann syndrome: outcome and treatment algorithm. Int J Oral Maxillofac Surg 2018; 48:9-16. [PMID: 30057238 DOI: 10.1016/j.ijom.2018.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/30/2018] [Accepted: 07/11/2018] [Indexed: 11/27/2022]
Abstract
Beckwith-Wiedemann syndrome is a rare congenital overgrowth disorder with macroglossia being one of the cardinal symptoms. In pronounced cases, macroglossia can lead to airway obstruction, musculoskeletal alterations and functional deficits. Surgical tongue reduction is performed at varying ages and with different techniques. This study evaluated perioperative complications, as well as long-term aesthetic and functional outcomes, in a large cohort. A total of 68 patients, treated either surgically or conservatively, were included. Depending on the severity of macroglossia, patients were divided into three groups to determine the treatment algorithm. Complications after surgical tongue reduction were prolonged intubation and revision due to dehiscence or haematoma. In the long term, no patient suffered from impaired sense of taste or paresthesia, although the shape of the tongue was disproportional in 85%. With the present treatment algorithm, operative tongue reduction exerts a positive influence on skeletal, dentoalveolar and functional development with sufficient long-term outcome and high grade of satisfaction of the patients. Supportive therapy in an interdisciplinary centre is of fundamental importance for both surgical and conservative treatment.
Collapse
Affiliation(s)
- H Naujokat
- Departments of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - B Möller
- Departments of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - H Terheyden
- Departments of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - F Birkenfeld
- Departments of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - D Caliebe
- Departments of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - M F Krause
- Departments of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - H Fischer-Brandies
- Departments of Orthodontics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - J Wiltfang
- Departments of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
35
|
Binder G, Eggermann T, Weber K, Ferrand N, Schweizer R. The Diagnostic Value of IGF-2 and the IGF/IGFBP-3 System in Silver-Russell Syndrome. Horm Res Paediatr 2018; 88:201-207. [PMID: 28675902 DOI: 10.1159/000477666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/19/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Recently, we have described a family of 4 members presenting with intrauterine and postnatal growth failure, low IGF-2 levels, and signs of Silver-Russell syndrome (SRS) who carried a genomic IGF2 mutation. Here, we assess the value of IGF-2 in relation to SRS. METHODS We collected data from 48 SRS children and 48 short children born small for gestational age (SGA) seen at our center. The SRS children were 4.6 ± 2.0 years of age, and the SGA children were 4.8 ± 1.8 years of age. All patients were prepubertal and growth hormone naive. An 11p15 ICR1 loss of methylation (11p15LOM) was present in 22, maternal uniparental disomy of chromosome 7 (upd(7)mat) in 7, and IGF2 genomic mutation (IGF2mut) in 3 patients. Growth factors were measured by in-house radioimmunoassays. RESULTS The median IGF-2 standard deviation scores (SDSs) were: IGF2mut -1.75, upd(7)mat -1.69, nonsyndromic SGA -1.52, 11p15LOM -0.61, and clinical (tested negative) -0.55. The median IGF-2:IGF-1 concentration ratio was 2.57 in IGF2mut compared to 5.44 in 11p15LOM (p = 0.036), 7.84 in clinical, and 7.98 in upd(7)mat. Upd(7)mat patients had significantly lower IGF-1 and IGFBP-3 SDSs than patients with 11p15LOM (p ≤ 0.002). CONCLUSION Serum IGF-2 in combination with IGF-1 and IGFBP-3 can add to the clinical signs of SRS patients and help to perform targeted genetic testing. Further studies are needed.
Collapse
Affiliation(s)
- Gerhard Binder
- Pediatric Endocrinology, University Children's Hospital, Tübingen, Germany
| | | | - Karin Weber
- Pediatric Endocrinology, University Children's Hospital, Tübingen, Germany
| | - Nawfel Ferrand
- Pediatric Endocrinology, University Children's Hospital, Tübingen, Germany
| | - Roland Schweizer
- Pediatric Endocrinology, University Children's Hospital, Tübingen, Germany
| |
Collapse
|
36
|
Mark C, Hart C, McCarthy A, Thompson A. Fifteen-minute consultation: Assessment, surveillance and management of hemihypertrophy. Arch Dis Child Educ Pract Ed 2018; 103:114-117. [PMID: 28844056 DOI: 10.1136/archdischild-2017-312645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/30/2017] [Accepted: 07/17/2017] [Indexed: 11/03/2022]
Abstract
This article aims to provide a structured and concise guide for the general paediatrician managing a child with hemihypertrophy. Hemihypertrophy is a relatively uncommon condition. The significance is that a proportion of those affected are at risk of developing malignancies in childhood. For these children regular surveillance is required. We have outlined how one might assess and investigate a child presenting with hemihypertrophy. We have also formulated a practicable surveillance strategy which is in line with the current Royal College of Paediatrics and Child Health (RCPCH) guideline 'Wilms' tumour surveillance in at-risk children'.
Collapse
Affiliation(s)
- Catherine Mark
- MRC centre for medical mycology, Aberdeen Royal Infirmary (Foresterhill Hospital), Aberdeen, Scotland, UK
| | - Caroline Hart
- Department of Paediatrics, Royal Belfast Hospital for Sick Children, Belfast, Northern Ireland, UK
| | - Anthony McCarthy
- Children's Haematology Unit, Royal Belfast Hospital for Sick Children, Belfast, Northern Ireland, UK
| | - Andrew Thompson
- Children's Haematology Unit, Royal Belfast Hospital for Sick Children, Belfast, Northern Ireland, UK.,General Paediatrics, Royal Belfast Hospital for Sick Children, Belfast, Northern Ireland, UK
| |
Collapse
|
37
|
Genetic and Epigenetic Control of CDKN1C Expression: Importance in Cell Commitment and Differentiation, Tissue Homeostasis and Human Diseases. Int J Mol Sci 2018; 19:ijms19041055. [PMID: 29614816 PMCID: PMC5979523 DOI: 10.3390/ijms19041055] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/31/2018] [Accepted: 03/31/2018] [Indexed: 12/28/2022] Open
Abstract
The CDKN1C gene encodes the p57Kip2 protein which has been identified as the third member of the CIP/Kip family, also including p27Kip1 and p21Cip1. In analogy with these proteins, p57Kip2 is able to bind tightly and inhibit cyclin/cyclin-dependent kinase complexes and, in turn, modulate cell division cycle progression. For a long time, the main function of p57Kip2 has been associated only to correct embryogenesis, since CDKN1C-ablated mice are not vital. Accordingly, it has been demonstrated that CDKN1C alterations cause three human hereditary syndromes, characterized by altered growth rate. Subsequently, the p57Kip2 role in several cell phenotypes has been clearly assessed as well as its down-regulation in human cancers. CDKN1C lies in a genetic locus, 11p15.5, characterized by a remarkable regional imprinting that results in the transcription of only the maternal allele. The control of CDKN1C transcription is also linked to additional mechanisms, including DNA methylation and specific histone methylation/acetylation. Finally, long non-coding RNAs and miRNAs appear to play important roles in controlling p57Kip2 levels. This review mostly represents an appraisal of the available data regarding the control of CDKN1C gene expression. In addition, the structure and function of p57Kip2 protein are briefly described and correlated to human physiology and diseases.
Collapse
|
38
|
Brioude F, Kalish JM, Mussa A, Foster AC, Bliek J, Ferrero GB, Boonen SE, Cole T, Baker R, Bertoletti M, Cocchi G, Coze C, De Pellegrin M, Hussain K, Ibrahim A, Kilby MD, Krajewska-Walasek M, Kratz CP, Ladusans EJ, Lapunzina P, Le Bouc Y, Maas SM, Macdonald F, Õunap K, Peruzzi L, Rossignol S, Russo S, Shipster C, Skórka A, Tatton-Brown K, Tenorio J, Tortora C, Grønskov K, Netchine I, Hennekam RC, Prawitt D, Tümer Z, Eggermann T, Mackay DJG, Riccio A, Maher ER. Expert consensus document: Clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol 2018; 14:229-249. [PMID: 29377879 PMCID: PMC6022848 DOI: 10.1038/nrendo.2017.166] [Citation(s) in RCA: 359] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Beckwith-Wiedemann syndrome (BWS), a human genomic imprinting disorder, is characterized by phenotypic variability that might include overgrowth, macroglossia, abdominal wall defects, neonatal hypoglycaemia, lateralized overgrowth and predisposition to embryonal tumours. Delineation of the molecular defects within the imprinted 11p15.5 region can predict familial recurrence risks and the risk (and type) of embryonal tumour. Despite recent advances in knowledge, there is marked heterogeneity in clinical diagnostic criteria and care. As detailed in this Consensus Statement, an international consensus group agreed upon 72 recommendations for the clinical and molecular diagnosis and management of BWS, including comprehensive protocols for the molecular investigation, care and treatment of patients from the prenatal period to adulthood. The consensus recommendations apply to patients with Beckwith-Wiedemann spectrum (BWSp), covering classical BWS without a molecular diagnosis and BWS-related phenotypes with an 11p15.5 molecular anomaly. Although the consensus group recommends a tumour surveillance programme targeted by molecular subgroups, surveillance might differ according to the local health-care system (for example, in the United States), and the results of targeted and universal surveillance should be evaluated prospectively. International collaboration, including a prospective audit of the results of implementing these consensus recommendations, is required to expand the evidence base for the design of optimum care pathways.
Collapse
Affiliation(s)
- Frédéric Brioude
- Sorbonne Université, Pierre and Marie Curie-Paris VI University (UPMC) Université Paris 06, INSERM UMR_S938 Centre de Recherche Saint-Antoine (CRSA), APHP Hôpital Trousseau, Explorations Fonctionnelles Endocriniennes, 26 Avenue du Docteur Arnold Netter, F-75012 Paris, France
| | - Jennifer M Kalish
- Division of Human Genetics, Children's Hospital of Philadelphia and the Department of Pediatrics at the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
- Neonatal Intensive Care Unit, Department of Gynaecology and Obstetrics, Sant'Anna Hospital, Città della Salute e della Scienza di Torino, Corso Spezia 60, 10126 Torino, Italy
| | - Alison C Foster
- Birmingham Health Partners, West Midlands Regional Genetics Service, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham B15 2TG, UK
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jet Bliek
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, PO Box 7057 1007 MB Amsterdam, The Netherlands
| | - Giovanni Battista Ferrero
- Department of Public Health and Pediatric Sciences, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
| | - Susanne E Boonen
- Clinical Genetic Unit, Department of Pediatrics, Zealand University Hospital, Sygehusvej 10 4000 Roskilde, Denmark
| | - Trevor Cole
- Birmingham Health Partners, West Midlands Regional Genetics Service, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham B15 2TG, UK
| | - Robert Baker
- Beckwith-Wiedemann Support Group UK, The Drum and Monkey, Wonston, Hazelbury Bryan, Sturminster Newton, Dorset DT10 2EE, UK
| | - Monica Bertoletti
- Italian Association of Beckwith-Wiedemann syndrome (AIBWS) Piazza Turati, 3, 21029, Vergiate (VA), Italy
| | - Guido Cocchi
- Alma Mater Studiorum, Bologna University, Paediatric Department, Neonatology Unit, Via Massarenti 11, 40138 Bologna BO, Italy
| | - Carole Coze
- Aix-Marseille Univ et Assistance Publique Hôpitaux de Marseille (APHM), Hôpital d'Enfants de La Timone, Service d'Hématologie-Oncologie Pédiatrique, 264 Rue Saint Pierre, 13385 Marseille, France
| | - Maurizio De Pellegrin
- Pediatric Orthopaedic Unit IRCCS Ospedale San Raffaele, Milan, Via Olgettina Milano, 60, 20132 Milano MI, Italy
| | - Khalid Hussain
- Department of Paediatric Medicine, Division of Endocrinology, Sidra Medical and Research Center, Al Gharrafa Street, Ar-Rayyan, Doha, Qatar
| | - Abdulla Ibrahim
- Department of Plastic and Reconstructive Surgery, North Bristol National Health Service (NHS) Trust, Southmead Hospital, Bristol BS10 5NB, UK
| | - Mark D Kilby
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Fetal Medicine Centre, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Edgbaston, Birmingham, B15 2TG, UK
| | | | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Carl-Neuberg-Strasse 1 30625, Hannover, Germany
| | - Edmund J Ladusans
- Department of Paediatric Cardiology, Royal Manchester Children's Hospital, Manchester, M13 8WL UK
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM Paseo de La Castellana, 261, 28046, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Yves Le Bouc
- Sorbonne Université, Pierre and Marie Curie-Paris VI University (UPMC) Université Paris 06, INSERM UMR_S938 Centre de Recherche Saint-Antoine (CRSA), APHP Hôpital Trousseau, Explorations Fonctionnelles Endocriniennes, 26 Avenue du Docteur Arnold Netter, F-75012 Paris, France
| | - Saskia M Maas
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, PO Box 7057 1007 MB Amsterdam, The Netherlands
| | - Fiona Macdonald
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham, B15 2TG UK
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital and Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, L. Puusepa 2, 51014, Tartu, Estonia
| | - Licia Peruzzi
- European Society for Paediatric Nephrology (ESPN), Inherited Kidney Disorders Working Group
- AOU Città della Salute e della Scienza di Torino, Regina Margherita Children's Hospital, Turin, Italy
| | - Sylvie Rossignol
- Service de Pédiatrie, Hôpitaux Universitaires de Strasbourg, Laboratoire de Génétique Médicale, INSERM U1112 Avenue Molière 67098 STRASBOURG Cedex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 4 Rue Kirschleger, 67000 Strasbourg, France
| | - Silvia Russo
- Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano, Milan, Italy
| | - Caroleen Shipster
- Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, WC1N 3JH, UK
| | - Agata Skórka
- Department of Medical Genetics, The Children's Memorial Health Institute, 20, 04-730, Warsaw, Poland
- Department of Pediatrics, The Medical University of Warsaw, Zwirki i Wigury 63a, 02-091 Warszawa, Poland
| | - Katrina Tatton-Brown
- South West Thames Regional Genetics Service and St George's University of London and Institute of Cancer Research, London, SW17 0RE, UK
| | - Jair Tenorio
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM Paseo de La Castellana, 261, 28046, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Chiara Tortora
- Regional Center for CLP, Smile House, San Paolo University Hospital, Via Antonio di Rudinì, 8, 20142, Milan, Italy
| | - Karen Grønskov
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Irène Netchine
- Sorbonne Université, Pierre and Marie Curie-Paris VI University (UPMC) Université Paris 06, INSERM UMR_S938 Centre de Recherche Saint-Antoine (CRSA), APHP Hôpital Trousseau, Explorations Fonctionnelles Endocriniennes, 26 Avenue du Docteur Arnold Netter, F-75012 Paris, France
| | - Raoul C Hennekam
- Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam-Zuidoost, Amsterdam, The Netherlands
| | - Dirk Prawitt
- Center for Pediatrics and Adolescent Medicine, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, D-55101, Mainz, Germany
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Thomas Eggermann
- Institute of Human Genetics, University Hospital, Technical University of Aachen, Templergraben 55, 52062, Aachen, Germany
| | - Deborah J G Mackay
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Andrea Riccio
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Caserta and Institute of Genetics and Biophysics "A. Buzzati-Traverso" - CNR, Via Pietro Castellino, 111,80131, Naples, Italy
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre and Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| |
Collapse
|
39
|
Gillessen-Kaesbach G, Albrecht B, Eggermann T, Elbracht M, Mitter D, Morlot S, van Ravenswaaij-Arts C, Schulz S, Strobl-Wildemann G, Buiting K, Beygo J. Molecular and clinical studies in 8 patients with Temple syndrome. Clin Genet 2018; 93:1179-1188. [DOI: 10.1111/cge.13244] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/31/2022]
Affiliation(s)
| | - B. Albrecht
- Institut für Humangenetik; Universitätsklinikum Essen, Universität Duisburg-Essen; Essen Germany
| | - T. Eggermann
- Institute of Human Genetics; RWTH Aachen University; Aachen Germany
| | - M. Elbracht
- Institute of Human Genetics; RWTH Aachen University; Aachen Germany
| | - D. Mitter
- Institute of Human Genetics
- ; University of Leipzig Hospitals and Clinics; Leipzig Germany
| | - S. Morlot
- Department of Human Genetics; Hannover Medical School; Hannover Germany
| | - C.M.A. van Ravenswaaij-Arts
- Department of Genetics; University of Groningen, University Medical Centre Groningen; Groningen The Netherlands
| | - S. Schulz
- Center of Human Genetics; Jena University Hospital; Jena Germany
| | | | - K. Buiting
- Institut für Humangenetik; Universitätsklinikum Essen, Universität Duisburg-Essen; Essen Germany
| | - J. Beygo
- Institut für Humangenetik; Universitätsklinikum Essen, Universität Duisburg-Essen; Essen Germany
| |
Collapse
|
40
|
Tümer Z, López-Hernández JA, Netchine I, Elbracht M, Grønskov K, Gede LB, Sachwitz J, den Dunnen JT, Eggermann T. Structural and sequence variants in patients with Silver-Russell syndrome or similar features-Curation of a disease database. Hum Mutat 2018; 39:345-364. [PMID: 29250858 DOI: 10.1002/humu.23382] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022]
Abstract
Silver-Russell syndrome (SRS) is a clinically and molecularly heterogeneous disorder involving prenatal and postnatal growth retardation, and the term SRS-like is broadly used to describe individuals with clinical features resembling SRS. The main molecular subgroups are loss of methylation of the distal imprinting control region (H19/IGF2:IG-DMR) on 11p15.5 (50%) and maternal uniparental disomy of chromosome 7 (5%-10%). Through a comprehensive literature search, we identified 91 patients/families with various structural and small sequence variants, which were suggested as additional molecular defects leading to SRS/SRS-like phenotypes. However, the molecular and phenotypic data of these patients were not standardized and therefore not comparable, rendering difficulties in phenotype-genotype comparisons. To overcome this challenge, we curated a disease database including (epi)genetic phenotypic data of these patients. The clinical features are scored according to the Netchine-Harbison clinical scoring system (NH-CSS), which has recently been accepted as standard by consensus. The structural and sequence variations are reviewed and where necessary redescribed according to recent recommendations. Our study provides a framework for both research and diagnostic purposes through facilitating a standardized comparison of (epi)genotypes with phenotypes of patients with structural/sequence variants.
Collapse
Affiliation(s)
- Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Centre, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | | | - Irène Netchine
- Sorbonne Universite, INSERM UMR_S 938, CDR Saint-Antoine, Paris, France.,APHP, Armand Trousseau Hospital, Pediatric Endocrinology, Paris, France
| | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Karen Grønskov
- Applied Human Molecular Genetics, Kennedy Centre, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Lene Bjerring Gede
- Applied Human Molecular Genetics, Kennedy Centre, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Jana Sachwitz
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Johan T den Dunnen
- Human Genetics and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
41
|
Kvernebo-Sunnergren K, Ankarberg-Lindgren C, Åkesson K, Andersson MX, Samuelsson L, Lovmar L, Dahlgren J. Hyperestrogenism Affects Adult Height Outcome in Growth Hormone Treated Boys With Silver-Russell Syndrome. Front Endocrinol (Lausanne) 2018; 9:780. [PMID: 30622515 PMCID: PMC6308318 DOI: 10.3389/fendo.2018.00780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/11/2018] [Indexed: 11/29/2022] Open
Abstract
Background: Intrauterine growth retardation and short stature are common features in Silver-Russell syndrome (SRS). Despite recombinant growth hormone (rGH) treatment, poor pubertal height gain, affecting adult height (AH), is common. This study investigated whether growth patterns and estrogen concentrations are associated with AH outcome in rGH treated SRS males. Methods: In this retrospective longitudinal single-center study, 11 males with SRS were classified as non-responders (NR = 6) or responders (R = 5), depending on AH adjusted for midparental height. Epigenetic analysis and longitudinal growth measures, including bone age, rGH related parameters, pubertal development, gonadotropins and estrogen concentrations, were analyzed until AH. Results: Pubarche before 9 years was only observed in one NR. At 10 years of age, there was no difference in gonadotropins between NR and R. However, estradiol (E2) concentrations at 10 years of age showed a strong association to AH adjusted for MPH (r = -0.78, p < 0.001). Serum E2 (pmol/L) was significantly higher in NR at ages 10 years [median (range) 2 (<2-5) vs. <2 (<2)], 12 years [23 (10-57) vs. 2 (<2-2)] and 14 years [77 (54-87) vs. 24 (<2-38)] but not at 16 years. Birth weight standard deviation score (SDS) was lower in NR [-4.1 (-4.7 to -2.1) vs. -2.7 (-3.3 to -1.7)]. Weight gain (SDS) until pubertal onset was greater in NR [2.4 (1.4-3.5) vs. 0.8 (-0.4 to 1.7)] and pubertal height gain (SDS) was lower in NR [-1.0 (-2.7-0.4) vs. 0.1 (-0.1 to 1.1)]. At AH, a number of NR and R had high E2 concentrations and small testes. Conclusion: Increased E2 concentrations at age 10, 12, and 14 years were associated to less pubertal height gain, thus affecting AH. Due to the small number of patients, the results need to be confirmed in larger cohorts. The finding of impaired testicular development stresses the need of hormonal evaluation as a complement to clinical and radiological assessment when predicting AH in males with SRS.
Collapse
Affiliation(s)
- Kjersti Kvernebo-Sunnergren
- Department of Pediatrics, Ryhov County Hospital, Jönköping, Sweden
- Department of Pediatrics, Göteborg Pediatric Growth Research Center, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Kjersti Kvernebo-Sunnergren
| | - Carina Ankarberg-Lindgren
- Department of Pediatrics, Göteborg Pediatric Growth Research Center, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Åkesson
- Department of Pediatrics, Ryhov County Hospital, Jönköping, Sweden
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Linköping University Hospital, Linköping, Sweden
| | - Mats X. Andersson
- Department of Pediatrics, Göteborg Pediatric Growth Research Center, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Lena Samuelsson
- Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lovisa Lovmar
- Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jovanna Dahlgren
- Department of Pediatrics, Göteborg Pediatric Growth Research Center, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
42
|
Heide S, Chantot-Bastaraud S, Keren B, Harbison MD, Azzi S, Rossignol S, Michot C, Lackmy-Port Lys M, Demeer B, Heinrichs C, Newfield RS, Sarda P, Van Maldergem L, Trifard V, Giabicani E, Siffroi JP, Le Bouc Y, Netchine I, Brioude F. Chromosomal rearrangements in the 11p15 imprinted region: 17 new 11p15.5 duplications with associated phenotypes and putative functional consequences. J Med Genet 2017; 55:205-213. [PMID: 29223973 DOI: 10.1136/jmedgenet-2017-104919] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/11/2017] [Accepted: 11/04/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND The 11p15 region contains two clusters of imprinted genes. Opposite genetic and epigenetic anomalies of this region result in two distinct growth disturbance syndromes: Beckwith-Wiedemann (BWS) and Silver-Russell syndromes (SRS). Cytogenetic rearrangements within this region represent less than 3% of SRS and BWS cases. Among these, 11p15 duplications were infrequently reported and interpretation of their pathogenic effects is complex. OBJECTIVES To report cytogenetic and methylation analyses in a cohort of patients with SRS/BWS carrying 11p15 duplications and establish genotype/phenotype correlations. METHODS From a cohort of patients with SRS/BWS with an abnormal methylation profile (using ASMM-RTQ-PCR), we used SNP-arrays to identify and map the 11p15 duplications. We report 19 new patients with SRS (n=9) and BWS (n=10) carrying de novo or familial 11p15 duplications, which completely or partially span either both telomeric and centromeric domains or only one domain. RESULTS Large duplications involving one complete domain or both domains are associated with either SRS or BWS, depending on the parental origin of the duplication. Genotype-phenotype correlation studies of partial duplications within the telomeric domain demonstrate the prominent role of IGF2, rather than H19, in the control of growth. Furthermore, it highlights the role of CDKN1C within the centromeric domain and suggests that the expected overexpression of KCNQ1OT1 from the paternal allele (in partial paternal duplications, excluding CDKN1C) does not affect the expression of CDKN1C. CONCLUSIONS The phenotype associated with 11p15 duplications depends on the size, genetic content, parental inheritance and imprinting status. Identification of these rare duplications is crucial for genetic counselling.
Collapse
Affiliation(s)
- Solveig Heide
- Département de Génétique, APHP, Hôpital Armand-Trousseau, UF de Génétique Chromosomique, Paris, France
| | - Sandra Chantot-Bastaraud
- Département de Génétique, APHP, Hôpital Armand-Trousseau, UF de Génétique Chromosomique, Paris, France
| | - Boris Keren
- Département de Génétique, APHP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Madeleine D Harbison
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Salah Azzi
- Nuclear Dynamics ISPG, Babraham Institute, Cambridge, UK
| | - Sylvie Rossignol
- Service de Pédiatrie 1, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Laboratoire de Génétique Médicale, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Caroline Michot
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker Enfants Malades (AP-HP), Paris, France
| | - Marilyn Lackmy-Port Lys
- Unité de Génétique Clinique, Centre de Compétences Maladies Rares Anomalies du développement, Centre Hospitalier Universitaire Pointe-a-Pitre Abymes, Pointe-a-Pitre, France
| | - Bénédicte Demeer
- Service de Génétique Clinique et Oncogénétique, CLAD Nord de France, CHU Amiens-Picardie, Amiens, France
| | - Claudine Heinrichs
- Service d'Endocrinologie Pédiatrique, Queen Fabiola Children's University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ron S Newfield
- Department of Pediatrics, Division of Pediatric Endocrinology, University of California San Diego, San Diego, CA, USA.,Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Pierre Sarda
- Service de Génétique Médicale, CHU de Montpellier, Montpellier, France
| | - Lionel Van Maldergem
- CHU, Centre de Génétique Humaine Besançon, Université de Franche-Comté, Besançon, France
| | - Véronique Trifard
- Service de Pédiatrie, CH de La Roche sur Yon, La Roche sur Yon, France
| | - Eloise Giabicani
- AP-HP, Hôpitaux Universitaires Paris Est, Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, Paris, France.,INSERM UMR_S938, Centre de Recherche Saint Antoine, Paris, France.,Sorbonne Universites, UPMC Univ Paris 06, Paris, France
| | - Jean-Pierre Siffroi
- Département de Génétique, APHP, Hôpital Armand-Trousseau, UF de Génétique Chromosomique, Paris, France
| | - Yves Le Bouc
- AP-HP, Hôpitaux Universitaires Paris Est, Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, Paris, France.,INSERM UMR_S938, Centre de Recherche Saint Antoine, Paris, France.,Sorbonne Universites, UPMC Univ Paris 06, Paris, France
| | - Irène Netchine
- AP-HP, Hôpitaux Universitaires Paris Est, Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, Paris, France.,INSERM UMR_S938, Centre de Recherche Saint Antoine, Paris, France.,Sorbonne Universites, UPMC Univ Paris 06, Paris, France
| | - Frédéric Brioude
- AP-HP, Hôpitaux Universitaires Paris Est, Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, Paris, France.,INSERM UMR_S938, Centre de Recherche Saint Antoine, Paris, France.,Sorbonne Universites, UPMC Univ Paris 06, Paris, France
| |
Collapse
|
43
|
Muurinen M, Hannula-Jouppi K, Reinius LE, Söderhäll C, Merid SK, Bergström A, Melén E, Pershagen G, Lipsanen-Nyman M, Greco D, Kere J. Hypomethylation of HOXA4 promoter is common in Silver-Russell syndrome and growth restriction and associates with stature in healthy children. Sci Rep 2017; 7:15693. [PMID: 29146936 PMCID: PMC5691194 DOI: 10.1038/s41598-017-16070-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 11/07/2017] [Indexed: 01/03/2023] Open
Abstract
Silver-Russell syndrome (SRS) is a growth retardation syndrome in which loss of methylation on chromosome 11p15 (11p15 LOM) and maternal uniparental disomy for chromosome 7 [UPD(7)mat] explain 20–60% and 10% of the syndrome, respectively. To search for a molecular cause for the remaining SRS cases, and to find a possible common epigenetic change, we studied DNA methylation pattern of more than 450 000 CpG sites in 44 SRS patients. Common to all three SRS subgroups, we found a hypomethylated region at the promoter region of HOXA4 in 55% of the patients. We then tested 39 patients with severe growth restriction of unknown etiology, and found hypomethylation of HOXA4 in 44% of the patients. Finally, we found that methylation at multiple CpG sites in the HOXA4 promoter region was associated with height in a cohort of 227 healthy children, suggesting that HOXA4 may play a role in regulating human growth by epigenetic mechanisms.
Collapse
Affiliation(s)
- Mari Muurinen
- Folkhälsan Institute of Genetics, Helsinki, and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Katariina Hannula-Jouppi
- Folkhälsan Institute of Genetics, Helsinki, and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.,Department of Dermatology, Skin and Allergy Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Lovisa E Reinius
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Cilla Söderhäll
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Simon Kebede Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children's Hospital, Södersjukhuset, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Marita Lipsanen-Nyman
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Dario Greco
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Faculty of Medicine and Life Sciences & Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland
| | - Juha Kere
- Folkhälsan Institute of Genetics, Helsinki, and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland. .,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden. .,School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK.
| |
Collapse
|
44
|
Kalish JM, Deardorff MA. Tumor screening in Beckwith-Wiedemann syndrome-To screen or not to screen? Am J Med Genet A 2017; 170:2261-4. [PMID: 27518916 DOI: 10.1002/ajmg.a.37881] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/25/2016] [Indexed: 12/24/2022]
Abstract
Beckwith-Wiedemann syndrome (BWS) is the most common imprinting disorder and consequently, one of the most common cancer predisposition disorders. Over the past 20 years, our understanding of the genetics and epigenetics leading to BWS has evolved and genotype/phenotype correlations have become readily apparent. Clinical management of these patients is focused on omphaloceles, hypoglycemia, macroglossia, hemihypertrophy, and tumor screening. Until recently, the need for tumor screening has been thought to be largely uniform across all genetic and epigenetic causes of BWS. As tumor risk correlates with genetic and epigenetic causes of BWS, several groups have proposed alterations to tumor screening protocols based on the etiology of BWS. However, there are many challenges inherent in adapting screening protocols. Such protocols must accommodate not only the risk based on genetic and epigenetic causes but also the medical cost-benefit of screening, the psychological impact on families, and the social-legal implications of missing a treatable tumor. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jennifer M Kalish
- The Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,The Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew A Deardorff
- The Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,The Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Elbracht M, Mohnike K, Eggermann T, Binder G. Diagnostik und Therapie des Silver-Russell-Syndroms. Monatsschr Kinderheilkd 2017. [DOI: 10.1007/s00112-017-0310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Inoue T, Nakamura A, Matsubara K, Nyuzuki H, Nagasaki K, Oka A, Fukami M, Kagami M. Continuous hypomethylation of the KCNQ1OT1:TSS-DMR in monochorionic twins discordant for Beckwith-Wiedemann syndrome. Am J Med Genet A 2017; 173:2847-2850. [PMID: 28816024 DOI: 10.1002/ajmg.a.38419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/13/2017] [Accepted: 07/31/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Takanobu Inoue
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiromi Nyuzuki
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keisuke Nagasaki
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akira Oka
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
47
|
Meyer R, Soellner L, Begemann M, Dicks S, Fekete G, Rahner N, Zerres K, Elbracht M, Eggermann T. Targeted Next Generation Sequencing Approach in Patients Referred for Silver-Russell Syndrome Testing Increases the Mutation Detection Rate and Provides Decisive Information for Clinical Management. J Pediatr 2017; 187:206-212.e1. [PMID: 28529015 DOI: 10.1016/j.jpeds.2017.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/09/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To investigate the contribution of differential diagnoses to the mutation spectrum of patients referred for Silver-Russell syndrome (SRS) testing. STUDY DESIGN Forty-seven patients referred for molecular testing for SRS were examined after exclusion of one of the SRS-associated alterations. After clinical classification, a targeted next generation sequencing approach comprising 25 genes associated with other diagnoses or postulated as SRS candidate genes was performed. RESULTS By applying the Netchine-Harbinson clinical scoring system, indication for molecular testing for SRS was confirmed in 15 out of 47 patients. In 4 out of these 15 patients, disease-causing variants were found in genes associated with other diagnoses. These patients carried mutations associated with Bloom syndrome, Mulibrey nanism, KBG syndrome, or IGF1R-associated short stature. We could not detect any pathogenic mutation in patients with a negative clinical score. CONCLUSIONS Some of the differential diagnoses detected in the cohort presented here have a major impact on clinical management. Therefore, we emphasize that the molecular defects associated with these clinical pictures should be excluded before the clinical diagnosis "SRS" is made. Finally, we could show that a broad molecular approach including the differential diagnoses of SRS increases the detection rate.
Collapse
Affiliation(s)
- Robert Meyer
- Institute of Human Genetics, University Hospital, Technical University Aachen (Rheinisch-Westfälische Technische Hochschule), Aachen, Germany
| | - Lukas Soellner
- Institute of Human Genetics, University Hospital, Technical University Aachen (Rheinisch-Westfälische Technische Hochschule), Aachen, Germany
| | - Matthias Begemann
- Institute of Human Genetics, University Hospital, Technical University Aachen (Rheinisch-Westfälische Technische Hochschule), Aachen, Germany
| | - Severin Dicks
- Institute of Human Genetics, University Hospital, Technical University Aachen (Rheinisch-Westfälische Technische Hochschule), Aachen, Germany
| | - György Fekete
- Second Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Nils Rahner
- University Clinic Düsseldorf, Institute of Human Genetics, Düsseldorf, Germany
| | - Klaus Zerres
- Institute of Human Genetics, University Hospital, Technical University Aachen (Rheinisch-Westfälische Technische Hochschule), Aachen, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, University Hospital, Technical University Aachen (Rheinisch-Westfälische Technische Hochschule), Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, University Hospital, Technical University Aachen (Rheinisch-Westfälische Technische Hochschule), Aachen, Germany.
| |
Collapse
|
48
|
Mussa A, Molinatto C, Cerrato F, Palumbo O, Carella M, Baldassarre G, Carli D, Peris C, Riccio A, Ferrero GB. Assisted Reproductive Techniques and Risk of Beckwith-Wiedemann Syndrome. Pediatrics 2017. [PMID: 28634246 DOI: 10.1542/peds.2016-4311] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The emerging association of assisted reproductive techniques (ART) with imprinting disorders represents a major issue in the scientific debate on infertility treatment and human procreation. We studied the prevalence of Beckwith-Wiedemann syndrome (BWS) in children conceived through ART to define the specific associated relative risk. METHODS Patients with BWS born in Piemonte, Italy, were identified and matched with the general demographic data and corresponding regional ART registry. RESULTS Between 2005 and 2014, live births in Piemonte were 379 872, including 7884 from ART. Thirty-eight patients with BWS were born, 7 from ART and 31 naturally conceived. BWS birth prevalence in the ART group was significantly higher than that of the naturally conceived group (1:1126 vs 1:12 254, P < .001). The absolute live birth risk in the ART group was 887.9 per 1 000 000 vs 83.3 per 1 000 000 in the naturally conceived group, providing a relative risk of 10.7 (95% confidence interval 4.7-24.2). During the 1997-2014 period, 67 patients were diagnosed with BWS out of 663 834 newborns (1:9908 live births). Nine out of the 67 BWS patients were conceived through ART (13.4%), and 8 were molecularly tested, with 4 having an imprinting center 2 loss of methylation, 2 with 11p15.5 paternal uniparental disomy, and 2 negative results. CONCLUSIONS ART entails a 10-fold increased risk of BWS and could be implicated in the pathogenesis of genomic events besides methylation anomalies. These data highlight the need for awareness of ART-associated health risk.
Collapse
Affiliation(s)
- Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy.,NICU and Neonatology, Department of Gynecology and Obstetrics, S. Anna Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Cristina Molinatto
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Flavia Cerrato
- DiSTABiF, Second University of Naples and Institute of Genetics and Biophysics "A. Buzzati-Traverso" - CNR, Naples, Italy
| | - Orazio Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy; and
| | - Massimo Carella
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy; and
| | | | - Diana Carli
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | | | - Andrea Riccio
- DiSTABiF, Second University of Naples and Institute of Genetics and Biophysics "A. Buzzati-Traverso" - CNR, Naples, Italy
| | | |
Collapse
|
49
|
Beygo J, Küchler A, Gillessen-Kaesbach G, Albrecht B, Eckle J, Eggermann T, Gellhaus A, Kanber D, Kordaß U, Lüdecke HJ, Purmann S, Rossier E, van de Nes J, van der Werf IM, Wenzel M, Wieczorek D, Horsthemke B, Buiting K. New insights into the imprinted MEG8-DMR in 14q32 and clinical and molecular description of novel patients with Temple syndrome. Eur J Hum Genet 2017. [PMID: 28635951 DOI: 10.1038/ejhg.2017.91] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The chromosomal region 14q32 contains several imprinted genes, which are expressed either from the paternal (DLK1 and RTL1) or the maternal (MEG3, RTL1as and MEG8) allele only. Imprinted expression of these genes is regulated by two differentially methylated regions (DMRs), the germline DLK1/MEG3 intergenic (IG)-DMR (MEG3/DLK1:IG-DMR) and the somatic MEG3-DMR (MEG3:TSS-DMR), which are methylated on the paternal and unmethylated on the maternal allele. Disruption of imprinting in the 14q32 region results in two clinically distinct imprinting disorders, Temple syndrome (TS14) and Kagami-Ogata syndrome (KOS14). Another DMR with a yet unknown function is located in intron 2 of MEG8 (MEG8-DMR, MEG8:Int2-DMR). In contrast to the IG-DMR and the MEG3-DMR, this somatic DMR is methylated on the maternal chromosome and unmethylated on the paternal chromosome. We have performed extensive methylation analyses by deep bisulfite sequencing of the IG-DMR, MEG3-DMR and MEG8-DMR in different prenatal tissues including amniotic fluid cells and chorionic villi. In addition, we have studied the methylation pattern of the MEG8-DMR in different postnatal tissues. We show that the MEG8-DMR is hypermethylated in each of 13 non-deletion TS14 patients (seven newly identified and six previously published patients), irrespective of the underlying molecular cause, and is always hypomethylated in the four patients with KOS14, who have different deletions not encompassing the MEG8-DMR itself. The size and the extent of the deletions and the resulting methylation pattern suggest that transcription starting from the MEG3 promoter may be necessary to establish the methylation imprint at the MEG8-DMR.
Collapse
Affiliation(s)
- Jasmin Beygo
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Alma Küchler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | | | - Beate Albrecht
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Jonas Eckle
- Sozialpädiatrisches Zentrum, St. Elisabeth-Stiftung, Ravensburg, Germany
| | | | - Alexandra Gellhaus
- Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Essen, Essen, Germany
| | - Deniz Kanber
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Ulrike Kordaß
- MVZ für Humangenetik und Molekularpathologie Rostock, Zweigstelle Greifswald, Greifswald, Germany
| | - Hermann-Josef Lüdecke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany.,Institut für Humangenetik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Sabine Purmann
- Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | - Eva Rossier
- Institut für Medizinische Genetik und angewandte Genomik, Universiät Tübingen, Tübingen, Germany.,Genetikum Stuttgart, Stuttgart, Germany
| | - Johannes van de Nes
- Institute of Neuropathology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.,Institute of Pathology, University of Bochum, Bochum, Germany
| | | | | | - Dagmar Wieczorek
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany.,Institut für Humangenetik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Bernhard Horsthemke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Karin Buiting
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
50
|
McNamara GI, Davis BA, Dwyer DM, John RM, Isles AR. Behavioural abnormalities in a novel mouse model for Silver Russell Syndrome. Hum Mol Genet 2017; 25:5407-5417. [PMID: 27798108 PMCID: PMC5418837 DOI: 10.1093/hmg/ddw357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/16/2016] [Indexed: 01/02/2023] Open
Abstract
Silver Russell Syndrome (SRS) syndrome is an imprinting disorder involving low birth weight with complex genetics and diagnostics. Some rare SRS patients carry maternally inherited microduplications spanning the imprinted genes CDKN1C, PHLDA2, SLC22A18 and KCNQ1, suggesting that overexpression of one of more of these genes contributes to the SRS phenotype. While this molecular alteration is very rare, feeding difficulties are a very common feature of this condition. Given that SRS children also have very low body mass index, understanding the underpinning biology of the eating disorder is important, as well as potential co-occurring behavioural alterations. Here, we report that a mouse model of this microduplication exhibits a number of behavioural deficits. The mice had a blunted perception of the palatability of a given foodstuff. This perception may underpin the fussiness with food. We additionally report hypoactivity, unrelated to anxiety or motoric function, and a deficit in the appropriate integration of incoming sensory information. Importantly, using a second genetic model, we were able to attribute all altered behaviours to elevated expression of a single gene, Cdkn1c. This is the first report linking elevated Cdkn1c to altered behaviour in mice. Importantly, the findings from our study may have relevance for SRS and highlight a potentially underreported aspect of this disorder.
Collapse
Affiliation(s)
- Grainne Iseult McNamara
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Brittany Ann Davis
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | | | | | - Anthony Roger Isles
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|