1
|
Shulhai AM, Munerati A, Menzella M, Palanza P, Esposito S, Street ME. Insights into pubertal development: a narrative review on the role of epigenetics. J Endocrinol Invest 2025; 48:817-830. [PMID: 39704935 PMCID: PMC11950117 DOI: 10.1007/s40618-024-02513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/30/2024] [Indexed: 12/21/2024]
Abstract
PURPOSE Puberty is a key phase of growth and development, characterized by psychophysical transformations. It is driven by a combination of genetic, hormonal, and environmental variables. Epigenetic mechanisms, including histone post-translational modifications and chromatin remodeling, microRNAs, and DNA methylation, play important roles in orchestrating the developmental processes. We describe environmental factors that may interact with genetics, and factors influencing puberty onset, focusing in particular on epigenetic mechanisms that can help understand the timing and variations that lead to precocious or delayed puberty. METHODS We conducted a narrative review of associations between puberty and epigenetic mechanisms through a comprehensive search of PubMed, Scopus, and Web of Science databases. RESULTS The chromatin landscape of genes as KISS1 has revealed dynamic changes in histone modifications as puberty approaches, influencing the stimulation or inhibition of gene expression critical for reproductive maturation. MiRNAs regulate gene expression, whereas DNA methylation affects activation or repression of gene transcription of genes involved in pubertal timing. Moreover, studies in animal models have provided insights into the role of DNA methylation and miRNAs in brain sexual differentiation, highlighting the active involvement of epigenetic mechanisms in shaping sexually dimorphic brain structures. CONCLUSION This review highlights the importance of understanding the complex interplay between epigenetic regulation and pubertal development, which can lead to new therapeutic options and shed light on the fundamental processes driving reproductive maturation.
Collapse
Affiliation(s)
- Anna-Mariia Shulhai
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, University of Parma, Parma, 43126, Italy
- Department of Pediatrics №2, Ivan Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Anna Munerati
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, University of Parma, Parma, 43126, Italy
| | - Marialaura Menzella
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, University of Parma, Parma, 43126, Italy
| | - Paola Palanza
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Parma, 43125, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, University of Parma, Parma, 43126, Italy
| | - Maria Elisabeth Street
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, University of Parma, Parma, 43126, Italy.
| |
Collapse
|
2
|
Shaik Syed Ali P, Ahmad MP, Parveen KMH. Lin28/let-7 axis in breast cancer. Mol Biol Rep 2025; 52:311. [PMID: 40085362 DOI: 10.1007/s11033-025-10413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Let-7 microRNAs are tumor suppressor microRNAs, and their reduced expression frequently occurs in various types of cancers, including breast cancer. A notable correlation exists between decreased let-7 microRNA levels and the overexpression of Lin28A and Lin28B, particularly in breast cancer cases with poor prognoses. Dysregulation of Wnt signaling significantly contributes to the upregulation of Lin28A and Lin28B in breast cancer. Both Lin28A and Lin28B operate from different cellular compartments to inhibit the biogenesis of let-7 microRNAs, which are essential for the post-transcriptional regulation of genes involved in key cellular functions such as proliferation, differentiation, and apoptosis. Decreased expression of let-7 microRNAs leads to the overexpression of oncogenes such as K-ras, C-myc, and SOX-2 in breast cancer. Overexpression of Lin28A associated with reduced let-7 microRNA levels is observed in estrogen receptor positive, estrogen receptor negative, and human epidermal growth factor receptor 2 positive breast cancers, whereas Lin28B overexpression with reduced let-7 microRNA levels occurs specifically in triple negative breast cancer. This review aims to dissect the molecular interplay between Lin28A, Lin28B, and let-7 microRNAs, elucidating their roles in breast carcinogenesis, metastasis, and the development of resistance to conventional treatments like radiation and chemotherapy. Additionally, the review addresses potential therapeutic avenues offered by let-7 microRNAs or their mimics, as well as Lin28A and Lin28B inhibitors, in the treatment of breast cancer.
Collapse
Affiliation(s)
- P Shaik Syed Ali
- School of Medicine, The Maldives National University, Malé, Maldives.
| | - Md Parwez Ahmad
- School of Medicine, The Maldives National University, Malé, Maldives
| | - K M Huria Parveen
- School of Medicine, The Maldives National University, Malé, Maldives
| |
Collapse
|
3
|
Chen Z, Lu J, Zhao X, Yu H, Li C. Energy Landscape Reveals the Underlying Mechanism of Cancer-Adipose Conversion in Gene Network Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404854. [PMID: 39258786 PMCID: PMC11538663 DOI: 10.1002/advs.202404854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Indexed: 09/12/2024]
Abstract
Cancer is a systemic heterogeneous disease involving complex molecular networks. Tumor formation involves an epithelial-mesenchymal transition (EMT), which promotes both metastasis and plasticity of cancer cells. Recent experiments have proposed that cancer cells can be transformed into adipocytes via a combination of drugs. However, the underlying mechanisms for how these drugs work, from a molecular network perspective, remain elusive. To reveal the mechanism of cancer-adipose conversion (CAC), this study adopts a systems biology approach by combing mathematical modeling and molecular experiments, based on underlying molecular regulatory networks. Four types of attractors are identified, corresponding to epithelial (E), mesenchymal (M), adipose (A) and partial/intermediate EMT (P) cell states on the CAC landscape. Landscape and transition path results illustrate that intermediate states play critical roles in the cancer to adipose transition. Through a landscape control approach, two new therapeutic strategies for drug combinations are identified, that promote CAC. These predictions are verified by molecular experiments in different cell lines. The combined computational and experimental approach provides a powerful tool to explore molecular mechanisms for cell fate transitions in cancer networks. The results reveal underlying mechanisms of intermediate cell states that govern the CAC, and identified new potential drug combinations to induce cancer adipogenesis.
Collapse
Affiliation(s)
- Zihao Chen
- Shanghai Center for Mathematical SciencesFudan UniversityShanghai200433China
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
| | - Jia Lu
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Xing‐Ming Zhao
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
| | - Haiyang Yu
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjin301617China
- Haihe Laboratory of Traditional Chinese MedicineTianjin301617China
| | - Chunhe Li
- Shanghai Center for Mathematical SciencesFudan UniversityShanghai200433China
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
- School of Mathematical Sciences and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200433China
| |
Collapse
|
4
|
Zhou S, Xue J, Yang Q, Zang W, Chen Y, Zhao Y, Gao X. Clinical significance of LIN28A gene polymorphisms and expression in pan-cancer: a meta-analysis and bioinformatic analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-10. [PMID: 39154245 DOI: 10.1080/15257770.2024.2393316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Several studies have reported the relationship between LIN28A gene polymorphisms (rs3811463 T > C and rs34787247 G > A) and cancer susceptibility, but the results are inconsistent and need further clarification. The current study aimed to evaluate their relationship and also to explore the relationship between LIN28A gene expression and immune infiltration, tumor stage, survival prognosis, and drug sensitivity in pan-cancer. The meta-analysis and data mining were completed by STATA software and the GSCA platform, respectively. The meta-analysis showed that the rs3811463 polymorphism was not associated with cancer susceptibility, while the rs34787247 polymorphism was associated with cancer susceptibility in the Chinese population [AA vs. GG: Odd Ratio (OR)=1.98, 95% Confidence Interval (CI)=1.35-2.89, PZ<0.001; GA vs. GG: OR = 1.17, 95%CI= 1.01-1.36, PZ=0.04; (AA + GA) vs. GG: OR = 1.24, 95%CI = 1.07-1.43, PZ=0.004; AA vs. (GA + GG): OR = 1.90, 95%CI = 1.30- 2.78, PZ=0.001; A vs. G: OR = 1.27, 95%CI = 1.12-1.44, PZ<0.001]. LIN28A gene expression was associated not only with immune infiltration, pathological stage, and survival prognosis of certain cancers, but also with sensitivity to multiple anticancer drugs, such as cisplatin, pazopanib, olaparib, and selumetinib. In conclusion, the current study suggested that the rs34787247 G > A polymorphism might be used as a cancer risk marker in the Chinese population, and LIN28A might serve as a prognostic marker and therapeutic target for certain cancers.
Collapse
Affiliation(s)
- Surui Zhou
- School of Pharmacy, Yancheng Teachers' University, Yancheng, China
| | - Jinyin Xue
- School of Pharmacy, Yancheng Teachers' University, Yancheng, China
| | - Qijun Yang
- School of Pharmacy, Yancheng Teachers' University, Yancheng, China
| | - Wenjing Zang
- School of Pharmacy, Yancheng Teachers' University, Yancheng, China
| | - Yi Chen
- School of Pharmacy, Yancheng Teachers' University, Yancheng, China
| | - Yining Zhao
- School of Pharmacy, Yancheng Teachers' University, Yancheng, China
| | - Xueren Gao
- School of Pharmacy, Yancheng Teachers' University, Yancheng, China
| |
Collapse
|
5
|
Mohd ON, Heng YJ, Wang L, Thavamani A, Massicott ES, Wulf GM, Slack FJ, Doyle PS. Sensitive Multiplexed MicroRNA Spatial Profiling and Data Classification Framework Applied to Murine Breast Tumors. Anal Chem 2024; 96:12729-12738. [PMID: 39044395 DOI: 10.1021/acs.analchem.4c01773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
MicroRNAs (miRNAs) are small RNAs that are often dysregulated in many diseases, including cancers. They are highly tissue-specific and stable, thus, making them particularly useful as biomarkers. As the spatial transcriptomics field advances, protocols that enable highly sensitive and spatially resolved detection become necessary to maximize the information gained from samples. This is especially true of miRNAs where the location their expression within tissue can provide prognostic value with regard to patient outcome. Equally as important as detection are ways to assess and visualize the miRNA's spatial information in order to leverage the power of spatial transcriptomics over that of traditional nonspatial bulk assays. We present a highly sensitive methodology that simultaneously quantitates and spatially detects seven miRNAs in situ on formalin-fixed paraffin-embedded tissue sections. This method utilizes rolling circle amplification (RCA) in conjunction with a dual scanning approach in nanoliter well arrays with embedded hydrogel posts. The hydrogel posts are functionalized with DNA probes that enable the detection of miRNAs across a large dynamic range (4 orders of magnitude) and a limit of detection of 0.17 zeptomoles (1.7 × 10-4 attomoles). We applied our methodology coupled with a data analysis pipeline to K14-Cre Brca1f/fTp53f/f murine breast tumors to showcase the information gained from this approach.
Collapse
Affiliation(s)
- Omar N Mohd
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yujing J Heng
- Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Lin Wang
- Departments of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Abhishek Thavamani
- Departments of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Erica S Massicott
- Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Gerburg M Wulf
- Departments of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Frank J Slack
- Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
- Harvard Medical School Initiative for RNA Medicine, Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Patrick S Doyle
- Harvard Medical School Initiative for RNA Medicine, Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Kim BH, Chung YH, Woo TG, Kang SM, Park S, Kim M, Park BJ. NF2-Related Schwannomatosis (NF2): Molecular Insights and Therapeutic Avenues. Int J Mol Sci 2024; 25:6558. [PMID: 38928264 PMCID: PMC11204266 DOI: 10.3390/ijms25126558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
NF2-related schwannomatosis (NF2) is a genetic syndrome characterized by the growth of benign tumors in the nervous system, particularly bilateral vestibular schwannomas, meningiomas, and ependymomas. This review consolidates the current knowledge on NF2 syndrome, emphasizing the molecular pathology associated with the mutations in the gene of the same name, the NF2 gene, and the subsequent dysfunction of its product, the Merlin protein. Merlin, a tumor suppressor, integrates multiple signaling pathways that regulate cell contact, proliferation, and motility, thereby influencing tumor growth. The loss of Merlin disrupts these pathways, leading to tumorigenesis. We discuss the roles of another two proteins potentially associated with NF2 deficiency as well as Merlin: Yes-associated protein 1 (YAP), which may promote tumor growth, and Raf kinase inhibitory protein (RKIP), which appears to suppress tumor development. Additionally, this review discusses the efficacy of various treatments, such as molecular therapies that target specific pathways or inhibit neomorphic protein-protein interaction caused by NF2 deficiency. This overview not only expands on the fundamental understanding of NF2 pathophysiology but also explores the potential of novel therapeutic targets that affect the clinical approach to NF2 syndrome.
Collapse
Affiliation(s)
- Bae-Hoon Kim
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.)
| | - Yeon-Ho Chung
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.)
| | - Tae-Gyun Woo
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.)
| | - So-mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
| | - Soyoung Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
| | - Minju Kim
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.)
| | - Bum-Joon Park
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.)
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
7
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
8
|
Ganguly A, Mukherjee S, Chatterjee K, Spada S. Factors affecting heterogeneity in breast cancer microenvironment: A narrative mini review. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:211-226. [PMID: 38663960 DOI: 10.1016/bs.ircmb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Breast cancer (BC) heterogeneity is a key trait of BC tumors with crucial implications on tumorigenesis, diagnosis, and therapeutic modalities. It is influenced by tumor intrinsic features and by the tumor microenvironment (TME) composition of different intra-tumoral regions, which in turn affect cancer progression within patients. In this mini review, we will highlight the mechanisms that generate cancer heterogeneity in BC and how they affect the responses to cancer therapies.
Collapse
Affiliation(s)
- Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar, India
| | - Sumit Mukherjee
- Department of Cardiothoracic and Vascular Surgery, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | - Sheila Spada
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
9
|
Shyam S, Ramu S, Sehgal M, Jolly MK. A systems-level analysis of the mutually antagonistic roles of RKIP and BACH1 in dynamics of cancer cell plasticity. J R Soc Interface 2023; 20:20230389. [PMID: 37963558 PMCID: PMC10645512 DOI: 10.1098/rsif.2023.0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an important axis of phenotypic plasticity-a hallmark of cancer metastasis. Raf kinase-B inhibitor protein (RKIP) and BTB and CNC homology 1 (BACH1) are reported to influence EMT. In breast cancer, they act antagonistically, but the exact nature of their roles in mediating EMT and associated other axes of plasticity remains unclear. Here, analysing transcriptomic data, we reveal their antagonistic trends in a pan-cancer manner in terms of association with EMT, metabolic reprogramming and immune evasion via PD-L1. Next, we developed and simulated a mechanism-based gene regulatory network that captures how RKIP and BACH1 engage in feedback loops with drivers of EMT and stemness. We found that RKIP and BACH1 belong to two antagonistic 'teams' of players-while BACH1 belonged to the one driving pro-EMT, stem-like and therapy-resistant cell states, RKIP belonged to the one enabling pro-epithelial, less stem-like and therapy-sensitive phenotypes. Finally, we observed that low RKIP levels and upregulated BACH1 levels associated with worse clinical outcomes in many cancer types. Together, our systems-level analysis indicates that the emergent dynamics of underlying regulatory network enable the antagonistic patterns of RKIP and BACH1 with various axes of cancer cell plasticity, and with patient survival data.
Collapse
Affiliation(s)
- Sai Shyam
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Soundharya Ramu
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Manas Sehgal
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
10
|
Zhang H, Ouyang C. BTB protein family and human breast cancer: signaling pathways and clinical progress. J Cancer Res Clin Oncol 2023; 149:16213-16229. [PMID: 37682360 DOI: 10.1007/s00432-023-05314-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Breast cancer is considered the number one killer of women both in China and abroad, and the leading cause of cancer death. It severely affects female health-related quality of life. Broad-complex, tramtrack, bric à brac (BTB) protein family was first discovered in drosophila as early as in 1993 by Godt D and peers, since then, more family members and their critical biological functions were uncovered. Moreover, researchers around the world have recently demonstrated that numerous signaling pathways connect BTB family members and human breast cancer. PURPOSE In this review, we critically discuss these findings regarding the essential mechanisms and functions of the BTB protein family in mediating the organic processes of human breast cancer. Meanwhile, we summarize the signaling pathways the BTB protein family participates in. And we address that BTB proteins regulate the growth, apoptosis, and other behaviors of breast cancer cells. We also point out the future directions for further studies in this field. METHODS The relevant online literatures have been reviewed for this article. CONCLUSION This review could offer an update on novel molecular targets for treating human breast cancer and new insights into BTB protein family research.
Collapse
Affiliation(s)
- Haorui Zhang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing, 100037, China.
| |
Collapse
|
11
|
Chen J, Liu K, Liu W, Yeung WSB. The involvement of let-7 in hCG-induced progesterone synthesis via regulating p27 Kip1 and p21 Cip1 expression. Mol Cell Endocrinol 2023:111970. [PMID: 37230221 DOI: 10.1016/j.mce.2023.111970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
Progesterone is essential in females to maintain a regular menstrual cycle and pregnancy. The luteinizing hormone (LH) surge induces the luteinization of granulosa cells and thecal cells to form the corpus luteum, which is responsible for progesterone synthesis. However, the specific mechanism of how hCG, the analog of LH, regulates progesterone synthesis has yet to be fully discovered. In this study, we found that progesterone level was increased in adult wild-type pregnant mice 2 and 7 days post-coitum, along with a decrease in let-7 expression compared with the estrus stage. Besides, the let-7 expression was negatively correlated with progesterone level in post-delivery day 23 wild-type female mice after being injected with PMSG and hCG. Then, using let-7 transgenic mice and a human granulosa cell line, we found that overexpression of let-7 antagonized progesterone level via targeting p27Kip1 and p21Cip1 and steroidogenic acute regulatory protein (StAR) expression, which is a rate-limiting enzyme in progesterone synthesis. Furthermore, hCG suppressed let-7 expression by stimulating the MAPK pathway. This study elucidated the role of microRNA let-7 in regulating hCG-induced progesterone production and provided new insights into its role in clinical application.
Collapse
Affiliation(s)
- Jing Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Department of Obstetrics and Gynaecology, Li Kai Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Kui Liu
- Department of Obstetrics and Gynaecology, Li Kai Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Weimin Liu
- Department of Obstetrics and Gynaecology, Li Kai Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China.
| | - William Shu-Biu Yeung
- Department of Obstetrics and Gynaecology, Li Kai Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China.
| |
Collapse
|
12
|
GEWALT TABEA, NOH KAWON, MEDER LYDIA. The role of LIN28B in tumor progression and metastasis in solid tumor entities. Oncol Res 2023; 31:101-115. [PMID: 37304235 PMCID: PMC10208000 DOI: 10.32604/or.2023.028105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 06/13/2023] Open
Abstract
LIN28B is an RNA-binding protein that targets a broad range of microRNAs and modulates their maturation and activity. Under normal conditions, LIN28B is exclusively expressed in embryogenic stem cells, blocking differentiation and promoting proliferation. In addition, it can play a role in epithelial-to-mesenchymal transition by repressing the biogenesis of let-7 microRNAs. In malignancies, LIN28B is frequently overexpressed, which is associated with increased tumor aggressiveness and metastatic properties. In this review, we discuss the molecular mechanisms of LIN28B in promoting tumor progression and metastasis in solid tumor entities and its potential use as a clinical therapeutic target and biomarker.
Collapse
Affiliation(s)
- TABEA GEWALT
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - KA-WON NOH
- Institute for Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - LYDIA MEDER
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Shinde SS, Ahmed S, Malik JA, Hani U, Khanam A, Ashraf Bhat F, Ahmad Mir S, Ghazwani M, Wahab S, Haider N, Almehizia AA. Therapeutic Delivery of Tumor Suppressor miRNAs for Breast Cancer Treatment. BIOLOGY 2023; 12:467. [PMID: 36979159 PMCID: PMC10045434 DOI: 10.3390/biology12030467] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
The death rate from breast cancer (BC) has dropped due to early detection and sophisticated therapeutic options, yet drug resistance and relapse remain barriers to effective, systematic treatment. Multiple mechanisms underlying miRNAs appear crucial in practically every aspect of cancer progression, including carcinogenesis, metastasis, and drug resistance, as evidenced by the elucidation of drug resistance. Non-coding RNAs called microRNAs (miRNAs) attach to complementary messenger RNAs and degrade them to inhibit the expression and translation to proteins. Evidence suggests that miRNAs play a vital role in developing numerous diseases, including cancer. They affect genes critical for cellular differentiation, proliferation, apoptosis, and metabolism. Recently studies have demonstrated that miRNAs serve as valuable biomarkers for BC. The contrast in the expression of miRNAs in normal tissue cells and tumors suggest that miRNAs are involved in breast cancer. The important aspect behind cancer etiology is the deregulation of miRNAs that can specifically influence cellular physiology. The main objective of this review is to emphasize the role and therapeutic capacity of tumor suppressor miRNAs in BC and the advancement in the delivery system that can deliver miRNAs specifically to cancerous cells. Various approaches are used to deliver these miRNAs to the cancer cells with the help of carrier molecules, like nanoparticles, poly D, L-lactic-co-glycolic acid (PLGA) particles, PEI polymers, modified extracellular vesicles, dendrimers, and liposomes. Additionally, we discuss advanced strategies of TS miRNA delivery techniques such as viral delivery, self-assembled RNA-triple-helix hydrogel drug delivery systems, and hyaluronic acid/protamine sulfate inter-polyelectrolyte complexes. Subsequently, we discuss challenges and prospects on TS miRNA therapeutic delivery in BC management so that miRNAs will become a routine technique in developing individualized patient profiles.
Collapse
Affiliation(s)
- Sonali S. Shinde
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad 382355, India
| | - Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
- Department of Biomedical Engineering, Indian Institute of Technology, Rupnagar 140001, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Afreen Khanam
- Department of Pharmacognosy and Phytochemistry, Jamia Hamdard, New Delhi 110062, India
| | | | - Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, University of Kashmir, Jammu and Kashmir, Hazratbal, Srinagar 190006, India
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Gao Y, Cao H, Huang D, Zheng L, Nie Z, Zhang S. RNA-Binding Proteins in Bladder Cancer. Cancers (Basel) 2023; 15:cancers15041150. [PMID: 36831493 PMCID: PMC9953953 DOI: 10.3390/cancers15041150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
RNA-binding proteins (RBPs) are key regulators of transcription and translation, with highly dynamic spatio-temporal regulation. They are usually involved in the regulation of RNA splicing, polyadenylation, and mRNA stability and mediate processes such as mRNA localization and translation, thereby affecting the RNA life cycle and causing the production of abnormal protein phenotypes that lead to tumorigenesis and development. Accumulating evidence supports that RBPs play critical roles in vital life processes, such as bladder cancer initiation, progression, metastasis, and drug resistance. Uncovering the regulatory mechanisms of RBPs in bladder cancer is aimed at addressing the occurrence and progression of bladder cancer and finding new therapies for cancer treatment. This article reviews the effects and mechanisms of several RBPs on bladder cancer and summarizes the different types of RBPs involved in the progression of bladder cancer and the potential molecular mechanisms by which they are regulated, with a view to providing information for basic and clinical researchers.
Collapse
|
15
|
Figy C, Guo A, Fernando VR, Furuta S, Al-Mulla F, Yeung KC. Changes in Expression of Tumor Suppressor Gene RKIP Impact How Cancers Interact with Their Complex Environment. Cancers (Basel) 2023; 15:cancers15030958. [PMID: 36765912 PMCID: PMC9913418 DOI: 10.3390/cancers15030958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Tumor microenvironment (TME) is the immediate environment where cancer cells reside in a tumor. It is composed of multiple cell types and extracellular matrix. Microenvironments can be restrictive or conducive to the progression of cancer cells. Initially, microenvironments are suppressive in nature. Stepwise accumulation of mutations in oncogenes and tumor suppressor genes enables cancer cells to acquire the ability to reshape the microenvironment to advance their growth and metastasis. Among the many genetic events, the loss-of-function mutations in tumor suppressor genes play a pivotal role. In this review, we will discuss the changes in TME and the ramifications on metastasis upon altered expression of tumor metastasis suppressor gene RKIP in breast cancer cells.
Collapse
Affiliation(s)
- Christopher Figy
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Anna Guo
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Veani Roshale Fernando
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Saori Furuta
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City 15462, Kuwait
| | - Kam C. Yeung
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
- Correspondence:
| |
Collapse
|
16
|
Moghaddam M, Vivarelli S, Falzone L, Libra M, Bonavida B. Cancer resistance via the downregulation of the tumor suppressors RKIP and PTEN expressions: therapeutic implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:170-207. [PMID: 37205308 PMCID: PMC10185445 DOI: 10.37349/etat.2023.00128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/12/2022] [Indexed: 05/21/2023] Open
Abstract
The Raf kinase inhibitor protein (RKIP) has been reported to be underexpressed in many cancers and plays a role in the regulation of tumor cells' survival, proliferation, invasion, and metastasis, hence, a tumor suppressor. RKIP also regulates tumor cell resistance to cytotoxic drugs/cells. Likewise, the tumor suppressor, phosphatase and tensin homolog (PTEN), which inhibits the phosphatidylinositol 3 kinase (PI3K)/AKT pathway, is either mutated, underexpressed, or deleted in many cancers and shares with RKIP its anti-tumor properties and its regulation in resistance. The transcriptional and posttranscriptional regulations of RKIP and PTEN expressions and their roles in resistance were reviewed. The underlying mechanism of the interrelationship between the signaling expressions of RKIP and PTEN in cancer is not clear. Several pathways are regulated by RKIP and PTEN and the transcriptional and post-transcriptional regulations of RKIP and PTEN is significantly altered in cancers. In addition, RKIP and PTEN play a key role in the regulation of tumor cells response to chemotherapy and immunotherapy. In addition, molecular and bioinformatic data revealed crosstalk signaling networks that regulate the expressions of both RKIP and PTEN. These crosstalks involved the mitogen-activated protein kinase (MAPK)/PI3K pathways and the dysregulated nuclear factor-kappaB (NF-κB)/Snail/Yin Yang 1 (YY1)/RKIP/PTEN loop in many cancers. Furthermore, further bioinformatic analyses were performed to investigate the correlations (positive or negative) and the prognostic significance of the expressions of RKIP or PTEN in 31 different human cancers. These analyses were not uniform and only revealed that there was a positive correlation between the expression of RKIP and PTEN only in few cancers. These findings demonstrated the existence of signaling cross-talks between RKIP and PTEN and both regulate resistance. Targeting either RKIP or PTEN (alone or in combination with other therapies) may be sufficient to therapeutically inhibit tumor growth and reverse the tumor resistance to cytotoxic therapies.
Collapse
Affiliation(s)
- Matthew Moghaddam
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Centre for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
- Correspondence: Benjamin Bonavida, Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), 1602 Molecular Sciences Building, 609 Charles E. Young Drive, East Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Papale M, Netti GS, Stallone G, Ranieri E. Understanding Mechanisms of RKIP Regulation to Improve the Development of New Diagnostic Tools. Cancers (Basel) 2022; 14:cancers14205070. [PMID: 36291854 PMCID: PMC9600137 DOI: 10.3390/cancers14205070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Raf Kinase Inhibitor protein is a protein that governs multiple intracellular signalling involved primarily in the progression of tumours and the development of metastases. In this review, we discussed the main mechanisms that regulate the expression and activity of RKIP with the aim of identifying the link between the transcriptional, post-transcriptional and post-translational events in different tumour settings. We also tried to analyse the studies that have measured the levels of RKIP in biological fluids in order to highlight the possible advantages and potential of RKIP assessment to obtain an accurate diagnosis and prognosis of various tumours. Abstract One of the most dangerous aspects of cancer cell biology is their ability to grow, spread and form metastases in the main vital organs. The identification of dysregulated markers that drive intracellular signalling involved in the malignant transformation of neoplastic cells and the understanding of the mechanisms that regulate these processes is undoubtedly a key objective for the development of new and more targeted therapies. RAF-kinase inhibitor protein (RKIP) is an endogenous tumour suppressor protein that affects tumour cell survival, proliferation, and metastasis. RKIP might serve as an early tumour biomarker since it exhibits significantly different expression levels in various cancer histologies and it is often lost during metastatic progression. In this review, we discuss the specific impact of transcriptional, post-transcriptional and post-translational regulation of expression and activation/inhibition of RKIP and focus on those tumours for which experimental data on all these factors are available. In this way, we could select how these processes cooperate with RKIP expression in (1) Lung cancer; (2) Colon cancer, (3) Breast cancer; (4) myeloid neoplasm and Multiple Myeloma, (5) Melanoma and (6) clear cell Renal Cell Carcinoma. Furthermore, since RKIP seems to be a key marker of the development of several tumours and it may be assessed easily in various biological fluids, here we discuss the potential role of RKIP dosing in more accessible biological matrices other than tissues. Moreover, this objective may intercept the still unmet need to identify new and more accurate markers for the early diagnosis and prognosis of many tumours.
Collapse
Affiliation(s)
- Massimo Papale
- Unit of Clinical Pathology, Department of Laboratory Diagnostics, University Hospital “Policlinico Foggia”, 71122 Foggia, Italy
- Correspondence:
| | - Giuseppe Stefano Netti
- Unit of Clinical Pathology, Center for Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giovanni Stallone
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Elena Ranieri
- Unit of Clinical Pathology, Center for Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
18
|
Lirussi L, Ayyildiz D, Liu Y, Montaldo NP, Carracedo S, Aure MR, Jobert L, Tekpli X, Touma J, Sauer T, Dalla E, Kristensen VN, Geisler J, Piazza S, Tell G, Nilsen H. A regulatory network comprising let-7 miRNA and SMUG1 is associated with good prognosis in ER+ breast tumours. Nucleic Acids Res 2022; 50:10449-10468. [PMID: 36156150 PMCID: PMC9561369 DOI: 10.1093/nar/gkac807] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Single-strand selective uracil-DNA glycosylase 1 (SMUG1) initiates base excision repair (BER) of uracil and oxidized pyrimidines. SMUG1 status has been associated with cancer risk and therapeutic response in breast carcinomas and other cancer types. However, SMUG1 is a multifunctional protein involved, not only, in BER but also in RNA quality control, and its function in cancer cells is unclear. Here we identify several novel SMUG1 interaction partners that functions in many biological processes relevant for cancer development and treatment response. Based on this, we hypothesized that the dominating function of SMUG1 in cancer might be ascribed to functions other than BER. We define a bad prognosis signature for SMUG1 by mapping out the SMUG1 interaction network and found that high expression of genes in the bad prognosis network correlated with lower survival probability in ER+ breast cancer. Interestingly, we identified hsa-let-7b-5p microRNA as an upstream regulator of the SMUG1 interactome. Expression of SMUG1 and hsa-let-7b-5p were negatively correlated in breast cancer and we found an inhibitory auto-regulatory loop between SMUG1 and hsa-let-7b-5p in the MCF7 breast cancer cells. We conclude that SMUG1 functions in a gene regulatory network that influence the survival and treatment response in several cancers.
Collapse
Affiliation(s)
- Lisa Lirussi
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway.,Section of Clinical Molecular Biology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Dilara Ayyildiz
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, p.le M. Kolbe 4, 33100 Udine, Italy
| | - Yan Liu
- Section of Clinical Molecular Biology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Nicola P Montaldo
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway
| | - Sergio Carracedo
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway.,Section of Clinical Molecular Biology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Miriam R Aure
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, 0450 Oslo, Norway
| | - Laure Jobert
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, 0450 Oslo, Norway
| | - Joel Touma
- Department of Breast and Endocrine Surgery, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Campus AHUS, 1478 Lørenskog, Norway
| | - Torill Sauer
- Institute of Clinical Medicine, University of Oslo, Campus AHUS, 1478 Lørenskog, Norway.,Department of Pathology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, p.le M. Kolbe 4, 33100 Udine, Italy
| | - Vessela N Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, 0450 Oslo, Norway.,Department of Pathology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Jürgen Geisler
- Institute of Clinical Medicine, University of Oslo, Campus AHUS, 1478 Lørenskog, Norway.,Department of Oncology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Silvano Piazza
- Bioinformatics Core Facility, Centre for Integrative Biology (CIBIO), University of Trento, via Sommarive 18, 38123, Povo (Trento), Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, p.le M. Kolbe 4, 33100 Udine, Italy
| | - Hilde Nilsen
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway.,Section of Clinical Molecular Biology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway.,Department of Microbiology, Oslo University Hospital, N-0424 Oslo, Norway
| |
Collapse
|
19
|
Lin Z, Radaeva M, Cherkasov A, Dong X. Lin28 Regulates Cancer Cell Stemness for Tumour Progression. Cancers (Basel) 2022; 14:4640. [PMID: 36230562 PMCID: PMC9564245 DOI: 10.3390/cancers14194640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Tumours develop therapy resistance through complex mechanisms, one of which is that cancer stem cell (CSC) populations within the tumours present self-renewable capability and phenotypical plasticity to endure therapy-induced stress conditions and allow tumour progression to the therapy-resistant state. Developing therapeutic strategies to cope with CSCs requires a thorough understanding of the critical drivers and molecular mechanisms underlying the aforementioned processes. One such hub regulator of stemness is Lin28, an RNA-binding protein. Lin28 blocks the synthesis of let-7, a tumour-suppressor microRNA, and acts as a global regulator of cell differentiation and proliferation. Lin28also targets messenger RNAs and regulates protein translation. In this review, we explain the role of the Lin28/let-7 axis in establishing stemness, epithelial-to-mesenchymal transition, and glucose metabolism reprogramming. We also highlight the role of Lin28 in therapy-resistant prostate cancer progression and discuss the emergence of Lin28-targeted therapeutics and screening methods.
Collapse
Affiliation(s)
- Zhuohui Lin
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Faculty of Food and Land Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mariia Radaeva
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Artem Cherkasov
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Xuesen Dong
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
20
|
Bach VN, Ding J, Yeung M, Conrad T, Odeh HN, Cubberly P, Figy C, Ding HF, Trumbly R, Yeung KC. A Negative Regulatory Role for RKIP in Breast Cancer Immune Response. Cancers (Basel) 2022; 14:cancers14153605. [PMID: 35892864 PMCID: PMC9330697 DOI: 10.3390/cancers14153605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Breast cancer is the second most common cancer in women worldwide. Regulation of breast cancer metastasis remains an elusive phenomenon. Elucidating the mechanistic pathway of metastatic signaling may identify targets for regulating cancer metastatic potential. Raf-1 kinase inhibitor protein (RKIP) has been shown to negatively regulate signaling pathways involved in cancer progression and metastasis. RKIP may suppress metastasis of breast cancer cells by downregulating elements of the immune system. Abstract Raf-1 kinase inhibitor protein was first identified as a negative regulator of the Raf signaling pathway. Subsequently, it was shown to have a causal role in containing cancer progression and metastasis. Early studies suggested that RKIP blocks cancer progression by inhibiting the Raf-1 pathway. However, it is not clear if the RKIP tumor and metastasis suppression function involve other targets. In addition to the Raf signaling pathway, RKIP has been found to modulate several other signaling pathways, affecting diverse biological functions including immune response. Recent advances in medicine have identified both positive and negative roles of immune response in cancer initiation, progression and metastasis. It is possible that one way that RKIP exerts its effect on cancer is by targeting an immune response mechanism. Here, we provide evidence supporting the causal role of tumor and metastasis suppressor RKIP in downregulating signaling pathways involved with immune response in breast cancer cells and discuss its potential ramification on cancer therapy.
Collapse
Affiliation(s)
- Vu N. Bach
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
| | - Jane Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Georgia, GA 30912, USA; (J.D.); (H.-F.D.)
| | - Miranda Yeung
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
| | - Taylor Conrad
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
| | - Hussain N. Odeh
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
| | - Paige Cubberly
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
| | - Christopher Figy
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
| | - Han-Fei Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Georgia, GA 30912, USA; (J.D.); (H.-F.D.)
| | - Robert Trumbly
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
- Department of Medical Education, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
- Correspondence: (R.T.); (K.C.Y.)
| | - Kam C. Yeung
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
- Correspondence: (R.T.); (K.C.Y.)
| |
Collapse
|
21
|
MicroRNA-21 is immunosuppressive and pro-metastatic via separate mechanisms. Oncogenesis 2022; 11:38. [PMID: 35821197 PMCID: PMC9276829 DOI: 10.1038/s41389-022-00413-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/07/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
MiR-21 was identified as a gene whose expression correlated with the extent of metastasis of murine mammary tumours. Since miR-21 is recognised as being associated with poor prognosis in cancer, we investigated its contribution to mammary tumour growth and metastasis in tumours with capacity for spontaneous metastasis. Unexpectedly, we found that suppression of miR-21 activity in highly metastatic tumours resulted in regression of primary tumour growth in immunocompetent mice but did not impede growth in immunocompromised mice. Analysis of the immune infiltrate of the primary tumours at the time when the tumours started to regress revealed an influx of both CD4+ and CD8+ activated T cells and a reduction in PD-L1+ infiltrating monocytes, providing an explanation for the observed tumour regression. Loss of anti-tumour immune suppression caused by decreased miR-21 activity was confirmed by transcriptomic analysis of primary tumours. This analysis also revealed reduced expression of genes associated with cell cycle progression upon loss of miR-21 activity. A second activity of miR-21 was the promotion of metastasis as shown by the loss of metastatic capacity of miR-21 knockdown tumours established in immunocompromised mice, despite no impact on primary tumour growth. A proteomic analysis of tumour cells with altered miR-21 activity revealed deregulation of proteins known to be associated with tumour progression. The development of therapies targeting miR-21, possibly via targeted delivery to tumour cells, could be an effective therapy to combat primary tumour growth and suppress the development of metastatic disease.
Collapse
|
22
|
Chivers SB, Brackley AD, Jeske NA. Raf kinase inhibitory protein reduces bradykinin receptor desensitization. J Neurochem 2022; 162:156-165. [PMID: 35526109 PMCID: PMC9283312 DOI: 10.1111/jnc.15614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/28/2022]
Abstract
Inflammatory hyperalgesia represents a nociceptive phenotype that can become persistent in nature through dynamic protein modifications. However, a large gap in knowledge exists concerning how the integration of intracellular signaling molecules coordinates a persistent inflammatory phenotype. Herein, we demonstrate that Raf Kinase Anchoring Protein (RKIP) interrupts a vital canonical desensitization pathway to maintain bradykinin (BK) receptor activation in primary afferent neurons. Biochemical analyses of primary neuronal cultures indicate bradykinin-stimulated PKC phosphorylation of RKIP at Ser153. Furthermore, BK exposure increases G-protein Receptor Kinase 2 (GRK2) binding to RKIP, inhibiting pharmacological desensitization of the BK receptor. Additional studies found that molecular RKIP down-regulation increases BK receptor desensitization in real-time imaging of primary afferent neurons, identifying a key pathway integrator in the desensitization process that controls multiple GRK2-sensitive G-protein coupled receptors. Therefore, RKIP serves as an integral scaffolding protein that inhibits BK receptor desensitization.
Collapse
Affiliation(s)
- Samuel B. Chivers
- Departments of Oral & Maxillofacial SurgeryUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | | | - Nathaniel A. Jeske
- Departments of Oral & Maxillofacial SurgeryUniversity of Texas Health San AntonioSan AntonioTexasUSA
- PhysiologyUniversity of Texas Health San AntonioSan AntonioTexasUSA
- PharmacologyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| |
Collapse
|
23
|
Lee J, Olivieri C, Ong C, Masterson LR, Gomes S, Lee BS, Schaefer F, Lorenz K, Veglia G, Rosner MR. Raf Kinase Inhibitory Protein regulates the cAMP-dependent protein kinase signaling pathway through a positive feedback loop. Proc Natl Acad Sci U S A 2022; 119:e2121867119. [PMID: 35696587 PMCID: PMC9231499 DOI: 10.1073/pnas.2121867119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Raf Kinase Inhibitory Protein (RKIP) maintains cellular robustness and prevents the progression of diseases such as cancer and heart disease by regulating key kinase cascades including MAP kinase and protein kinase A (PKA). Phosphorylation of RKIP at S153 by Protein Kinase C (PKC) triggers a switch from inhibition of Raf to inhibition of the G protein coupled receptor kinase 2 (GRK2), enhancing signaling by the β-adrenergic receptor (β-AR) that activates PKA. Here we report that PKA-phosphorylated RKIP promotes β-AR-activated PKA signaling. Using biochemical, genetic, and biophysical approaches, we show that PKA phosphorylates RKIP at S51, increasing S153 phosphorylation by PKC and thereby triggering feedback activation of PKA. The S51V mutation blocks the ability of RKIP to activate PKA in prostate cancer cells and to induce contraction in primary cardiac myocytes in response to the β-AR activator isoproterenol, illustrating the functional importance of this positive feedback circuit. As previously shown for other kinases, phosphorylation of RKIP at S51 by PKA is enhanced upon RKIP destabilization by the P74L mutation. These results suggest that PKA phosphorylation at S51 may lead to allosteric changes associated with a higher-energy RKIP state that potentiates phosphorylation of RKIP at other key sites. This allosteric regulatory mechanism may have therapeutic potential for regulating PKA signaling in disease states.
Collapse
Affiliation(s)
- Jiyoung Lee
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637
| | - Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Colin Ong
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637
| | - Larry R. Masterson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Suzana Gomes
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637
| | - Bok-Soon Lee
- Department of Biochemistry & Molecular Medicine, George Washington University, Washington, DC 20037
- George Washington University Cancer Center, George Washington University, Washington, DC 20037
| | - Florian Schaefer
- Department of Pharmacology and Toxicology, Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Kristina Lorenz
- Department of Pharmacology and Toxicology, Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
- Leibniz-Institut für Analytische Wissenschaften, 44139 Dortmund, Germany
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637
| |
Collapse
|
24
|
Zhang W, Liu L, Zhao S, Chen L, Wei Y, Chen W, Ge F. Research progress on RNA‑binding proteins in breast cancer (Review). Oncol Lett 2022; 23:121. [PMID: 35261635 PMCID: PMC8867207 DOI: 10.3892/ol.2022.13241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022] Open
Abstract
Breast cancer is the most common malignancy among women, and the abnormal regulation of gene expression serves an important role in its occurrence and development. However, the molecular mechanisms underlying gene expression are highly complex and heterogeneous, and RNA-binding proteins (RBPs) are among the key regulatory factors. RBPs bind targets in an environment-dependent or environment-independent manner to influence mRNA stability and the translation of genes involved in the formation, progression, metastasis and treatment of breast cancer. Due to the growing interest in these regulators, the present review summarizes the most influential studies concerning RBPs associated with breast cancer to elucidate the role of RBPs in breast cancer and to assess how they interact with other key pathways to provide new molecular targets for the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Wenzhu Zhang
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Linlin Liu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Shengdi Zhao
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Liang Chen
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yuxian Wei
- Department of Endocrine Breast Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wenlin Chen
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Fei Ge
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
25
|
Abd Alla J, Quitterer U. The RAF Kinase Inhibitor Protein (RKIP): Good as Tumour Suppressor, Bad for the Heart. Cells 2022; 11:cells11040654. [PMID: 35203304 PMCID: PMC8869954 DOI: 10.3390/cells11040654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
The RAF kinase inhibitor protein, RKIP, is a dual inhibitor of the RAF1 kinase and the G protein-coupled receptor kinase 2, GRK2. By inhibition of the RAF1-MAPK (mitogen-activated protein kinase) pathway, RKIP acts as a beneficial tumour suppressor. By inhibition of GRK2, RKIP counteracts GRK2-mediated desensitisation of G protein-coupled receptor (GPCR) signalling. GRK2 inhibition is considered to be cardioprotective under conditions of exaggerated GRK2 activity such as heart failure. However, cardioprotective GRK2 inhibition and pro-survival RAF1-MAPK pathway inhibition counteract each other, because inhibition of the pro-survival RAF1-MAPK cascade is detrimental for the heart. Therefore, the question arises, what is the net effect of these apparently divergent functions of RKIP in vivo? The available data show that, on one hand, GRK2 inhibition promotes cardioprotective signalling in isolated cardiomyocytes. On the other hand, inhibition of the pro-survival RAF1-MAPK pathway by RKIP deteriorates cardiomyocyte viability. In agreement with cardiotoxic effects, endogenous RKIP promotes cardiac fibrosis under conditions of cardiac stress, and transgenic RKIP induces heart dysfunction. Supported by next-generation sequencing (NGS) data of the RKIP-induced cardiac transcriptome, this review provides an overview of different RKIP functions and explains how beneficial GRK2 inhibition can go awry by RAF1-MAPK pathway inhibition. Based on RKIP studies, requirements for the development of a cardioprotective GRK2 inhibitor are deduced.
Collapse
Affiliation(s)
- Joshua Abd Alla
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
| | - Ursula Quitterer
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
- Department of Medicine, Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Correspondence: ; Tel.: +41-44-632-9801
| |
Collapse
|
26
|
Harnessing RKIP to Combat Heart Disease and Cancer. Cancers (Basel) 2022; 14:cancers14040867. [PMID: 35205615 PMCID: PMC8870036 DOI: 10.3390/cancers14040867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer and heart disease are leading causes of morbidity and mortality worldwide. These diseases have common risk factors, common molecular signaling pathways that are central to their pathogenesis, and even some disease phenotypes that are interdependent. Thus, a detailed understanding of common regulators is critical for the development of new and synergistic therapeutic strategies. The Raf kinase inhibitory protein (RKIP) is a regulator of the cellular kinome that functions to maintain cellular robustness and prevent the progression of diseases including heart disease and cancer. Two of the key signaling pathways controlled by RKIP are the β-adrenergic receptor (βAR) signaling to protein kinase A (PKA), particularly in the heart, and the MAP kinase cascade Raf/MEK/ERK1/2 that regulates multiple diseases. The goal of this review is to discuss how we can leverage RKIP to suppress cancer without incurring deleterious effects on the heart. Specifically, we discuss: (1) How RKIP functions to either suppress or activate βAR (PKA) and ERK1/2 signaling; (2) How we can prevent cancer-promoting kinase signaling while at the same time avoiding cardiotoxicity.
Collapse
|
27
|
Giovanini G, Barros LRC, Gama LR, Tortelli TC, Ramos AF. A Stochastic Binary Model for the Regulation of Gene Expression to Investigate Responses to Gene Therapy. Cancers (Basel) 2022; 14:633. [PMID: 35158901 PMCID: PMC8833822 DOI: 10.3390/cancers14030633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 02/07/2023] Open
Abstract
In this manuscript, we use an exactly solvable stochastic binary model for the regulation of gene expression to analyze the dynamics of response to a treatment aiming to modulate the number of transcripts of a master regulatory switching gene. The challenge is to combine multiple processes with different time scales to control the treatment response by a switching gene in an unavoidable noisy environment. To establish biologically relevant timescales for the parameters of the model, we select the RKIP gene and two non-specific drugs already known for changing RKIP levels in cancer cells. We demonstrate the usefulness of our method simulating three treatment scenarios aiming to reestablish RKIP gene expression dynamics toward a pre-cancerous state: (1) to increase the promoter's ON state duration; (2) to increase the mRNAs' synthesis rate; and (3) to increase both rates. We show that the pre-treatment kinetic rates of ON and OFF promoter switching speeds and mRNA synthesis and degradation will affect the heterogeneity and time for treatment response. Hence, we present a strategy for reaching increased average mRNA levels with diminished heterogeneity while reducing drug dosage by simultaneously targeting multiple kinetic rates that effectively represent the chemical processes underlying the regulation of gene expression. The decrease in heterogeneity of treatment response by a target gene helps to lower the chances of emergence of resistance. Our approach may be useful for inferring kinetic constants related to the expression of antimetastatic genes or oncogenes and for the design of multi-drug therapeutic strategies targeting the processes underpinning the expression of master regulatory genes.
Collapse
Affiliation(s)
- Guilherme Giovanini
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Béttio, 1000, São Paulo 03828-000, SP, Brazil;
| | - Luciana R. C. Barros
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, Av. Dr. Arnaldo, 251, São Paulo 01246-000, SP, Brazil; (L.R.C.B.); (L.R.G.); (T.C.T.J.)
| | - Leonardo R. Gama
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, Av. Dr. Arnaldo, 251, São Paulo 01246-000, SP, Brazil; (L.R.C.B.); (L.R.G.); (T.C.T.J.)
| | | | - Alexandre F. Ramos
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Béttio, 1000, São Paulo 03828-000, SP, Brazil;
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, Av. Dr. Arnaldo, 251, São Paulo 01246-000, SP, Brazil; (L.R.C.B.); (L.R.G.); (T.C.T.J.)
| |
Collapse
|
28
|
Ji H, Fan L, Shan A, Wang W, Ning G, Cao Y, Jiang X. Let7b-5p inhibits insulin secretion and decreases pancreatic β-cell mass in mice. Mol Cell Endocrinol 2022; 540:111506. [PMID: 34801668 DOI: 10.1016/j.mce.2021.111506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
MicroRNAs are crucial regulators for the development, mass and function of pancreatic β-cells. MiRNA dysregulation is associated with β-cell dysfunction and development of diabetes. The members of let7 family are important players in regulating cellular growth and metabolism. In this study we investigated the functional role of let7b-5p in the mouse pancreatic β-cells. We generated pancreatic β-cell-specific let7b-5p transgenic mouse model and analyzed the glucose metabolic phenotype, β-cells mass and insulin secretion in vivo. Luciferase reporter assay, immunofluorescence staining and western blot were carried out to study the target genes of let7b-5p in β-cells. Let7b-5p overexpression impaired the insulin production and secretion of β-cells and resulted impaired glucose tolerance in mice. The overexpressed let7b-5p inhibited pancreatic β-cell proliferation and decreased the expression of cyclin D1 and cyclin D2. Our findings demonstrated that let7b-5p was critical in regulating the proliferation and insulin secretion of pancreatic β-cells.
Collapse
Affiliation(s)
- He Ji
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwen Fan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aijing Shan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Research Center for Translational Medicine, National Key Scientific Infrastructure for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China
| | - Xiuli Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
29
|
Dong Y, Lin X, Kapoor A, Gu Y, Xu H, Major P, Tang D. Insights of RKIP-Derived Suppression of Prostate Cancer. Cancers (Basel) 2021; 13:cancers13246388. [PMID: 34945007 PMCID: PMC8699807 DOI: 10.3390/cancers13246388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Despite an intensive research effort in the past few decades, prostate cancer (PC) remains a top cause of cancer death in men, particularly in the developed world. The major cause of fatality is the progression of local prostate cancer to metastasis disease. Treatment of patients with metastatic prostate cancer (mPC) is generally ineffective. Based on the discovery of mPC relying on androgen for growth, many patients with mPC show an initial response to the standard of care: androgen deprivation therapy (ADT). However, lethal castration resistant prostate cancers (CRPCs) commonly develop. It is widely accepted that intervention of metastatic progression of PC is a critical point of intervention to reduce PC death. Accumulative evidence reveals a role of RKIP in suppression of PC progression towards mPC. We will review current evidence and discuss the potential utilization of RKIP in preventing mPC progression. Abstract Prostate cancer (PC) is a major cause of cancer death in men. The disease has a great disparity in prognosis. Although low grade PCs with Gleason scores ≤ 6 are indolent, high-risk PCs are likely to relapse and metastasize. The standard of care for metastatic PC (mPC) remains androgen deprivation therapy (ADT). Resistance commonly occurs in the form of castration resistant PC (CRPC). Despite decades of research efforts, CRPC remains lethal. Understanding of mechanisms underpinning metastatic progression represents the overarching challenge in PC research. This progression is regulated by complex mechanisms, including those regulating PC cell proliferation, epithelial–mesenchymal transition (EMT), and androgen receptor (AR) signaling. Among this PC metastatic network lies an intriguing suppressor of PC metastasis: the Raf kinase inhibitory protein (RKIP). Clinically, the RKIP protein is downregulated in PC, and showed further reduction in mPC. In xenograft mouse models for PC, RKIP inhibits metastasis. In vitro, RKIP reduces PC cell invasion and sensitizes PC cells to therapeutic treatments. Mechanistically, RKIP suppresses Raf-MEK-ERK activation and EMT, and modulates extracellular matrix. In return, Snail, NFκB, and the polycomb protein EZH2 contribute to inhibition of RKIP expression. In this review, we will thoroughly analyze RKIP’s tumor suppression actions in PC.
Collapse
Affiliation(s)
- Ying Dong
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.D.); (X.L.); (A.K.); (Y.G.)
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Xiaozeng Lin
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.D.); (X.L.); (A.K.); (Y.G.)
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Anil Kapoor
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.D.); (X.L.); (A.K.); (Y.G.)
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Yan Gu
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.D.); (X.L.); (A.K.); (Y.G.)
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Hui Xu
- The Division of Nephrology, Xiangya Hospital of the Central South University, Changsha 410008, China;
| | - Pierre Major
- Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Damu Tang
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.D.); (X.L.); (A.K.); (Y.G.)
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- Correspondence: ; Tel.: +1-905-522-1155 (ext. 35168)
| |
Collapse
|
30
|
RKIP Pleiotropic Activities in Cancer and Inflammatory Diseases: Role in Immunity. Cancers (Basel) 2021; 13:cancers13246247. [PMID: 34944867 PMCID: PMC8699197 DOI: 10.3390/cancers13246247] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The human body consists of tissues and organs formed by cells. In each cell there is a switch that allows the cell to divide or not. In contrast, cancer cells have their switch on which allow them to divide and invade other sites leading to death. Over two decades ago, Doctor Kam Yeung, University of Toledo, Ohio, has identified a factor (RKIP) that is responsible for the on/off switch which functions normally in healthy tissues but is inactive or absent in cancers. Since this early discovery, many additional properties have been ascribed to RKIP including its role in inhibiting cancer metastasis and resistance to therapeutics and its role in modulating the normal immune response. This review describes all of the above functions of RKIP and suggesting therapeutics to induce RKIP in cancers to inhibit their growth and metastases as well as inhibit its activity to treat non-cancerous inflammatory diseases. Abstract Several gene products play pivotal roles in the induction of inflammation and the progression of cancer. The Raf kinase inhibitory protein (RKIP) is a cytosolic protein that exerts pleiotropic activities in such conditions, and thus regulates oncogenesis and immune-mediated diseases through its deregulation. Herein, we review the general properties of RKIP, including its: (i) molecular structure; (ii) involvement in various cell signaling pathways (i.e., inhibition of the Raf/MEK/ERK pathway; the NF-kB pathway; GRK-2 or the STAT-3 pathway; as well as regulation of the GSK3Beta signaling; and the spindle checkpoints); (iii) regulation of RKIP expression; (iv) expression’s effects on oncogenesis; (v) role in the regulation of the immune system to diseases (i.e., RKIP regulation of T cell functions; the secretion of cytokines and immune mediators, apoptosis, immune check point inhibitors and RKIP involvement in inflammatory diseases); and (vi) bioinformatic analysis between normal and malignant tissues, as well as across various immune-related cells. Overall, the regulation of RKIP in different cancers and inflammatory diseases suggest that it can be used as a potential therapeutic target in the treatment of these diseases.
Collapse
|
31
|
Missios P, da Rocha EL, Pearson DS, Philipp J, Aleman MM, Pirouz M, Farache D, Franses JW, Kubaczka C, Tsanov KM, Jha DK, Pepe-Mooney B, Powers JT, Gregory RI, Lee AS, Dominguez D, Ting DT, Daley GQ. LIN28B alters ribosomal dynamics to promote metastasis in MYCN-driven malignancy. J Clin Invest 2021; 131:e145142. [PMID: 34779407 PMCID: PMC8592552 DOI: 10.1172/jci145142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 09/21/2021] [Indexed: 01/21/2023] Open
Abstract
High expression of LIN28B is associated with aggressive malignancy and poor survival. Here, probing MYCN-amplified neuroblastoma as a model system, we showed that LIN28B expression was associated with enhanced cell migration in vitro and invasive and metastatic behavior in murine xenografts. Sequence analysis of the polyribosome fraction of LIN28B-expressing neuroblastoma cells revealed let-7-independent enrichment of transcripts encoding components of the translational and ribosomal apparatus and depletion of transcripts of neuronal developmental programs. We further observed that LIN28B utilizes both its cold shock and zinc finger RNA binding domains to preferentially interact with MYCN-induced transcripts of the ribosomal complex, enhancing their translation. These data demonstrated that LIN28B couples the MYCN-driven transcriptional program to enhanced ribosomal translation, thereby implicating LIN28B as a posttranscriptional driver of the metastatic phenotype.
Collapse
Affiliation(s)
- Pavlos Missios
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Edroaldo Lummertz da Rocha
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Daniel S. Pearson
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Julia Philipp
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Maria M. Aleman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mehdi Pirouz
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - Dorian Farache
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Joseph W. Franses
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Caroline Kubaczka
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kaloyan M. Tsanov
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Deepak K. Jha
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian Pepe-Mooney
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - John T. Powers
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard I. Gregory
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Harvard Initiative for RNA Medicine, Boston, Massachusetts, USA
| | - Amy S.Y. Lee
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David T. Ting
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - George Q. Daley
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Perri P, Ponzoni M, Corrias MV, Ceccherini I, Candiani S, Bachetti T. A Focus on Regulatory Networks Linking MicroRNAs, Transcription Factors and Target Genes in Neuroblastoma. Cancers (Basel) 2021; 13:5528. [PMID: 34771690 PMCID: PMC8582685 DOI: 10.3390/cancers13215528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroblastoma (NB) is a tumor of the peripheral sympathetic nervous system that substantially contributes to childhood cancer mortality. NB originates from neural crest cells (NCCs) undergoing a defective sympathetic neuronal differentiation and although the starting events leading to the development of NB remain to be fully elucidated, the master role of genetic alterations in key oncogenes has been ascertained: (1) amplification and/or over-expression of MYCN, which is strongly associated with tumor progression and invasion; (2) activating mutations, amplification and/or over-expression of ALK, which is involved in tumor initiation, angiogenesis and invasion; (3) amplification and/or over-expression of LIN28B, promoting proliferation and suppression of neuroblast differentiation; (4) mutations and/or over-expression of PHOX2B, which is involved in the regulation of NB differentiation, stemness maintenance, migration and metastasis. Moreover, altered microRNA (miRNA) expression takes part in generating pathogenetic networks, in which the regulatory loops among transcription factors, miRNAs and target genes lead to complex and aberrant oncogene expression that underlies the development of a tumor. In this review, we have focused on the circuitry linking the oncogenic transcription factors MYCN and PHOX2B with their transcriptional targets ALK and LIN28B and the tumor suppressor microRNAs let-7, miR-34 and miR-204, which should act as down-regulators of their expression. We have also looked at the physiologic role of these genetic and epigenetic determinants in NC development, as well as in terminal differentiation, with their pathogenic dysregulation leading to NB oncogenesis.
Collapse
Affiliation(s)
- Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Maria Valeria Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Simona Candiani
- Department of Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Tiziana Bachetti
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
- Department of Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
33
|
Cho JH, Park S, Kim S, Kang SM, Woo TG, Yoon MH, Lee H, Jeong M, Park YH, Kim H, Han YT, Suh YG, Kim BH, Kwon Y, Yun H, Park BJ. RKIP Induction Promotes Tumor Differentiation via SOX2 Degradation in NF2-Deficient Conditions. Mol Cancer Res 2021; 20:412-424. [PMID: 34728553 DOI: 10.1158/1541-7786.mcr-21-0373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/16/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
Loss of NF2 (merlin) has been suggested as a genetic cause of neurofibromatosis type 2 and malignant peripheral nerve sheath tumor (MPNST). Previously, we demonstrated that NF2 sustained TGFβ receptor 2 (TβR2) expression and reduction or loss of NF2 activated non-canonical TGFβ signaling, which reduced Raf kinase inhibitor protein (RKIP) expression via TβR1 kinase activity. Here, we show that a selective RKIP inducer (novel chemical, Nf18001) inhibits tumor growth and promotes schwannoma cell differentiation into mature Schwann cells under NF2-deficient conditions. In addition, Nf18001 is not cytotoxic to cells expressing NF2 and is not disturb canonical TGFβ signaling. Moreover, the novel chemical induces expression of SOX10, a marker of differentiated Schwann cells, and promotes nuclear export and degradation of SOX2, a stem cell factor. Treatment with Nf18001 inhibited tumor growth in an allograft model with mouse schwannoma cells. These results strongly suggest that selective RKIP inducers could be useful for the treatment of neurofibromatosis type 2 as well as NF2-deficient MPNST. IMPLICATIONS: This study identifies that a selective RKIP inducer inhibits tumor growth and promotes schwannoma cell differentiation under NF2-deficient conditions by reducing SOX2 and increasing SOX10 expression.
Collapse
Affiliation(s)
- Jung-Hyun Cho
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea.,Institute of Systems Biology, Pusan National University, Busan, Republic of Korea
| | - Soyoung Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Soyeong Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - So-Mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Tae-Gyun Woo
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Min-Ho Yoon
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Hyunkee Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Myeonggyo Jeong
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yeong Hye Park
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Heegyu Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Young Taek Han
- College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| | - Young-Ger Suh
- College of Pharmacy, CHA University, Pocheon, Gyeonggi-do, Republic of Korea
| | - Bae-Hoon Kim
- Rare Disease R&D Center, PRG S&T Co., Ltd. Busan, Republic of Korea
| | - Yonghoon Kwon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan, Republic of Korea.
| | - Bum-Joon Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
34
|
Lu L, Liu G, Lin C, Li K, He T, Zhang J, Luo Z, Cai K. Mitochondrial Metabolism Targeted Nanoplatform for Efficient Triple-Negative Breast Cancer Combination Therapy. Adv Healthc Mater 2021; 10:e2100978. [PMID: 34387391 DOI: 10.1002/adhm.202100978] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/02/2021] [Indexed: 12/17/2022]
Abstract
Tumor reprogram pathway of mitochondrial metabolism is an emerging approach for malignant tumor treatment, such as triple-negative breast cancer. In this study, a tumor/mitochondria cascaded targeting, adenosine-triphosphate (ATP) responsive nanocarrier of zeolitic imidazolate framework-90 (ZIF-90) for breast cancer combination therapy is reported. Atovaquone (AVO) and hemin are loaded into ZIF-90, then a peptide iRGD with tumor-targeting ability is modified on the ZIF-90 nanoplatform. Hemin can specifically degrade BTB and CNC homology1 (BACH1), resulting in the changes of mitochondrial metabolism, and AVO acts as the inhibitor of the electron transport chain (ETC). The degradation of BACH1 using hemin can effectively improve the anti-tumor efficiency of mitochondrial metabolism inhibitor AVO, by increasing dependency on mitochondrial respiration. This nanoplatform displays both tumor-targeting and mitochondria-targeting capacity with high level of ATP responsive drug release behavior. The specific characteristic of mitochondria-targeting ability of this nanoplatform can increase the accumulation of AVO in the mitochondria, and in turn, can effectively improve the inhibition of the ETC. Both in vitro and in vivo results reveal that this composite nanocarrier has excellent tumor inhibition ability with limited side effects. Accordingly, this study provides an attractive strategy in the mitochondrial metabolism for cancer targeted therapy.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Genhua Liu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Chuanchuan Lin
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Ke Li
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Tingting He
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Zhong Luo
- School of Life Science Chongqing University Chongqing 400044 P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| |
Collapse
|
35
|
Kalpana G, Figy C, Feng J, Tipton C, De Castro JN, Bach VN, Borile C, LaSalla A, Odeh HN, Yeung M, Garcia-Mata R, Yeung KC. The RhoA dependent anti-metastatic function of RKIP in breast cancer. Sci Rep 2021; 11:17455. [PMID: 34465801 PMCID: PMC8408146 DOI: 10.1038/s41598-021-96709-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/11/2021] [Indexed: 01/22/2023] Open
Abstract
Raf-1 kinase inhibitor protein was initially discovered as a physiological kinase inhibitor of the MAPK signaling pathway and was later shown to suppress cancer cell invasion and metastasis. Yet, the molecular mechanism through which RKIP executes its effects is not completely defined. RhoA has both a pro- and anti-metastatic cell-context dependent functions. Given that Rho GTPases primarily function on actin cytoskeleton dynamics and cell movement regulation, it is possible that one way RKIP hinders cancer cell invasion/metastasis is by targeting these proteins. Here we show that RKIP inhibits cancer cell invasion and metastasis by stimulating RhoA anti-tumorigenic functions. Mechanistically, RKIP activates RhoA in an Erk2 and GEF-H1 dependent manner to enhance E-cadherin membrane localization and inhibit CCL5 expression.
Collapse
Affiliation(s)
- Gardiyawasam Kalpana
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, 43614, USA
| | - Christopher Figy
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, 43614, USA
| | - Jingwei Feng
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, 43614, USA.,Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Claire Tipton
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, 43614, USA
| | - Julius N De Castro
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, 43614, USA
| | - Vu N Bach
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, 43614, USA
| | - Clariza Borile
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, 43614, USA
| | - Alexandria LaSalla
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, 43614, USA
| | - Hussain N Odeh
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, 43614, USA
| | - Miranda Yeung
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, 43614, USA
| | - Rafael Garcia-Mata
- Department of Biological Sciences, College of Natural Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Kam C Yeung
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, 43614, USA.
| |
Collapse
|
36
|
The genomic architecture of metastasis in breast cancer: focus on mechanistic aspects, signalling pathways and therapeutic strategies. Med Oncol 2021; 38:95. [PMID: 34268641 DOI: 10.1007/s12032-021-01547-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is a multifactorial, heterogeneous disease and the second most frequent cancer amongst women worldwide. Metastasis is one of the most leading causes of death in these patients. Early-stage or locally advanced breast cancer is limited to the breast or nearby lymph nodes. When breast cancer spreads to farther tissues/organs from its original site, it is referred to as metastatic or stage IV breast cancer. Normal breast development is regulated by specific genes and signalling pathways controlling cell proliferation, cell death, cell differentiation and cell motility. Dysregulation of genes involved in various signalling pathways not only leads to the formation of primary tumour but also to the metastasis as well. The metastatic cascade is represented by a multi-step process including invasion of the local tumour cell followed by its entry into the vasculature, exit of malignant cells from the circulation and ultimately their colonization at the distant sites. These stages are referred to as formation of primary tumour, angiogenesis, invasion, intravasation and extravasation, respectively. The major sites of metastasis of breast cancer are the lymph nodes, bone, brain and lung. Only about 28% five-year survival rate has been reported for stage IV breast cancer. Metastasis is a serious concern for breast cancer and therefore, various therapeutic strategies such as tyrosine kinase inhibitors have been developed to target specific dysregulated genes and various signalling pathways involved in different steps of metastasis. In addition, other therapies like hyperbaric oxygen therapy, RNA interference and CRISPR/Cas9 are also being explored as novel strategies to cure the stage IV/metastatic breast cancer. Therefore, the current review has been compiled with an aim to evaluate the genetic basis of stage IV breast cancer with a focus on the molecular mechanisms. In addition, the therapeutic strategies targeting these dysregulated genes involved in various signalling pathways have also been discussed. Genome editing technologies that can target specific genes in the affected areas by making knock-in and knock-out alternations and thereby bring significant treatment outcomes in breast cancer have also been summarized.
Collapse
|
37
|
Tumor Extracellular Vesicles Regulate Macrophage-Driven Metastasis through CCL5. Cancers (Basel) 2021; 13:cancers13143459. [PMID: 34298673 PMCID: PMC8303898 DOI: 10.3390/cancers13143459] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary About 10–20 percent of patients with breast cancer are diagnosed with triple-negative breast cancer (TNBC). These tumors are named for their lack of expression of estrogen receptor (ER), progesterone receptor (PR), and amplification of human epidermal growth factor receptor 2 (HER2). These genes are targeted by therapies in other breast cancer patients. However, most TNBC patients recur within 5 years. Understanding how and why these tumors metastasize will help clinicians better treat these underserved cancer patients. TNBC tumors are highly infiltrated by tumor-associated macrophages (TAMs) that promote tumorigenesis and metastasis. Our study elucidates how the tumor co-opts macrophages recruited to the tumor through extracellular vesicles (EVs), further increasing tumor metastasis. Expression of tumor CCL5 regulates EV secretion and cargo that further alters macrophage phenotype to drive tumor metastasis. Together, our data suggest a more extensive role of EVs in the biology of tumor metastasis as well as their potential use as biomarkers. Abstract Purpose: To understand how tumor cells alter macrophage biology once they are recruited to triple-negative breast cancer (TNBC) tumors by CCL5. Method: Mouse bone marrow derived macrophage (BMDMs) were isolated and treated with recombinant CCL5 protein alone, with tumor cell conditioned media, or with tumor extracellular vesicles (EVs). Media from these tumor EV-educated macrophages (TEMs) was then used to determine how these macrophages affect TNBC invasion. To understand the mechanism, we assayed the cytokine secretion from these macrophages to determine how they impact tumor cell invasion. Tumor CCL5 expression was varied in tumors to determine its role in regulating macrophage biology through EVs. Results: Tumor EVs are a necessary component for programming naïve macrophages toward a pro-metastatic phenotype. CCL5 expression in the tumor cells regulates both EV biogenesis/secretion/cargo and macrophage EV-education toward a pro-metastatic phenotype. Analysis of the tumor EV-educated macrophages (TEMs) showed secretion of a variety of factors including CXCL1, CTLA-4, IFNG, OPN, HGF, TGFB, and CCL19 capable of remodeling the surrounding tumor stroma and immune infiltrate. Injection of tumor cells with macrophages educated by metastatic tumor cell EVs into mice increased tumor metastasis to the lung. Conclusion: These results demonstrate that tumor-derived EVs are key mediators of macrophage education and likely play a more complex role in modulating tumor therapeutic response by regulating the tumor immune infiltrate.
Collapse
|
38
|
Yesilkanal AE, Yang D, Valdespino A, Tiwari P, Sabino AU, Nguyen LC, Lee J, Xie XH, Sun S, Dann C, Robinson-Mailman L, Steinberg E, Stuhlmiller T, Frankenberger C, Goldsmith E, Johnson GL, Ramos AF, Rosner MR. Limited inhibition of multiple nodes in a driver network blocks metastasis. eLife 2021; 10:e59696. [PMID: 33973518 PMCID: PMC8128439 DOI: 10.7554/elife.59696] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Metastasis suppression by high-dose, multi-drug targeting is unsuccessful due to network heterogeneity and compensatory network activation. Here, we show that targeting driver network signaling capacity by limited inhibition of core pathways is a more effective anti-metastatic strategy. This principle underlies the action of a physiological metastasis suppressor, Raf Kinase Inhibitory Protein (RKIP), that moderately decreases stress-regulated MAP kinase network activity, reducing output to transcription factors such as pro-metastastic BACH1 and motility-related target genes. We developed a low-dose four-drug mimic that blocks metastatic colonization in mouse breast cancer models and increases survival. Experiments and network flow modeling show limited inhibition of multiple pathways is required to overcome variation in MAPK network topology and suppress signaling output across heterogeneous tumor cells. Restricting inhibition of individual kinases dissipates surplus signal, preventing threshold activation of compensatory kinase networks. This low-dose multi-drug approach to decrease signaling capacity of driver networks represents a transformative, clinically relevant strategy for anti-metastatic treatment.
Collapse
Affiliation(s)
- Ali Ekrem Yesilkanal
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Dongbo Yang
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Andrea Valdespino
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Payal Tiwari
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Alan U Sabino
- Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina and Escola de Artes, Ciências e Humanidades; University of São PauloSão PauloBrazil
| | - Long Chi Nguyen
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Jiyoung Lee
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Xiao-He Xie
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Siqi Sun
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Christopher Dann
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | | | - Ethan Steinberg
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Timothy Stuhlmiller
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Casey Frankenberger
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | | | - Gary L Johnson
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Alexandre F Ramos
- Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina and Escola de Artes, Ciências e Humanidades; University of São PauloSão PauloBrazil
| | - Marsha R Rosner
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| |
Collapse
|
39
|
Kinget L, Roussel E, Lambrechts D, Boeckx B, Vanginderhuysen L, Albersen M, Rodríguez-Antona C, Graña-Castro O, Inglada-Pérez L, Verbiest A, Zucman-Rossi J, Couchy G, Caruso S, Laenen A, Baldewijns M, Beuselinck B. MicroRNAs Possibly Involved in the Development of Bone Metastasis in Clear-Cell Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13071554. [PMID: 33800656 PMCID: PMC8036650 DOI: 10.3390/cancers13071554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Bone metastases cause substantial morbidity and implicate worse clinical outcomes for clear-cell renal cell carcinoma patients. MicroRNAs are small RNA molecules that modulate gene translation and are involved in the development of cancer and metastasis. We identified six microRNAs that are potentially specifically involved in metastasis to bone, of which two seem protective and four implicate a higher risk. This aids further understanding of the process of metastasizing to bone. Furthermore, these microRNA hold potential for biomarkers or therapeutic targets. Abstract Bone metastasis in clear-cell renal cell carcinoma (ccRCC) leads to substantial morbidity through skeletal related adverse events and implicates worse clinical outcomes. MicroRNAs (miRNA) are small non-protein coding RNA molecules with important regulatory functions in cancer development and metastasis. In this retrospective analysis we present dysregulated miRNA in ccRCC, which are associated with bone metastasis. In particular, miR-23a-3p, miR-27a-3p, miR-20a-5p, and miR-335-3p specifically correlated with the earlier appearance of bone metastasis, compared to metastasis in other organs. In contrast, miR-30b-3p and miR-139-3p were correlated with less occurrence of bone metastasis. These miRNAs are potential biomarkers and attractive targets for miRNA inhibitors or mimics, which could lead to novel therapeutic possibilities for bone targeted treatment in metastatic ccRCC.
Collapse
Affiliation(s)
- Lisa Kinget
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium; (L.K.); (L.V.); (A.V.)
| | - Eduard Roussel
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (E.R.); (M.A.)
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (D.L.); (B.B.)
- VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Bram Boeckx
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (D.L.); (B.B.)
- VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Loïc Vanginderhuysen
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium; (L.K.); (L.V.); (A.V.)
| | - Maarten Albersen
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (E.R.); (M.A.)
| | | | - Osvaldo Graña-Castro
- Centro Nacional de Investigaciones Oncológicas (CNIO), 28040 Madrid, Spain; (C.R.-A.); (O.G.-C.)
| | - Lucía Inglada-Pérez
- Department of Statistics and Operational Research, Faculty of Medicine, Complutense University, 28040 Madrid, Spain;
| | - Annelies Verbiest
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium; (L.K.); (L.V.); (A.V.)
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Functional Genomics of Solid Tumors Laboratory, Équipe Labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006 Paris, France; (J.Z.-R.); (G.C.); (S.C.)
| | - Gabrielle Couchy
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Functional Genomics of Solid Tumors Laboratory, Équipe Labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006 Paris, France; (J.Z.-R.); (G.C.); (S.C.)
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Functional Genomics of Solid Tumors Laboratory, Équipe Labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006 Paris, France; (J.Z.-R.); (G.C.); (S.C.)
| | | | | | - Benoit Beuselinck
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium; (L.K.); (L.V.); (A.V.)
- Correspondence: ; Tel.: +32-16-346900
| |
Collapse
|
40
|
A Novel Therapeutic Target, BACH1, Regulates Cancer Metabolism. Cells 2021; 10:cells10030634. [PMID: 33809182 PMCID: PMC8001775 DOI: 10.3390/cells10030634] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
BTB domain and CNC homology 1 (BACH1) is a transcription factor that is highly expressed in tumors including breast and lung, relative to their non-tumor tissues. BACH1 is known to regulate multiple physiological processes including heme homeostasis, oxidative stress response, senescence, cell cycle, and mitosis. In a tumor, BACH1 promotes invasion and metastasis of cancer cells, and the expression of BACH1 presents a poor outcome for cancer patients including breast and lung cancer patients. Recent studies identified novel functional roles of BACH1 in the regulation of metabolic pathways in cancer cells. BACH1 inhibits mitochondrial metabolism through transcriptional suppression of mitochondrial membrane genes. In addition, BACH1 suppresses activity of pyruvate dehydrogenase (PDH), a key enzyme that converts pyruvate to acetyl-CoA for the citric acid (TCA) cycle through transcriptional activation of pyruvate dehydrogenase kinase (PDK). Moreover, BACH1 increases glucose uptake and lactate secretion through the expression of metabolic enzymes involved such as hexokinase 2 (HK2) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) for aerobic glycolysis. Pharmacological or genetic inhibition of BACH1 could reprogram by increasing mitochondrial metabolism, subsequently rendering metabolic vulnerability of cancer cells against mitochondrial respiratory inhibition. Furthermore, inhibition of BACH1 decreased antioxidant-induced glycolysis rates as well as reduced migration and invasion of cancer cells, suggesting BACH1 as a potentially useful cancer therapeutic target.
Collapse
|
41
|
Yeeravalli R, Das A. Molecular mediators of breast cancer metastasis. Hematol Oncol Stem Cell Ther 2021; 14:275-289. [PMID: 33744312 DOI: 10.1016/j.hemonc.2021.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/09/2022] Open
Abstract
Breast cancer has the highest incidence rate of malignancy in women worldwide. A major clinical challenge faced by patients with breast cancer treated by conventional therapies is frequent relapse. This relapse has been attributed to the cancer stem cell (CSC) population that resides within the tumor and possess stemness properties. Breast CSCs are generated when breast cancer cells undergo epithelial-mesenchymal transition resulting in aggressive, highly metastatic, and invasive phenotypes that exhibit resistance towards chemotherapeutics. Metastasis, a phenomenon that aids in the migration of breast CSCs, occurs through any of three different routes: hematogenous, lymphatic, and transcoelomic. Hematogenous dissemination of breast CSCs leads to metastasis towards distant unrelated organs like lungs, liver, bone, and brain causing secondary tumor generation. Activation of metastasis genes or silencing of metastasis suppressor genes often leads to the advancement of metastasis. This review focuses on various genes and molecular factors that have been implicated to regulate organ-specific breast cancer metastasis by defying the available therapeutic interventions.
Collapse
Affiliation(s)
- Ragini Yeeravalli
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research, Ghaziabad, India.
| |
Collapse
|
42
|
HMGA2 as a Critical Regulator in Cancer Development. Genes (Basel) 2021; 12:genes12020269. [PMID: 33668453 PMCID: PMC7917704 DOI: 10.3390/genes12020269] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
The high mobility group protein 2 (HMGA2) regulates gene expression by binding to AT-rich regions of DNA. Akin to other DNA architectural proteins, HMGA2 is highly expressed in embryonic stem cells during embryogenesis, while its expression is more limited at later stages of development and in adulthood. Importantly, HMGA2 is re-expressed in nearly all human malignancies, where it promotes tumorigenesis by multiple mechanisms. HMGA2 increases cancer cell proliferation by promoting cell cycle entry and inhibition of apoptosis. In addition, HMGA2 influences different DNA repair mechanisms and promotes epithelial-to-mesenchymal transition by activating signaling via the MAPK/ERK, TGFβ/Smad, PI3K/AKT/mTOR, NFkB, and STAT3 pathways. Moreover, HMGA2 supports a cancer stem cell phenotype and renders cancer cells resistant to chemotherapeutic agents. In this review, we discuss these oncogenic roles of HMGA2 in different types of cancers and propose that HMGA2 may be used for cancer diagnostic, prognostic, and therapeutic purposes.
Collapse
|
43
|
Mills WT, Nassar NN, Ravindra D, Li X, Meffert MK. Multi-Level Regulatory Interactions between NF-κB and the Pluripotency Factor Lin28. Cells 2020; 9:E2710. [PMID: 33348917 PMCID: PMC7767241 DOI: 10.3390/cells9122710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022] Open
Abstract
An appreciation for the complex interactions between the NF-κB transcription factor and the Lin28 RNA binding protein/let-7 microRNA pathways has grown substantially over the past decade. Both the NF-κB and Lin28/let-7 pathways are master regulators impacting cell survival, growth and proliferation, and an understanding of how interfaces between these pathways participate in governing pluripotency, progenitor differentiation, and neuroplastic responses remains an emerging area of research. In this review, we provide a concise summary of the respective pathways and focus on the function of signaling interactions at both the transcriptional and post-transcriptional levels. Regulatory loops capable of providing both reinforcing and extinguishing feedback have been described. We highlight convergent findings in disparate biological systems and indicate future directions for investigation.
Collapse
Affiliation(s)
- William T. Mills
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Noor N. Nassar
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Deepa Ravindra
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Xinbei Li
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Mollie K. Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
44
|
Pham YTH, Utuama O, Thomas CE, Park JA, Vecchia CL, Risch HA, Tran CTD, Le TV, Boffetta P, Raskin L, Luu HN. High mobility group A protein-2 as a tumor cancer diagnostic and prognostic marker: a systematic review and meta-analysis. Eur J Cancer Prev 2020; 29:565-581. [PMID: 32898013 PMCID: PMC11537243 DOI: 10.1097/cej.0000000000000602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High mobility group A protein-2 (HMGA2) is an architectural transcription factor that binds to the A/T-rich DNA minor groove and is responsible for regulating transcriptional activity of multiple genes indirectly through chromatin change and assembling enhanceosome. HMGA2 is overexpressed in multiple tumor types, suggesting its involvement in cancer initiation and progression, thus, making it an ideal candidate for cancer diagnostic and prognostic. We performed a systematic review to examine the role of HMGA2 as a universal tumor cancer diagnostic and prognostic marker. We used Reporting Recommendations for Tumor Marker Prognostic Studies to systematically search OvidMedline, PubMed, and the Cochrane Library for English language studies, published between 1995 and June 2019. Meta-analysis provided pooled risk estimates and their 95% confidence intervals (CIs) for an association between overall survival and recurrence of cancers for studies with available estimates. We identified 42 eligible studies with a total of 5123 tumor samples in 15 types of cancer. The pooled percentage of HMGA2 gene expression in tumor samples was 65.14%. Meta-analysis showed that cancer patients with HMGA2 positive have significantly reduced survival, compared to patients without HMGA2 gene [pooled-hazard ratio (HR) = 1.85, 95% CI 1.48-2.22]. There was a positive association between cancer patients with HMGA2 overexpression and cancer recurrence though this association did not reach significance (pooled-HR = 1.44, 95% CI 0.80-2.07). Overexpression of HMGA2 was found in 15 types of cancer. There was an association between HMGA2 overexpression with reduced survival of cancer patients. HMGA2 is thus considered a promising universal tumor marker for prognostics.
Collapse
Affiliation(s)
- Yen Thi-Hai Pham
- Department of Rehabilitation, Vinmec Healthcare System, Hanoi, Vietnam
| | - Ovie Utuama
- Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, Florida
| | - Claire E. Thomas
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health
- Division of Cancer Control and Population Sciences, University of Pittsburgh Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jong A. Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Harvey A. Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University
- Yale Cancer Center, New Haven, Connecticut, USA
| | - Chi Thi-Du Tran
- Vietnam Colorectal Cancer and Polyps Research, Vinmec Healthcare System
| | - Thanh V. Le
- Department of Hepatobiliary and Pancreatic Surgery, 108 Hospital, Hanoi, Vietnam
| | - Paolo Boffetta
- Tisch Cancer Institute, Icahn School of Medicine, Mount Sinai School of Medicine, New York, New York and
| | - Leon Raskin
- Center for Observational Research, Amgen Inc., Thousand Oaks, California, USA
| | - Hung N. Luu
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health
- Division of Cancer Control and Population Sciences, University of Pittsburgh Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
45
|
MYC as a Multifaceted Regulator of Tumor Microenvironment Leading to Metastasis. Int J Mol Sci 2020; 21:ijms21207710. [PMID: 33081056 PMCID: PMC7589112 DOI: 10.3390/ijms21207710] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
The Myc family of oncogenes is deregulated in many types of cancer, and their over-expression is often correlated with poor prognosis. The Myc family members are transcription factors that can coordinate the expression of thousands of genes. Among them, c-Myc (MYC) is the gene most strongly associated with cancer, and it is the focus of this review. It regulates the expression of genes involved in cell proliferation, growth, differentiation, self-renewal, survival, metabolism, protein synthesis, and apoptosis. More recently, novel studies have shown that MYC plays a role not only in tumor initiation and growth but also has a broader spectrum of functions in tumor progression. MYC contributes to angiogenesis, immune evasion, invasion, and migration, which all lead to distant metastasis. Moreover, MYC is able to promote tumor growth and aggressiveness by recruiting stromal and tumor-infiltrating cells. In this review, we will dissect all of these novel functions and their involvement in the crosstalk between tumor and host, which have demonstrated that MYC is undoubtedly the master regulator of the tumor microenvironment. In sum, a better understanding of MYC’s role in the tumor microenvironment and metastasis development is crucial in proposing novel and effective cancer treatment strategies.
Collapse
|
46
|
Wang X, Langer EM, Daniel CJ, Janghorban M, Wu V, Wang XJ, Sears RC. Altering MYC phosphorylation in the epidermis increases the stem cell population and contributes to the development, progression, and metastasis of squamous cell carcinoma. Oncogenesis 2020; 9:79. [PMID: 32895364 PMCID: PMC7477541 DOI: 10.1038/s41389-020-00261-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 12/31/2022] Open
Abstract
cMYC (MYC) is a potent oncoprotein that is subject to post-translational modifications that affect its stability and activity. Here, we show that Serine 62 phosphorylation, which increases MYC stability and oncogenic activity, is elevated while Threonine 58 phosphorylation, which targets MYC for degradation, is decreased in squamous cell carcinoma (SCC). The oncogenic role of MYC in the development of SCC is unclear since studies have shown in normal skin that wild-type MYC overexpression can drive loss of stem cells and epidermal differentiation. To investigate whether and how altered MYC phosphorylation might affect SCC development, progression, and metastasis, we generated mice with inducible expression of MYCWT or MYCT58A in the basal layer of the skin epidermis. In the T58A mutant, MYC is stabilized with constitutive S62 phosphorylation. When challenged with DMBA/TPA-mediated carcinogenesis, MYCT58A mice had accelerated development of papillomas, increased conversion to malignant lesions, and increased metastasis as compared to MYCWT mice. In addition, MYCT58A-driven SCC displayed stem cell gene expression not observed with MYCWT, including increased expression of Lgr6, Sox2, and CD34. In support of MYCT58A enhancing stem cell phenotypes, its expression was associated with an increased number of BrdU long-term label-retaining cells, increased CD34 expression in hair follicles, and increased colony formation from neonatal keratinocytes. Together, these results indicate that altering MYC phosphorylation changes its oncogenic activity—instead of diminishing establishment and/or maintenance of epidermal stem cell populations like wild-type MYC, pS62-MYC enhances these populations and, under carcinogenic conditions, pS62-MYC expression results in aggressive tumor phenotypes.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Ellen M Langer
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Colin J Daniel
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Mahnaz Janghorban
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Vivian Wu
- Department of Otolaryngology-HNS, Henry Ford Health System, Detroit, MI, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA.,Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA. .,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
47
|
Takahashi T, Kawaji H, Murakawa Y, Hayashizaki Y, Murakami T, Yabushita Y, Homma Y, Kumamoto T, Matsuyama R, Endo I. Significance of HMGA2 expression as independent poor prognostic marker in perihilar and distal cholangiocarcinoma resected with curative intent. Eur J Surg Oncol 2020; 47:394-400. [PMID: 32878723 DOI: 10.1016/j.ejso.2020.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/13/2020] [Accepted: 08/05/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Extrahepatic cholangiocarcinoma requires invasive surgery and is associated with poor prognosis; thus, a prognostic biomarker is highly needed. Extrahepatic cholangiocarcinoma is sub-classified into two types based on their location, namely perihilar and distal. Perihilar cholangiocarcinoma requires lobectomy as curative surgical resection, whereas the distal requires pancreatoduodenectomy. HMGA2 overexpression is reported to correlate with progression, aggressiveness, dissemination and poor prognosis in several types of cancers. Although its association with extrahepatic cholangiocarcinoma has been reported, none of the previous studies assessed its significance in each subtype. METHODS We assessed the expression of HMGA2 protein in surgical specimens after curative intent surgery in 80 patients including 41 with perihilar cholangiocarcinoma and 39 with distal cholangiocarcinoma by immunohistochemistry. We then examined its association with clinicopathological findings and patient survival outcomes. RESULTS We found that HMGA2 was expressed in 51% (21 of 41) of perihilar cholangiocarcinoma and 41% (16 of 39) of distal cholangiocarcinoma samples. In perihilar cholangiocarcinoma, we found significant correlations between expression and vascular invasion and perineural invasion. In distal cholangiocarcinoma, we found that protein levels correlated with tumor grade. Univariate and multivariate analyses demonstrated that HMGA2 expression was an independent poor prognostic factor for patients with both subtypes of disease. CONCLUSIONS Our results revealed that HMGA2 expression as an independent prognostic marker for both perihilar and distal cholangiocarcinoma that were resected with curative intent.
Collapse
Affiliation(s)
- Tomoaki Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hideya Kawaji
- Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Tokyo Metropolitan Institute of Medical Sciences, Tokyo, Japan; RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Japan
| | - Yasuhiro Murakawa
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Japan; RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; RIKEN-HMC Clinical Omics Unit, RIKEN Baton Zone Program, Yokohama, Japan
| | | | - Takashi Murakami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yasuhiro Yabushita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yuki Homma
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takafumi Kumamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
48
|
Role of nitric oxide in the response to photooxidative stress in prostate cancer cells. Biochem Pharmacol 2020; 182:114205. [PMID: 32828802 DOI: 10.1016/j.bcp.2020.114205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
A continuous state of oxidative stress during inflammation contributes to the development of 25% of human cancers. Epithelial and inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) that can damage DNA. ROS/RNS have biological implications in both chemoresistance and tumor recurrence. As several clinically employed anticancer drugs can generate ROS/RNS, we have addressed herein how inducible nitric oxide synthase and nitric oxide (iNOS/•NO) affect the molecular pathways implicated in the tumor response to oxidative stress. To mimic the oxidative stress associated with chemotherapy, we used a photosensitizer (pheophorbide a) that can generate ROS/RNS in a controlled manner. We investigated how iNOS/•NO modulates the tumor response to oxidative stress by involving the NF-κB and Nrf2 molecular pathways. We found that low levels of iNOS induce the development of a more aggressive tumor population, leading to survival, recurrence and resistance. By contrast, high levels of iNOS/•NO sensitize tumor cells to oxidative treatment, causing cell growth arrest. Our analysis showed that NF-κB and Nrf2, which are activated in response to oxidative stress, communicate with each other through RKIP. For this critical role, RKIP could be an interesting target for anticancer drugs. Our study provides insight into the complex signaling response of cancer cells to oxidative treatments as well as new possibilities for the rational design of new therapeutic strategies.
Collapse
|
49
|
Casalino L, Verde P. Multifaceted Roles of DNA Methylation in Neoplastic Transformation, from Tumor Suppressors to EMT and Metastasis. Genes (Basel) 2020; 11:E922. [PMID: 32806509 PMCID: PMC7463745 DOI: 10.3390/genes11080922] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Among the major mechanisms involved in tumorigenesis, DNA methylation is an important epigenetic modification impacting both genomic stability and gene expression. Methylation of promoter-proximal CpG islands (CGIs) and transcriptional silencing of tumor suppressors represent the best characterized epigenetic changes in neoplastic cells. The global cancer-associated effects of DNA hypomethylation influence chromatin architecture and reactivation of repetitive elements. Moreover, recent analyses of cancer cell methylomes highlight the role of the DNA hypomethylation of super-enhancer regions critically controlling the expression of key oncogenic players. We will first summarize some basic aspects of DNA methylation in tumorigenesis, along with the role of dysregulated DNA methyltransferases and TET (Ten-Eleven Translocation)-family methylcytosine dioxygenases. We will then examine the potential contribution of epimutations to causality and heritability of cancer. By reviewing some representative genes subjected to hypermethylation-mediated silencing, we will survey their oncosuppressor functions and roles as biomarkers in various types of cancer. Epithelial-to-mesenchymal transition (EMT) and the gain of stem-like properties are critically involved in cancer cell dissemination, metastasis, and therapeutic resistance. However, the driver vs passenger roles of epigenetic changes, such as DNA methylation in EMT, are still poorly understood. Therefore, we will focus our attention on several aspects of DNA methylation in control of EMT and metastasis suppressors, including both protein-coding and noncoding genes.
Collapse
Affiliation(s)
- Laura Casalino
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, 80100 Naples, Italy
| | - Pasquale Verde
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, 80100 Naples, Italy
| |
Collapse
|
50
|
Huang W, Shi G, Yong Z, Li J, Qiu J, Cao Y, Zhao Y, Yuan L. Downregulation of RKIP promotes radioresistance of nasopharyngeal carcinoma by activating NRF2/NQO1 axis via downregulating miR-450b-5p. Cell Death Dis 2020; 11:504. [PMID: 32632129 PMCID: PMC7338462 DOI: 10.1038/s41419-020-2695-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022]
Abstract
Dysregulation of RKIP and NRF2 has been widely involved in the therapy resistance of multiple malignances, however, their relation and the corresponding mechanisms, especially in radiation response, have not been elucidated. In this study, we revealed that RKIP could negatively regulate the expression of NRF2 in nasopharyngeal carcinoma (NPC) cells. Depletion or ectopic expression of NRF2 countered the pro- or anti- radioresistant effects of RKIP knockdown or overexpression on NPC cells, respectively, both in vitro and in vivo. Furthermore, our results indicated that NQO1 was positively regulated by NRF2 and served as the downstream effector of RKIP/NRF2 axis in regulation of NPC radioresistance. Mechanistically, miR-450b-5p, being positively regulated by RKIP in NPC cells, could sensitize NPC cells to irradiation by directly targeting and suppressing the level of NRF2. Besides, we analyzed the level of aforementioned molecules in NPC tissues. The results indicated that RKIP was significantly downregulated, NRF2 and NQO1 were notably upregulated in NPC tissues compared with in normal nasopharyngeal mucosa (NNM) tissues. Furthermore, RKIP and miR-450b-5p were remarkably lower, yet NRF2 and NQO1 were notably higher, in radioresistant NPC tissues relative to in radiosensitive NPC tissues. Consistent with the pattern in NPC cells, the RKIP/miR-450b-5p/NRF2/NQO1 axis was significantly correlated in NPC tissues. Downregulation of RKIP and miR-450b-5p, and upregulation of NRF2 and NQO1, positively correlated to malignant pathological parameters such as primary T stage, Lymph node (N) metastasis, and TNM stage. Finally, RKIP and miR-450b-5p served as favorable prognostic indicators, and NRF2 and NQO1 acted as unfavorable prognostic biomarkers in patients with NPC. Collectively, our outcomes reveal that RKIP downregulation promotes radioresistance of NPC by downregulating miR-450b-5p and subsequently upregulating and activating NRF2 and NQO1, highlighting RKIP/miR-450b-5p/NRF2/NQO1 axis as a potential therapeutic target for improving the radiosensitivity of NPC.
Collapse
Affiliation(s)
- Wei Huang
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Guangqing Shi
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Zhong Yong
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jian Li
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Juan Qiu
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yan Cao
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yongfeng Zhao
- Department of Ultrasound, the Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Li Yuan
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|