1
|
Ryuno H, Hanafusa Y, Fujisawa T, Ogawa M, Adachi H, Naguro I, Ichijo H. HES1 potentiates high salt stress response as an enhancer of NFAT5-DNA binding. Commun Biol 2024; 7:1290. [PMID: 39384976 PMCID: PMC11464898 DOI: 10.1038/s42003-024-06997-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 10/01/2024] [Indexed: 10/11/2024] Open
Abstract
High salt conditions and subsequent hyperosmolarity are injurious cellular stresses that can activate immune signaling. Nuclear factor of activated T-cells 5 (NFAT5) is an essential transcription factor that induces osmoprotective genes such as aldose reductase (AR) and betaine-GABA transporter 1 (BGT1). High salt stress-mediated NFAT5 activation is also reported to accelerate the inflammatory response and autoimmune diseases. However, the systemic regulation of NFAT5 remains unclear. Here, we performed a genome-wide siRNA screen to comprehensively identify the regulators of NFAT5. We monitored NFAT5 nuclear translocation and identified one of the Notch signaling effectors, Hairy and enhancer of split-1 (HES1), as a positive regulator of NFAT5. HES1 was induced by high salinity via ERK signaling and facilitated NFAT5 recruitment to its target promoter region, resulting in the proper induction of osmoprotective genes and cytoprotection under high salt stress. These findings suggest that, though HES1 is well known as a transcriptional repressor, it positively regulates NFAT5-dependent transcription in the context of a high salinity/hyperosmotic response.
Collapse
Affiliation(s)
- Hiroki Ryuno
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Hanafusa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takao Fujisawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Cell Signaling and Stress Responses Laboratory, TMDU Advanced Research Institute, Chiyoda-ku, Tokyo, Japan
| | - Motoyuki Ogawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Cell Signaling and Stress Responses Laboratory, TMDU Advanced Research Institute, Chiyoda-ku, Tokyo, Japan
- Laboratory of Bioresponse Signaling, Faculty of Pharmacy, Juntendo University, Urayasu, Chiba, Japan
| | - Hiroki Adachi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Cell Signaling and Stress Responses Laboratory, TMDU Advanced Research Institute, Chiyoda-ku, Tokyo, Japan.
- Laboratory of Bioresponse Signaling, Faculty of Pharmacy, Juntendo University, Urayasu, Chiba, Japan.
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Cell Signaling and Stress Responses Laboratory, TMDU Advanced Research Institute, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
2
|
Zhang Y, Naguro I, Ryuno H, Herr AE. ContactBlot: Microfluidic Control and Measurement of the Cell-Cell Contact State to Assess Contact-Inhibited ERK Signaling. Anal Chem 2024. [PMID: 39254112 PMCID: PMC11447967 DOI: 10.1021/acs.analchem.4c02936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Extracellular signal-regulated kinase (ERK) signaling is essential to regulated cell behaviors, including cell proliferation, differentiation, and apoptosis. The influence of cell-cell contacts on ERK signaling is central to epithelial cells, yet few studies have sought to understand the same in cancer cells, particularly with single-cell resolution. To acquire same-cell measurements of both phenotypic (cell-contact state) and targeted-protein (ERK phosphorylation) profiles, we prepend high-content, whole-cell imaging prior to end-point cellular-resolution Western blot analyses for each of hundreds of individual HeLa cancer cells cultured on that same chip, which we call contactBlot. By indexing the phosphorylation level of ERK in each cell or cell cluster to the imaged cell-contact state, we compare the ERK signaling between isolated and in-contact cells. We observe attenuated (∼2×) ERK signaling in HeLa cells that are in-contact versus isolated. Attenuation is sustained when the HeLa cells are challenged with hyperosmotic stress. Our findings show the impact of cell-cell contacts on ERK activation with isolated and in-contact cells while introducing a multi-omics tool for control and scrutiny of cell-cell interactions.
Collapse
Affiliation(s)
- Yizhe Zhang
- Department of Bioengineering, University of California-Berkeley, Berkeley, California 94720, United States
| | - Isao Naguro
- Graduate School of Pharmaceutical Sciences The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Faculty of Pharmacy Juntendo University, Urayasu, Chiba 279-0013, Japan
| | - Hiroki Ryuno
- Graduate School of Pharmaceutical Sciences The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Amy E Herr
- Department of Bioengineering, University of California-Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Zhang Y, Naguro I, Ryuno H, Herr A. Contact Blot: Microfluidic Control and Measurement of Cell-Cell Contact State to Assess Contact-Inhibited ERK Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.06.565857. [PMID: 37986875 PMCID: PMC10659358 DOI: 10.1101/2023.11.06.565857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Extracellular signal-regulated kinase (ERK) signaling is essential to regulated cell behaviors, including cell proliferation, differentiation, and apoptosis. The influence of cell-cell contacts on ERK signaling is central to epithelial cells, yet few studies have sought to understand the same in cancer cells, particularly with single-cell resolution. To acquire same-cell measurements of both phenotypic (cell-contact state) and targeted-protein profile (ERK phosphorylation), we prepend high-content, whole-cell imaging prior to endpoint cellular-resolution western blot analyses for each of hundreds of individual HeLa cancer cells cultured on that same chip, which we call contact Blot. By indexing the phosphorylation level of ERK in each cell or cell-cluster to the imaged cell-contact state, we compare ERK signaling between isolated and in-contact cells. We observe attenuated (~2×) ERK signaling in HeLa cells which are in-contact versus isolated. Attenuation is sustained when the HeLa cells are challenged with hyperosmotic stress. Our findings show the impact of cell-cell contacts on ERK activation with isolated and in-contact cells, while introducing a multi omics tool for control and scrutiny of cell-cell interactions.
Collapse
|
4
|
Cheng L, Guo L, Zou T, Yang Y, Tao R, Liu S. Research progress on oncoprotein hepatitis B X‑interacting protein (Review). Mol Med Rep 2024; 29:89. [PMID: 38577934 PMCID: PMC11019400 DOI: 10.3892/mmr.2024.13213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Hepatitis B X‑interacting protein (HBXIP) is a membrane protein located on the lysosomal surface and encoded by the Lamtor gene. It is expressed by a wide range of tumor types, including breast cancer, esophageal squamous cell carcinoma and hepatocellular carcinoma, and its expression is associated with certain clinicopathological characteristics. In the past decade, research on the oncogenic mechanisms of HBXIP has increased and the function of HBXIP in normal cells has been gradually elucidated. In the present review, the following was discussed: The normal physiological role of the HBXIP carcinogenic mechanism; the clinical significance of high levels of HBXIP expression in different tumors; HBXIP regulation of transcription, post‑transcription and post‑translation processes in tumors; the role of HBXIP in improving the antioxidant capacity of tumor cells; the inhibition of ferroptosis of tumor cells and regulating the metabolic reprogramming of tumor cells; and the role of HBXIP in promoting the malignant progression of tumors. In conclusion, the present review summarized the existing knowledge of HBXIP, established its carcinogenic mechanism and discussed future related research on HBXIP.
Collapse
Affiliation(s)
- Lei Cheng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Lijuan Guo
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Teng Zou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Yisong Yang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Ran Tao
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Shuangping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| |
Collapse
|
5
|
Li Z, Li X, Feng B, Xue J, Zhao J, Zhu Q, Liu K, Xie F, Xie J. Combining a lung microfluidic chip exposure model with transcriptomic analysis to evaluate the inflammation in BEAS-2B cells exposed to cigarette smoke. Anal Chim Acta 2024; 1287:342049. [PMID: 38182364 DOI: 10.1016/j.aca.2023.342049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Typically, in vitro studies on the exposure of complex gaseous substances are performed in multi-well plate experiments by trapping and redissolving them, which could introduce potential bias into the results due to the use of inadequate trapping methods. Therefore, a more effective method is to expose complex gaseous substances in gaseous form online, such as using microfluidic chips in experiments. To address these challenges, we introduce a methodology that integrates a self-designed bionic-lung chip with transcriptome analysis to assess the impact of cigarette smoke (CS) exposure on changes in BEAS-2B cells cultured on-chip. RESULTS After the microfluidic chip underwent online gas exposure, total RNA was extracted via in situ cell lysis, and RNA-Seq transcriptome analysis was conducted. And the RNA-Seq findings revealed the significant involvement of the MAPK signaling pathway associated with the inflammatory response in the cellular effects induced by CS exposure. Moreover, the validation of inflammatory response-related biomarkers through in situ fluorescence corroborated the outcomes of the transcriptome analysis. Besides, the experiment involving the inhibition of inflammation by DEX on the microfluidic chip provided additional confirmation of the previous experimental findings. SIGNIFICANT In this study, we present an analytical strategy that combines microfluidic-based CS in situ exposure method with RNA-Seq technology. This strategy offers an experimental scheme for in situ exposure to complex gases, transcriptome analysis, and in situ fluorescence detection. Through the integration of the comprehensiveness of transcriptome analysis with the chip's direct and intuitive in situ fluorescence detection with the stability and reliability of RT-PCR and Western blot experiments, we have successfully addressed the challenges associated with in vitro risk assessment for online exposure to complex gaseous substances.
Collapse
Affiliation(s)
- Zezhi Li
- Beijing Technology and Business University, Beijing 100048, PR China; Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China; Beijing Life Science Academy, Beijing 102209, PR China.
| | - Boyang Feng
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Jingxian Xue
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Junwei Zhao
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China; Beijing Life Science Academy, Beijing 102209, PR China
| | - Qingqing Zhu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Kejian Liu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Jianping Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China; Beijing Life Science Academy, Beijing 102209, PR China.
| |
Collapse
|
6
|
Abstract
Protein homeostasis relies on a balance between protein folding and protein degradation. Molecular chaperones like Hsp70 and Hsp90 fulfill well-defined roles in protein folding and conformational stability via ATP-dependent reaction cycles. These folding cycles are controlled by associations with a cohort of non-client protein co-chaperones, such as Hop, p23, and Aha1. Pro-folding co-chaperones facilitate the transit of the client protein through the chaperone-mediated folding process. However, chaperones are also involved in proteasomal and lysosomal degradation of client proteins. Like folding complexes, the ability of chaperones to mediate protein degradation is regulated by co-chaperones, such as the C-terminal Hsp70-binding protein (CHIP/STUB1). CHIP binds to Hsp70 and Hsp90 chaperones through its tetratricopeptide repeat (TPR) domain and functions as an E3 ubiquitin ligase using a modified RING finger domain (U-box). This unique combination of domains effectively allows CHIP to network chaperone complexes to the ubiquitin-proteasome and autophagosome-lysosome systems. This chapter reviews the current understanding of CHIP as a co-chaperone that switches Hsp70/Hsp90 chaperone complexes from protein folding to protein degradation.
Collapse
Affiliation(s)
- Abantika Chakraborty
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa
| | - Adrienne L Edkins
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
7
|
Kumar S, Basu M, Ghosh MK. Chaperone-assisted E3 ligase CHIP: A double agent in cancer. Genes Dis 2022; 9:1521-1555. [PMID: 36157498 PMCID: PMC9485218 DOI: 10.1016/j.gendis.2021.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
The carboxy-terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase and co-chaperone belonging to Ubox family that plays a crucial role in the maintenance of cellular homeostasis by switching the equilibrium of the folding-refolding mechanism towards the proteasomal or lysosomal degradation pathway. It links molecular chaperones viz. HSC70, HSP70 and HSP90 with ubiquitin proteasome system (UPS), acting as a quality control system. CHIP contains charged domain in between N-terminal tetratricopeptide repeat (TPR) and C-terminal Ubox domain. TPR domain interacts with the aberrant client proteins via chaperones while Ubox domain facilitates the ubiquitin transfer to the client proteins for ubiquitination. Thus, CHIP is a classic molecule that executes ubiquitination for degradation of client proteins. Further, CHIP has been found to be indulged in cellular differentiation, proliferation, metastasis and tumorigenesis. Additionally, CHIP can play its dual role as a tumor suppressor as well as an oncogene in numerous malignancies, thus acting as a double agent. Here, in this review, we have reported almost all substrates of CHIP established till date and classified them according to the hallmarks of cancer. In addition, we discussed about its architectural alignment, tissue specific expression, sub-cellular localization, folding-refolding mechanisms of client proteins, E4 ligase activity, normal physiological roles, as well as involvement in various diseases and tumor biology. Further, we aim to discuss its importance in HSP90 inhibitors mediated cancer therapy. Thus, this report concludes that CHIP may be a promising and worthy drug target towards pharmaceutical industry for drug development.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, West Bengal 743372, India
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
8
|
Mathien S, Tesnière C, Meloche S. Regulation of Mitogen-Activated Protein Kinase Signaling Pathways by the Ubiquitin-Proteasome System and Its Pharmacological Potential. Pharmacol Rev 2021; 73:263-296. [PMID: 34732541 DOI: 10.1124/pharmrev.120.000170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved signaling pathways that play essential roles in transducing extracellular environmental signals into diverse cellular responses to maintain homeostasis. These pathways are classically organized into an architecture of three sequentially acting protein kinases: a MAPK kinase kinase that phosphorylates and activates a MAPK kinase, which in turn phosphorylates and activates the effector MAPK. The activity of MAPKs is tightly regulated by phosphorylation of their activation loop, which can be modulated by positive and negative feedback mechanisms to control the amplitude and duration of the signal. The signaling outcomes of MAPK pathways are further regulated by interactions of MAPKs with scaffolding and regulatory proteins. Accumulating evidence indicates that, in addition to these mechanisms, MAPK signaling is commonly regulated by ubiquitin-proteasome system (UPS)-mediated control of the stability and abundance of MAPK pathway components. Notably, the biologic activity of some MAPKs appears to be regulated mainly at the level of protein turnover. Recent studies have started to explore the potential of targeted protein degradation as a powerful strategy to investigate the biologic functions of individual MAPK pathway components and as a new therapeutic approach to overcome resistance to current small-molecule kinase inhibitors. Here, we comprehensively review the mechanisms, physiologic importance, and pharmacological potential of UPS-mediated protein degradation in the control of MAPK signaling. SIGNIFICANCE STATEMENT: Accumulating evidence highlights the importance of targeted protein degradation by the ubiquitin-proteasome system in regulating and fine-tuning the signaling output of mitogen-activated protein kinase (MAPK) pathways. Manipulating protein levels of MAPK cascade components may provide a novel approach for the development of selective pharmacological tools and therapeutics.
Collapse
Affiliation(s)
- Simon Mathien
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Chloé Tesnière
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
9
|
High Na + Salt Diet and Remodeling of Vascular Smooth Muscle and Endothelial Cells. Biomedicines 2021; 9:biomedicines9080883. [PMID: 34440087 PMCID: PMC8389691 DOI: 10.3390/biomedicines9080883] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Our knowledge on essential hypertension is vast, and its treatment is well known. Not all hypertensives are salt-sensitive. The available evidence suggests that even normotensive individuals are at high cardiovascular risk and lower survival rate, as blood pressure eventually rises later in life with a high salt diet. In addition, little is known about high sodium (Na+) salt diet-sensitive hypertension. There is no doubt that direct and indirect Na+ transporters, such as the Na/Ca exchanger and the Na/H exchanger, and the Na/K pump could be implicated in the development of high salt-induced hypertension in humans. These mechanisms could be involved following the destruction of the cell membrane glycocalyx and changes in vascular endothelial and smooth muscle cells membranes’ permeability and osmolarity. Thus, it is vital to determine the membrane and intracellular mechanisms implicated in this type of hypertension and its treatment.
Collapse
|
10
|
Zhang J, Sun B, Ruan X, Hou X, Zhi J, Meng X, Zheng X, Gao M. Oncoprotein HBXIP promotes tumorigenesis through MAPK/ERK pathway activation in non-small cell lung cancer. Cancer Biol Med 2021; 18:105-119. [PMID: 33628588 PMCID: PMC7877173 DOI: 10.20892/j.issn.2095-3941.2020.0098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: The oncoprotein, hepatitis B X-interacting protein (HBXIP), has been reported to play an important role in human malignancies. However, its functions in non-small cell lung cancer (NSCLC) are poorly understood. The goal of the present study was to identify the role of HBXIP in the regulation of NSCLC development. Methods: The level of HBXIP expression in NSCLC tissue was assessed by immunohistochemical and Western blot analyses, and its relationships with clinicopathological features and outcomes were statistically evaluated. The effects of HBXIP on NSCLC cell progression were assessed through cell viability, colony formation, and flow cytometry analyses in vitro. The mechanism by which HBXIP regulated the MAPK pathway was studied by Western blot, immunofluorescence, and immunoprecipitation assays. In addition, in vivo experiments were performed to evaluate the progression of NSCLC and ERK signaling pathway activation after HBXIP knockdown. Results: HBXIP was overexpressed in human NSCLC and was correlated with the invasiveness of NSCLC. The high expression of HBXIP in NSCLC was significantly correlated with gender (P = 0.033), N stage (P = 0.002), and tumor-node-metastasis stage (P = 0.008). In vitro experiments using an NSCLC cell line revealed that HBXIP knockdown resulted in the suppression of cell proliferation and colony formation, which was consistent with the enhanced cell cycle arrest in G1 phase. The results of a mechanistic investigation suggested that binding of HBXIP to MEK1 protein promoted MAPK/ERK signaling pathway activation in NSCLC by preventing the proteasome-mediated degradation of MEK1. In addition, the results obtained using in vivo subcutaneous tumor xenografts confirmed that HBXIP deficiency decreased MEK1 protein levels and NSCLC tumor growth. Conclusions: Taken together, our results showed that the HBXIP-MEK interaction promoted oncogenesis via the MAPK/ERK pathway, which may serve as a novel therapeutic target for cancers in which MAPK/ERK signaling is a dominant feature.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Breast Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Bei Sun
- Department of Outpatient Office, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xianhui Ruan
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiukun Hou
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jingtai Zhi
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiangrui Meng
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ming Gao
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
11
|
STUB1 is targeted by the SUMO-interacting motif of EBNA1 to maintain Epstein-Barr Virus latency. PLoS Pathog 2020; 16:e1008447. [PMID: 32176739 PMCID: PMC7105294 DOI: 10.1371/journal.ppat.1008447] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/30/2020] [Accepted: 03/01/2020] [Indexed: 12/31/2022] Open
Abstract
Latent Epstein-Barr virus (EBV) infection is strongly associated with several malignancies, including B-cell lymphomas and epithelial tumors. EBNA1 is a key antigen expressed in all EBV-associated tumors during latency that is required for maintenance of the EBV episome DNA and the regulation of viral gene transcription. However, the mechanism utilized by EBV to maintain latent infection at the levels of posttranslational regulation remains largely unclear. Here, we report that EBNA1 contains two SUMO-interacting motifs (SIM2 and SIM3), and mutation of SIM2, but not SIM3, dramatically disrupts the EBNA1 dimerization, while SIM3 contributes to the polySUMO2 modification of EBNA1 at lysine 477 in vitro. Proteomic and immunoprecipitation analyses further reveal that the SIM3 motif is required for the EBNA1-mediated inhibitory effects on SUMO2-modified STUB1, SUMO2-mediated degradation of USP7, and SUMO1-modified KAP1. Deletion of the EBNASIM motif leads to functional loss of both EBNA1-mediated viral episome maintenance and lytic gene silencing. Importantly, hypoxic stress induces the SUMO2 modification of EBNA1, and in turn the dissociation of EBNA1 with STUB1, KAP1 and USP7 to increase the SUMO1 modification of both STUB1 and KAP1 for reactivation of lytic replication. Therefore, the EBNA1SIM motif plays an essential role in EBV latency and is a potential therapeutic target against EBV-associated cancers. The Small Ubiquitin-related modifier (SUMO) modification of proteins is a reversible post-translational regulation involved in control of gene transcription, among other functions. Epstein-Barr virus (EBV) infects most people worldwide and contributes to the development of several types of cancers due to its ability to induce cell proliferation and survival. EBNA1 is expressed in all forms of EBV-associated tumors. In this study, we found that EBNA1 contains a SUMO-interacting motif (SIM) named EBNA1SIM, which is required for EBNA1 to exert inhibitory effects on a SUMO2-modified complex (SC2) including STUB1, KAP1 and USP7. Disruption of EBNA1SIM leads to loss of both EBNA1-mediated viral episome maintenance and lytic gene silencing. Importantly, hypoxia-mediated reactivation of viral lytic replication induces the EBNA1 dissociation from STUB1 in the SC2 complex. This discovery not only opens a new insight on the interplay between host and virus, but it also provides a therapeutic target specific against EBV-associated cancers.
Collapse
|
12
|
Zhang Y, Naguro I, Herr AE. In Situ Single-Cell Western Blot on Adherent Cell Culture. Angew Chem Int Ed Engl 2019; 58:13929-13934. [PMID: 31390130 PMCID: PMC6759404 DOI: 10.1002/anie.201906920] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/12/2019] [Indexed: 12/14/2022]
Abstract
Integrating 2D culture of adherent mammalian cells with single-cell western blotting (in situ scWB) uses microfluidic design to eliminate the requirement for trypsin release of cells to suspension, prior to single-cell isolation and protein analysis. To assay HeLa cells from an attached starting state, we culture adherent cells in fibronectin-functionalized microwells formed in a thin layer of polyacrylamide gel. To integrate the culture, lysis, and assay workflow, we introduce a one-step copolymerization process that creates protein-decorated microwells. After single-cell culture, we lyse each cell in the microwell and perform western blotting on each resultant lysate. We observe cell spreading after overnight microwell-based culture. scWB reports increased phosphorylation of MAP kinases (ERK1/2, p38) under hypertonic conditions. We validate the in situ scWB with slab-gel western blot, while revealing cell-to-cell heterogeneity in stress responses.
Collapse
Affiliation(s)
- Yizhe Zhang
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Isao Naguro
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
13
|
Zhang Y, Naguro I, Herr AE. In Situ Single‐Cell Western Blot on Adherent Cell Culture. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yizhe Zhang
- Department of BioengineeringUniversity of California, Berkeley Berkeley CA 94720 USA
| | - Isao Naguro
- Graduate School of Pharmaceutical SciencesThe University of Tokyo Tokyo Japan
| | - Amy E. Herr
- Department of BioengineeringUniversity of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
14
|
Nitration-induced ubiquitination and degradation control quality of ERK1. Biochem J 2019; 476:1911-1926. [PMID: 31196894 PMCID: PMC6604951 DOI: 10.1042/bcj20190240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022]
Abstract
The mitogen-activated protein kinase ERK1/2 (ERKs, extracellular-regulated protein kinases) plays important roles in a wide spectrum of cellular processes and have been implicated in many disease states. The spatiotemporal regulation of ERK activity has been extensively studied. However, scarce information has been available regarding the quality control of the kinases to scavenge malfunctioning ERKs. Using site-specific mutagenesis and mass spectrometry, we found that the disruption of the conserved H-bond between Y210 and E237 of ERK1 through point mutation at or naturally occurring nitration on Y210 initiates a quality control program dependent on chaperon systems and CHIP (C-terminal of Hsp70-interacting protein)-mediated ubiquitination and degradation. The H-bond is also important for the quality control of ERK2, but through a distinct mechanism. These findings clearly demonstrate how malfunctioning ERKs are eliminated when cells are in certain stress conditions or unhealthy states, and could represent a general mechanism for scavenging malfunctioning kinases in stress conditions.
Collapse
|
15
|
Rinaldi L, Delle Donne R, Catalanotti B, Torres-Quesada O, Enzler F, Moraca F, Nisticò R, Chiuso F, Piccinin S, Bachmann V, Lindner HH, Garbi C, Scorziello A, Russo NA, Synofzik M, Stelzl U, Annunziato L, Stefan E, Feliciello A. Feedback inhibition of cAMP effector signaling by a chaperone-assisted ubiquitin system. Nat Commun 2019; 10:2572. [PMID: 31189917 PMCID: PMC6561907 DOI: 10.1038/s41467-019-10037-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/12/2019] [Indexed: 02/07/2023] Open
Abstract
Activation of G-protein coupled receptors elevates cAMP levels promoting dissociation of protein kinase A (PKA) holoenzymes and release of catalytic subunits (PKAc). This results in PKAc-mediated phosphorylation of compartmentalized substrates that control central aspects of cell physiology. The mechanism of PKAc activation and signaling have been largely characterized. However, the modes of PKAc inactivation by regulated proteolysis were unknown. Here, we identify a regulatory mechanism that precisely tunes PKAc stability and downstream signaling. Following agonist stimulation, the recruitment of the chaperone-bound E3 ligase CHIP promotes ubiquitylation and proteolysis of PKAc, thus attenuating cAMP signaling. Genetic inactivation of CHIP or pharmacological inhibition of HSP70 enhances PKAc signaling and sustains hippocampal long-term potentiation. Interestingly, primary fibroblasts from autosomal recessive spinocerebellar ataxia 16 (SCAR16) patients carrying germline inactivating mutations of CHIP show a dramatic dysregulation of PKA signaling. This suggests the existence of a negative feedback mechanism for restricting hormonally controlled PKA activities.
Collapse
Affiliation(s)
- Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, 80131, Naples, Italy
| | - Rossella Delle Donne
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, 80131, Naples, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University Federico II, 80131, Naples, Italy
| | - Omar Torres-Quesada
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Florian Enzler
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Federica Moraca
- Department of Chemical Sciences, University Federico II, 80131, Naples, Italy
| | - Robert Nisticò
- European Brain Research Institute, Rita Levi-Montalcini Foundation and Department of Biology, University Tor Vergata, 00143, Rome, Italy
| | - Francesco Chiuso
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, 80131, Naples, Italy
| | - Sonia Piccinin
- European Brain Research Institute, Rita Levi-Montalcini Foundation and Department of Biology, University Tor Vergata, 00143, Rome, Italy
| | - Verena Bachmann
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Herbert H Lindner
- Division of Clinical Biochemistry, Biocenter Medical University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Corrado Garbi
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, 80131, Naples, Italy
| | - Antonella Scorziello
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University Federico II, 80131, Naples, Italy
| | | | - Matthis Synofzik
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen and German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, University of Graz and BioTechMed-Graz, 8010, Graz, Austria
| | | | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, 80131, Naples, Italy.
| |
Collapse
|
16
|
Seo J, Han SY, Seong D, Han HJ, Song J. Multifaceted C-terminus of HSP70-interacting protein regulates tumorigenesis via protein quality control. Arch Pharm Res 2019; 42:63-75. [PMID: 30600426 DOI: 10.1007/s12272-018-1101-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
Abstract
C-terminus of heat shock protein 70 (HSP70)-interacting protein (CHIP) is an E3 ligase involved in a variety of protein homeostasis events implicated in diverse signaling pathways. Its involvement in varied and even opposite signaling circuits might be due to its hallmark signature of associating with molecular chaperones, including HSP90 and HSP70. Together, these proteins may be pivotal in implementing protein quality control. A curious and puzzling aspect of the function of CHIP is its capability to induce protein degradation via the proteasome- or lysosome-dependent pathways. In addition, these pathways are combined with ubiquitin-dependent or -independent pathways. This review focuses on the role of CHIP in the development or suppression of tumorigenesis. CHIP can act as a tumor suppressor by downregulating various oncogenes. CHIP also displays an oncogenic feature involving the inhibition of diverse tumor suppressors, including proteins related to intrinsic and extrinsic apoptotic pathways. The ability of CHIP to exhibit dual roles in determining the fate of cells has not been studied analytically. However, its association with various proteins involved in protein quality control might play a major role. In this review, the mechanistic roles of CHIP in tumor formation based on the regulation of diverse proteins are discussed.
Collapse
Affiliation(s)
- Jinho Seo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Su Yeon Han
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Daehyeon Seong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Hyun-Ji Han
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
17
|
Ji CD, Wang YX, Xiang DF, Liu Q, Zhou ZH, Qian F, Yang L, Ren Y, Cui W, Xu SL, Zhao XL, Zhang X, Wang Y, Zhang P, Wang JM, Cui YH, Bian XW. Kir2.1 Interaction with Stk38 Promotes Invasion and Metastasis of Human Gastric Cancer by Enhancing MEKK2-MEK1/2-ERK1/2 Signaling. Cancer Res 2018; 78:3041-3053. [PMID: 29549164 PMCID: PMC8111788 DOI: 10.1158/0008-5472.can-17-3776] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/16/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022]
Abstract
Potassium ion channels are emerging as promalignant factors involved in cancer progression. In this study, we found that invading human gastric cancer cells express high levels of inwardly rectifying potassium channel 2.1 (Kir2.1). Silencing Kir2.1 markedly reduced the invasive and metastatic capabilities as well as the epithelial-mesenchymal transition (EMT) of gastric cancer cells. The promalignant nature of Kir2.1 in gastric cancer cells was independent of potassium permeation but relied on its interaction with serine/threonine-protein kinase 38 (Stk38) to inhibit ubiquitination and degradation of mitogen-activated protein kinase kinase kinase 2 (MEKK2). Degradation of MEKK2 was mediated by small mothers against decapentaplegic-specific E3 ubiquitin protein ligase 1 (Smurf1), which resulted in activation of the MEK1/2-ERK1/2-Snail pathway in gastric cancer cells. In human gastric cancer tissues, expression was high and positively correlated with invasion depth and metastatic status of the tumors as well as poor overall patient survival. Cox regression analysis identified Kir2.1 as an independent prognostic indicator for patients with gastric cancer. Our results suggest that Kir2.1 is an important regulator of gastric cancer malignancy and acts as a novel prognostic marker and a therapeutic target for gastric cancer.Significance: Kir2.1 contributes to invasion and metastasis by a noncanonical ion permeation-independent signaling pathway and may act as a novel prognostic marker and therapeutic target for gastric cancer. Cancer Res; 78(11); 3041-53. ©2018 AACR.
Collapse
Affiliation(s)
- Cheng-Dong Ji
- Institute of Pathology and Southwest Cancer Center and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yan-Xia Wang
- Institute of Pathology and Southwest Cancer Center and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dong-Fang Xiang
- Institute of Pathology and Southwest Cancer Center and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiang Liu
- Institute of Pathology and Southwest Cancer Center and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhi-Hua Zhou
- Institute of Pathology and Southwest Cancer Center and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Feng Qian
- Department of General Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lang Yang
- Institute of Pathology and Southwest Cancer Center and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yong Ren
- Institute of Pathology and Southwest Cancer Center and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei Cui
- Institute of Pathology and Southwest Cancer Center and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Sen-Lin Xu
- Institute of Pathology and Southwest Cancer Center and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xi-Long Zhao
- Institute of Pathology and Southwest Cancer Center and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Peng Zhang
- Institute of Pathology and Southwest Cancer Center and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ji-Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
18
|
Bhuripanyo K, Wang Y, Liu X, Zhou L, Liu R, Duong D, Zhao B, Bi Y, Zhou H, Chen G, Seyfried NT, Chazin WJ, Kiyokawa H, Yin J. Identifying the substrate proteins of U-box E3s E4B and CHIP by orthogonal ubiquitin transfer. SCIENCE ADVANCES 2018; 4:e1701393. [PMID: 29326975 PMCID: PMC5756662 DOI: 10.1126/sciadv.1701393] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
E3 ubiquitin (UB) ligases E4B and carboxyl terminus of Hsc70-interacting protein (CHIP) use a common U-box motif to transfer UB from E1 and E2 enzymes to their substrate proteins and regulate diverse cellular processes. To profile their ubiquitination targets in the cell, we used phage display to engineer E2-E4B and E2-CHIP pairs that were free of cross-reactivity with the native UB transfer cascades. We then used the engineered E2-E3 pairs to construct "orthogonal UB transfer (OUT)" cascades so that a mutant UB (xUB) could be exclusively used by the engineered E4B or CHIP to label their substrate proteins. Purification of xUB-conjugated proteins followed by proteomics analysis enabled the identification of hundreds of potential substrates of E4B and CHIP in human embryonic kidney 293 cells. Kinase MAPK3 (mitogen-activated protein kinase 3), methyltransferase PRMT1 (protein arginine N-methyltransferase 1), and phosphatase PPP3CA (protein phosphatase 3 catalytic subunit alpha) were identified as the shared substrates of the two E3s. Phosphatase PGAM5 (phosphoglycerate mutase 5) and deubiquitinase OTUB1 (ovarian tumor domain containing ubiquitin aldehyde binding protein 1) were confirmed as E4B substrates, and β-catenin and CDK4 (cyclin-dependent kinase 4) were confirmed as CHIP substrates. On the basis of the CHIP-CDK4 circuit identified by OUT, we revealed that CHIP signals CDK4 degradation in response to endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Karan Bhuripanyo
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Yiyang Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Xianpeng Liu
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Li Zhou
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Ruochuan Liu
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Duc Duong
- Integrated Proteomics Core, Emory University, Atlanta, GA 30322, USA
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingtao Bi
- AbbVie Bioresearch Center, Worcester, MA 01605, USA
| | - Han Zhou
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Geng Chen
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Walter J. Chazin
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Hiroaki Kiyokawa
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Jun Yin
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
19
|
Symmetry breaking during homodimeric assembly activates an E3 ubiquitin ligase. Sci Rep 2017; 7:1789. [PMID: 28496195 PMCID: PMC5431976 DOI: 10.1038/s41598-017-01880-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/04/2017] [Indexed: 12/20/2022] Open
Abstract
C-terminus of Hsc/p70-Interacting Protein (CHIP) is a homodimeric E3 ubiquitin ligase. Each CHIP monomer consists of a tetratricopeptide-repeat (TPR), helix-turn-helix (HH), and U-box domain. In contrast to nearly all homodimeric proteins, CHIP is asymmetric. To uncover the origins of asymmetry, we performed molecular dynamics simulations of dimer assembly. We determined that a CHIP monomer is most stable when the HH domain has an extended helix that supports intra-monomer TPR-U-box interaction, blocking the E2-binding surface of the U-box. We also discovered that monomers first dimerize symmetrically through their HH domains, which then triggers U-box dimerization. This brings the extended helices into close proximity, including a repulsive stretch of positively charged residues. Unable to smoothly unwind, this conflict bends the helices until the helix of one protomer breaks to relieve the repulsion. The abrupt snapping of the helix forces the C-terminal residues of the other protomer to disrupt that protomer’s TPR-U-box tight binding interface, swiftly exposing and activating one of the E2 binding sites. Mutagenesis and biochemical experiments confirm that C-terminal residues are necessary both to maintain CHIP stability and function. This novel mechanism indicates how a ubiquitin ligase maintains an inactive monomeric form that rapidly activates only after asymmetric assembly.
Collapse
|
20
|
Teixeira FR, Manfiolli AO, Vieira NA, Medeiros AC, Coelho PDO, Santiago Guimarães D, Schechtman D, Gomes MD. FBXO25 regulates MAPK signaling pathway through inhibition of ERK1/2 phosphorylation. Arch Biochem Biophys 2017; 621:38-45. [PMID: 28389297 DOI: 10.1016/j.abb.2017.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/14/2017] [Accepted: 04/03/2017] [Indexed: 12/13/2022]
Abstract
The FBXO25 mediates degradation of ELK-1 and thus inhibits transcriptional activation of immediate early genes (iEG). Here we show that FBXO25 regulates yet another node of this signaling pathway, by decreasing MAPK/ERK activity. We show that induction of FBXO25 reduced ERK1/2 phosphorylation independently of MEK1/2. Accordingly, in HAP1 FBXO25 knockout cells (FBXO25KO), we observed that upon PMA treatment ERK1/2 was more active than in parental cells. An increase in cell proliferation under receptor mediated activation of the ERK signaling pathway in FBXO25KO cells was also observed. Taken together we show that FBXO25 functions as a negative regulator of MAPK signaling though the reduction of ERK1/2 activation.
Collapse
Affiliation(s)
- Felipe R Teixeira
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Brazil; Department of Genetics and Evolution, Federal University of Sao Carlos, Brazil
| | - Adriana O Manfiolli
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Nichelle A Vieira
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Ana Carla Medeiros
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Priscila de O Coelho
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | | | - Deborah Schechtman
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Brazil
| | - Marcelo D Gomes
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Brazil.
| |
Collapse
|
21
|
Mukherjee R, Das A, Chakrabarti S, Chakrabarti O. Calcium dependent regulation of protein ubiquitination - Interplay between E3 ligases and calcium binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1227-1235. [PMID: 28285986 DOI: 10.1016/j.bbamcr.2017.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 11/18/2022]
Abstract
The ubiquitination status of proteins and intracellular calcium levels are two factors which keep changing inside any living cell. These two events appear to be independent of each other but recent experimental evidences show that ubiquitination of cellular proteins are influenced by calcium, Calmodulin, Calmodulin-dependent kinase II and other proteins of calcium dependent pathways. E3 ligases like Nedd4, SCF complex, APC, GP78 and ITCH are important regulators of calcium mediated processes. A bioinformatics analysis to inspect sequences and interacting partners of 242 candidate E3 ligases show the presence of calcium and/or Calmodulin binding motifs/domains within their sequences. Building a protein-protein interaction (PPI) network of human E3 ligase proteins identifies Ca2+ related proteins as direct interacting partners of E3 ligases. Review of literature, analysis of E3 ligase sequences and their interactome suggests an interconnectivity between calcium signaling and the overall UPS system, especially emphasizing that a subset of E3 ligases have importance in physiological pathways modulated by calcium.
Collapse
Affiliation(s)
- Rukmini Mukherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Aneesha Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S C Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.
| |
Collapse
|
22
|
Joshi V, Amanullah A, Upadhyay A, Mishra R, Kumar A, Mishra A. A Decade of Boon or Burden: What Has the CHIP Ever Done for Cellular Protein Quality Control Mechanism Implicated in Neurodegeneration and Aging? Front Mol Neurosci 2016; 9:93. [PMID: 27757073 PMCID: PMC5047891 DOI: 10.3389/fnmol.2016.00093] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/20/2016] [Indexed: 01/13/2023] Open
Abstract
Cells regularly synthesize new proteins to replace old and abnormal proteins for normal cellular functions. Two significant protein quality control pathways inside the cellular milieu are ubiquitin proteasome system (UPS) and autophagy. Autophagy is known for bulk clearance of cytoplasmic aggregated proteins, whereas the specificity of protein degradation by UPS comes from E3 ubiquitin ligases. Few E3 ubiquitin ligases, like C-terminus of Hsc70-interacting protein (CHIP) not only take part in protein quality control pathways, but also plays a key regulatory role in other cellular processes like signaling, development, DNA damage repair, immunity and aging. CHIP targets misfolded proteins for their degradation through proteasome, as well as autophagy; simultaneously, with the help of chaperones, it also regulates folding attempts for misfolded proteins. The broad range of CHIP substrates and their associations with multiple pathologies make it a key molecule to work upon and focus for future therapeutic interventions. E3 ubiquitin ligase CHIP interacts and degrades many protein inclusions formed in neurodegenerative diseases. The presence of CHIP at various nodes of cellular protein-protein interaction network presents this molecule as a potential candidate for further research. In this review, we have explored a wide range of functionality of CHIP inside cells by a detailed presentation of its co-chaperone, E3 and E4 enzyme like functions, with central focus on its protein quality control roles in neurodegenerative diseases. We have also raised many unexplored but expected fundamental questions regarding CHIP functions, which generate hopes for its future applications in research, as well as drug discovery.
Collapse
Affiliation(s)
- Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Ayeman Amanullah
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Amit Kumar
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore Madhya Pradesh, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| |
Collapse
|
23
|
Shen CT, Qiu ZL, Song HJ, Wei WJ, Luo QY. miRNA-106a directly targeting RARB associates with the expression of Na(+)/I(-) symporter in thyroid cancer by regulating MAPK signaling pathway. J Exp Clin Cancer Res 2016; 35:101. [PMID: 27342319 PMCID: PMC4919890 DOI: 10.1186/s13046-016-0377-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Serum miRNAs profiles between papillary thyroid carcinoma (PTC) patients with non-(131)I and (131)I-avid lung metastases are differentially expressed. These miRNAs have to be further validated and the role of these miRNAs in the molecular function level of thyroid cancer cell lines has not been investigated. METHODS Expression levels of six identified miRNAs were assessed via quantitative real-time PCR (qRT-PCR) in the serum of eligible patients. Dual-luciferase reporter assay was used to determine the potential target of miR-106a. Cell viability and apoptosis were evaluated by MTT assay and flow cytometry analysis, respectively. The change of gene expression was detected by qRT-PCR and western blotting analysis. In vitro iodine uptake assay was conducted by a γ-counter. RESULTS Compared to PTC patients with (131)I-avid lung metastases, miR-106a was up-regulated in the serum of patients with non-(131)I-avid lung metastases. The results of dual-luciferase reporter assay demonstrated that miR-106a directly targeted retinoic acid receptor beta (RARB) 3'-UTR. miR-106a-RARB promoted viability of thyroid cancer cells by regulating MEKK2-ERK1/2 and MEKK2-ERK5 pathway. miR-106a-RARB inhibited apoptosis of thyroid cancer cells by regulating ASK1-p38 pathway. Moreover, miR-106a-RARB could regulate the expression of sodium iodide symporter, TSH receptor and alter the iodine uptake function of thyroid cancer cells. CONCLUSIONS miRNA-106a, directly targeting RARB, associates with the viability, apoptosis, differentiation and the iodine uptake function of thyroid cancer cell lines by regulating MAPK signaling pathway in vitro. These findings in the present study may provide new strategies for the diagnosis and treatment in radioiodine-refractory differentiated thyroid carcinoma.
Collapse
Affiliation(s)
- Chen-Tian Shen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Zhong-Ling Qiu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Hong-Jun Song
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Wei-Jun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| |
Collapse
|
24
|
Wang L, Zhang TP, Zhang Y, Bi HL, Guan XM, Wang HX, Wang X, Du J, Xia YL, Li HH. Protection against doxorubicin-induced myocardial dysfunction in mice by cardiac-specific expression of carboxyl terminus of hsp70-interacting protein. Sci Rep 2016; 6:28399. [PMID: 27323684 PMCID: PMC4914971 DOI: 10.1038/srep28399] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 06/01/2016] [Indexed: 01/06/2023] Open
Abstract
Carboxyl terminus of Hsp70-interacting protein (CHIP) is a critical ubiquitin ligase/cochaperone to reduce cardiac oxidative stress, inflammation, cardiomyocyte apoptosis and autophage etc. However, it is unclear whether overexpression of CHIP in the heart would exert protective effects against DOX-induced cardiomyopathy. Cardiac-specific CHIP transgenic (CHIP-TG) mice and the wild-type (WT) littermates were treated with DOX or saline. DOX-induced cardiac atrophy, dysfunction, inflammation, oxidative stress and cardiomyocyte apoptosis were significantly attenuated in CHIP-TG mice. CHIP-TG mice also showed higher survival rate than that of WT mice (40% versus 10%) after 10-day administration of DOX. In contrast, knockdown of CHIP by siRNA in vitro further enhanced DOX-induced cardiotoxic effects. Global gene microarray assay revealed that after DOX-treatment, differentially expressed genes between WT and CHIP-TG mice were mainly involved in apoptosis, atrophy, immune/inflammation and oxidative stress. Mechanistically, CHIP directly promotes ubiquitin-mediated degradation of p53 and SHP-1, which results in activation of ERK1/2 and STAT3 pathways thereby ameliorating DOX-induced cardiac toxicity.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Tian-Peng Zhang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yuan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Baotou Medical College, Baotou 014060, China
| | - Hai-Lian Bi
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xu-Min Guan
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hong-Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jie Du
- Beijing AnZhen Hospital the Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing 100029, China
| | - Yun-Long Xia
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.,Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
25
|
Zhou X, Naguro I, Ichijo H, Watanabe K. Mitogen-activated protein kinases as key players in osmotic stress signaling. Biochim Biophys Acta Gen Subj 2016; 1860:2037-52. [PMID: 27261090 DOI: 10.1016/j.bbagen.2016.05.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/21/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Osmotic stress arises from the difference between intracellular and extracellular osmolality. It induces cell swelling or shrinkage as a consequence of water influx or efflux, which threatens cellular activities. Mitogen-activated protein kinases (MAPKs) play central roles in signaling pathways in osmotic stress responses, including the regulation of intracellular levels of inorganic ions and organic osmolytes. SCOPE OF REVIEW The present review summarizes the cellular osmotic stress response and the function and regulation of the vertebrate MAPK signaling pathways involved. We also describe recent findings regarding apoptosis signal-regulating kinase 3 (ASK3), a MAP3K member, to demonstrate its regulatory effects on signaling molecules beyond MAPKs. MAJOR CONCLUSIONS MAPKs are rapidly activated by osmotic stress and have diverse roles, such as cell volume regulation, gene expression, and cell survival/death. There is significant cell type specificity in the function and regulation of MAPKs. Based on its activity change during osmotic stress and its regulation of the WNK1-SPAK/OSR1 pathway, ASK3 is expected to play important roles in osmosensing mechanisms and cellular functions related to osmoregulation. GENERAL SIGNIFICANCE MAPKs are essential for various cellular responses to osmotic stress; thus, the identification of the upstream regulators of MAPK pathways will provide valuable clues regarding the cellular osmosensing mechanism, which remains elusive in mammals. The elucidation of in vivo MAPK functions is also important because osmotic stress in physiological and pathophysiological conditions often results from changes in the intracellular osmolality. These studies potentially contribute to the establishment of therapeutic strategies against diseases that accompany osmotic perturbation.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
26
|
Na HS, Park MH, Song YR, Kim S, Kim HJ, Lee JY, Choi JI, Chung J. Elevated MicroRNA-128 in Periodontitis Mitigates Tumor Necrosis Factor-α Response via p38 Signaling Pathway in Macrophages. J Periodontol 2016; 87:e173-82. [PMID: 27240473 DOI: 10.1902/jop.2016.160033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Periodontitis is a chronic inflammatory disease resulting from an inflammatory response to subgingival plaque bacteria, including Porphyromonas gingivalis. MicroRNA (miRNA) is a current focus in regulating the inflammatory processes. In this study, the inflammatory miRNA expression in gingival tissues of patients with periodontitis and of healthy individuals is compared, and its role in regulating the inflammatory response is examined. METHODS Gingival tissues from patients with periodontitis and healthy individuals were collected for miRNA microarray. THP-1 and CA9-22 cells were challenged with P. gingivalis, and miRNA expression was determined by real-time polymerase chain reaction. Target genes for miRNA were predicted using TargetScanHuman database, and miRNA gene expressions were reviewed using public databases. For the functional study, THP-1 cells were transfected with a miRNA-128 mimic, and target gene expression was compared with THP-1 cells challenged with P. gingivalis. For the tolerance test, THP-1 cells transfected with miRNA-128 mimic were treated with phorbol 12-myristate 13-acetate (PMA) or paraformaldehyde (PFA)-fixed Escherichia coli. Tumor necrosis factor (TNF)-α production was determined by enzyme-linked immunosorbent assay, and mitogen-activated protein kinase (MAPK) protein phosphorylation was determined by Western blot. RESULTS Gingival tissues from patients with periodontitis showed increased expression of miRNA-128, miRNA-34a, and miRNA-381 and decreased expression of miRNA-15b, miRNA-211, miRNA-372, and miRNA-656. THP-1 cells and CA9-22 cells challenged with P. gingivalis showed increased miRNA-128 expression. Among the predicted miRNA-128 target genes, several genes that are involved in MAPK signaling pathway showed similar gene expression pattern between P. gingivalis challenge and miRNA-128 mimic transfection. In THP-1 cells transfected with miRNA-128 mimic, TNF-α production was lower, and phosphorylation of p38 was inhibited when challenged with PMA or PFA-fixed E. coli. CONCLUSION miRNA-128 may be involved in mitigating the inflammatory response induced by P. gingivalis in periodontitis.
Collapse
Affiliation(s)
- Hee Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Mi Hee Park
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Yu Ri Song
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Seyeon Kim
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Hyung-Joon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University
| | - Ju Youn Lee
- Department of Periodontics, School of Dentistry, Pusan National University
| | - Jeom-Il Choi
- Department of Periodontics, School of Dentistry, Pusan National University
| | - Jin Chung
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea
| |
Collapse
|
27
|
MEKK2 mediates an alternative β-catenin pathway that promotes bone formation. Proc Natl Acad Sci U S A 2016; 113:E1226-35. [PMID: 26884171 DOI: 10.1073/pnas.1600813113] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proper tuning of β-catenin activity in osteoblasts is required for bone homeostasis, because both increased and decreased β-catenin activity have pathologic consequences. In the classical pathway for β-catenin activation, stimulation with WNT ligands suppresses constitutive phosphorylation of β-catenin by glycogen synthase kinase 3β, preventing β-catenin ubiquitination and proteasomal degradation. Here, we have found that mitogen-activated protein kinase kinase kinase 2 (MAP3K2 or MEKK2) mediates an alternative pathway for β-catenin activation in osteoblasts that is distinct from the canonical WNT pathway. FGF2 activates MEKK2 to phosphorylate β-catenin at serine 675, promoting recruitment of the deubiquitinating enzyme, ubiquitin-specific peptidase 15 (USP15). USP15 in turn prevents the basal turnover of β-catenin by inhibiting its ubiquitin-dependent proteasomal degradation, thereby enhancing WNT signaling. Analysis of MEKK2-deficient mice and genetic interaction studies between Mekk2- and β-catenin-null alleles confirm that this pathway is an important physiologic regulator of bone mass in vivo. Thus, an FGF2/MEKK2 pathway mediates an alternative nonclassical pathway for β-catenin activation, and this pathway is a key regulator of bone formation by osteoblasts.
Collapse
|
28
|
Madonna R, Giovannelli G, Confalone P, Renna FV, Geng YJ, De Caterina R. High glucose-induced hyperosmolarity contributes to COX-2 expression and angiogenesis: implications for diabetic retinopathy. Cardiovasc Diabetol 2016; 15:18. [PMID: 26822858 PMCID: PMC4731895 DOI: 10.1186/s12933-016-0342-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/22/2016] [Indexed: 12/26/2022] Open
Abstract
Background We tested the hypothesis that glucose-induced hyperosmolarity, occurring in diabetic hyperglycemia, promotes retinal angiogenesis, and that interference with osmolarity signaling ameliorates excessive angiogenesis and retinopathy in vitro and in vivo. Methods and Results We incubated human aortic (HAECs) and dermal microvascular endothelial cells (HMVECs) with glucose or mannitol for 24 h and tested them for protein levels and in vitro angiogenesis. We used the Ins2 Akita mice as a model of type 1 diabetes to test the in vivo relevance of in vitro observations. Compared to incubations with normal (5 mmol/L) glucose concentrations, cells exposed to both high glucose and high mannitol (at 30.5 or 50.5 mmol/L) increased expression of the water channel aquaporin-1 (AQP1) and cyclooxygenase (COX)-2. This was preceded by increased activity of the osmolarity-sensitive transcription factor Tonicity enhancer binding protein (TonEBP), and enhanced endothelial migration and tubulization in Matrigel, reverted by treatment with AQP1 and TonEBP siRNA. Retinas of Ins2 Akita mice showed increased levels of AQP1 and COX-2, as well as angiogenesis, all reverted by AQP1 siRNA intravitreal injections. Conclusions Glucose-related hyperosmolarity seems to be able to promote angiogenesis and retinopathy through activation of TonEBP and possibly increasing expression of AQP1 and COX-2. Osmolarity signaling may be a target for therapy.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Laboratory of Experimental Cardiology, Center of Excellence on Aging, Institute of Cardiology, "G. d'Annunzio" University, C/o Ospedale SS. Annunziata, Via dei Vestini, 31, 66013, Chieti, Italy. .,The University of Texas Health Science Center at Houston and the Texas Heart Institute, Houston, TX, USA.
| | - Gaia Giovannelli
- Department of Neurosciences and Imaging, "G. d'Annunzio" University, Chieti, Italy.
| | - Pamela Confalone
- Laboratory of Experimental Cardiology, Center of Excellence on Aging, Institute of Cardiology, "G. d'Annunzio" University, C/o Ospedale SS. Annunziata, Via dei Vestini, 31, 66013, Chieti, Italy.
| | - Francesca Vera Renna
- Laboratory of Experimental Cardiology, Center of Excellence on Aging, Institute of Cardiology, "G. d'Annunzio" University, C/o Ospedale SS. Annunziata, Via dei Vestini, 31, 66013, Chieti, Italy.
| | - Yong-Jian Geng
- The University of Texas Health Science Center at Houston and the Texas Heart Institute, Houston, TX, USA.
| | - Raffaele De Caterina
- Laboratory of Experimental Cardiology, Center of Excellence on Aging, Institute of Cardiology, "G. d'Annunzio" University, C/o Ospedale SS. Annunziata, Via dei Vestini, 31, 66013, Chieti, Italy.
| |
Collapse
|
29
|
Stk38 protein kinase preferentially inhibits TLR9-activated inflammatory responses by promoting MEKK2 ubiquitination in macrophages. Nat Commun 2015; 6:7167. [DOI: 10.1038/ncomms8167] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 04/14/2015] [Indexed: 01/10/2023] Open
|
30
|
Abstract
Protein homeostasis relies on a balance between protein folding and protein degradation. Molecular chaperones like Hsp70 and Hsp90 fulfil well-defined roles in protein folding and conformational stability via ATP dependent reaction cycles. These folding cycles are controlled by associations with a cohort of non-client protein co-chaperones, such as Hop, p23 and Aha1. Pro-folding co-chaperones facilitate the transit of the client protein through the chaperone mediated folding process. However, chaperones are also involved in ubiquitin-mediated proteasomal degradation of client proteins. Similar to folding complexes, the ability of chaperones to mediate protein degradation is regulated by co-chaperones, such as the C terminal Hsp70 binding protein (CHIP). CHIP binds to Hsp70 and Hsp90 chaperones through its tetratricopeptide repeat (TPR) domain and functions as an E3 ubiquitin ligase using a modified RING finger domain (U-box). This unique combination of domains effectively allows CHIP to network chaperone complexes to the ubiquitin-proteasome system. This chapter reviews the current understanding of CHIP as a co-chaperone that switches Hsp70/Hsp90 chaperone complexes from protein folding to protein degradation.
Collapse
Affiliation(s)
- Adrienne L Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Unit (BioBRU), Rhodes University, 6140, Grahamstown, South Africa,
| |
Collapse
|
31
|
Li Y, Zhang Z, Zhou X, Li L, Liu Q, Wang Z, Bai X, Zhao Y, Shi H, Zhang X, Ye L. The oncoprotein HBXIP enhances migration of breast cancer cells through increasing filopodia formation involving MEKK2/ERK1/2/Capn4 signaling. Cancer Lett 2014; 355:288-96. [DOI: 10.1016/j.canlet.2014.09.047] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/03/2014] [Accepted: 09/28/2014] [Indexed: 12/01/2022]
|
32
|
Paul I, Ghosh MK. A CHIPotle in physiology and disease. Int J Biochem Cell Biol 2014; 58:37-52. [PMID: 25448416 DOI: 10.1016/j.biocel.2014.10.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/21/2014] [Accepted: 10/25/2014] [Indexed: 01/06/2023]
Abstract
The carboxy-terminus of Hsc70 interacting protein (CHIP) is known to function as a chaperone associated E3 ligase for several proteins and regulates a variety of physiological processes. Being a connecting link between molecular chaperones and 26S proteasomes, it is widely regarded as the central player in the cellular protein quality control system. Recent analyses have provided new insights on the biochemical and functional dynamics of CHIP. In this review article, we give a comprehensive account of our current knowledge on the biology of CHIP, which apart from shedding light on fundamental biological questions promises to provide a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Indranil Paul
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology (CSIR-IICB), 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology (CSIR-IICB), 4, Raja S.C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
33
|
Colón-Bolea P, Crespo P. Lysine methylation in cancer: SMYD3-MAP3K2 teaches us new lessons in the Ras-ERK pathway. Bioessays 2014; 36:1162-9. [PMID: 25382779 DOI: 10.1002/bies.201400120] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lysine methylation has been traditionally associated with histones and epigenetics. Recently, lysine methyltransferases and demethylases - which are involved in methylation of non-histone substrates - have been frequently found deregulated in human tumours. In this realm, a new discovery has unveiled the methyltransferase SMYD3 as an enhancer of Ras-driven cancer. SMYD3 is up-regulated in different types of tumours. SMYD3-mediated methylation of MAP3K2 increases mutant K-Ras-induced activation of ERK1/2. Methylation of MAP3K2 prevents it from binding to the phosphatase PP2A, thereby impeding the impact of this negative regulator on Ras-ERK1/2 signals, leading to the formation of lung and pancreatic adenocarcinomas. Furthermore, depletion of SMYD3 synergises with a MEK inhibitor, currently in clinical trials, to block Ras-driven pancreatic neoplasia. These results underscore the importance of lysine methylation in the regulation of signalling pathways relevant for tumourigenesis and endorse the development of drugs targeting unregulated lysine methylation as therapeutic agents in the struggle against cancer.
Collapse
Affiliation(s)
- Paula Colón-Bolea
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander, Spain
| | | |
Collapse
|
34
|
Zhang QY, Fu JH, Xue XD. Expression and function of aquaporin-1 in hyperoxia-exposed alveolar epithelial type II cells. Exp Ther Med 2014; 8:493-498. [PMID: 25009607 PMCID: PMC4079425 DOI: 10.3892/etm.2014.1739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 02/13/2014] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to investigate water transport dysfunction in alveolar epithelial type II cells (AECII), which were exposed to hyperoxia, and to investigate the mechanism of pulmonary edema resulting from hyperoxic lung injury. The lung cells of newborn rats were isolated for primary cell culture and divided into control and experimental groups. The control and experimental group cells were placed into a normoxic incubator (oxygen volume fraction, 0.21) or hyperoxic incubator (oxygen volume fraction, 0.9), respectively. Twenty-four, 48 and 72 h after cell attachment, the gene transcription and protein expression levels of aquaporin-1 (AQP1) were detected via quantitative polymerase chain reaction and western blot analysis. Flow cytometry was conducted to detect the volume of the cells in the experimental and control groups. In the present study, it was identified that AQP1 expression and cell volume were greater in the experimental group when compared with the control group. Thus, hyperoxia may disturb the gene expression regulation of AQP1 in AECII, resulting in water transport dysfunction. This may be one of the mechanisms underlying pulmonary edema caused by hyperoxic lung injury.
Collapse
Affiliation(s)
- Qiu-Yue Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China ; Pediatrics Intensive Care Units, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jian-Hua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xin-Dong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
35
|
Mazur PK, Reynoird N, Khatri P, Jansen PWTC, Wilkinson AW, Liu S, Barbash O, Van Aller GS, Huddleston M, Dhanak D, Tummino PJ, Kruger RG, Garcia BA, Butte AJ, Vermeulen M, Sage J, Gozani O. SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature 2014; 510:283-7. [PMID: 24847881 PMCID: PMC4122675 DOI: 10.1038/nature13320] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 04/11/2014] [Indexed: 12/12/2022]
Abstract
Deregulation in lysine methylation signaling has emerged as a common etiologic factor in cancer pathogenesis, with inhibitors of several histone lysine methyltransferases (KMTs) being developed as chemotherapeutics1. The largely cytoplasmic KMT SMYD3 (SET and MYND domain containing protein 3) is overexpressed in numerous human tumors2-4. However, the molecular mechanism by which SMYD3 regulates cancer pathways and its relationship to tumorigenesis in vivo are largely unknown. Here we show that methylation of MAP3K2 by SMYD3 increases MAP Kinase signaling and promotes the formation of Ras-driven carcinomas. Using mouse models for pancreatic ductal adenocarcinoma (PDAC) and lung adenocarcinoma (LAC), we found that abrogating SMYD3 catalytic activity inhibits tumor development in response to oncogenic Ras. We employed protein array technology to identify the MAP3K2 kinase as a target of SMYD3. In cancer cell lines, SMYD3-mediated methylation of MAP3K2 at lysine 260 potentiates activation of the Ras/Raf/MEK/ERK signaling module. Finally, the PP2A phosphatase complex, a key negative regulator of the MAP Kinase pathway, binds to MAP3K2 and this interaction is blocked by methylation. Together, our results elucidate a new role for lysine methylation in integrating cytoplasmic kinase-signaling cascades and establish a pivotal role for SMYD3 in the regulation of oncogenic Ras signaling.
Collapse
Affiliation(s)
- Pawel K Mazur
- 1] Department of Pediatrics, Stanford University School of Medicine, California 94305, USA [2] Department of Genetics, Stanford University School of Medicine, California 94305, USA [3]
| | - Nicolas Reynoird
- 1] Department of Biology, Stanford University, California 94305, USA [2]
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, and Department of Medicine, Stanford University School of Medicine, California 94305, USA
| | - Pascal W T C Jansen
- Department of Molecular Cancer Research and Department of Medical Oncology, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
| | - Alex W Wilkinson
- Department of Biology, Stanford University, California 94305, USA
| | - Shichong Liu
- Epigenetics Program and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Olena Barbash
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania 19426 USA
| | - Glenn S Van Aller
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania 19426 USA
| | - Michael Huddleston
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania 19426 USA
| | - Dashyant Dhanak
- 1] Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania 19426 USA [2] Janssen Research and Development, 1400 McKean Road, Spring House, Pennsylvania 19477, USA (D.D.); Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525GA Nijmegen, The Netherlands (M.V.)
| | - Peter J Tummino
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania 19426 USA
| | - Ryan G Kruger
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania 19426 USA
| | - Benjamin A Garcia
- Epigenetics Program and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Atul J Butte
- 1] Department of Pediatrics, Stanford University School of Medicine, California 94305, USA [2] Department of Genetics, Stanford University School of Medicine, California 94305, USA
| | - Michiel Vermeulen
- 1] Department of Molecular Cancer Research and Department of Medical Oncology, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands [2] Janssen Research and Development, 1400 McKean Road, Spring House, Pennsylvania 19477, USA (D.D.); Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525GA Nijmegen, The Netherlands (M.V.)
| | - Julien Sage
- 1] Department of Pediatrics, Stanford University School of Medicine, California 94305, USA [2] Department of Genetics, Stanford University School of Medicine, California 94305, USA [3]
| | - Or Gozani
- 1] Department of Biology, Stanford University, California 94305, USA [2]
| |
Collapse
|
36
|
Wu C, Haynes EM, Asokan SB, Simon JM, Sharpless NE, Baldwin AS, Davis IJ, Johnson GL, Bear JE. Loss of Arp2/3 induces an NF-κB-dependent, nonautonomous effect on chemotactic signaling. ACTA ACUST UNITED AC 2014; 203:907-16. [PMID: 24344184 PMCID: PMC3871425 DOI: 10.1083/jcb.201306032] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A decrease in Arp2/3 levels results in an NF-κB–dependent increase in the expression of several secreted factors, resulting in nonautonomous effects on chemotaxis. Arp2/3-branched actin is critical for cytoskeletal dynamics and cell migration. However, perturbations and diseases affecting this network have phenotypes that cannot be fully explained by cell-autonomous effects. In this paper, we report nonautonomous effects of Arp2/3 depletion. We show that, upon Arp2/3 depletion, the expression of numerous genes encoding secreted factors, including chemokines, growth factors, and matrix metalloproteases, was increased, a signature resembling the senescence-associated secretory phenotype. These factors affected epidermal growth factor chemotaxis in a nonautonomous way, resolving the recent contradictions about the role of Arp2/3 in chemotaxis. We demonstrate that these genes were activated by nuclear factor κB via a CCM2–MEKK3 pathway that has been implicated in hyperosmotic stress signaling. Consistent with this, Arp2/3-depleted cells showed misregulation of volume control and reduced actin in the submembranous cortex. The defects in osmotic signaling in the Arp2/3-depleted cells can be rescued by hypoosmotic treatment. Thus, perturbations of Arp2/3 have nonautonomous effects that should be considered when evaluating experimental manipulations and diseases affecting the Arp2/3-actin cytoskeleton.
Collapse
|
37
|
Maruyama T, Araki T, Kawarazaki Y, Naguro I, Heynen S, Aza-Blanc P, Ronai Z, Matsuzawa A, Ichijo H. Roquin-2 promotes ubiquitin-mediated degradation of ASK1 to regulate stress responses. Sci Signal 2014; 7:ra8. [PMID: 24448648 DOI: 10.1126/scisignal.2004822] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1, also known as MAP3K5) mediates reactive oxygen species (ROS)-induced cell death. When activated by ROS, ASK1 ultimately becomes ubiquitinated and degraded by the proteasome, a process that is antagonized by the ubiquitin-specific protease USP9X. Using a functional siRNA (small interfering RNA) screen in HeLa cells, we identified Roquin-2 (also called RC3H2) as an E3 ubiquitin ligase required for ROS-induced ubiquitination and degradation of ASK1. In cells treated with H2O2, knockdown of Roquin-2 promoted sustained activation of ASK1 and the downstream stress-responsive kinases JNK (c-Jun amino-terminal kinase) and p38 MAPK (mitogen-activated protein kinase), and led to cell death. The nematode Caenorhabditis elegans produces ROS as a defense mechanism in response to bacterial infection. In C. elegans, mutation of the gene encoding the Roquin-2 ortholog RLE-1 promoted accumulation of the activated form of the ASK1 ortholog NSY-1 and conferred resistance to infection by the bacteria Pseudomonas aeruginosa. Thus, these data suggest that degradation of ASK1 mediated by Roquin-2 is an evolutionarily conserved mechanism required for the appropriate regulation of stress responses, including pathogen resistance and cell death.
Collapse
Affiliation(s)
- Takeshi Maruyama
- 1Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
When ubiquitination meets phosphorylation: a systems biology perspective of EGFR/MAPK signalling. Cell Commun Signal 2013; 11:52. [PMID: 23902637 PMCID: PMC3734146 DOI: 10.1186/1478-811x-11-52] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/26/2013] [Indexed: 11/10/2022] Open
Abstract
Ubiquitination, the covalent attachment of ubiquitin to target proteins, has emerged as a ubiquitous post-translational modification (PTM) whose function extends far beyond its original role as a tag for protein degradation identified three decades ago. Although sharing parallel properties with phosphorylation, ubiquitination distinguishes itself in important ways. Nevertheless, the interplay and crosstalk between ubiquitination and phosphorylation events have become a recurrent theme in cell signalling regulation. Understanding how these two major PTMs intersect to regulate signal transduction is an important research question. In this review, we first discuss the involvement of ubiquitination in the regulation of the EGF-mediated ERK signalling pathway via the EGF receptor, highlighting the interplay between ubiquitination and phosphorylation in this cancer-implicated system and addressing open questions. The roles of ubiquitination in pathways crosstalking to EGFR/MAPK signalling will then be discussed. In the final part of the review, we demonstrate the rich and versatile dynamics of crosstalk between ubiquitination and phosphorylation by using quantitative modelling and analysis of network motifs commonly observed in cellular processes. We argue that given the overwhelming complexity arising from inter-connected PTMs, a quantitative framework based on systems biology and mathematical modelling is needed to efficiently understand their roles in cell signalling.
Collapse
|
39
|
Brocker C, Thompson DC, Vasiliou V. The role of hyperosmotic stress in inflammation and disease. Biomol Concepts 2012; 3:345-364. [PMID: 22977648 PMCID: PMC3438915 DOI: 10.1515/bmc-2012-0001] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hyperosmotic stress is an often overlooked process that potentially contributes to a number of human diseases. Whereas renal hyperosmolarity is a well-studied phenomenon, recent research provides evidence that many non-renal tissues routinely experience hyperosmotic stress that may contribute significantly to disease initiation and progression. Moreover, a growing body of evidence implicates hyperosmotic stress as a potent inflammatory stimulus by triggering proinflammatory cytokine release and inflammation. Under physiological conditions, the urine concentrating mechanism within the inner medullary region of the mammalian kidney exposes cells to high extracellular osmolarity. As such, renal cells have developed many adaptive strategies to compensate for increased osmolarity. Hyperosmotic stress is linked to many maladies, including acute and chronic, as well as local and systemic, inflammatory disorders. Hyperosmolarity triggers cell shrinkage, oxidative stress, protein carbonylation, mitochondrial depolarization, DNA damage, and cell cycle arrest, thus rendering cells susceptible to apoptosis. However, many adaptive mechanisms exist to counter the deleterious effects of hyperosmotic stress, including cytoskeletal rearrangement and up-regulation of antioxidant enzymes, transporters, and heat shock proteins. Osmolyte synthesis is also up-regulated and many of these compounds have been shown to reduce inflammation. The cytoprotective mechanisms and associated regulatory pathways that accompany the renal response to hyperosmolarity are found in many non-renal tissues, suggesting cells are commonly confronted with hyperosmotic conditions. Osmoadaptation allows cells to survive and function under potentially cytotoxic conditions. This review covers the pathological consequences of hyperosmotic stress in relation to disease and emphasizes the importance of considering hyperosmolarity in inflammation and disease progression.
Collapse
Affiliation(s)
- Chad Brocker
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David C. Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vasilis Vasiliou
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
40
|
Tse WK, Chow SC, Wong CK. Eel osmotic stress transcriptional factor 1 (Ostf1) is highly expressed in gill mitochondria-rich cells, where ERK phosphorylated. Front Zool 2012; 9:3. [PMID: 22405401 PMCID: PMC3315740 DOI: 10.1186/1742-9994-9-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/10/2012] [Indexed: 11/13/2022] Open
Abstract
Background Osmotic stress transcriptional factor 1 (Ostf1) was firstly identified in tilapia in 2005. Then numerous studies have investigated its regulation and expression profile in fish gill tissues in related to osmoregulation. Generally, hyperosmotic stress induced ostf1 mRNA expression level, however there is no report studying the cellular localization of Ostf1 expression in any osmoregulatory tissue. In this study immunohistochemical (IHC) approach was used to study the cellular localization of Ostf1 in gill cells of Japanese eels. Findings Ostf1 protein was found to be localized in branchial mitochondria-rich/chloride cell (MRC/CC) as revealed by Naα5 and CFTR co-localization. The protein was detectable at day 3 after fresh water to seawater transfer and was mainly localized in MRCs. Moreover, elevated levels of extracellular signal regulated kinase (ERK) phosphorylation was observed at day 3 of the transfer and was co-localized with MRCs. Conclusions Our data identified Ostf1 expression in gill MRCs. The observation supports the role of Ostf1 in osmosensing and/or osmoregulation in fish gills, particularly its functional relationship with MRCs. The observation of the co-expression of pERK and Ostf1 in MRCs suggests a cross-talk mechanism between the mitogen-activated protein kinases (MAPKs) and Ostf1 in response to hyperosmotic challenge. To summarize, this report has addressed the cellular localization of Ostf1 and provides evidence to illustrate the involvement of Ostf1 and ERK on osmosensing and osmoregulatory function of gill MRCs.
Collapse
Affiliation(s)
- William Kf Tse
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | | | | |
Collapse
|
41
|
Tse WK, Lai K, Takei Y. Medaka osmotic stress transcription factor 1b (Ostf1b/TSC22D3-2) triggers hyperosmotic responses of different ion transporters in medaka gill and human embryonic kidney cells via the JNK signalling pathway. Int J Biochem Cell Biol 2011; 43:1764-75. [DOI: 10.1016/j.biocel.2011.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/08/2011] [Accepted: 08/25/2011] [Indexed: 01/04/2023]
|
42
|
Yang M, Wang C, Zhu X, Tang S, Shi L, Cao X, Chen T. E3 ubiquitin ligase CHIP facilitates Toll-like receptor signaling by recruiting and polyubiquitinating Src and atypical PKC{zeta}. ACTA ACUST UNITED AC 2011; 208:2099-112. [PMID: 21911421 PMCID: PMC3182058 DOI: 10.1084/jem.20102667] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In mouse macrophages and dendritic cells, the CHIP E3 ubiquitin ligase is needed for transduction of signals initiated by TLR4 and TLR9 stimulation. The carboxyl terminus of constitutive heat shock cognate 70 (HSC70)–interacting protein (CHIP, also known as Stub1) is a U box–containing E3 ubiquitin ligase that is important for protein quality control. The role of CHIP in innate immunity is not known. Here, we report that CHIP knockdown inhibits Toll-like receptor (TLR) 4– and TLR9-driven signaling, but not TLR3-driven signaling; proinflammatory cytokine and type 1 interferon (IFN) production; and maturation of antigen-presenting cells, including macrophages and dendritic cells. We demonstrate that CHIP can recruit the tyrosine kinase Src and atypical protein kinase C ζ (PKCζ) to the TLR complex, thereby leading to activation of IL-1 receptor–associated kinase 1, TANK-binding kinase 1, and IFN regulatory factors 3 and 7. CHIP acts as an E3 ligase for Src and PKCζ during TLR signaling. CHIP-mediated enhancement of TLR signaling is inhibited by IFNAR deficiency or expression of ubiquitination resistant mutant forms of Src or PKCζ. These findings suggest that CHIP facilitates the formation of a TLR signaling complex by recruiting, ubiquitinating, and activating Src and PKCζ.
Collapse
Affiliation(s)
- Mingjin Yang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai200433, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Takeda K, Naguro I, Nishitoh H, Matsuzawa A, Ichijo H. Apoptosis signaling kinases: from stress response to health outcomes. Antioxid Redox Signal 2011; 15:719-61. [PMID: 20969480 DOI: 10.1089/ars.2010.3392] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Apoptosis is a highly regulated process essential for the development and homeostasis of multicellular organisms. Whereas caspases, a large family of intracellular cysteine proteases, play central roles in the execution of apoptosis, other proapoptotic and antiapoptotic regulators such as the members of the Bcl-2 family are also critically involved in the regulation of apoptosis. A large body of evidence has revealed that a number of protein kinases are among such regulators and regulate cellular sensitivity to various proapoptotic signals at multiple steps in apoptosis. However, recent progress in the analysis of these apoptosis signaling kinases demonstrates that they generally act as crucial regulators of diverse cellular responses to a wide variety of stressors, beyond their roles in apoptosis regulation. In this review, we have cataloged apoptosis signaling kinases involved in cellular stress responses on the basis of their ability to induce apoptosis and discuss their roles in stress responses with particular emphasis on health outcomes upon their dysregulation.
Collapse
Affiliation(s)
- Kohsuke Takeda
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, Strategic Approach to Drug Discovery and Development in Pharmaceutical Sciences, Global Center of Excellence Program and Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|