1
|
Huang X, Sun X, Wang Q, Zhang J, Wen H, Chen WJ, Zhu S. Structural insights into the diverse actions of magnesium on NMDA receptors. Neuron 2025; 113:1006-1018.e4. [PMID: 40010346 DOI: 10.1016/j.neuron.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/09/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025]
Abstract
Magnesium (Mg2+) is a key regulatory ion of N-methyl-ᴅ-aspartate (NMDA) receptors, including conferring them to function as coincidence detectors for excitatory synaptic transmission. However, the structural basis underlying the Mg2+ action on NMDA receptors remains unclear. Here, we report the cryo-EM structures of GluN1-N2B receptors and identify three distinct Mg2+-binding pockets. Specifically, site Ⅰ is located at the selectivity filter where an asparagine ring forms coordination bonds with Mg2+ and is responsible for the voltage-dependent block. Sites Ⅱ and Ⅲ are located at the N-terminal domain (NTD) of the GluN2B subunit and involved in the allosteric potentiation and inhibition, respectively. Site Ⅱ consists of three acidic residues, and the combination of three mutations abolishes the GluN2B-specific Mg2+ potentiation, while site Ⅲ overlaps with the Zn2+ pocket, and mutations here significantly reduce the inhibition. Our study enhances the understanding of multifaceted roles of Mg2+ in NMDA receptors and synaptic plasticity.
Collapse
Affiliation(s)
- Xuejing Huang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Xiaole Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Jilin Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Han Wen
- DP Technology, Beijing 100089, China; AI for Science Institute, Beijing 100085, China; State Key Laboratory of Medical Proteomics, Beijing 102206, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China.
| | - Shujia Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Fekete A, Wang LY. Spotting multifaced actions of magnesium on NMDA receptors. Neuron 2025; 113:963-965. [PMID: 40179825 DOI: 10.1016/j.neuron.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
NMDARs act as coincidence detectors for synaptic plasticity by activity-dependent relief of Mg2+ pore block. In this issue of Neuron, Huang et al. solved the structure of NMDARs to enlighten the fascinating actions of Mg2+ beyond its pore binding.1.
Collapse
Affiliation(s)
- Adam Fekete
- Program in Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lu-Yang Wang
- Program in Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
3
|
Fani G, Coppi E, Errico S, Cherchi F, Gennari M, Barbut D, Vendruscolo M, Zasloff M, Pugliese AM, Chiti F. Natural aminosterols inhibit NMDA receptors with low nanomolar potency. FEBS J 2025. [PMID: 40123295 DOI: 10.1111/febs.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/21/2025] [Accepted: 01/31/2025] [Indexed: 03/25/2025]
Abstract
Abnormal functions of N-methyl-D-aspartate receptors (NMDARs) are associated with many brain disorders, making them primary targets for drug discovery. We show that natural aminosterols inhibit the NMDAR-mediated increase of intracellular calcium ions in cultured primary neurons and neuroblastoma cells. Structural comparison with known NMDAR-negative allosteric modulators, such as pregnanolone-sulfate-2 (PAS), raises the hypothesis that aminosterols have the same mechanism of action. Fluorescence resonance energy transfer (FRET) measurements using labeled NMDAR and the labeled aminosterol trodusquemine (TRO) indicate close spatial proximity, likely arising from binding. Other indirect yet plausible mechanisms for NMDAR inhibition by TRO were excluded. Electrophysiological patch clamp measurements on primary neurons indicate that pre-incubated TRO inhibits NMDA-induced ion currents with a IC50 of 5 nm. Inhibition is observed only after cell membrane pre-adsorption, indicating accessibility to NMDAR from the cell membrane and binding to the transmembrane domains (TMDs) and TMD-ligand-binding domain (LBD) linkers, similarly to PAS. The TRO IC50 is 5000-fold higher than that of PAS and 20-16 000 times higher than those of other inhibitors binding to TMD/TMD-LBD regions, identifying aminosterols as promising and potent NMDAR modulators.
Collapse
Affiliation(s)
- Giulia Fani
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Italy
| | - Silvia Errico
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, UK
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Italy
| | - Martina Gennari
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
| | - Denise Barbut
- Enterin Research Institute Inc., Philadelphia, PA, USA
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, UK
| | - Michael Zasloff
- Enterin Research Institute Inc., Philadelphia, PA, USA
- MedStar-Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, USA
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Italy
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
| |
Collapse
|
4
|
Santos‐Gómez A, Juliá‐Palacios N, Rejano‐Bosch A, Marí‐Vico R, Miguez‐Cabello F, Masana M, Soto D, Olivella M, García‐Cazorla À, Altafaj X. Spermidine Treatment Improves GRIN2B Loss-Of-Function, A Primary Disorder of Glutamatergic Neurotransmission. J Inherit Metab Dis 2025; 48:e70015. [PMID: 40024627 PMCID: PMC11872566 DOI: 10.1002/jimd.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/22/2025] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
GRIN-related disorders (GRD) developmental and epileptic encephalopathies (DEEs) display a clinical spectrum including developmental delay, hypotonia, intellectual disability, epilepsy, and autistic traits. The presence of de novo pathogenic variants in the GRIN genes alters the N-methyl D-aspartate receptor (NMDAR) function, with a genotype-phenotype relationship. Despite recent advances to elucidate GRD pathophysiological mechanisms and to find treatments, to date, GRD therapeutic arms are still scarce and with limited efficacy. Herein, we investigated whether the natural polyamine spermine-positive allosteric modulators of GluN2B subunit-containing NMDARs-or its precursor spermidine might rescue NMDAR hypofunctionality. In heterologous cell systems, administration of spermine potentiated wild-type and loss-of-function (LoF) NMDAR-mediated currents and attenuated synaptic density deficits. Functionally, the putative therapeutic benefit of spermidine (spermine precursor) was assessed in constitutive Grin2b+/- heterozygous mice, a GRIN2B-LoF genetic murine model recapitulating GRD-like synaptic, motor, and cognitive alterations. Chronic spermidine administration in young adult Grin2b+/- mice partially rescued hippocampal long-term potentiation deficits in hippocampal slices of Grin2b+/- mice, supporting the cognitive improvement observed in behavioral phenotyping. Based on these preclinical findings, a case study was conducted in two pediatric patients harboring mild GRIN2B-LoF variants. Importantly, in line with preclinical findings, 18 months of spermidine treatment resulted in the amelioration of adaptive behavior (notably in the younger treated patient), with the absence of noticeable side effects. Overall, our findings provide both preclinical and clinical data supporting the benefit of spermidine for the treatment of GRD in individuals harboring GRIN2B-LoF variants.
Collapse
Affiliation(s)
- A. Santos‐Gómez
- Department of Biomedicine, School of Medicine and Health Sciences, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS)University of BarcelonaBarcelonaSpain
| | - N. Juliá‐Palacios
- Neurometabolic Unit, Department of NeurologyHospital Sant Joan de Déu—CIBERERBarcelonaSpain
| | - A. Rejano‐Bosch
- Department of Biomedicine, School of Medicine and Health Sciences, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS)University of BarcelonaBarcelonaSpain
| | - R. Marí‐Vico
- Neurometabolic Unit, Department of NeurologyHospital Sant Joan de Déu—CIBERERBarcelonaSpain
| | - F. Miguez‐Cabello
- Department of Biomedicine, School of Medicine and Health Sciences, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS)University of BarcelonaBarcelonaSpain
| | - M. Masana
- Department of Biomedicine, School of Medicine and Health Sciences, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS)University of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - D. Soto
- Department of Biomedicine, School of Medicine and Health Sciences, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS)University of BarcelonaBarcelonaSpain
| | - M. Olivella
- Bioinformatics and Medical Statistics GroupUniversity of Vic—Central University of CataloniaVicSpain
- Institute for Research and Innovation in Life and Health Sciences (IRIS‐CC)University of Vic—Central University of CataloniaVicSpain
| | - À. García‐Cazorla
- Neurometabolic Unit, Department of NeurologyHospital Sant Joan de Déu—CIBERERBarcelonaSpain
| | - X. Altafaj
- Department of Biomedicine, School of Medicine and Health Sciences, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS)University of BarcelonaBarcelonaSpain
| |
Collapse
|
5
|
Carmi I, Zoabi S, Bittan AM, Kellner S, Oz S, Heinrich R, Berlin S. A genetically encoded secreted toxin potentiates synaptic NMDA receptors in hippocampal neurons and confers neuroprotection. PNAS NEXUS 2025; 4:pgaf041. [PMID: 39959712 PMCID: PMC11826341 DOI: 10.1093/pnasnexus/pgaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/27/2025] [Indexed: 02/18/2025]
Abstract
NMDA receptors (NMDARs) play essential roles in neuronal development, survival, and synaptic plasticity, to name a few. However, dysregulation in receptors' activity can lead to neuronal and synaptic damage, contributing to the development of various brain pathologies. Current pharmacological treatments targeting NMDARs remain limited, for instance due to insufficient receptor selectivity and poor spatial targeting. Genetic approaches hold promise to overcome some of these issues; however, require genetically encodable NMDAR-modulating peptides, which are scarce. Here, we explored NMDAR-selective peptide toxins from marine cone snails, which resulted in the necessary engineering of a posttranslational modification-free variant of Conantokin-P (naked Con-P). The naked form is essential for expression in mammalian cells. We systematically explored the naked variant and discovered that naked Con-P maintains its ability to inhibit GluN2B-containing receptors, but uniquely acquired the ability to potentiate GluN2A-containing synaptic receptors. We then engineered a secreted naked Con-P that readily enhances NMDAR-mediated synaptic events in primary hippocampal neurons, and mitigates neuronal damage induced by staurosporine. We therefore provide a genetically encodable, subtype selective, and secreted bimodulator of NMDARs. This new variant and approach should pave the way for the development of additional genetic tools, specifically tailored to target NMDARs within distinct cellular populations in the brain.
Collapse
Affiliation(s)
- Ido Carmi
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Shaden Zoabi
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Asaf M Bittan
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Shai Kellner
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Shimrit Oz
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Ronit Heinrich
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Shai Berlin
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| |
Collapse
|
6
|
He Y, Jia Y, Liu Y, Chang X, Yang P, Shi M, Guo D, Peng Y, Chen J, Wang A, Xu T, He J, Zhang Y, Zhu Z. High Plasma Polyamine Levels Are Associated With an Increased Risk of Poststroke Cognitive Impairment: A Multicenter Prospective Study From CATIS. J Am Heart Assoc 2025; 14:e037465. [PMID: 39817544 PMCID: PMC12054475 DOI: 10.1161/jaha.124.037465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/27/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND Polyamines have been suggested to play pivotal roles in ischemic stroke and neurodegenerative disorders, but the associations of plasma polyamines with poststroke cognitive impairment (PSCI) remain unclear. We aimed to prospectively investigate the associations of plasma putrescine, spermidine, and spermine with PSCI among patients with ischemic stroke in a multicenter cohort study. METHODS AND RESULTS We measured plasma polyamine levels at baseline among 619 patients with ischemic stroke from a preplanned ancillary study of CATIS (China Antihypertensive Trial in Acute Ischemic Stroke). We used the Mini-Mental State Examination and Montreal Cognitive Assessment to evaluate cognitive function at 3-month follow-up after ischemic stroke, and PSCI was defined as Mini-Mental State Examination score <27 or Montreal Cognitive Assessment score <25. According to the Mini-Mental State Examination score, plasma polyamines were positively associated with PSCI. The adjusted odds ratios of PSCI for the highest versus lowest quartile of putrescine, spermidine, and spermine were 1.81 (95% CI, 1.09-3.00), 1.81 (95% CI, 1.09-3.01), and 1.92 (95% CI, 1.15-3.20), respectively. In addition, plasma putrescine (net reclassification improvement, 32.08%; P<0.001; integrated discrimination improvement, 1.62%; P=0.002), spermidine (net reclassification improvement, 25.29%; P=0.002; integrated discrimination improvement, 1.22%; P=0.006), and spermine (net reclassification improvement, 16.54%; P=0.045; integrated discrimination improvement, 1.36%; P=0.004) could significantly improve the risk reclassification of PSCI beyond established risk factors. There were similar significant relationships when PSCI was defined by Montreal Cognitive Assessment score. CONCLUSIONS Higher plasma polyamine levels were associated with increased risk of PSCI among patients with ischemic stroke. Our findings suggest that plasma polyamines should be implicated in the pathophysiologic processes of PSCI and may be the potential intervention targets for PSCI. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT01840072.
Collapse
Affiliation(s)
- Yu He
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Noncommunicable Diseases, MOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical College of Soochow UniversitySuzhou, Jiangsu ProvinceChina
| | - Yiming Jia
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Noncommunicable Diseases, MOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical College of Soochow UniversitySuzhou, Jiangsu ProvinceChina
| | - Yi Liu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Noncommunicable Diseases, MOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical College of Soochow UniversitySuzhou, Jiangsu ProvinceChina
| | - Xinyue Chang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Noncommunicable Diseases, MOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical College of Soochow UniversitySuzhou, Jiangsu ProvinceChina
| | - Pinni Yang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Noncommunicable Diseases, MOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical College of Soochow UniversitySuzhou, Jiangsu ProvinceChina
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Noncommunicable Diseases, MOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical College of Soochow UniversitySuzhou, Jiangsu ProvinceChina
- Department of EpidemiologyTulane University School of Public Health and Tropical MedicineNew OrleansLAUnited States
| | - Daoxia Guo
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Noncommunicable Diseases, MOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical College of Soochow UniversitySuzhou, Jiangsu ProvinceChina
| | - Yanbo Peng
- Department of NeurologyAffiliated Hospital of North China University of Science and TechnologyTangshanHebei ProvinceChina
| | - Jing Chen
- Department of EpidemiologyTulane University School of Public Health and Tropical MedicineNew OrleansLAUnited States
- Department of MedicineTulane University School of MedicineNew OrleansLAUnited States
| | - Aili Wang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Noncommunicable Diseases, MOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical College of Soochow UniversitySuzhou, Jiangsu ProvinceChina
| | - Tan Xu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Noncommunicable Diseases, MOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical College of Soochow UniversitySuzhou, Jiangsu ProvinceChina
| | - Jiang He
- Department of EpidemiologyTulane University School of Public Health and Tropical MedicineNew OrleansLAUnited States
- Department of MedicineTulane University School of MedicineNew OrleansLAUnited States
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Noncommunicable Diseases, MOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical College of Soochow UniversitySuzhou, Jiangsu ProvinceChina
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Noncommunicable Diseases, MOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical College of Soochow UniversitySuzhou, Jiangsu ProvinceChina
- Department of EpidemiologyTulane University School of Public Health and Tropical MedicineNew OrleansLAUnited States
| |
Collapse
|
7
|
Geoffroy C, Berraud-Pache R, Chéron N, McCort-Tranchepain I, Doria J, Paoletti P, Mony L. Reversible Control of Native GluN2B-Containing NMDA Receptors with Visible Light. ACS Chem Neurosci 2024; 15:3321-3343. [PMID: 39242213 PMCID: PMC11413854 DOI: 10.1021/acschemneuro.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 09/09/2024] Open
Abstract
NMDA receptors (NMDARs) are glutamate-gated ion channels playing a central role in synaptic transmission and plasticity. NMDAR dysregulation is linked to various neuropsychiatric disorders. This is particularly true for GluN2B-containing NMDARs (GluN2B-NMDARs), which have major pro-cognitive, but also pro-excitotoxic roles, although their exact involvement in these processes remains debated. Traditional GluN2B-selective antagonists suffer from slow and irreversible effects, limiting their use in native tissues. We therefore developed OptoNAM-3, a photoswitchable negative allosteric modulator selective for GluN2B-NMDARs. OptoNAM-3 provided light-induced reversible inhibition of GluN2B-NMDAR activity with precise temporal control both in vitro and in vivo on the behavior of freely moving Xenopus tadpoles. When bound to GluN2B-NMDARs, OptoNAM-3 displayed remarkable red-shifting of its photoswitching properties allowing the use of blue light instead of UV light to turn-off its activity, which we attributed to geometric constraints imposed by the binding site onto the azobenzene moiety of the ligand. This study therefore highlights the importance of the binding site in shaping the photochemical properties of azobenzene-based photoswitches. In addition, by enabling selective, fast, and reversible photocontrol of native GluN2B-NMDARs with in vivo compatible photochemical properties (visible light), OptoNAM-3 should be a useful tool for the investigation of the GluN2B-NMDAR physiology in native tissues.
Collapse
Affiliation(s)
- Chloé Geoffroy
- Institut
de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole
Normale Supérieure, CNRS, INSERM, Université PSL, Paris F-75005, France
| | - Romain Berraud-Pache
- Laboratoire
d’Archéologie Moléculaire et Structurale (LAMS),
CNRS UMR 8220, Sorbonne Université, Paris 75005, France
| | - Nicolas Chéron
- PASTEUR,
Département de chimie, École normale supérieure,
CNRS, Université PSL, Sorbonne Université, Paris 75005, France
| | - Isabelle McCort-Tranchepain
- Laboratoire
de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris Cité, Paris 75006, France
| | - Julia Doria
- Institut
de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole
Normale Supérieure, CNRS, INSERM, Université PSL, Paris F-75005, France
| | - Pierre Paoletti
- Institut
de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole
Normale Supérieure, CNRS, INSERM, Université PSL, Paris F-75005, France
| | - Laetitia Mony
- Institut
de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole
Normale Supérieure, CNRS, INSERM, Université PSL, Paris F-75005, France
| |
Collapse
|
8
|
Dunot J, Moreno S, Gandin C, Pousinha PA, Amici M, Dupuis J, Anisimova M, Winschel A, Uriot M, Petshow SJ, Mensch M, Bethus I, Giudici C, Hampel H, Wefers B, Wurst W, Naumann R, Ashby MC, Laube B, Zito K, Mellor JR, Groc L, Willem M, Marie H. APP fragment controls both ionotropic and non-ionotropic signaling of NMDA receptors. Neuron 2024; 112:2708-2720.e9. [PMID: 38878768 PMCID: PMC11343662 DOI: 10.1016/j.neuron.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 04/09/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
NMDA receptors (NMDARs) are ionotropic receptors crucial for brain information processing. Yet, evidence also supports an ion-flux-independent signaling mode mediating synaptic long-term depression (LTD) and spine shrinkage. Here, we identify AETA (Aη), an amyloid-β precursor protein (APP) cleavage product, as an NMDAR modulator with the unique dual regulatory capacity to impact both signaling modes. AETA inhibits ionotropic NMDAR activity by competing with the co-agonist and induces an intracellular conformational modification of GluN1 subunits. This favors non-ionotropic NMDAR signaling leading to enhanced LTD and favors spine shrinkage. Endogenously, AETA production is increased by in vivo chemogenetically induced neuronal activity. Genetic deletion of AETA production alters NMDAR transmission and prevents LTD, phenotypes rescued by acute exogenous AETA application. This genetic deletion also impairs contextual fear memory. Our findings demonstrate AETA-dependent NMDAR activation (ADNA), characterizing AETA as a unique type of endogenous NMDAR modulator that exerts bidirectional control over NMDAR signaling and associated information processing.
Collapse
Affiliation(s)
- Jade Dunot
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Sebastien Moreno
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Carine Gandin
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Paula A Pousinha
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Mascia Amici
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Julien Dupuis
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, 33076 Bordeaux Cedex, France
| | - Margarita Anisimova
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Alex Winschel
- Department of Biology, Neurophysiology und Neurosensory Systems, TU Darmstadt, 64287 Darmstadt, Germany
| | - Magalie Uriot
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, 33076 Bordeaux Cedex, France
| | - Samuel J Petshow
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Maria Mensch
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Ingrid Bethus
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Camilla Giudici
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Heike Hampel
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Wolfgang Wurst
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Michael C Ashby
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Bodo Laube
- Department of Biology, Neurophysiology und Neurosensory Systems, TU Darmstadt, 64287 Darmstadt, Germany
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Laurent Groc
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, 33076 Bordeaux Cedex, France
| | - Michael Willem
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Hélène Marie
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France.
| |
Collapse
|
9
|
Kosenkov AM, Maiorov SA, Gaidin SG. Astrocytic NMDA Receptors. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1045-1060. [PMID: 38981700 DOI: 10.1134/s0006297924060063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 07/11/2024]
Abstract
Astrocytic NMDA receptors (NMDARs) are heterotetramers, whose expression and properties are largely determined by their subunit composition. Astrocytic NMDARs are characterized by a low sensitivity to magnesium ions and low calcium conductivity. Their activation plays an important role in the regulation of various intracellular processes, such as gene expression and mitochondrial function. Astrocytic NMDARs are involved in calcium signaling in astrocytes and can act through the ionotropic and metabotropic pathways. Astrocytic NMDARs participate in the interactions of the neuroglia, thus affecting synaptic plasticity. They are also engaged in the astrocyte-vascular interactions and contribute to the regulation of vascular tone. Astrocytic NMDARs are involved in various pathologies, such as ischemia and hyperammonemia, and their blockade prevents negative changes in astrocytes during these diseases.
Collapse
Affiliation(s)
- Artem M Kosenkov
- Pushchino Scientific Center for Biological Research, Institute of Cell Biophysics of the Russian Academy of Sciences, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Sergei A Maiorov
- Pushchino Scientific Center for Biological Research, Institute of Cell Biophysics of the Russian Academy of Sciences, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Sergei G Gaidin
- Pushchino Scientific Center for Biological Research, Institute of Cell Biophysics of the Russian Academy of Sciences, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
10
|
Kellner S, Berlin S. Rescuing tri-heteromeric NMDA receptor function: the potential of pregnenolone-sulfate in loss-of-function GRIN2B variants. Cell Mol Life Sci 2024; 81:235. [PMID: 38795169 PMCID: PMC11127902 DOI: 10.1007/s00018-024-05243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/27/2024]
Abstract
N-methyl-D-aspartate receptors (NMDARs emerging from GRIN genes) are tetrameric receptors that form diverse channel compositions in neurons, typically consisting of two GluN1 subunits combined with two GluN2(A-D) subunits. During prenatal stages, the predominant channels are di-heteromers with two GluN1 and two GluN2B subunits due to the high abundance of GluN2B subunits. Postnatally, the expression of GluN2A subunits increases, giving rise to additional subtypes, including GluN2A-containing di-heteromers and tri-heteromers with GluN1, GluN2A, and GluN2B subunits. The latter emerge as the major receptor subtype at mature synapses in the hippocampus. Despite extensive research on purely di-heteromeric receptors containing two identical GRIN variants, the impact of a single variant on the function of other channel forms, notably tri-heteromers, is lagging. In this study, we systematically investigated the effects of two de novo GRIN2B variants (G689C and G689S) in pure, mixed di- and tri-heteromers. Our findings reveal that incorporating a single variant in mixed di-heteromers or tri-heteromers exerts a dominant negative effect on glutamate potency, although 'mixed' channels show improved potency compared to pure variant-containing di-heteromers. We show that a single variant within a receptor complex does not impair the response of all receptor subtypes to the positive allosteric modulator pregnenolone-sulfate (PS), whereas spermine completely fails to potentiate tri-heteromers containing GluN2A and -2B-subunits. We examined PS on primary cultured hippocampal neurons transfected with the variants, and observed a positive impact over current amplitudes and synaptic activity. Together, our study supports previous observations showing that mixed di-heteromers exhibit improved glutamate potency and extend these findings towards the exploration of the effect of Loss-of-Function variants over tri-heteromers. Notably, we provide an initial and crucial demonstration of the beneficial effects of GRIN2B-relevant potentiators on tri-heteromers. Our results underscore the significance of studying how different variants affect distinct receptor subtypes, as these effects cannot be inferred solely from observations made on pure di-heteromers. Overall, this study contributes to ongoing efforts to understand the pathophysiology of GRINopathies and provides insights into potential treatment strategies.
Collapse
Affiliation(s)
- Shai Kellner
- Dept. of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron Bat Galim, Haifa, 3525433, Israel
| | - Shai Berlin
- Dept. of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron Bat Galim, Haifa, 3525433, Israel.
| |
Collapse
|
11
|
Piot L, Heroven C, Bossi S, Zamith J, Malinauskas T, Johnson C, Wennagel D, Stroebel D, Charrier C, Aricescu AR, Mony L, Paoletti P. GluD1 binds GABA and controls inhibitory plasticity. Science 2023; 382:1389-1394. [PMID: 38060673 DOI: 10.1126/science.adf3406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 10/25/2023] [Indexed: 12/23/2023]
Abstract
Fast synaptic neurotransmission in the vertebrate central nervous system relies primarily on ionotropic glutamate receptors (iGluRs), which drive neuronal excitation, and type A γ-aminobutyric acid receptors (GABAARs), which are responsible for neuronal inhibition. However, the GluD1 receptor, an iGluR family member, is present at both excitatory and inhibitory synapses. Whether and how GluD1 activation may affect inhibitory neurotransmission is unknown. In this work, by using a combination of biochemical, structural, and functional analyses, we demonstrate that GluD1 binds GABA, a previously unknown feature of iGluRs. GluD1 activation produces long-lasting enhancement of GABAergic synaptic currents in the adult mouse hippocampus through a non-ionotropic mechanism that is dependent on trans-synaptic anchoring. The identification of GluD1 as a GABA receptor that controls inhibitory synaptic plasticity challenges the classical dichotomy between glutamatergic and GABAergic receptors.
Collapse
Affiliation(s)
- Laura Piot
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France
| | | | - Simon Bossi
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France
| | - Joseph Zamith
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Chris Johnson
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Doris Wennagel
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France
| | - David Stroebel
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France
| | - Cécile Charrier
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France
| | | | - Laetitia Mony
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France
| | - Pierre Paoletti
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France
| |
Collapse
|
12
|
Ritter N, Disse P, Aymanns I, Mücher L, Schreiber JA, Brenker C, Strünker T, Schepmann D, Budde T, Strutz-Seebohm N, Ametamey SM, Wünsch B, Seebohm G. Downstream Allosteric Modulation of NMDA Receptors by 3-Benzazepine Derivatives. Mol Neurobiol 2023; 60:7238-7252. [PMID: 37542648 PMCID: PMC10657792 DOI: 10.1007/s12035-023-03526-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
N-Methyl-D-aspartate receptors (NMDARs) composed of different splice variants display distinct pH sensitivities and are crucial for learning and memory, as well as for inflammatory or injury processes. Dysregulation of the NMDAR has been linked to diseases like Parkinson's, Alzheimer's, schizophrenia, and drug addiction. The development of selective receptor modulators, therefore, constitutes a promising approach for numerous therapeutical applications. Here, we identified (R)-OF-NB1 as a promising splice variant selective NMDAR antagonist. We investigated the interaction of (R)-OF-NB1 and NMDAR from a biochemical, bioinformatical, and electrophysiological perspective to characterize the downstream allosteric modulation of NMDAR by 3-benzazepine derivatives. The allosteric modulatory pathway starts at the ifenprodil binding pocket in the amino terminal domain and immobilizes the connecting α5-helix to the ligand binding domain, resulting in inhibition. In contrast, the exon 5 splice variant GluN1-1b elevates the NMDARs flexibility and promotes the open state of its ligand binding domain.
Collapse
Affiliation(s)
- Nadine Ritter
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany.
- Chembion, University of Münster, 48149, Münster, Germany.
| | - Paul Disse
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
- Chembion, University of Münster, 48149, Münster, Germany
| | - Isabel Aymanns
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Lena Mücher
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Julian A Schreiber
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Christoph Brenker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Domagkstr. 11, 48149, Münster, Germany
| | - Timo Strünker
- Chembion, University of Münster, 48149, Münster, Germany
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Domagkstr. 11, 48149, Münster, Germany
| | - Dirk Schepmann
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Thomas Budde
- Institute of Physiology I, University of Münster, 48149, Münster, Germany
| | - Nathalie Strutz-Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Bernhard Wünsch
- Chembion, University of Münster, 48149, Münster, Germany
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
- Chembion, University of Münster, 48149, Münster, Germany
| |
Collapse
|
13
|
Mony L, Paoletti P. Mechanisms of NMDA receptor regulation. Curr Opin Neurobiol 2023; 83:102815. [PMID: 37988826 DOI: 10.1016/j.conb.2023.102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels widely expressed in the central nervous system that play key role in brain development and plasticity. On the downside, NMDAR dysfunction, be it hyperactivity or hypofunction, is harmful to neuronal function and has emerged as a common theme in various neuropsychiatric disorders including autism spectrum disorders, epilepsy, intellectual disability, and schizophrenia. Not surprisingly, NMDAR signaling is under a complex set of regulatory mechanisms that maintain NMDAR-mediated transmission in check. These include an unusual large number of endogenous agents that directly bind NMDARs and tune their activity in a subunit-dependent manner. Here, we review current knowledge on the regulation of NMDAR signaling. We focus on the regulation of the receptor by its microenvironment as well as by external (i.e. pharmacological) factors and their underlying molecular and cellular mechanisms. Recent developments showing how NMDAR dysregulation participate to disease mechanisms are also highlighted.
Collapse
Affiliation(s)
- Laetitia Mony
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France.
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France.
| |
Collapse
|
14
|
Wu E, Zhang J, Zhang J, Zhu S. Structural insights into gating mechanism and allosteric regulation of NMDA receptors. Curr Opin Neurobiol 2023; 83:102806. [PMID: 37950957 DOI: 10.1016/j.conb.2023.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/28/2023] [Accepted: 10/13/2023] [Indexed: 11/13/2023]
Abstract
N-methyl-d-aspartate receptors (NMDARs) belong to the ionotropic glutamate receptors (iGluRs) superfamily and act as coincidence detectors that are crucial to neuronal development and synaptic plasticity. They typically assemble as heterotetramers of two obligatory GluN1 subunits and two alternative GluN2 (from 2A to 2D) and/or GluN3 (3A and 3B) subunits. These alternative subunits mainly determine the diverse biophysical and pharmacological properties of different NMDAR subtypes. Over the past decade, the unprecedented advances in structure elucidation of these tetrameric NMDARs have provided atomic insights into channel gating, allosteric modulation and the action of therapeutic drugs. A wealth of structural and functional information would accelerate the artificial intelligence-based drug design to exploit more NMDAR subtype-specific molecules for the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Enjiang Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China. https://twitter.com/DuDaDa_Flower
| | - Jilin Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Ladagu AD, Olopade FE, Adejare A, Olopade JO. GluN2A and GluN2B N-Methyl-D-Aspartate Receptor (NMDARs) Subunits: Their Roles and Therapeutic Antagonists in Neurological Diseases. Pharmaceuticals (Basel) 2023; 16:1535. [PMID: 38004401 PMCID: PMC10674917 DOI: 10.3390/ph16111535] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ion channels that respond to the neurotransmitter glutamate, playing a crucial role in the permeability of calcium ions and excitatory neurotransmission in the central nervous system (CNS). Composed of various subunits, NMDARs are predominantly formed by two obligatory GluN1 subunits (with eight splice variants) along with regulatory subunits GluN2 (GluN2A-2D) and GluN3 (GluN3A-B). They are widely distributed throughout the CNS and are involved in essential functions such as synaptic transmission, learning, memory, plasticity, and excitotoxicity. The presence of GluN2A and GluN2B subunits is particularly important for cognitive processes and has been strongly implicated in neurodegenerative diseases like Parkinson's disease and Alzheimer's disease. Understanding the roles of GluN2A and GluN2B NMDARs in neuropathologies provides valuable insights into the underlying causes and complexities of major nervous system disorders. This knowledge is vital for the development of selective antagonists targeting GluN2A and GluN2B subunits using pharmacological and molecular methods. Such antagonists represent a promising class of NMDA receptor inhibitors that have the potential to be developed into neuroprotective drugs with optimal therapeutic profiles.
Collapse
Affiliation(s)
- Amany Digal Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| | - Funmilayo Eniola Olopade
- Developmental Neurobiology Laboratory, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19131, USA
| | - James Olukayode Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| |
Collapse
|
16
|
Zhou C, Tajima N. Structural insights into NMDA receptor pharmacology. Biochem Soc Trans 2023; 51:1713-1731. [PMID: 37431773 PMCID: PMC10586783 DOI: 10.1042/bst20230122] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/12/2023]
Abstract
N-methyl-d-aspartate receptors (NMDARs) comprise a subfamily of ionotropic glutamate receptors that form heterotetrameric ligand-gated ion channels and play fundamental roles in neuronal processes such as synaptic signaling and plasticity. Given their critical roles in brain function and their therapeutic importance, enormous research efforts have been devoted to elucidating the structure and function of these receptors and developing novel therapeutics. Recent studies have resolved the structures of NMDARs in multiple functional states, and have revealed the detailed gating mechanism, which was found to be distinct from that of other ionotropic glutamate receptors. This review provides a brief overview of the recent progress in understanding the structures of NMDARs and the mechanisms underlying their function, focusing on subtype-specific, ligand-induced conformational dynamics.
Collapse
Affiliation(s)
- Changping Zhou
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, U.S.A
| | - Nami Tajima
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, U.S.A
| |
Collapse
|
17
|
Zimmermann A, Hofer SJ, Madeo F. Molecular targets of spermidine: implications for cancer suppression. Cell Stress 2023; 7:50-58. [PMID: 37431488 PMCID: PMC10320397 DOI: 10.15698/cst2023.07.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023] Open
Abstract
Spermidine is a ubiquitous, natural polyamine with geroprotective features. Supplementation of spermidine extends the lifespan of yeast, worms, flies, and mice, and dietary spermidine intake correlates with reduced human mortality. However, the crucial role of polyamines in cell proliferation has also implicated polyamine metabolism in neoplastic diseases, such as cancer. While depleting intracellular polyamine biosynthesis halts tumor growth in mouse models, lifelong external spermidine administration in mice does not increase cancer incidence. In contrast, a series of recent findings points to anti-neoplastic properties of spermidine administration in the context of immunotherapy. Various molecular mechanisms for the anti-aging and anti-cancer properties have been proposed, including the promotion of autophagy, enhanced translational control, and augmented mitochondrial function. For instance, spermidine allosterically activates mitochondrial trifunctional protein (MTP), a bipartite protein complex that mediates three of the four steps of mitochondrial fatty acid (β-oxidation. Through this action, spermidine supplementation is able to restore MTP-mediated mitochondrial respiratory capacity in naïve CD8+ T cells to juvenile levels and thereby improves T cell activation in aged mice. Here, we put this finding into the context of the previously described molecular target space of spermidine.
Collapse
Affiliation(s)
- Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
18
|
Dong B, Yue Y, Dong H, Wang Y. N-methyl-D-aspartate receptor hypofunction as a potential contributor to the progression and manifestation of many neurological disorders. Front Mol Neurosci 2023; 16:1174738. [PMID: 37396784 PMCID: PMC10308130 DOI: 10.3389/fnmol.2023.1174738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDA) are glutamate-gated ion channels critical for synaptic transmission and plasticity. A slight variation of NMDAR expression and function can result in devastating consequences, and both hyperactivation and hypoactivation of NMDARs are detrimental to neural function. Compared to NMDAR hyperfunction, NMDAR hypofunction is widely implicated in many neurological disorders, such as intellectual disability, autism, schizophrenia, and age-related cognitive decline. Additionally, NMDAR hypofunction is associated with the progression and manifestation of these diseases. Here, we review the underlying mechanisms of NMDAR hypofunction in the progression of these neurological disorders and highlight that targeting NMDAR hypofunction is a promising therapeutic intervention in some neurological disorders.
Collapse
Affiliation(s)
- Bin Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Yue
- School of Psychology, Northeast Normal University, Changchun, China
| | - Han Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Ritter N, Disse P, Wünsch B, Seebohm G, Strutz-Seebohm N. Pharmacological Potential of 3-Benzazepines in NMDAR-Linked Pathophysiological Processes. Biomedicines 2023; 11:1367. [PMID: 37239037 PMCID: PMC10216354 DOI: 10.3390/biomedicines11051367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The number of N-Methyl-D-aspartate receptor (NMDAR) linked neurodegenerative diseases such as Alzheimer's disease and dementia is constantly increasing. This is partly due to demographic change and presents new challenges to societies. To date, there are no effective treatment options. Current medications are nonselective and can lead to unwanted side effects in patients. A promising therapeutic approach is the targeted inhibition of NMDARs in the brain. NMDARs containing different subunits and splice variants display different physiological properties and play a crucial role in learning and memory, as well as in inflammatory or injury processes. They become overactivated during the course of the disease, leading to nerve cell death. Until now, there has been a lack of understanding of the general functions of the receptor and the mechanism of inhibition, which need to be understood in order to develop inhibitors. Ideal compounds should be highly targeted and even splice-variant-selective. However, a potent and splice-variant-selective NMDAR-targeting drug has yet to be developed. Recently developed 3-benzazepines are promising inhibitors for further drug development. The NMDAR splice variants GluN1-1b-4b carry a 21-amino-acid-long, flexible exon 5. Exon 5 lowers the NMDAR's sensitivity to allosteric modulators by probably acting as an NMDAR modulator itself. The role of exon 5 in NMDAR modulation is still poorly understood. In this review, we summarize the structure and pharmacological relevance of tetrahydro-3-benzazepines.
Collapse
Affiliation(s)
- Nadine Ritter
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany; (P.D.); (G.S.); (N.S.-S.)
- Chembion, University of Münster, D-48149 Münster, Germany;
| | - Paul Disse
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany; (P.D.); (G.S.); (N.S.-S.)
- Chembion, University of Münster, D-48149 Münster, Germany;
| | - Bernhard Wünsch
- Chembion, University of Münster, D-48149 Münster, Germany;
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany; (P.D.); (G.S.); (N.S.-S.)
- Chembion, University of Münster, D-48149 Münster, Germany;
| | - Nathalie Strutz-Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany; (P.D.); (G.S.); (N.S.-S.)
| |
Collapse
|
20
|
Washburn HR, Chander P, Srikanth KD, Dalva MB. Transsynaptic Signaling of Ephs in Synaptic Development, Plasticity, and Disease. Neuroscience 2023; 508:137-152. [PMID: 36460219 DOI: 10.1016/j.neuroscience.2022.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Synapse formation between neurons is critical for proper circuit and brain function. Prior to activity-dependent refinement of connections between neurons, activity-independent cues regulate the contact and recognition of potential synaptic partners. Formation of a synapse results in molecular recognition events that initiate the process of synaptogenesis. Synaptogenesis requires contact between axon and dendrite, selection of correct and rejection of incorrect partners, and recruitment of appropriate pre- and postsynaptic proteins needed for the establishment of functional synaptic contact. Key regulators of these events are families of transsynaptic proteins, where one protein is found on the presynaptic neuron and the other is found on the postsynaptic neuron. Of these families, the EphBs and ephrin-Bs are required during each phase of synaptic development from target selection, recruitment of synaptic proteins, and formation of spines to regulation of synaptic plasticity at glutamatergic spine synapses in the mature brain. These roles also place EphBs and ephrin-Bs as important regulators of human neurological diseases. This review will focus on the role of EphBs and ephrin-Bs at synapses.
Collapse
Affiliation(s)
- Halley R Washburn
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; Department of Neuroscience, Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
| | - Praveen Chander
- Department of Neuroscience, Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
| | - Kolluru D Srikanth
- Department of Neuroscience, Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
| | - Matthew B Dalva
- Department of Neuroscience, Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA.
| |
Collapse
|
21
|
Seillier C, Lesept F, Toutirais O, Potzeha F, Blanc M, Vivien D. Targeting NMDA Receptors at the Neurovascular Unit: Past and Future Treatments for Central Nervous System Diseases. Int J Mol Sci 2022; 23:ijms231810336. [PMID: 36142247 PMCID: PMC9499580 DOI: 10.3390/ijms231810336] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The excitatory neurotransmission of the central nervous system (CNS) mainly involves glutamate and its receptors, especially N-methyl-D-Aspartate receptors (NMDARs). These receptors have been extensively described on neurons and, more recently, also on other cell types. Nowadays, the study of their differential expression and function is taking a growing place in preclinical and clinical research. The diversity of NMDAR subtypes and their signaling pathways give rise to pleiotropic functions such as brain development, neuronal plasticity, maturation along with excitotoxicity, blood-brain barrier integrity, and inflammation. NMDARs have thus emerged as key targets for the treatment of neurological disorders. By their large extracellular regions and complex intracellular structures, NMDARs are modulated by a variety of endogenous and pharmacological compounds. Here, we will present an overview of NMDAR functions on neurons and other important cell types involved in the pathophysiology of neurodegenerative, neurovascular, mental, autoimmune, and neurodevelopmental diseases. We will then discuss past and future development of NMDAR targeting drugs, including innovative and promising new approaches.
Collapse
Affiliation(s)
- Célia Seillier
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), 14000 Caen, France
| | - Flavie Lesept
- Lys Therapeutics, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
| | - Olivier Toutirais
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), 14000 Caen, France
- Department of Immunology and Histocompatibility (HLA), Caen University Hospital, CHU, 14000 Caen, France
| | - Fanny Potzeha
- Lys Therapeutics, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
| | - Manuel Blanc
- Lys Therapeutics, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), 14000 Caen, France
- Department of Clinical Research, Caen University Hospital, CHU, 14000 Caen, France
- Correspondence:
| |
Collapse
|
22
|
Polyamines and Their Metabolism: From the Maintenance of Physiological Homeostasis to the Mediation of Disease. MEDICAL SCIENCES (BASEL, SWITZERLAND) 2022; 10:medsci10030038. [PMID: 35893120 PMCID: PMC9326668 DOI: 10.3390/medsci10030038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022]
Abstract
The polyamines spermidine and spermine are positively charged aliphatic molecules. They are critical in the regulation of nucleic acid and protein structures, protein synthesis, protein and nucleic acid interactions, oxidative balance, and cell proliferation. Cellular polyamine levels are tightly controlled through their import, export, de novo synthesis, and catabolism. Enzymes and enzymatic cascades involved in polyamine metabolism have been well characterized. This knowledge has been used for the development of novel compounds for research and medical applications. Furthermore, studies have shown that disturbances in polyamine levels and their metabolic pathways, as a result of spontaneous mutations in patients, genetic engineering in mice or experimentally induced injuries in rodents, are associated with multiple maladaptive changes. The adverse effects of altered polyamine metabolism have also been demonstrated in in vitro models. These observations highlight the important role these molecules and their metabolism play in the maintenance of physiological normalcy and the mediation of injury. This review will attempt to cover the extensive and diverse knowledge of the biological role of polyamines and their metabolism in the maintenance of physiological homeostasis and the mediation of tissue injury.
Collapse
|
23
|
Kneuttinger AC. A guide to designing photocontrol in proteins: methods, strategies and applications. Biol Chem 2022; 403:573-613. [PMID: 35355495 DOI: 10.1515/hsz-2021-0417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Light is essential for various biochemical processes in all domains of life. In its presence certain proteins inside a cell are excited, which either stimulates or inhibits subsequent cellular processes. The artificial photocontrol of specifically proteins is of growing interest for the investigation of scientific questions on the organismal, cellular and molecular level as well as for the development of medicinal drugs or biocatalytic tools. For the targeted design of photocontrol in proteins, three major methods have been developed over the last decades, which employ either chemical engineering of small-molecule photosensitive effectors (photopharmacology), incorporation of photoactive non-canonical amino acids by genetic code expansion (photoxenoprotein engineering), or fusion with photoreactive biological modules (hybrid protein optogenetics). This review compares the different methods as well as their strategies and current applications for the light-regulation of proteins and provides background information useful for the implementation of each technique.
Collapse
Affiliation(s)
- Andrea C Kneuttinger
- Institute of Biophysics and Physical Biochemistry and Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
24
|
Kysilov B, Hrcka Krausova B, Vyklicky V, Smejkalova T, Korinek M, Horak M, Chodounska H, Kudova E, Cerny J, Vyklicky L. Pregnane-based steroids are novel positive NMDA receptor modulators that may compensate for the effect of loss-of-function disease-associated GRIN mutations. Br J Pharmacol 2022; 179:3970-3990. [PMID: 35318645 DOI: 10.1111/bph.15841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE N-methyl-D-aspartate receptors (NMDARs) play a critical role in synaptic plasticity, and mutations in human genes encoding NMDAR subunits have been described in individuals with various neuropsychiatric disorders. Compounds with a positive allosteric effect are thought to compensate for reduced receptor function. EXPERIMENTAL APPROACH We have used whole-cell patch-clamp electrophysiology on recombinant rat NMDARs and human variants found in individuals with neuropsychiatric disorders, in combination with in silico modelling, to explore the site of action of novel epipregnanolone-based NMDAR modulators. KEY RESULTS Analysis of the action of 4-(20-oxo-5β-pregnan-3β-yl) butanoic acid (EPA-But) at the NMDAR indicates that the effect of this steroid with a "bent" structure is different from that of cholesterol and oxysterols and shares a disuse-dependent mechanism of NMDAR potentiation with the "planar" steroid 20-oxo-pregn-5-en-3β-yl sulfate (PE-S). The potentiating effects of EPA-But and PE-S are additive. Alanine scan mutagenesis identified residues that reduce the potentiating effect of EPA-But. No correlation was found between the effects of EPA-But and PE-S at mutated receptors that were less sensitive to either steroid. The relative degree of potentiation induced by the two steroids also differed in human NMDARs carrying rare variants of hGluN1 or hGluN2B subunits found in individuals with neuropsychiatric disorders, including intellectual disability, epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION AND IMPLICATIONS Our results show novel sites of action for pregnanolones at the NMDAR and provide an opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with glutamatergic system hypofunction.
Collapse
Affiliation(s)
- Bohdan Kysilov
- Institute of Physiology CAS, Prague 4, Czech Republic.,Third Faculty of Medicine, Charles University in Prague, Prague 10, Czech Republic
| | | | | | | | | | - Martin Horak
- Institute of Physiology CAS, Prague 4, Czech Republic
| | - Hana Chodounska
- Institute of Organic Chemistry and Biochemistry CAS, Prague 6, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry CAS, Prague 6, Czech Republic
| | - Jiri Cerny
- Institute of Physiology CAS, Prague 4, Czech Republic
| | | |
Collapse
|
25
|
Makletsova MG, Rikhireva GT, Kirichenko EY, Trinitatsky IY, Vakulenko MY, Ermakov AM. The Role of Polyamines in the Mechanisms of Cognitive Impairment. NEUROCHEM J+ 2022; 16. [PMCID: PMC9575633 DOI: 10.1134/s1819712422030059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Abstract—As the population ages, age-related cognitive impairments are becoming an increasingly pressing problem. Currently, the role of polyamines (putrescine, spermidine, and spermine) in the pathogenesis of cognitive impairments of various origin is actively discussed. It was shown that the content of polyamines in the brain tissue decreases with age. Exogenous administration of polyamines makes it possible to avoid cognitive impairment and/or influence the pathogenetic processes associated with disease progression. There are 3 known ways that polyamines can enter the human body: food, synthesis by intestinal bacteria, and biosynthesis in the body. Currently, one of the most promising approaches to the prevention of cognitive impairment is the use of foods with a high content of polyamines, as well as the use of various probiotics that affect intestinal bacteria that synthesize polyamines. Since 2018, in a number of European countries projects have been launched aimed at evaluation of the impact of a diet high in polyamines on cognitive processes. The review, based on analysis of modern scientific literature and the authors' own data, presents material on the effect of polyamines on cognitive processes and the role of polyamines in the regulation of neurotransmitter processes, and discusses the role of polyamines in cognitive disorders in mental and neurological diseases.
Collapse
Affiliation(s)
| | - G. T. Rikhireva
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | - A. M. Ermakov
- Don State Technical University, Rostov-on-Don, Russia
| |
Collapse
|
26
|
Carrillo E, Gonzalez CU, Berka V, Jayaraman V. Delta glutamate receptors are functional glycine- and ᴅ-serine-gated cation channels in situ. SCIENCE ADVANCES 2021; 7:eabk2200. [PMID: 34936451 PMCID: PMC8694607 DOI: 10.1126/sciadv.abk2200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/03/2021] [Indexed: 05/12/2023]
Abstract
Delta receptors are members of the ionotropic glutamate receptor superfamily and form trans-synaptic connections by interacting with the extracellular scaffolding protein cerebellin-1 and presynaptic transmembrane protein neurexin-1β. Unlike other family members, however, direct agonist-gated ion channel activity has not been recorded in delta receptors. Here, we show that the GluD2 subtype of delta receptor forms cation-selective channels when bound to cerebellin-1 and neurexin-1β. Using fluorescence lifetime measurements and chemical cross-linking, we reveal that tight packing of the amino-terminal domains of GluD2 permits glycine- and d-serine–induced channel openings. Thus, cerebellin-1 and neurexin-1β act as biological cross-linkers to stabilize the extracellular domains of GluD2 receptors, allowing them to function as ionotropic excitatory neurotransmitter receptors in synapses.
Collapse
Affiliation(s)
- Elisa Carrillo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Cuauhtemoc U. Gonzalez
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Vladimir Berka
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| |
Collapse
|
27
|
Klatt S, Doecke JD, Roberts A, Boughton BA, Masters CL, Horne M, Roberts BR. A six-metabolite panel as potential blood-based biomarkers for Parkinson's disease. NPJ Parkinsons Dis 2021; 7:94. [PMID: 34650080 PMCID: PMC8516864 DOI: 10.1038/s41531-021-00239-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Characterisation and diagnosis of idiopathic Parkinson's disease (iPD) is a current challenge that hampers both clinical assessment and clinical trial development with the potential inclusion of non-PD cases. Here, we used a targeted mass spectrometry approach to quantify 38 metabolites extracted from the serum of 231 individuals. This cohort is currently one of the largest metabolomic studies including iPD patients, drug-naïve iPD, healthy controls and patients with Alzheimer's disease as a disease-specific control group. We identified six metabolites (3-hydroxykynurenine, aspartate, beta-alanine, homoserine, ornithine (Orn) and tyrosine) that are significantly altered between iPD patients and control participants. A multivariate model to predict iPD from controls had an area under the curve (AUC) of 0.905, with an accuracy of 86.2%. This panel of metabolites may serve as a potential prognostic or diagnostic assay for clinical trial prescreening, or for aiding in diagnosing pathological disease in the clinic.
Collapse
Affiliation(s)
- Stephan Klatt
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Cooperative Research Centre for Mental Health, Parkville, VIC, 3052, Australia
| | - James D Doecke
- Cooperative Research Centre for Mental Health, Parkville, VIC, 3052, Australia
- Australian e-Health Research Centre, CSIRO, Brisbane, QLD, Australia
| | - Anne Roberts
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Berin A Boughton
- School of Biosciences, The University of Melbourne, Parkville, VIC, 3052, Australia
- Australian National Phenome Centre, Murdoch University, Murdoch, WA, 6150, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Cooperative Research Centre for Mental Health, Parkville, VIC, 3052, Australia
| | - Malcolm Horne
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Blaine R Roberts
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
28
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 361] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
29
|
Wilding TJ, Huettner JE. Cadmium activates AMPA and NMDA receptors with M3 helix cysteine substitutions. J Gen Physiol 2021; 152:151704. [PMID: 32342094 PMCID: PMC7335009 DOI: 10.1085/jgp.201912537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
AMPA and NMDA receptors are ligand-gated ion channels that depolarize postsynaptic neurons when activated by the neurotransmitter L-glutamate. Changes in the distribution and activity of these receptors underlie learning and memory, but excessive change is associated with an array of neurological disorders, including cognitive impairment, developmental delay, and epilepsy. All of the ionotropic glutamate receptors (iGluRs) exhibit similar tetrameric architecture, transmembrane topology, and basic framework for activation; conformational changes induced by extracellular agonist binding deform and splay open the inner helix bundle crossing that occludes ion flux through the channel. NMDA receptors require agonist binding to all four subunits, whereas AMPA and closely related kainate receptors can open with less than complete occupancy. In addition to conventional activation by agonist binding, we recently identified two locations along the inner helix of the GluK2 kainate receptor subunit where cysteine (Cys) substitution yields channels that are opened by exposure to cadmium ions, independent of agonist site occupancy. Here, we generate AMPA and NMDA receptor subunits with homologous Cys substitutions and demonstrate similar activation of the mutant receptors by Cd. Coexpression of the auxiliary subunit stargazin enhanced Cd potency for activation of Cys-substituted GluA1 and altered occlusion upon treatment with sulfhydryl-reactive MTS reagents. Mutant NMDA receptors displayed voltage-dependent Mg block of currents activated by agonist and/or Cd as well as asymmetry between Cd effects on Cys-substituted GluN1 versus GluN2 subunits. In addition, Cd activation of each Cys-substituted iGluR was inhibited by protons. These results, together with our earlier work on GluK2, reveal a novel mechanism shared among the three different iGluR subtypes for prying open the gate that controls ion entry into the pore.
Collapse
Affiliation(s)
- Timothy J Wilding
- Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, MO
| | - James E Huettner
- Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, MO
| |
Collapse
|
30
|
Tian M, Stroebel D, Piot L, David M, Ye S, Paoletti P. GluN2A and GluN2B NMDA receptors use distinct allosteric routes. Nat Commun 2021; 12:4709. [PMID: 34354080 PMCID: PMC8342458 DOI: 10.1038/s41467-021-25058-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
Allostery represents a fundamental mechanism of biological regulation that involves long-range communication between distant protein sites. It also provides a powerful framework for novel therapeutics. NMDA receptors (NMDARs), glutamate-gated ionotropic receptors that play central roles in synapse maturation and plasticity, are prototypical allosteric machines harboring large extracellular N-terminal domains (NTDs) that provide allosteric control of key receptor properties with impact on cognition and behavior. It is commonly thought that GluN2A and GluN2B receptors, the two predominant NMDAR subtypes in the adult brain, share similar allosteric transitions. Here, combining functional and structural interrogation, we reveal that GluN2A and GluN2B receptors utilize different long-distance allosteric mechanisms involving distinct subunit-subunit interfaces and molecular rearrangements. NMDARs have thus evolved multiple levels of subunit-specific allosteric control over their transmembrane ion channel pore. Our results uncover an unsuspected diversity in NMDAR molecular mechanisms with important implications for receptor physiology and precision drug development. NMDA receptors are glutamate-gated ion channels essential for synapse maturation and plasticity. Here the authors show that GluN2A and GluN2B NMDA receptors — the two principal subtypes NMDARs in the adult CNS — operate through distinct long range allosteric mechanisms.
Collapse
Affiliation(s)
- Meilin Tian
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - David Stroebel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Laura Piot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Mélissa David
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Shixin Ye
- Unité INSERM U1195, Hôpital de Bicêtre, Université Paris-Saclay, Paris, Le Kremlin-Bicêtre, France.
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France.
| |
Collapse
|
31
|
Geoffroy C, Paoletti P, Mony L. Positive allosteric modulation of NMDA receptors: mechanisms, physiological impact and therapeutic potential. J Physiol 2021; 600:233-259. [PMID: 34339523 DOI: 10.1113/jp280875] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022] Open
Abstract
NMDA receptors (NMDARs) are glutamate-gated ion channels that play key roles in synaptic transmission and plasticity. Both hyper- and hypo-activation of NMDARs are deleterious to neuronal function. In particular, NMDAR hypofunction is involved in a wide range of neurological and psychiatric conditions like schizophrenia, intellectual disability, age-dependent cognitive decline, or Alzheimer's disease. While early medicinal chemistry efforts were mostly focused on the development of NMDAR antagonists, the last 10 years have seen a boom in the development of NMDAR positive allosteric modulators (PAMs). Here we review the currently developed NMDAR PAMs, their pharmacological profiles and mechanisms of action, as well as their physiological effects in healthy animals and animal models of NMDAR hypofunction. In light of the complexity of physiological outcomes of NMDAR PAMs in vivo, we discuss the remaining challenges and questions that need to be addressed to better grasp and predict the therapeutic potential of NMDAR positive allosteric modulation.
Collapse
Affiliation(s)
- Chloé Geoffroy
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Laetitia Mony
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| |
Collapse
|
32
|
Kellner S, Abbasi A, Carmi I, Heinrich R, Garin-Shkolnik T, Hershkovitz T, Giladi M, Haitin Y, Johannesen KM, Steensbjerre Møller R, Berlin S. Two de novo GluN2B mutations affect multiple NMDAR-functions and instigate severe pediatric encephalopathy. eLife 2021; 10:67555. [PMID: 34212862 PMCID: PMC8260228 DOI: 10.7554/elife.67555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/27/2021] [Indexed: 12/15/2022] Open
Abstract
The N-methyl-D-aspartate receptors (NMDARs; GluNRS) are glutamate receptors, commonly located at excitatory synapses. Mutations affecting receptor function often lead to devastating neurodevelopmental disorders. We have identified two toddlers with different heterozygous missense mutations of the same, and highly conserved, glycine residue located in the ligand-binding-domain of GRIN2B: G689C and G689S. Structure simulations suggest severely impaired glutamate binding, which we confirm by functional analysis. Both variants show three orders of magnitude reductions in glutamate EC50, with G689S exhibiting the largest reductions observed for GRIN2B (~2000-fold). Moreover, variants multimerize with, and upregulate, GluN2Bwt-subunits, thus engendering a strong dominant-negative effect on mixed channels. In neurons, overexpression of the variants instigates suppression of synaptic GluNRs. Lastly, while exploring spermine potentiation as a potential treatment, we discovered that the variants fail to respond due to G689’s novel role in proton-sensing. Together, we describe two unique variants with extreme effects on channel function. We employ protein-stability measures to explain why current (and future) LBD mutations in GluN2B primarily instigate Loss-of-Function.
Collapse
Affiliation(s)
- Shai Kellner
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Abeer Abbasi
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ido Carmi
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronit Heinrich
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | - Moshe Giladi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yoni Haitin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Katrine M Johannesen
- Department of Epilepsy Genetics and Personalized Treatment, the Danish Epilepsy Centre, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Rikke Steensbjerre Møller
- Department of Epilepsy Genetics and Personalized Treatment, the Danish Epilepsy Centre, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Shai Berlin
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
33
|
Wang T, Ulrich H, Semyanov A, Illes P, Tang Y. Optical control of purinergic signaling. Purinergic Signal 2021; 17:385-392. [PMID: 34156578 PMCID: PMC8410941 DOI: 10.1007/s11302-021-09799-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/07/2021] [Indexed: 12/29/2022] Open
Abstract
Purinergic signaling plays a pivotal role in physiological processes and pathological conditions. Over the past decades, conventional pharmacological, biochemical, and molecular biology techniques have been utilized to investigate purinergic signaling cascades. However, none of them is capable of spatially and temporally manipulating purinergic signaling cascades. Currently, optical approaches, including optopharmacology and optogenetic, enable controlling purinergic signaling with low invasiveness and high spatiotemporal precision. In this mini-review, we discuss optical approaches for controlling purinergic signaling and their applications in basic and translational science.
Collapse
Affiliation(s)
- Tao Wang
- International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Henning Ulrich
- International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia
| | - Peter Illes
- International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany.
| | - Yong Tang
- International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
34
|
Li Z, Cai G, Fang F, Li W, Fan M, Lian J, Qiu Y, Xu X, Lv X, Li Y, Zheng R, Wang Y, Li Z, Zhang G, Liu Z, Huang Z, Zhang L. Discovery of Novel and Potent N-Methyl-d-aspartate Receptor Positive Allosteric Modulators with Antidepressant-like Activity in Rodent Models. J Med Chem 2021; 64:5551-5576. [PMID: 33934604 DOI: 10.1021/acs.jmedchem.0c02018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
N-Methyl-d-aspartate receptors (NMDARs) are glutamate-gated Na+ and Ca2+-permeable ion channels involved in excitatory synaptic transmission and synaptic plasticity. NMDAR hypofunction has long been implicated in the pathophysiology including major depressive disorders (MDDs). Herein, we report a series of furan-2-carboxamide analogues as novel NMDAR-positive allosteric modulators (PAMs). Through structure-based virtual screen and electrophysiological tests, FS2921 was identified as a novel NMDAR PAM with potential antidepressant effects. Further structure-activity relationship studies led to the discovery of novel analogues with increased potentiation. Compound 32h caused a significant increase in NMDAR excitability in vitro and impressive activity in the forced swimming test. Moreover, compound 32h showed no significant inhibition of hERG or cell viability and possessed a favorable PK/PD profile. Our study presented a series of novel NMDAR PAMs and provided potential opportunities for discovering of new antidepressants.
Collapse
Affiliation(s)
- Zhongtang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guanxing Cai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fan Fang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenchao Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Minghua Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jingjing Lian
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yinli Qiu
- Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road, Xuzhou, Jiangsu 221116, China
| | - Xiangqing Xu
- Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road, Xuzhou, Jiangsu 221116, China
| | - Xuehui Lv
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiyan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ruqiu Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuxi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guisen Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
35
|
Thapaliya ER, Mony L, Sanchez R, Serraz B, Paoletti P, Ellis-Davies GCR. Photochemical control of drug efficacy - a comparison of uncaging and photoswitching ifenprodil on NMDA receptors. CHEMPHOTOCHEM 2021; 5:445-454. [PMID: 36540756 PMCID: PMC9762817 DOI: 10.1002/cptc.202000240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 09/29/2023]
Abstract
Ifenprodil is an important negative allosteric modulator of the N-methyl-D-aspartate (NMDA) receptors. We have synthesized caged and photoswitchable derivatives of this small molecule drug. Caged ifenprodil was biologically inert before photolysis, UV irradiation efficiently released the drug allowing selective inhibition of GluN2B-containing NMDA receptors. Azobenzene-modified ifenprodil, on the other hand, is inert in both its trans and cis configurations, although in silico modeling predicted the trans form to be able to bind to the receptor. The disparity in effectiveness between the two compounds reflects, in part, the inherent ability of each method in manipulating the binding properties of drugs. With appropriate structure-activity relationship uncaging enables binary control of effector binding, whereas photoswitching using feely diffusable chromophores shifts the dose-response curve of drug-receptor interaction. Our data suggest that the efficacy of pharmacophores having a confined binding site such as ifenprodil can be controlled more easily by uncaging in comparison to photoswitching.
Collapse
Affiliation(s)
- Ek Raj Thapaliya
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
- Equal contribution
| | - Laetitia Mony
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
- Equal contribution
| | - Roberto Sanchez
- Department of Pharmacological Sciences and Drug Discovery Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Benjamin Serraz
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
| | - Pierre Paoletti
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
| | | |
Collapse
|
36
|
Sun JY, Kumata K, Chen Z, Zhang YD, Chen JH, Hatori A, Fu HL, Rong J, Deng XY, Yamasaki T, Xie L, Hu K, Fujinaga M, Yu QZ, Shao T, Collier TL, Josephson L, Shao YH, Du YF, Wang L, Xu H, Zhang MR, Liang SH. Synthesis and preliminary evaluation of novel 11C-labeled GluN2B-selective NMDA receptor negative allosteric modulators. Acta Pharmacol Sin 2021; 42:491-498. [PMID: 32661351 PMCID: PMC8027431 DOI: 10.1038/s41401-020-0456-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/03/2020] [Indexed: 12/30/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play critical roles in the physiological function of the mammalian central nervous system (CNS), including learning, memory, and synaptic plasticity, through modulating excitatory neurotransmission. Attributed to etiopathology of various CNS disorders and neurodegenerative diseases, GluN2B is one of the most well-studied subtypes in preclinical and clinical studies on NMDARs. Herein, we report the synthesis and preclinical evaluation of two 11C-labeled GluN2B-selective negative allosteric modulators (NAMs) containing N,N-dimethyl-2-(1H-pyrrolo[3,2-b]pyridin-1-yl)acetamides for positron emission tomography (PET) imaging. Two PET ligands, namely [11C]31 and [11C]37 (also called N2B-1810 and N2B-1903, respectively) were labeled with [11C]CH3I in good radiochemical yields (decay-corrected 28% and 32% relative to starting [11C]CO2, respectively), high radiochemical purity (>99%) and high molar activity (>74 GBq/μmol). In particular, PET ligand [11C]31 demonstrated moderate specific binding to GluN2B subtype by in vitro autoradiography studies. However, because in vivo PET imaging studies showed limited brain uptake of [11C]31 (up to 0.5 SUV), further medicinal chemistry and ADME optimization are necessary for this chemotype attributed to low binding specificity and rapid metabolism in vivo.
Collapse
Affiliation(s)
- Ji-Yun Sun
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Zhen Chen
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Yi-Ding Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Jia-Hui Chen
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Akiko Hatori
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Hua-Long Fu
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Jian Rong
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Xiao-Yun Deng
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Lin Xie
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Qing-Zhen Yu
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Tuo Shao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Thomas Lee Collier
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Lee Josephson
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Yi-Han Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Yun-Fei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan.
| | - Steven H Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
37
|
Jorratt P, Hoschl C, Ovsepian SV. Endogenous antagonists of N-methyl-d-aspartate receptor in schizophrenia. Alzheimers Dement 2020; 17:888-905. [PMID: 33336545 DOI: 10.1002/alz.12244] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/24/2020] [Indexed: 12/28/2022]
Abstract
Schizophrenia is a chronic neuropsychiatric brain disorder that has devastating personal impact and rising healthcare costs. Dysregulation of glutamatergic neurotransmission has been implicated in the pathobiology of the disease, attributed largely to the hypofunction of the N-methyl-d-aspartate (NMDA) receptor. Currently, there is a major gap in mechanistic analysis as to how endogenous modulators of the NMDA receptors contribute to the onset and progression of the disease. We present a systematic review of the neurobiology and the role of endogenous NMDA receptor antagonists in animal models of schizophrenia, and in patients. We discuss their neurochemical origin, release from neurons and glia with action mechanisms, and functional effects, which might contribute toward the impairment of neuronal processes underlying this complex pathological state. We consider clinical evidence suggesting dysregulations of endogenous NMDA receptor in schizophrenia, and highlight the pressing need in future studies and emerging directions, to restore the NMDA receptor functions for therapeutic benefits.
Collapse
Affiliation(s)
- Pascal Jorratt
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague 10, Czech Republic
| | - Cyril Hoschl
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague 10, Czech Republic
| | - Saak V Ovsepian
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague 10, Czech Republic
| |
Collapse
|
38
|
Wong HHW, Rannio S, Jones V, Thomazeau A, Sjöström PJ. NMDA receptors in axons: there's no coincidence. J Physiol 2020; 599:367-387. [PMID: 33141440 DOI: 10.1113/jp280059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
In the textbook view, N-methyl-d-aspartate (NMDA) receptors are postsynaptically located detectors of coincident activity in Hebbian learning. However, controversial presynaptically located NMDA receptors (preNMDARs) have for decades been repeatedly reported in the literature. These preNMDARs have typically been implicated in the regulation of short-term and long-term plasticity, but precisely how they signal and what their functional roles are have been poorly understood. The functional roles of preNMDARs across several brain regions and different forms of plasticity can differ vastly, with recent discoveries showing key involvement of unusual subunit composition. Increasing evidence shows preNMDAR can signal through both ionotropic action by fluxing calcium and in metabotropic mode even in the presence of magnesium blockade. We argue that these unusual properties may explain why controversy has surrounded this receptor type. In addition, the expression of preNMDARs at some synapse types but not others can underlie synapse-type-specific plasticity. Last but not least, preNMDARs are emerging therapeutic targets in disease states such as neuropathic pain. We conclude that axonally located preNMDARs are required for specific purposes and do not end up there by accident.
Collapse
Affiliation(s)
- Hovy Ho-Wai Wong
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada
| | - Sabine Rannio
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Victoria Jones
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Aurore Thomazeau
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada
| | - P Jesper Sjöström
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada
| |
Collapse
|
39
|
Ghosh I, Sankhe R, Mudgal J, Arora D, Nampoothiri M. Spermidine, an autophagy inducer, as a therapeutic strategy in neurological disorders. Neuropeptides 2020; 83:102083. [PMID: 32873420 DOI: 10.1016/j.npep.2020.102083] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/18/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023]
Abstract
Spermidine is a naturally occurring endogenous polyamine synthesized from diamine putrescine. It is a well-known autophagy inducer that maintains cellular and neuronal homeostasis. Healthy brain development and function are dependent on brain polyamine concentration. Polyamines interact with the opioid system, glutamatergic signaling and neuroinflammation in the neuronal and glial compartments. Among the polyamines, spermidine is found highest in the human brain. Age-linked fluctuations in the spermidine levels may possibly contribute to the impairments in neural network and neurogenesis. Exogenously administered spermidine helps in the treatment of brain diseases. Further, current studies highlight the ability of spermidine to promote longevity by inducing autophagy. Still, the causal neuroprotective mechanism of spermidine in neuronal dysfunction remains unidentified. This review aims to summarize various neuroprotective effects of spermidine related to anti-aging/ anti-inflammatory properties and the prevention of neurotoxicity that helps in achieving beneficial effects in age-related neurological disorder. We also expose the signaling cascades modulated by spermidine which might result in therapeutic action. The present review highlights clinical studies along with in-vivo and in-vitro preclinical studies to provide a new dimension for the therapeutic potential of spermidine in neurological disorders.
Collapse
Affiliation(s)
- Indrani Ghosh
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Devinder Arora
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; School of Pharmacy and Pharmacology, MHIQ, QUM Network, Griffith University, Gold Coast, Queensland, Australia
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
40
|
Stroebel D, Paoletti P. Architecture and function of NMDA receptors: an evolutionary perspective. J Physiol 2020; 599:2615-2638. [PMID: 32786006 DOI: 10.1113/jp279028] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Ionotropic glutamate receptors (iGluRs) are a major class of ligand-gated ion channels that are widespread in the living kingdom. Their critical role in excitatory neurotransmission and brain function of arthropods and vertebrates has made them a compelling subject of interest for neurophysiologists and pharmacologists. This is particularly true for NMDA receptor (NMDARs), a subclass of iGluRs that act as central drivers of synaptic plasticity in the CNS. How and when the unique properties of NMDARs arose during evolution, and how they relate to the evolution of the nervous system, remain open questions. Recent years have witnessed a boom in both genomic and structural data, such that it is now possible to analyse the evolution of iGluR genes on an unprecedented scale and within a solid molecular framework. In this review, combining insights from phylogeny, atomic structure and physiological and mechanistic data, we discuss how evolution of NMDAR motifs and sequences shaped their architecture and functionalities. We trace differences and commonalities between NMDARs and other iGluRs, emphasizing a few distinctive properties of the former regarding ligand binding and gating, permeation, allosteric modulation and intracellular signalling. Finally, we speculate on how specific molecular properties of iGuRs arose to supply new functions to the evolving structure of the nervous system, from early metazoan to present mammals.
Collapse
Affiliation(s)
- David Stroebel
- Ecole Normale Supérieure, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS), Université PSL, Paris, France
| | - Pierre Paoletti
- Ecole Normale Supérieure, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS), Université PSL, Paris, France
| |
Collapse
|
41
|
Fabbrin SB, Girardi BA, de Lorena Wendel A, Coelho Ilha Valin C, Pillat MM, Viero FT, Mello CF, Rubin MA. Spermidine-induced improvement of memory consolidation involves PI3K/Akt signaling pathway. Brain Res Bull 2020; 164:208-213. [PMID: 32858125 DOI: 10.1016/j.brainresbull.2020.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 01/23/2023]
Abstract
Spermidine (SPD) is an endogenous polyamine that plays a facilitatory role in memory acquisition and consolidation. Memory consolidation occurs immediately after learning and again around 3-6 hours later. Current evidence indicates that the polyamine binding site at the NMDA receptor (NMDAr) mediates the effects of SPD on memory. While NMDAr activation increases brain-derived neurotrophic factor (BDNF) release, no study has investigated whether BDNF-activated signaling pathways, such as the phosphatidylinositol 3-kinase (PI3K)/Akt pathway play a role in SPD-induced improvement of memory consolidation. Therefore, the aim of the current study was to evaluate whether the TrkB receptor and the PI3K/Akt pathway are involved in the facilitatory effect of SPD on memory consolidation. Male Wistar rats were trained in the contextual conditioned fear task. SPD, ANA-12 (TrkB antagonist), and LY294002 (PI3K inhibitor) were administered immediately after training. The animals were tested 24 h after training. We found that SPD improved fear memory consolidation and that both ANA-12 and LY294002 prevented the facilitatory effect of SPD on memory. These results suggest that SPD-induced improvement of memory consolidation involves the activation of the TrkB receptor and PI3K/Akt pathway.
Collapse
Affiliation(s)
- Shaiana Beck Fabbrin
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Bruna Amanda Girardi
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Arithane de Lorena Wendel
- School of Pharmacy, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Carolina Coelho Ilha Valin
- School of Pharmacy, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Micheli Mainardi Pillat
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Fernanda Tibolla Viero
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Carlos Fernando Mello
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Maribel Antonello Rubin
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
42
|
Abstract
The voltage-gated proton channel Hv1 is a member of the voltage-gated ion channel superfamily, which stands out in design: It is a dimer of two voltage-sensing domains (VSDs), each containing a pore pathway, a voltage sensor (S4), and a gate (S1) and forming its own ion channel. Opening of the two channels in the dimer is cooperative. Part of the cooperativity is due to association between coiled-coil domains that extend intracellularly from the S4s. Interactions between the transmembrane portions of the subunits may also contribute, but the nature of transmembrane packing is unclear. Using functional analysis of a mutagenesis scan, biochemistry, and modeling, we find that the subunits form a dimer interface along the entire length of S1, and also have intersubunit contacts between S1 and S4. These interactions exert a strong effect on gating, in particular on the stability of the open state. Our results suggest that gating in Hv1 is tuned by extensive VSD-VSD interactions between the gates and voltage sensors of the dimeric channel.
Collapse
Affiliation(s)
- Laetitia Mony
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, 75005 Paris, France
| | - David Stroebel
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, 75005 Paris, France
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720;
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
- Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
43
|
A comprehensive description of GluN2B-selective N-methyl-D-aspartate (NMDA) receptor antagonists. Eur J Med Chem 2020; 200:112447. [DOI: 10.1016/j.ejmech.2020.112447] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
|
44
|
Perszyk RE, Myers SJ, Yuan H, Gibb AJ, Furukawa H, Sobolevsky AI, Traynelis SF. Hodgkin-Huxley-Katz Prize Lecture: Genetic and pharmacological control of glutamate receptor channel through a highly conserved gating motif. J Physiol 2020; 598:3071-3083. [PMID: 32468591 DOI: 10.1113/jp278086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Glutamate receptors are essential ligand-gated ion channels in the central nervous system that mediate excitatory synaptic transmission in response to the release of glutamate from presynaptic terminals. The structural and biophysical basis underlying the function of these receptors has been studied for decades by a wide range of approaches. However recent structural, pharmacological and genetic studies have provided new insight into the regions of this protein that are critical determinants of receptor function. Lack of variation in specific areas of the protein amino acid sequences in the human population has defined three regions in each receptor subunit that are under selective pressure, which has focused research efforts and driven new hypotheses. In addition, these three closely positioned elements reside near a cavity that is shown by multiple studies to be a likely site of action for allosteric modulators, one of which is currently in use as an FDA-approved anticonvulsant. These structural elements are capable of controlling gating of the pore, and appear to permit some modulators bound within the cavity to also alter permeation properties. This creates a new precedent whereby features of the channel pore can be modulated by exogenous drugs that bind outside the pore. The convergence of structural, genetic, biophysical and pharmacological approaches is a powerful means to gain insight into the complex biological processes defined by neurotransmitter receptor function.
Collapse
Affiliation(s)
- Riley E Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Alasdair J Gibb
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Hiro Furukawa
- WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
45
|
Shin W, Kim K, Serraz B, Cho YS, Kim D, Kang M, Lee EJ, Lee H, Bae YC, Paoletti P, Kim E. Early correction of synaptic long-term depression improves abnormal anxiety-like behavior in adult GluN2B-C456Y-mutant mice. PLoS Biol 2020; 18:e3000717. [PMID: 32353004 PMCID: PMC7217483 DOI: 10.1371/journal.pbio.3000717] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/12/2020] [Accepted: 04/15/2020] [Indexed: 01/28/2023] Open
Abstract
Extensive evidence links Glutamate receptor, ionotropic, NMDA2B (GRIN2B), encoding the GluN2B/NR2B subunit of N-methyl-D-aspartate receptors (NMDARs), with various neurodevelopmental disorders, including autism spectrum disorders (ASDs), but the underlying mechanisms remain unclear. In addition, it remains unknown whether mutations in GluN2B, which starts to be expressed early in development, induces early pathophysiology that can be corrected by early treatments for long-lasting effects. We generated and characterized Grin2b-mutant mice that carry a heterozygous, ASD-risk C456Y mutation (Grin2b+/C456Y). In Grin2b+/C456Y mice, GluN2B protein levels were strongly reduced in association with decreased hippocampal NMDAR currents and NMDAR-dependent long-term depression (LTD) but unaltered long-term potentiation, indicative of mutation-induced protein degradation and LTD sensitivity. Behaviorally, Grin2b+/C456Y mice showed normal social interaction but exhibited abnormal anxiolytic-like behavior. Importantly, early, but not late, treatment of young Grin2b+/C456Y mice with the NMDAR agonist D-cycloserine rescued NMDAR currents and LTD in juvenile mice and improved anxiolytic-like behavior in adult mice. Therefore, GluN2B-C456Y haploinsufficiency decreases GluN2B protein levels, NMDAR-dependent LTD, and anxiety-like behavior, and early activation of NMDAR function has long-lasting effects on adult mouse behavior.
Collapse
Affiliation(s)
- Wangyong Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Kyungdeok Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Benjamin Serraz
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Yi Sul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Muwon Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Hyejin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
- * E-mail:
| |
Collapse
|
46
|
Amin JB, Moody GR, Wollmuth LP. From bedside-to-bench: What disease-associated variants are teaching us about the NMDA receptor. J Physiol 2020; 599:397-416. [PMID: 32144935 DOI: 10.1113/jp278705] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/21/2020] [Indexed: 12/25/2022] Open
Abstract
NMDA receptors (NMDARs) are glutamate-gated ion channels that contribute to nearly all brain processes. Not surprisingly then, genetic variations in the genes encoding NMDAR subunits can be associated with neurodevelopmental, neurological and psychiatric disorders. These disease-associated variants (DAVs) present challenges, such as defining how DAV-induced alterations in receptor function contribute to disease progression and how to treat the affected individual clinically. As a starting point to overcome these challenges, we need to refine our understanding of the complexity of NMDAR structure function. In this regard, DAVs have expanded our knowledge of NMDARs because they do not just target well-known structure-function motifs, but rather give an unbiased view of structural elements that are important to the biology of NMDARs. Indeed, established NMDAR structure-function motifs have been validated by the appearance of disorders in patients where these motifs have been altered, and DAVs have identified novel structural features in NMDARs such as gating triads and hinges in the gating machinery. Still, the majority of DAVs remain unexplored and occur at sites in the protein with unidentified function or alter receptor properties in multiple and unanticipated ways. Detailed mechanistic and structural investigations are required of both established and novel motifs to develop a highly refined pathomechanistic model that accounts for the complex machinery that regulates NMDARs. Such a model would provide a template for rational drug design and a starting point for personalized medicine.
Collapse
Affiliation(s)
- Johansen B Amin
- Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY, 11794-5230.,Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY, 11794-5230
| | - Gabrielle R Moody
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY, 11794-5230
| | - Lonnie P Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, 11794-5230.,Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5230.,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, 11794-5230
| |
Collapse
|
47
|
Girardi BA, Fabbrin S, Wendel AL, Mello CF, Rubin MA. Spermidine, a positive modulator of the NMDA receptor, facilitates extinction and prevents the reinstatement of morphine-induced conditioned place preference in mice. Psychopharmacology (Berl) 2020; 237:681-693. [PMID: 31828395 DOI: 10.1007/s00213-019-05403-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 11/15/2019] [Indexed: 02/08/2023]
Abstract
RATIONALE Individuals with opioid use disorders often relapse into drug-seeking behavior after recalling memories linked to the drug use experience. Improving extinction efficacy has been used as a strategy to treat substance use disorders and suppress relapse. Although N-methyl-D-aspartate receptor (NMDAr) agonists facilitate acquisition, consolidation, and extinction, no study has addressed whether spermidine (SPD), a natural polyamine ligand of the NMDA receptor, facilitates the extinction and reinstatement of morphine-induced conditioned place preference (CPP). OBJECTIVES AND METHODS The aim of the present study was to investigate the effect of SPD, an NMDAr agonist, on the extinction and reinstatement of morphine-induced CPP in mice. Adult male albino Swiss mice received saline (0.9% NaCl) or morphine (5 mg/kg) intraperitoneally (i.p.) and were respectively confined to a black or a white compartment for 30 min for four consecutive days for CPP induction. SPD (10-30 mg/kg, i.p.) or ifenprodil (NMDAr antagonist, 0.1-1 mg/kg, i.p.) were injected 15 min before extinction training. RESULTS SPD and ifenprodil facilitated the extinction of morphine-induced CPP. SPD treatment during the extinction period impaired reinstatement induced by a priming dose of morphine (1.25 mg/kg). Ifenprodil (0.1 mg/kg) prevented the facilitatory effect of spermidine on the extinction of morphine-induced CPP but did not prevent reinstatement induced by morphine. CONCLUSIONS These results suggest that SPD facilitated the extinction of morphine-induced CPP by modulating the polyamine binding site of the NMDA receptor. Our findings reveal important effects of SPD and ifenprodil on the re-exposure-induced decrease in morphine-induced CPP, which may be promising for developing novel pharmacological strategies to treat opioid use disorder.
Collapse
Affiliation(s)
- Bruna A Girardi
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Shaiana Fabbrin
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Arithane L Wendel
- School of Pharmacy, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Carlos F Mello
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Maribel A Rubin
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil. .,Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
48
|
Sekula B, Ruszkowski M, Dauter Z. S-adenosylmethionine synthases in plants: Structural characterization of type I and II isoenzymes from Arabidopsis thaliana and Medicago truncatula. Int J Biol Macromol 2020; 151:554-565. [PMID: 32057875 DOI: 10.1016/j.ijbiomac.2020.02.100] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022]
Abstract
S-adenosylmethionine synthases (MATs) are responsible for production of S-adenosylmethionine, the cofactor essential for various methylation reactions, production of polyamines and phytohormone ethylene, etc. Plants have two distinct MAT types (I and II). This work presents the structural analysis of MATs from Arabidopsis thaliana (AtMAT1 and AtMAT2, both type I) and Medicago truncatula (MtMAT3a, type II), which, unlike most MATs from other domains of life, are dimers where three-domain subunits are sandwiched flat with one another. Although MAT types are very similar, their subunits are differently oriented within the dimer. Structural snapshots along the enzymatic reaction reveal the exact conformation of precatalytic methionine in the active site and show a binding niche, characteristic only for plant MATs, that may serve as a lock of the gate loop. Nevertheless, plants, in contrary to mammals, lack the MAT regulatory subunit, and the regulation of plant MAT activity is still puzzling. Our structures open a possibility of an allosteric activity regulation of type I plant MATs by linear compounds, like polyamines, which would tighten the relationship between S-adenosylmethionine and polyamine biosynthesis.
Collapse
Affiliation(s)
- Bartosz Sekula
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL, USA.
| | - Milosz Ruszkowski
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL, USA; Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL, USA
| |
Collapse
|
49
|
Washburn HR, Xia NL, Zhou W, Mao YT, Dalva MB. Positive surface charge of GluN1 N-terminus mediates the direct interaction with EphB2 and NMDAR mobility. Nat Commun 2020; 11:570. [PMID: 31996679 PMCID: PMC6989673 DOI: 10.1038/s41467-020-14345-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022] Open
Abstract
Localization of the N-methyl-D-aspartate type glutamate receptor (NMDAR) to dendritic spines is essential for excitatory synaptic transmission and plasticity. Rather than remaining trapped at synaptic sites, NMDA receptors undergo constant cycling into and out of the postsynaptic density. Receptor movement is constrained by protein-protein interactions with both the intracellular and extracellular domains of the NMDAR. The role of extracellular interactions on the mobility of the NMDAR is poorly understood. Here we demonstrate that the positive surface charge of the hinge region of the N-terminal domain in the GluN1 subunit of the NMDAR is required to maintain NMDARs at dendritic spine synapses and mediates the direct extracellular interaction with a negatively charged phospho-tyrosine on the receptor tyrosine kinase EphB2. Loss of the EphB-NMDAR interaction by either mutating GluN1 or knocking down endogenous EphB2 increases NMDAR mobility. These findings begin to define a mechanism for extracellular interactions mediated by charged domains.
Collapse
Affiliation(s)
- Halley R Washburn
- Department of Neuroscience and Jefferson Center for Synaptic Biology, Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA, 19107, USA
| | - Nan L Xia
- Department of Neuroscience and Jefferson Center for Synaptic Biology, Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA, 19107, USA
- Department of Neurobiology, University of Chicago, 924 East 57th street, JFKR212, Chicago, IL, 60637, USA
| | - Wei Zhou
- Department of Neuroscience and Jefferson Center for Synaptic Biology, Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA, 19107, USA
| | - Yu-Ting Mao
- Department of Neuroscience and Jefferson Center for Synaptic Biology, Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA, 19107, USA
| | - Matthew B Dalva
- Department of Neuroscience and Jefferson Center for Synaptic Biology, Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA, 19107, USA.
| |
Collapse
|
50
|
Goldsmith PJ. NMDAR PAMs: Multiple Chemotypes for Multiple Binding Sites. Curr Top Med Chem 2019; 19:2239-2253. [PMID: 31660834 DOI: 10.2174/1568026619666191011095341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022]
Abstract
The N-methyl-D-aspartate receptor (NMDAR) is a member of the ionotropic glutamate receptor (iGluR) family that plays a crucial role in brain signalling and development. NMDARs are nonselective cation channels that are involved with the propagation of excitatory neurotransmission signals with important effects on synaptic plasticity. NMDARs are functionally and structurally complex receptors, they exist as a family of subtypes each with its own unique pharmacological properties. Their implication in a variety of neurological and psychiatric conditions means they have been a focus of research for many decades. Disruption of NMDAR-related signalling is known to adversely affect higherorder cognitive functions (e.g. learning and memory) and the search for molecules that can recover (or even enhance) receptor output is a current strategy for CNS drug discovery. A number of positive allosteric modulators (PAMs) that specifically attempt to overcome NMDAR hypofunction have been discovered. They include various chemotypes that have been found to bind to several different binding sites within the receptor. The heterogeneity of chemotype, binding site and NMDAR subtype provide a broad landscape of ongoing opportunities to uncover new features of NMDAR pharmacology. Research on NMDARs continues to provide novel mechanistic insights into receptor activation and this review will provide a high-level overview of the research area and discuss the various chemical classes of PAMs discovered so far.
Collapse
Affiliation(s)
- Paul J Goldsmith
- Eli Lilly and Co. Ltd, Lilly Research Centre, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, United Kingdom
| |
Collapse
|