1
|
Kandelis-Shalev S, Goyal M, Elam T, Assaraf S, Dahan N, Farchi O, Berenshtein E, Dzikowski R. SUN-domain proteins of the malaria parasite Plasmodium falciparum are essential for proper nuclear division and DNA repair. mBio 2025; 16:e0021625. [PMID: 40042312 PMCID: PMC11980560 DOI: 10.1128/mbio.00216-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 04/10/2025] Open
Abstract
The protozoan parasite Plasmodium falciparum, which is responsible for the deadliest form of human malaria, accounts for over half a million deaths a year. These parasites proliferate in human red blood cells by consecutive rounds of closed mitoses called schizogony. Their virulence is attributed to their ability to modify the infected red cells to adhere to the vascular endothelium and to evade immunity through antigenic switches. Spatial dynamics at the nuclear periphery were associated with the regulation of processes that enable the parasites to establish long-term infection. However, our knowledge of components of the nuclear envelope (NE) in Plasmodium remains limited. One of the major protein complexes at the NE is the linker of nucleoskeleton and cytoskeleton (LINC) complex that forms a connecting bridge between the cytoplasm and the nucleus through the interaction of SUN and KASH domain proteins. Here, we have identified two SUN-domain proteins as possible components of the LINC complex of P. falciparum and show that their proper expression is essential for the parasite's proliferation in human red blood cells, and their depletion leads to the formation of membranous whorls and morphological changes of the NE. In addition, their differential expression highlights different functions at the nuclear periphery as PfSUN2 is specifically associated with heterochromatin, while PfSUN1 expression is essential for activation of the DNA damage response. Our data provide indications for the involvement of the LINC complex in crucial biological processes in the intraerythrocytic development cycle of malaria parasites. IMPORTANCE Plasmodium falciparum, the parasite causing the deadliest form of malaria, is able to thrive in its human host by tight regulation of cellular processes, orchestrating nuclear dynamics with cytoplasmic machineries that are separated by the nuclear envelope. One of the major protein complexes that connect nuclear and cytoplasmic processes in eukaryotes is the linker of nucleoskeleton and cytoskeleton (LINC) complex. However, while the nuclear periphery of P. falciparum was implicated in several important functions, the role of the LINC complex in Plasmodium biology is unknown. Here, we identify two components of P. falciparum LINC complex and demonstrate that they are essential for the parasites' proliferation in human blood, and their depletion leads to the formation of morphological changes in the cell. In addition, the two components have different functions in activating the DNA damage response and in their association with heterochromatin. Our data provide evidence for their essential roles in the parasites' cell cycle.
Collapse
Affiliation(s)
- Sofiya Kandelis-Shalev
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Manish Goyal
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tal Elam
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shany Assaraf
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Noa Dahan
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Omer Farchi
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Eduard Berenshtein
- Core facility of The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
2
|
Sun W, Song J, Wu Q, Deng L, Zhang T, Zhang L, Hua Y, Cao Y, Hou L. Regulator of Ribosome Synthesis 1 (RRS1) Stabilizes GRP78 and Promotes Breast Cancer Progression. Molecules 2024; 29:1051. [PMID: 38474562 DOI: 10.3390/molecules29051051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Regulator of ribosome synthesis 1 (RRS1), a crucial regulatory factor in ribosome biogenesis, exerts a remarkable impact on the progression of breast cancer (BC). However, the exact mechanisms and pathways have not yet been fully elucidated. To investigate the impact of RRS1 on BC growth and metastasis, along with its underlying mechanisms. We discovered that RRS1 is overexpressed in BC tissues and cell lines. This study aims to regulate the level of RRS1 through lentiviral transfection technology to explore its potential function in BC cells. Knockdown of RRS1 resulted in the inhibition of cell proliferation, invasion, and migration, whereas overexpression had the opposite effects. We firstly identified the interaction between RRS1 and Glucose-Regulated Protein 78 (GRP78) using Co-immunoprecipitation (Co-IP) combined with mass spectrometry analysis, providing evidences of co-localization and positive regulation between RRS1 and GRP78. We observed that RRS1 inhibited the degradation of GRP78 through the ubiquitin-proteasome pathway, resulting in the stabilization of GRP78. In addition, our findings suggested that RRS1 promoted BC progression by activating the GRP78-mediated phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. In conclusion, this newly discovered RRS1/GRP78 signaling axis provides a molecular and theoretical basis for further exploring the mechanisms of breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao 266011, China
| | - Junying Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao 266011, China
| | - Qinglan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao 266011, China
| | - Lin Deng
- Wanzhou District Center for Disease Control, Chongqing 404100, China
| | - Tenglong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao 266011, China
| | - Li Zhang
- Experimental Center for Undergraduates of Pharmacy, School of Pharmacy, Qingdao University, Qingdao 266011, China
| | - Yanan Hua
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao 266011, China
| | - Lin Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao 266011, China
| |
Collapse
|
3
|
Kiseleva AA, Poleshko A. The secret life of chromatin tethers. FEBS Lett 2023; 597:2782-2790. [PMID: 37339933 PMCID: PMC10730768 DOI: 10.1002/1873-3468.14685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
The nuclear envelope plays an essential role in organizing the genome inside of the nucleus. The inner nuclear membrane is coated with a meshwork of filamentous lamin proteins that provide a surface to organize a variety of cellular processes. A subset of nuclear lamina- and membrane-associated proteins functions as anchors to hold transcriptionally silent heterochromatin at the nuclear periphery. While most chromatin tethers are integral membrane proteins, a limited number are lamina-bound. One example is the mammalian proline-rich 14 (PRR14) protein. PRR14 is a recently characterized protein with unique function that is different from other known chromatin tethers. Here, we review our current understanding of PRR14 structure and function in organizing heterochromatin at the nuclear periphery.
Collapse
Affiliation(s)
- Anna A. Kiseleva
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrey Poleshko
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Santana-Sosa S, Matos-Perdomo E, Ayra-Plasencia J, Machín F. A Yeast Mitotic Tale for the Nucleus and the Vacuoles to Embrace. Int J Mol Sci 2023; 24:9829. [PMID: 37372977 DOI: 10.3390/ijms24129829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The morphology of the nucleus is roughly spherical in most eukaryotic cells. However, this organelle shape needs to change as the cell travels through narrow intercellular spaces during cell migration and during cell division in organisms that undergo closed mitosis, i.e., without dismantling the nuclear envelope, such as yeast. In addition, the nuclear morphology is often modified under stress and in pathological conditions, being a hallmark of cancer and senescent cells. Thus, understanding nuclear morphological dynamics is of uttermost importance, as pathways and proteins involved in nuclear shaping can be targeted in anticancer, antiaging, and antifungal therapies. Here, we review how and why the nuclear shape changes during mitotic blocks in yeast, introducing novel data that associate these changes with both the nucleolus and the vacuole. Altogether, these findings suggest a close relationship between the nucleolar domain of the nucleus and the autophagic organelle, which we also discuss here. Encouragingly, recent evidence in tumor cell lines has linked aberrant nuclear morphology to defects in lysosomal function.
Collapse
Affiliation(s)
- Silvia Santana-Sosa
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Emiliano Matos-Perdomo
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Jessel Ayra-Plasencia
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Félix Machín
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
- Faculty of Health Sciences, Fernando Pessoa Canarias University, 35450 Santa María de Guía, Spain
| |
Collapse
|
5
|
Pawar S, Kutay U. The Diverse Cellular Functions of Inner Nuclear Membrane Proteins. Cold Spring Harb Perspect Biol 2021; 13:a040477. [PMID: 33753404 PMCID: PMC8411953 DOI: 10.1101/cshperspect.a040477] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nuclear compartment is delimited by a specialized expanded sheet of the endoplasmic reticulum (ER) known as the nuclear envelope (NE). Compared to the outer nuclear membrane and the contiguous peripheral ER, the inner nuclear membrane (INM) houses a unique set of transmembrane proteins that serve a staggering range of functions. Many of these functions reflect the exceptional position of INM proteins at the membrane-chromatin interface. Recent research revealed that numerous INM proteins perform crucial roles in chromatin organization, regulation of gene expression, genome stability, and mediation of signaling pathways into the nucleus. Other INM proteins establish mechanical links between chromatin and the cytoskeleton, help NE remodeling, or contribute to the surveillance of NE integrity and homeostasis. As INM proteins continue to gain prominence, we review these advancements and give an overview on the functional versatility of the INM proteome.
Collapse
Affiliation(s)
- Sumit Pawar
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
6
|
Tartakoff AM, Chen L, Raghavachari S, Gitiforooz D, Dhinakaran A, Ni CL, Pasadyn C, Mahabeleshwar GH, Pasadyn V, Woolford JL. The nucleolus as a polarized coaxial cable in which the rDNA axis is surrounded by dynamic subunit-specific phases. Curr Biol 2021; 31:2507-2519.e4. [PMID: 33862007 PMCID: PMC8222187 DOI: 10.1016/j.cub.2021.03.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/18/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022]
Abstract
In ribosomal DNA (rDNA) repeats, sequences encoding small-subunit (SSU) rRNA precede those encoding large-subunit (LSU) rRNAs. Processing the composite transcript and subunit assembly requires >100 subunit-specific nucleolar assembly factors (AFs). To investigate the functional organization of the nucleolus, we localized AFs in S. cerevisiae in which the rDNA axis was "linearized" to reduce its dimensionality, thereby revealing its coaxial organization. In this situation, rRNA synthesis and processing continue. The axis is embedded in an inner layer/phase of SSU AFs that is surrounded by an outer layer/phase of LSU AFs. When subunit production is inhibited, subsets of AFs differentially relocate between the inner and outer layers, as expected if there is a cycle of repeated relocation whereby "latent" AFs become "operative" when recruited to nascent subunits. Recognition of AF cycling and localization of segments of rRNA make it possible to infer the existence of assembly intermediates that span between the inner and outer layers and to chart the cotranscriptional assembly of each subunit. AF cycling also can explain how having more than one protein phase in the nucleolus makes possible "vectorial 2-phase partitioning" as a driving force for relocation of nascent rRNPs. Because nucleoplasmic AFs are also present in the outer layer, we propose that critical surface remodeling occurs at this site, thereby partitioning subunit precursors into the nucleoplasm for post-transcriptional maturation. Comparison to observations on higher eukaryotes shows that the coaxial paradigm is likely to be applicable for the many other organisms that have rDNA repeats.
Collapse
Affiliation(s)
- Alan M Tartakoff
- Department of Pathology and Cell Biology Program, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA.
| | - Lan Chen
- Department of Pathology and Cell Biology Program, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Shashank Raghavachari
- Department of Pathology and Cell Biology Program, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Daria Gitiforooz
- Department of Pathology and Cell Biology Program, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Akshyasri Dhinakaran
- Department of Pathology and Cell Biology Program, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Chun-Lun Ni
- Department of Pathology and Cell Biology Program, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | | | - Ganapati H Mahabeleshwar
- Department of Pathology and Cell Biology Program, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Vanessa Pasadyn
- Department of Pathology and Cell Biology Program, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Hua Y, Song J, Peng C, Wang R, Ma Z, Zhang J, Zhang Z, Li N, Hou L. Advances in the Relationship Between Regulator of Ribosome Synthesis 1 (RRS1) and Diseases. Front Cell Dev Biol 2021; 9:620925. [PMID: 33718361 PMCID: PMC7947238 DOI: 10.3389/fcell.2021.620925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
A regulator of ribosome synthesis 1 (RRS1) was discovered in yeast and is mainly localized in the nucleolus and endoplasmic reticulum. It regulates ribosomal protein, RNA biosynthesis, and protein secretion and is closely involved in cellular senescence, cell cycle regulation, transcription, translation, oncogenic transformation etc., Mutations in the RRS1 gene are associated with the occurrence and development of Huntington’s disease and cancer, and overexpression of RRS1 promotes tumor growth and metastasis. In this review, the structure, function, and mechanisms of RRS1 in various diseases are discussed.
Collapse
Affiliation(s)
- Yanan Hua
- Department of Neurobiology, Basic Medical College, Qingdao University, Qingdao, China
| | - Jinlian Song
- Department of Laboratory, Women and Children's Hospital of Qingdao, Qingdao, China
| | - Cuixiu Peng
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Runze Wang
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Zhongliang Ma
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jinyu Zhang
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Zheng Zhang
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lin Hou
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Slee JA, Levine TP. Systematic prediction of FFAT motifs across eukaryote proteomes identifies nucleolar and eisosome proteins with the predicted capacity to form bridges to the endoplasmic reticulum. ACTA ACUST UNITED AC 2019; 2:1-21. [PMID: 31777772 DOI: 10.1177/2515256419883136] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER), the most pervasive organelle, exchanges information and material with many other organelles, but the extent of its inter-organelle connections and the proteins that form bridges are not well known. The integral ER membrane protein VAMP-associated protein (VAP) is found in multiple bridges, interacting with many proteins that contain a short linear motif consisting of "two phenylalanines in an acidic tract" (FFAT). The VAP-FFAT interaction is the most common mechanism by which cytoplasmic proteins, particularly inter-organelle bridges, target the ER. Therefore, predicting new FFAT motifs may both find new individual peripheral ER proteins and identify new routes of communication involving the ER. Here we searched for FFAT motifs across whole proteomes. The excess of eukaryotic proteins with FFAT motifs over background was ≥0.8%, suggesting this is the minimum number of peripheral ER proteins. In yeast, where VAP was previously known to bind 4 proteins with FFAT motifs, a detailed analysis of a subset of proteins predicted 20 FFAT motifs. Extrapolating these findings to the whole proteome estimated the number of FFAT motifs in yeast at approximately 50-55 (0.9% of proteome). Among these previously unstudied FFAT motifs, most have known functions outside the ER, so could be involved in inter-organelle communication. Many of these can target well-characterised membrane contact sites, however some are in nucleoli and eisosomes, organelles previously unknown to have molecular bridges to the ER. We speculate that the nucleolar and eisosomal proteins with predicted motifs may function while bridging to the ER, indicating novel ER-nucleolus and ER-eisosome routes of inter-organelle communication.
Collapse
Affiliation(s)
| | - Timothy P Levine
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
9
|
Ribosomal RNA gene repeats associate with the nuclear pore complex for maintenance after DNA damage. PLoS Genet 2019; 15:e1008103. [PMID: 30998688 PMCID: PMC6490929 DOI: 10.1371/journal.pgen.1008103] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/30/2019] [Accepted: 03/20/2019] [Indexed: 12/04/2022] Open
Abstract
The ribosomal RNA genes (rDNA) comprise a highly repetitive gene cluster. The copy number of genes at this locus can readily change and is therefore one of the most unstable regions of the genome. DNA damage in rDNA occurs after binding of the replication fork blocking protein Fob1 in S phase, which triggers unequal sister chromatid recombination. However, the precise mechanisms by which such DNA double-strand breaks (DSBs) are repaired is not well understood. Here, we demonstrate that the conserved protein kinase Tel1 maintains rDNA stability after replication fork arrest. We show that rDNA associates with nuclear pores, which is dependent on DNA damage checkpoint kinases Mec1/Tel1 and replisome component Tof1. These findings suggest that rDNA-nuclear pore association is due to a replication fork block and subsequent DSB. Indeed, quantitative microscopy revealed that rDNA is relocated to the nuclear periphery upon induction of a DSB. Finally, rDNA stability was reduced in strains where this association with the nuclear envelope was prevented, which suggests its importance for avoiding improper recombination repair that could induce repeat instability. Ribosomal RNA genes (rDNA) comprise an unstable region of the genome due to their highly repetitive structure and elevated levels of transcription. Collision between transcription and replication machineries of rDNA, which may lead to DNA damage in the form of a double-stranded break, is avoided by the replication fork barrier. When such a break is repaired by homologous recombination with a repeat on the sister chromatid, the abundance of homologous sequences may lead to a change in copy number. In most organisms, however, only small variations in copy number are observed, indicating that the rDNA is stably maintained. Our results suggest that some parts of rDNA become localized to the nuclear pore complex in a DNA double-strand break-dependent manner. This localization requires the protein kinase Tel1, which is involved in the DNA damage response pathway, and factors that recruit condensin, which facilitates condensation and segregation of rDNA during mitosis. We found that the rDNA becomes unstable when association with the nuclear envelope was prevented. Thus, the localization represents a unique strategy for maintaining repeat integrity after DNA damage.
Collapse
|
10
|
Gumber HK, McKenna JF, Estrada AL, Tolmie AF, Graumann K, Bass HW. Identification and characterization of genes encoding the nuclear envelope LINC complex in the monocot species Zea mays. J Cell Sci 2019; 132:jcs.221390. [PMID: 30659121 DOI: 10.1242/jcs.221390] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022] Open
Abstract
The linker of nucleoskeleton to cytoskeleton (LINC) complex is an essential multi-protein structure spanning the nuclear envelope. It connects the cytoplasm to the nucleoplasm, functions to maintain nuclear shape and architecture and regulates chromosome dynamics during cell division. Knowledge of LINC complex composition and function in the plant kingdom is primarily limited to Arabidopsis, but critically missing from the evolutionarily distant monocots, which include grasses, the most important agronomic crops worldwide. To fill this knowledge gap, we identified and characterized 22 maize genes, including a new grass-specific KASH gene family. By using bioinformatic, biochemical and cell biological approaches, we provide evidence that representative KASH candidates localize to the nuclear periphery and interact with Zea mays (Zm)SUN2 in vivo FRAP experiments using domain deletion constructs verified that this SUN-KASH interaction was dependent on the SUN but not the coiled-coil domain of ZmSUN2. A summary working model is proposed for the entire maize LINC complex encoded by conserved and divergent gene families. These findings expand our knowledge of the plant nuclear envelope in a model grass species, with implications for both basic and applied cellular research.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Hardeep K Gumber
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Joseph F McKenna
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP UK
| | - Amado L Estrada
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Andrea F Tolmie
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP UK
| | - Katja Graumann
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP UK
| | - Hank W Bass
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| |
Collapse
|
11
|
Bommi JR, Rao HBDP, Challa K, Higashide M, Shinmyozu K, Nakayama JI, Shinohara M, Shinohara A. Meiosis-specific cohesin component, Rec8, promotes the localization of Mps3 SUN domain protein on the nuclear envelope. Genes Cells 2019; 24:94-106. [PMID: 30417519 DOI: 10.1111/gtc.12653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022]
Abstract
Proteins in the nuclear envelope (NE) play a role in the dynamics and functions of the nucleus and of chromosomes during mitosis and meiosis. Mps3, a yeast NE protein with a conserved SUN domain, predominantly localizes on a yeast centrosome equivalent, spindle pole body (SPB), in mitotic cells. During meiosis, Mps3, together with SPB, forms a distinct multiple ensemble on NE. How meiosis-specific NE localization of Mps3 is regulated remains largely unknown. In this study, we found that a meiosis-specific component of the protein complex essential for sister chromatid cohesion, Rec8, binds to Mps3 during meiosis and controls Mps3 localization and proper dynamics on NE. Ectopic expression of Rec8 in mitotic yeast cells induced the formation of Mps3 patches/foci on NE. This required the cohesin regulator, WAPL ortholog, Rad61/Wpl1, suggesting that a meiosis-specific cohesin complex with Rec8 controls NE localization of Mps3. We also observed that two domains of the nucleoplasmic region of Mps3 are essential for NE localization of Mps3 in mitotic as well as meiotic cells. We speculate that the interaction of Mps3 with the meiosis-specific cohesin in the nucleoplasm is a key determinant for NE localization/function of Mps3.
Collapse
Affiliation(s)
| | | | - Kiran Challa
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Mika Higashide
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | | | - Jun-Ichi Nakayama
- RIKEN Center for Developmental Biology, Kobe, Japan
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki, Japan
| | - Miki Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
12
|
Garapati HS, Mishra K. Comparative genomics of nuclear envelope proteins. BMC Genomics 2018; 19:823. [PMID: 30445911 PMCID: PMC6240307 DOI: 10.1186/s12864-018-5218-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/31/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nuclear envelope (NE) that encapsulates the nuclear genome is a double lipid bilayer with several integral and peripherally associated proteins. It is a characteristic feature of the eukaryotes and acts as a hub for a number of important nuclear events including transcription, repair, and regulated gene expression. The proteins associated with the nuclear envelope mediate the NE functions and maintain its structural integrity, which is crucial for survival. In spite of the importance of this structure, knowledge of the protein composition of the nuclear envelope and their function, are limited to very few organisms belonging to Opisthokonta and Archaeplastida supergroups. The NE composition is largely unknown in organisms outside these two supergroups. RESULTS In this study, we have taken a comparative sequence analysis approach to identify the NE proteome that is present across all five eukaryotic supergroups. We identified 22 proteins involved in various nuclear functions to be part of the core NE proteome. The presence of these proteins across eukaryotes, suggests that they are traceable to the Last Eukaryotic Common Ancestor (LECA). Additionally, we also identified the NE proteins that have evolved in a lineage specific manner and those that have been preserved only in a subset of organisms. CONCLUSIONS Our study identifies the conserved features of the nuclear envelope across eukaryotes and provides insights into the potential composition and the functionalities that were constituents of the LECA NE.
Collapse
Affiliation(s)
- Hita Sony Garapati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
13
|
Zeng X, Li K, Yuan R, Gao H, Luo J, Liu F, Wu Y, Wu G, Yan X. Nuclear Envelope-Associated Chromosome Dynamics during Meiotic Prophase I. Front Cell Dev Biol 2018; 5:121. [PMID: 29376050 PMCID: PMC5767173 DOI: 10.3389/fcell.2017.00121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
Chromosome dynamics during meiotic prophase I are associated with a series of major events such as chromosomal reorganization and condensation, pairing/synapsis and recombination of the homologs, and chromosome movements at the nuclear envelope (NE). The NE is the barrier separating the nucleus from the cytoplasm and thus plays a central role in NE-associated chromosomal movements during meiosis. Previous studies have shown in various species that NE-linked chromosome dynamics are actually driven by the cytoskeleton. The linker of nucleoskeleton and cytoskeleton (LINC) complexes are important constituents of the NE that facilitate in the transfer of cytoskeletal forces across the NE to individual chromosomes. The LINCs consist of the inner and outer NE proteins Sad1/UNC-84 (SUN), and Klarsicht/Anc-1/Syne (KASH) domain proteins. Meiosis-specific adaptations of the LINC components and unique modifications of the NE are required during chromosomal movements. Nonetheless, the actual role of the NE in chromosomic dynamic movements in plants remains elusive. This review summarizes the findings of recent studies on meiosis-specific constituents and modifications of the NE and corresponding nucleoplasmic/cytoplasmic adaptors being involved in NE-associated movement of meiotic chromosomes, as well as describes the potential molecular network of transferring cytoplasm-derived forces into meiotic chromosomes in model organisms. It helps to gain a better understanding of the NE-associated meiotic chromosomal movements in plants.
Collapse
Affiliation(s)
- Xinhua Zeng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Keqi Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Rong Yuan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Hongfei Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Junling Luo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Fang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Yuhua Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Gang Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Xiaohong Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
14
|
Unruh JR, Slaughter BD, Jaspersen SL. Functional Analysis of the Yeast LINC Complex Using Fluctuation Spectroscopy and Super-Resolution Imaging. Methods Mol Biol 2018; 1840:137-161. [PMID: 30141044 DOI: 10.1007/978-1-4939-8691-0_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Saccharomyces cerevisiae and Schizosaccharomyces pombe genomes encode a single SUN domain-containing protein, Mps3 and Sad1, respectively. Both localize to the yeast centrosome (known as the spindle pole body, SPB) and are essential for bipolar spindle formation. In addition, Mps3 and Sad1 play roles in chromosome organization in both mitotic and meiotic cells that are independent of their SPB function. To dissect the function of Mps3 at the nuclear envelope (NE) and SPB, we employed cell imaging methods such as scanning fluorescence cross-correlation spectroscopy (SFCCS) and single particle averaging with structured illumination microscopy (SPA-SIM) to determine the strength, nature, and location of protein-protein interactions in vivo. We describe how these same techniques can also be used in fission yeast to analyze Sad1, providing evidence of their applicability to other NE proteins and systems.
Collapse
Affiliation(s)
- Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
15
|
Yabuki Y, Katayama M, Kodama Y, Sakamoto A, Yatsuhashi A, Funato K, Mizuta K. Arp2/3 complex and Mps3 are required for regulation of ribosome biosynthesis in the secretory stress response. Yeast 2017; 34:155-163. [PMID: 27862269 DOI: 10.1002/yea.3221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/18/2016] [Accepted: 11/03/2016] [Indexed: 11/11/2022] Open
Abstract
Secretory defects cause transcriptional repression of ribosome biogenesis in Saccharomyces cerevisiae. However, the molecular mechanism underlying secretory defect-induced transcriptional repression of ribosome biogenesis remains to be fully elucidated. In this study, we demonstrated that the Arp2/3 complex was required for reduction of ribosome protein gene expression in response to defective secretion by addition of tunicamycin. Two cmd1 mutants, cmd1-228 and cmd1-239 that cause mislocalization of calmodulin and defective mitotic spindle formation, respectively, failed to interact with Arc35, a component of the Arp2/3 complex. These mutants also caused defects in the reduction of ribosome protein gene expression induced by secretory blockade. A mutation in TUB4 (tub4-1), whose product has an essential function in microtubule organization, showed a similar response. In addition, we showed that the response to a secretory defect required SUN protein Mps3, which was localized at the nuclear envelope and involved in spindle pole body assembly. These results suggest that the Arp2/3 complex is required to transmit signals resulting from secretory blockade, and that the spindle pole body functions as a transit point from cytoplasm to Mps3 at the nuclear envelope. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yukari Yabuki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Masako Katayama
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Yushi Kodama
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Akiko Sakamoto
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Ayumi Yatsuhashi
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Kouichi Funato
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Keiko Mizuta
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| |
Collapse
|
16
|
Saad H, Cobb JA. A decade of understanding spatio-temporal regulation of DNA repair by the nuclear architecture. Biochem Cell Biol 2016; 94:433-440. [DOI: 10.1139/bcb-2016-0085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The nucleus is a hub for gene expression and is a highly organized entity. The nucleoplasm is heterogeneous, owing to the preferential localization of specific metabolic factors, which lead to the definition of nuclear compartments or bodies. The genome is organized into chromosome territories, as well as heterochromatin and euchromatin domains. Recent observations have indicated that nuclear organization is important for maintaining genomic stability. For example, nuclear organization has been implicated in stabilizing damaged DNA, repair-pathway choice, and in preventing chromosomal rearrangements. Over the past decade, several studies have revealed that dynamic changes in the nuclear architecture are important during double-strand break repair. Stemming from work in yeast, relocation of a damaged site prior to repair appears to be at least partially conserved in multicellular eukaryotes. In this review, we will discuss genome and nucleoplasm architecture, particularly the importance of the nuclear periphery in genome stability. We will also discuss how the site of relocation regulates repair-pathway choice.
Collapse
Affiliation(s)
- Hicham Saad
- Southern Alberta Cancer Research Institute, Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine; University of Calgary; 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada
- Southern Alberta Cancer Research Institute, Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine; University of Calgary; 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada
| | - Jennifer A. Cobb
- Southern Alberta Cancer Research Institute, Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine; University of Calgary; 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada
- Southern Alberta Cancer Research Institute, Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine; University of Calgary; 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada
| |
Collapse
|
17
|
Matsumoto A, Sakamoto C, Matsumori H, Katahira J, Yasuda Y, Yoshidome K, Tsujimoto M, Goldberg IG, Matsuura N, Nakao M, Saitoh N, Hieda M. Loss of the integral nuclear envelope protein SUN1 induces alteration of nucleoli. Nucleus 2016; 7:68-83. [PMID: 26962703 DOI: 10.1080/19491034.2016.1149664] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A supervised machine learning algorithm, which is qualified for image classification and analyzing similarities, is based on multiple discriminative morphological features that are automatically assembled during the learning processes. The algorithm is suitable for population-based analysis of images of biological materials that are generally complex and heterogeneous. Here we used the algorithm wndchrm to quantify the effects on nucleolar morphology of the loss of the components of nuclear envelope in a human mammary epithelial cell line. The linker of nucleoskeleton and cytoskeleton (LINC) complex, an assembly of nuclear envelope proteins comprising mainly members of the SUN and nesprin families, connects the nuclear lamina and cytoskeletal filaments. The components of the LINC complex are markedly deficient in breast cancer tissues. We found that a reduction in the levels of SUN1, SUN2, and lamin A/C led to significant changes in morphologies that were computationally classified using wndchrm with approximately 100% accuracy. In particular, depletion of SUN1 caused nucleolar hypertrophy and reduced rRNA synthesis. Further, wndchrm revealed a consistent negative correlation between SUN1 expression and the size of nucleoli in human breast cancer tissues. Our unbiased morphological quantitation strategies using wndchrm revealed an unexpected link between the components of the LINC complex and the morphologies of nucleoli that serves as an indicator of the malignant phenotype of breast cancer cells.
Collapse
Affiliation(s)
- Ayaka Matsumoto
- a Osaka University , Graduate School of Medicine and Health Science , Suita City , Osaka , Japan
| | - Chiyomi Sakamoto
- b Department of Medical Cell Biology , Institute of Molecular Embryology and Genetics, Kumamoto University , Kumamoto , Japan
| | - Haruka Matsumori
- b Department of Medical Cell Biology , Institute of Molecular Embryology and Genetics, Kumamoto University , Kumamoto , Japan
| | - Jun Katahira
- c Osaka University , Graduate School of Frontier Bioscience , Suita City , Osaka , Japan
| | - Yoko Yasuda
- b Department of Medical Cell Biology , Institute of Molecular Embryology and Genetics, Kumamoto University , Kumamoto , Japan
| | - Katsuhide Yoshidome
- d Department of Breast Surgery , Osaka Police Hospital , Tennoji-ku , Osaka , Japan
| | - Masahiko Tsujimoto
- e Department of Pathology , Osaka Police Hospital , Tennoji-ku , Osaka , Japan
| | - Ilya G Goldberg
- f Image Informatics and Computational Biology Unit, Laboratory of Genetics , National Institute on Aging, National Institutes of Health , Baltimore , MD USA
| | - Nariaki Matsuura
- a Osaka University , Graduate School of Medicine and Health Science , Suita City , Osaka , Japan
| | - Mitsuyoshi Nakao
- b Department of Medical Cell Biology , Institute of Molecular Embryology and Genetics, Kumamoto University , Kumamoto , Japan.,g Core Research for Evolutional Science and Technology (CREST) , Japan Agency for Medical Research and Development , Tokyo , Japan
| | - Noriko Saitoh
- b Department of Medical Cell Biology , Institute of Molecular Embryology and Genetics, Kumamoto University , Kumamoto , Japan
| | - Miki Hieda
- a Osaka University , Graduate School of Medicine and Health Science , Suita City , Osaka , Japan
| |
Collapse
|
18
|
Kim DI, Birendra KC, Roux KJ. Making the LINC: SUN and KASH protein interactions. Biol Chem 2015; 396:295-310. [PMID: 25720065 DOI: 10.1515/hsz-2014-0267] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/20/2015] [Indexed: 01/15/2023]
Abstract
Cell nuclei are physically integrated with the cytoskeleton through the linker of nucleoskeleton and cytoskeleton (LINC) complex, a structure that spans the nuclear envelope to link the nucleoskeleton and cytoskeleton. Outer nuclear membrane KASH domain proteins and inner nuclear membrane SUN domain proteins interact to form the core of the LINC complex. In this review, we provide a comprehensive analysis of the reported protein-protein interactions for KASH and SUN domain proteins. This critical structure, directly connecting the genome with the rest of the cell, contributes to a myriad of cellular functions and, when perturbed, is associated with human disease.
Collapse
|
19
|
Wan K, Kawara H, Yamamoto T, Kume K, Yabuki Y, Goshima T, Kitamura K, Ueno M, Kanai M, Hirata D, Funato K, Mizuta K. The essential function of Rrs1 in ribosome biogenesis is conserved in budding and fission yeasts. Yeast 2015; 32:607-14. [PMID: 26122634 DOI: 10.1002/yea.3083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 12/24/2022] Open
Abstract
The Rrs1 protein plays an essential role in the biogenesis of 60S ribosomal subunits in budding yeast (Saccharomyces cerevisiae). Here, we examined whether the fission yeast (Schizosaccharomyces pombe) homologue of Rrs1 also plays a role in ribosome biogenesis. To this end, we constructed two temperature-sensitive fission yeast strains, rrs1-D14/22G and rrs1-L51P, which had amino acid substitutions corresponding to those of the previously characterized budding yeast rrs1-84 (D22/30G) and rrs1-124 (L61P) strains, respectively. The fission yeast mutants exhibited severe defects in growth and 60S ribosomal subunit biogenesis at high temperatures. In addition, expression of the Rrs1 protein of fission yeast suppressed the growth defects of the budding yeast rrs1 mutants at high temperatures. Yeast two-hybrid analyses revealed that the interactions of Rrs1 with the Rfp2 and Ebp2 proteins were conserved in budding and fission yeasts. These results suggest that the essential function of Rrs1 in ribosome biogenesis may be conserved in budding and fission yeasts.
Collapse
Affiliation(s)
- Kun Wan
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Japan
| | - Haruka Kawara
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Japan
| | - Tomoyuki Yamamoto
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Japan
| | - Kazunori Kume
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Japan
| | - Yukari Yabuki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Japan
| | - Tetsuya Goshima
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Japan.,National Research Institute of Brewing, Higashi-Hiroshima, Japan
| | - Kenji Kitamura
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Japan
| | - Masaru Ueno
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Japan
| | - Muneyoshi Kanai
- National Research Institute of Brewing, Higashi-Hiroshima, Japan
| | - Dai Hirata
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Japan.,Asahi-shuzo Sake Brewing Co. Ltd, Niigata, Japan
| | - Kouichi Funato
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Japan
| | - Keiko Mizuta
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Japan
| |
Collapse
|
20
|
Ikeda A, Muneoka T, Murakami S, Hirota A, Yabuki Y, Karashima T, Nakazono K, Tsuruno M, Pichler H, Shirahige K, Kodama Y, Shimamoto T, Mizuta K, Funato K. Sphingolipids regulate telomere clustering by affecting the transcription of genes involved in telomere homeostasis. J Cell Sci 2015; 128:2454-67. [PMID: 26045446 DOI: 10.1242/jcs.164160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 05/20/2015] [Indexed: 12/14/2022] Open
Abstract
In eukaryotic organisms, including mammals, nematodes and yeasts, the ends of chromosomes, telomeres are clustered at the nuclear periphery. Telomere clustering is assumed to be functionally important because proper organization of chromosomes is necessary for proper genome function and stability. However, the mechanisms and physiological roles of telomere clustering remain poorly understood. In this study, we demonstrate a role for sphingolipids in telomere clustering in the budding yeast Saccharomyces cerevisiae. Because abnormal sphingolipid metabolism causes downregulation of expression levels of genes involved in telomere organization, sphingolipids appear to control telomere clustering at the transcriptional level. In addition, the data presented here provide evidence that telomere clustering is required to protect chromosome ends from DNA-damage checkpoint signaling. As sphingolipids are found in all eukaryotes, we speculate that sphingolipid-based regulation of telomere clustering and the protective role of telomere clusters in maintaining genome stability might be conserved in eukaryotes.
Collapse
Affiliation(s)
- Atsuko Ikeda
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Tetsuya Muneoka
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Suguru Murakami
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Ayaka Hirota
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Yukari Yabuki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Takefumi Karashima
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Kota Nakazono
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Masahiro Tsuruno
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Harald Pichler
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14/2, Graz 8010, Austria
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Institute of Molecular and Cellular Biosciences, the University of Tokyo, Tokyo 113-0032, Japan
| | | | - Toshi Shimamoto
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Keiko Mizuta
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Kouichi Funato
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
21
|
Asano N, Kato K, Nakamura A, Komoda K, Tanaka I, Yao M. Structural and functional analysis of the Rpf2-Rrs1 complex in ribosome biogenesis. Nucleic Acids Res 2015; 43:4746-57. [PMID: 25855814 PMCID: PMC4482071 DOI: 10.1093/nar/gkv305] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/27/2015] [Indexed: 11/28/2022] Open
Abstract
Proteins Rpf2 and Rrs1 are required for 60S ribosomal subunit maturation. These proteins are necessary for the recruitment of three ribosomal components (5S ribosomal RNA [rRNA], RpL5 and RpL11) to the 90S ribosome precursor and subsequent 27SB pre-rRNA processing. Here we present the crystal structure of the Aspergillus nidulans (An) Rpf2-Rrs1 core complex. The core complex contains the tightly interlocked N-terminal domains of Rpf2 and Rrs1. The Rpf2 N-terminal domain includes a Brix domain characterized by similar N- and C-terminal architecture. The long α-helix of Rrs1 joins the C-terminal half of the Brix domain as if it were part of a single molecule. The conserved proline-rich linker connecting the N- and C-terminal domains of Rrs1 wrap around the side of Rpf2 and anchor the C-terminal domain of Rrs1 to a specific site on Rpf2. In addition, gel shift analysis revealed that the Rpf2-Rrs1 complex binds directly to 5S rRNA. Further analysis of Rpf2-Rrs1 mutants demonstrated that Saccharomyces cerevisiae Rpf2 R236 (corresponds to R238 of AnRpf2) plays a significant role in this binding. Based on these studies and previous reports, we have proposed a model for ribosomal component recruitment to the 90S ribosome precursor.
Collapse
Affiliation(s)
- Nozomi Asano
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Koji Kato
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Akiyoshi Nakamura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keisuke Komoda
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Isao Tanaka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
22
|
Gay S, Foiani M. Nuclear envelope and chromatin, lock and key of genome integrity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:267-330. [PMID: 26008788 DOI: 10.1016/bs.ircmb.2015.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
More than as an inert separation between the inside and outside of the nucleus, the nuclear envelope (NE) constitutes an active toll, which controls the import and export of molecules, and also a hub for a diversity of genomic processes, such as transcription, DNA repair, and chromatin dynamics. Proteins localized at the inner surface of the NE (such as lamins, nuclear pore proteins, lamin-associated proteins) interact with chromatin in a dynamic manner, contributing to the establishment of topological domains. In this review, we address the complex interplay between chromatin and NE. We discuss the divergence of this cross talk during evolution and comment both on the current established models and the most recent findings. In particular, we focus our attention on how the NE cooperates with chromatin in protecting the genome integrity.
Collapse
Affiliation(s)
- Sophie Gay
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Marco Foiani
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy; Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
23
|
Horigome C, Dion V, Seeber A, Gehlen LR, Gasser SM. Visualizing the spatiotemporal dynamics of DNA damage in budding yeast. Methods Mol Biol 2015; 1292:77-96. [PMID: 25804749 DOI: 10.1007/978-1-4939-2522-3_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fluorescence microscopy has enabled the analysis of both the spatial distribution of DNA damage and its dynamics during the DNA damage response (DDR). Three microscopic techniques can be used to study the spatiotemporal dynamics of DNA damage. In the first part we describe how we determine the position of DNA double-strand breaks (DSBs) relative to the nuclear envelope. The second part describes how to quantify the co-localization of DNA DSBs with nuclear pore clusters, or other nuclear subcompartments. The final protocols describe methods for the quantification of locus mobility over time.
Collapse
Affiliation(s)
- Chihiro Horigome
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | | | | | | | | |
Collapse
|
24
|
SWR1 and INO80 chromatin remodelers contribute to DNA double-strand break perinuclear anchorage site choice. Mol Cell 2014; 55:626-39. [PMID: 25066231 DOI: 10.1016/j.molcel.2014.06.027] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/05/2014] [Accepted: 06/17/2014] [Indexed: 11/23/2022]
Abstract
Persistent DNA double-strand breaks (DSBs) are recruited to the nuclear periphery in budding yeast. Both the Nup84 pore subcomplex and Mps3, an inner nuclear membrane (INM) SUN domain protein, have been implicated in DSB binding. It was unclear what, if anything, distinguishes the two potential sites of repair. Here, we characterize and distinguish the two binding sites. First, DSB-pore interaction occurs independently of cell-cycle phase and requires neither the chromatin remodeler INO80 nor recombinase Rad51 activity. In contrast, Mps3 binding is S and G2 phase specific and requires both factors. SWR1-dependent incorporation of Htz1 (H2A.Z) is necessary for break relocation to either site in both G1- and S-phase cells. Importantly, functional assays indicate that mutations in the two sites have additive repair defects, arguing that the two perinuclear anchorage sites define distinct survival pathways.
Collapse
|
25
|
Chen J, Smoyer CJ, Slaughter BD, Unruh JR, Jaspersen SL. The SUN protein Mps3 controls Ndc1 distribution and function on the nuclear membrane. ACTA ACUST UNITED AC 2014; 204:523-39. [PMID: 24515347 PMCID: PMC3926959 DOI: 10.1083/jcb.201307043] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ndc1–Mps3 interaction is important for controlling the distribution of Ndc1 between the nuclear pore complex and spindle pole body to ensure proper nuclear envelope insertion of both complexes. In closed mitotic systems such as Saccharomyces cerevisiae, nuclear pore complexes (NPCs) and the spindle pole body (SPB) must assemble into an intact nuclear envelope (NE). Ndc1 is a highly conserved integral membrane protein involved in insertion of both complexes. In this study, we show that Ndc1 interacts with the SUN domain–containing protein Mps3 on the NE in live yeast cells using fluorescence cross-correlation spectroscopy. Genetic and molecular analysis of a series of new ndc1 alleles allowed us to understand the role of Ndc1–Mps3 binding at the NE. We show that the ndc1-L562S allele is unable to associate specifically with Mps3 and find that this mutant is lethal due to a defect in SPB duplication. Unlike other ndc1 alleles, the growth and Mps3 binding defect of ndc1-L562S is fully suppressed by deletion of POM152, which encodes a NPC component. Based on our data we propose that the Ndc1–Mps3 interaction is important for controlling the distribution of Ndc1 between the NPC and SPB.
Collapse
Affiliation(s)
- Jingjing Chen
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | | | | | | | | |
Collapse
|
26
|
Guo T, Fang Y. Functional organization and dynamics of the cell nucleus. FRONTIERS IN PLANT SCIENCE 2014; 5:378. [PMID: 25161658 PMCID: PMC4130368 DOI: 10.3389/fpls.2014.00378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/16/2014] [Indexed: 05/16/2023]
Abstract
The eukaryotic cell nucleus enclosed within the nuclear envelope harbors organized chromatin territories and various nuclear bodies as sub-nuclear compartments. This higher-order nuclear organization provides a unique environment to regulate the genome during replication, transcription, maintenance, and other processes. In this review, we focus on the plant four-dimensional nuclear organization, its dynamics and function in response to signals during development or stress.
Collapse
Affiliation(s)
| | - Yuda Fang
- *Correspondence: Yuda Fang, National key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China e-mail:
| |
Collapse
|
27
|
Rothballer A, Kutay U. The diverse functional LINCs of the nuclear envelope to the cytoskeleton and chromatin. Chromosoma 2013; 122:415-29. [PMID: 23736899 PMCID: PMC3777164 DOI: 10.1007/s00412-013-0417-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 11/30/2022]
Abstract
The nuclear envelope (NE) is connected to the different types of cytoskeletal elements by linker of nucleoskeleton and cytoskeleton (LINC) complexes. LINC complexes exist from yeast to humans, and have preserved their general architecture throughout evolution. They are composed of SUN and KASH domain proteins of the inner and the outer nuclear membrane, respectively. These SUN–KASH bridges are used for the transmission of forces across the NE and support diverse biological processes. Here, we review the function of SUN and KASH domain proteins in various unicellular and multicellular species. Specifically, we discuss their influence on nuclear morphology and cytoskeletal organization. Further, emphasis is given on the role of LINC complexes in nuclear anchorage and migration as well as in genome organization.
Collapse
Affiliation(s)
- Andrea Rothballer
- Department of Biology, Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, 8093 Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, 8093 Zurich, Switzerland
| |
Collapse
|
28
|
Abstract
Linkers of the nucleoskeleton to the cytoskeleton (LINC) complexes formed by SUN and KASH proteins are conserved eukaryotic protein complexes that bridge the nuclear envelope (NE) via protein-protein interactions in the NE lumen. Revealed by opisthokont studies, LINC complexes are key players in multiple cellular processes, such as nuclear and chromosomal positioning and nuclear shape determination, which in turn influence the generation of gametes and several aspects of development. Although comparable processes have long been known in plants, the first plant nuclear envelope bridging complexes were only recently identified. WPP domain-interacting proteins at the outer NE have little homology to known opisthokont KASH proteins, but form complexes with SUN proteins at the inner NE that have plant-specific properties and functions. In this review, we will address the importance of LINC complex-regulated processes, describe the plant NE bridging complexes and compare them to opisthokont LINC complexes.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
29
|
Giraud-Panis MJ, Pisano S, Benarroch-Popivker D, Pei B, Le Du MH, Gilson E. One identity or more for telomeres? Front Oncol 2013; 3:48. [PMID: 23509004 PMCID: PMC3598436 DOI: 10.3389/fonc.2013.00048] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 02/23/2013] [Indexed: 12/19/2022] Open
Abstract
A major issue in telomere research is to understand how the integrity of chromosome ends is controlled. The fact that different types of nucleoprotein complexes have been described at the telomeres of different organisms raises the question of whether they have in common a structural identity that explains their role in chromosome protection. We will review here how telomeric nucleoprotein complexes are structured, comparing different organisms and trying to link these structures to telomere biology. It emerges that telomeres are formed by a complex and specific network of interactions between DNA, RNA, and proteins. The fact that these interactions and associated activities are reinforcing each other might help to guarantee the robustness of telomeric functions across the cell cycle and in the event of cellular perturbations. We will also discuss the recent notion that telomeres have evolved specific systems to overcome the DNA topological stress generated during their replication and transcription. This will lead to revisit the way we envisage the functioning of telomeric complexes since the regulation of topology is central to DNA stability, replication, recombination, and transcription as well as to chromosome higher-order organization.
Collapse
Affiliation(s)
- Marie-Josèphe Giraud-Panis
- Faculté de Médecine de Nice, Université de Nice-Sophia Antipolis, Institute for Research on Cancer and Aging Nice, UMR 7284 CNRS, U1081 INSERM Nice, France
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Budding yeast, like other eukaryotes, carries its genetic information on chromosomes that are sequestered from other cellular constituents by a double membrane, which forms the nucleus. An elaborate molecular machinery forms large pores that span the double membrane and regulate the traffic of macromolecules into and out of the nucleus. In multicellular eukaryotes, an intermediate filament meshwork formed of lamin proteins bridges from pore to pore and helps the nucleus reform after mitosis. Yeast, however, lacks lamins, and the nuclear envelope is not disrupted during yeast mitosis. The mitotic spindle nucleates from the nucleoplasmic face of the spindle pole body, which is embedded in the nuclear envelope. Surprisingly, the kinetochores remain attached to short microtubules throughout interphase, influencing the position of centromeres in the interphase nucleus, and telomeres are found clustered in foci at the nuclear periphery. In addition to this chromosomal organization, the yeast nucleus is functionally compartmentalized to allow efficient gene expression, repression, RNA processing, genomic replication, and repair. The formation of functional subcompartments is achieved in the nucleus without intranuclear membranes and depends instead on sequence elements, protein-protein interactions, specific anchorage sites at the nuclear envelope or at pores, and long-range contacts between specific chromosomal loci, such as telomeres. Here we review the spatial organization of the budding yeast nucleus, the proteins involved in forming nuclear subcompartments, and evidence suggesting that the spatial organization of the nucleus is important for nuclear function.
Collapse
|
31
|
Rothballer A, Schwartz TU, Kutay U. LINCing complex functions at the nuclear envelope: what the molecular architecture of the LINC complex can reveal about its function. Nucleus 2013; 4:29-36. [PMID: 23324460 PMCID: PMC3585024 DOI: 10.4161/nucl.23387] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the double membrane of the nuclear envelope (NE) and physically connect nuclear structures to cytoskeletal elements. LINC complexes are envisioned as force transducers in the NE, which facilitate processes like nuclear anchorage and migration, or chromosome movements. The complexes are built from members of two evolutionary conserved families of transmembrane (TM) proteins, the SUN (Sad1/UNC-84) domain proteins in the inner nuclear membrane (INM) and the KASH (Klarsicht/ANC-1/SYNE homology) domain proteins in the outer nuclear membrane (ONM). In the lumen of the NE, the SUN and KASH domains engage in an intimate assembly to jointly form a NE bridge. Detailed insights into the molecular architecture and atomic structure of LINC complexes have recently revealed the molecular basis of nucleo-cytoskeletal coupling. They bear important implications for LINC complex function and suggest new potential and as yet unexplored roles, which the complexes may play in the cell.
Collapse
|
32
|
Horigome C, Mizuta K. Ribosome biogenesis factors working with a nuclear envelope SUN domain protein: new players in the solar system. Nucleus 2012; 3:22-8. [PMID: 22156743 DOI: 10.4161/nucl.18930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The nucleolus, the most prominent structure observed in the nucleus, is often called a “ribosome factory.” Cells spend an enormous fraction of their resources to achieve the mass-production of ribosomes required by rapid growth. On the other hand, ribosome biogenesis is also tightly controlled, and must be coordinated with other cellular processes. Ribosomal proteins and ribosome biogenesis factors are attractive candidates for this link. Recent results suggest that some of them have functions beyond ribosome biogenesis. Here we review recent progress on ribosome biogenesis factors, Ebp2 and Rrs1, in yeast Saccharomyces cerevisiae. In this organism, Ebp2 and Rrs1 are found in the nucleolus and at the nuclear periphery. At the nuclear envelope, these proteins interact with a membrane-spanning SUN domain protein, Mps3, and play roles in telomere clustering and silencing along with the silent information regulator Sir4. We propose that a protein complex consisting Ebp2, Rrs1 and Mps3 is involved in a wide range of activities at the nuclear envelope.
Collapse
Affiliation(s)
- Chihiro Horigome
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan.
| | | |
Collapse
|
33
|
Genetic analysis of Mps3 SUN domain mutants in Saccharomyces cerevisiae reveals an interaction with the SUN-like protein Slp1. G3-GENES GENOMES GENETICS 2012; 2:1703-18. [PMID: 23275891 PMCID: PMC3516490 DOI: 10.1534/g3.112.004614] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/26/2012] [Indexed: 01/16/2023]
Abstract
In virtually all eukaryotic cells, protein bridges formed by the conserved inner nuclear membrane SUN (for Sad1-UNC-84) domain-containing proteins and their outer nuclear membrane binding partners span the nuclear envelope (NE) to connect the nucleoplasm and cytoplasm. These linkages are important for chromosome movements within the nucleus during meiotic prophase and are essential for nuclear migration and centrosome attachment to the NE. In Saccharomyces cerevisiae, MPS3 encodes the sole SUN protein. Deletion of MPS3 or the conserved SUN domain is lethal in three different genetic backgrounds. Mutations in the SUN domain result in defects in duplication of the spindle pole body, the yeast centrosome-equivalent organelle. A genome-wide screen for mutants that exhibited synthetic fitness defects in combination with mps3 SUN domain mutants yielded a large number of hits in components of the spindle apparatus and the spindle checkpoint. Mutants in lipid metabolic processes and membrane organization also exacerbated the growth defects of mps3 SUN domain mutants, pointing to a role for Mps3 in nuclear membrane organization. Deletion of SLP1 or YER140W/EMP65 (for ER membrane protein of 65 kDa) aggravated growth of mps3 SUN domain mutants. Slp1 and Emp65 form an ER-membrane associated protein complex that is not required directly for spindle pole body duplication or spindle assembly. Rather, Slp1 is involved in Mps3 localization to the NE.
Collapse
|
34
|
BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood 2012; 120:2843-52. [PMID: 22904298 DOI: 10.1182/blood-2012-02-413021] [Citation(s) in RCA: 310] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We investigated the therapeutic potential of JQ1, an inhibitor of the BET class of human bromodomain proteins, in B-cell acute lymphoblastic leukemia (B-ALL). We show that JQ1 potently reduces the viability of B-ALL cell lines with high-risk cytogenetics. Among the most sensitive were lines with rearrangements of CRLF2, which is overexpressed in ~ 10% of B-ALL. CRLF2 heterodimerizes with the IL7 receptor (IL7R) and signals through JAK2, JAK1, and STAT5 to drive proliferation and suppress apoptosis. As previously observed, JQ1 induced the down-regulation of MYC transcription, the loss of BRD4 at the MYC promoter, and the reduced expression of c-Myc target genes. Strikingly, JQ1 also down-regulated IL7R transcription, depleted BRD4 from the IL7R promoter, and reduced JAK2 and STAT5 phosphorylation. Genome-wide expression profiling demonstrated a restricted effect of JQ1 on transcription, with MYC and IL7R being among the most down-regulated genes. Indeed, IL7R was the only cytokine receptor in CRLF2-rearranged B-ALL cells significantly down-regulated by JQ1 treatment. In mice xenografted with primary human CRLF2-rearranged B-ALL, JQ1 suppressed c-Myc expression and STAT5 phosphorylation and significantly prolonged survival. Thus, bromodomain inhibition is a promising therapeutic strategy for B-ALL as well as other conditions dependent on IL7R signaling.
Collapse
|
35
|
Lee CY, Conrad MN, Dresser ME. Meiotic chromosome pairing is promoted by telomere-led chromosome movements independent of bouquet formation. PLoS Genet 2012; 8:e1002730. [PMID: 22654677 PMCID: PMC3359977 DOI: 10.1371/journal.pgen.1002730] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 04/11/2012] [Indexed: 11/19/2022] Open
Abstract
Chromosome pairing in meiotic prophase is a prerequisite for the high fidelity of chromosome segregation that haploidizes the genome prior to gamete formation. In the budding yeast Saccharomyces cerevisiae, as in most multicellular eukaryotes, homologous pairing at the cytological level reflects the contemporaneous search for homology at the molecular level, where DNA double-strand broken ends find and interact with templates for repair on homologous chromosomes. Synapsis (synaptonemal complex formation) stabilizes pairing and supports DNA repair. The bouquet stage, where telomeres have formed a transient single cluster early in meiotic prophase, and telomere-promoted rapid meiotic prophase chromosome movements (RPMs) are prominent temporal correlates of pairing and synapsis. The bouquet has long been thought to contribute to the kinetics of pairing, but the individual roles of bouquet and RPMs are difficult to assess because of common dependencies. For example, in budding yeast RPMs and bouquet both require the broadly conserved SUN protein Mps3 as well as Ndj1 and Csm4, which link telomeres to the cytoskeleton through the intact nuclear envelope. We find that mutants in these genes provide a graded series of RPM activity: wild-type>mps3-dCC>mps3-dAR>ndj1Δ>mps3-dNT = csm4Δ. Pairing rates are directly correlated with RPM activity even though only wild-type forms a bouquet, suggesting that RPMs promote homologous pairing directly while the bouquet plays at most a minor role in Saccharomyces cerevisiae. A new collision trap assay demonstrates that RPMs generate homologous and heterologous chromosome collisions in or before the earliest stages of prophase, suggesting that RPMs contribute to pairing by stirring the nuclear contents to aid the recombination-mediated homology search.
Collapse
Affiliation(s)
- Chih-Ying Lee
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Michael N. Conrad
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Michael E. Dresser
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
36
|
Tjong H, Gong K, Chen L, Alber F. Physical tethering and volume exclusion determine higher-order genome organization in budding yeast. Genome Res 2012; 22:1295-305. [PMID: 22619363 PMCID: PMC3396370 DOI: 10.1101/gr.129437.111] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this paper we show that tethering of heterochromatic regions to nuclear landmarks and random encounters of chromosomes in the confined nuclear volume are sufficient to explain the higher-order organization of the budding yeast genome. We have quantitatively characterized the contact patterns and nuclear territories that emerge when chromosomes are allowed to behave as constrained but otherwise randomly configured flexible polymer chains in the nucleus. Remarkably, this constrained random encounter model explains in a statistical manner the experimental hallmarks of the S. cerevisiae genome organization, including (1) the folding patterns of individual chromosomes; (2) the highly enriched interactions between specific chromatin regions and chromosomes; (3) the emergence, shape, and position of gene territories; (4) the mean distances between pairs of telomeres; and (5) even the co-location of functionally related gene loci, including early replication start sites and tRNA genes. Therefore, most aspects of the yeast genome organization can be explained without calling on biochemically mediated chromatin interactions. Such interactions may modulate the pre-existing propensity for co-localization but seem not to be the cause for the observed higher-order organization. The fact that geometrical constraints alone yield a highly organized genome structure, on which different functional elements are specifically distributed, has strong implications for the folding principles of the genome and the evolution of its function.
Collapse
Affiliation(s)
- Harianto Tjong
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | |
Collapse
|
37
|
Ghosh S, Gardner JM, Smoyer CJ, Friederichs JM, Unruh JR, Slaughter BD, Alexander R, Chisholm RD, Lee KK, Workman JL, Jaspersen SL. Acetylation of the SUN protein Mps3 by Eco1 regulates its function in nuclear organization. Mol Biol Cell 2012; 23:2546-59. [PMID: 22593213 PMCID: PMC3386218 DOI: 10.1091/mbc.e11-07-0600] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Saccharomyces cerevisiae SUN-domain protein Mps3 is required for duplication of the yeast centrosome-equivalent organelle, the spindle pole body (SPB), and it is involved in multiple aspects of nuclear organization, including telomere tethering and gene silencing at the nuclear membrane, establishment of sister chromatid cohesion, and repair of certain types of persistent DNA double-stranded breaks. How these diverse SUN protein functions are regulated is unknown. Here we show that the Mps3 N-terminus is a substrate for the acetyltransferase Eco1/Ctf7 in vitro and in vivo and map the sites of acetylation to three lysine residues adjacent to the Mps3 transmembrane domain. Mutation of these residues shows that acetylation is not essential for growth, SPB duplication, or distribution in the nuclear membrane. However, analysis of nonacetylatable mps3 mutants shows that this modification is required for accurate sister chromatid cohesion and for chromosome recruitment to the nuclear membrane. Acetylation of Mps3 by Eco1 is one of the few regulatory mechanisms known to control nuclear organization.
Collapse
Affiliation(s)
- Suman Ghosh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jaspersen SL, Ghosh S. Nuclear envelope insertion of spindle pole bodies and nuclear pore complexes. Nucleus 2012; 3:226-36. [PMID: 22572959 PMCID: PMC3414398 DOI: 10.4161/nucl.20148] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The defining feature of eukaryotic cells is the double lipid bilayer of the nuclear envelope (NE) that serves as a physical barrier separating the genome from the cytosol. Nuclear pore complexes (NPCs) are embedded in the NE to facilitate transport of proteins and other macromolecules into and out of the nucleus. In fungi and early embryos where the NE does not completely breakdown during mitosis, microtubule-organizing centers such as the spindle pole body (SPB) must also be inserted into the NE to facilitate organization of the mitotic spindle. Several recent papers have shed light on the mechanism by which SPB complexes are inserted into the NE. An unexpected link between the SPB and NPCs suggests that assembly of these NE complexes is tightly coordinated. We review the findings of these reports in light of our current knowledge of SPB, NPC and NE structure, assembly and function.
Collapse
Affiliation(s)
- Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO, USA.
| | | |
Collapse
|
39
|
Shimoji K, Jakovljevic J, Tsuchihashi K, Umeki Y, Wan K, Kawasaki S, Talkish J, Woolford JL, Mizuta K. Ebp2 and Brx1 function cooperatively in 60S ribosomal subunit assembly in Saccharomyces cerevisiae. Nucleic Acids Res 2012; 40:4574-88. [PMID: 22319211 PMCID: PMC3378894 DOI: 10.1093/nar/gks057] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The yeast protein Ebp2 is required for early steps in production of 60S ribosomal subunits. To search for cofactors with which Ebp2 functions, or substrates on which it acts, we screened for mutants that were synthetically lethal (sl) with the ebp2-14 mutation. Four different mutant alleles of the 60S ribosomal subunit assembly factor Brx1 were found. To investigate defects of the double mutant, we constructed strains conditional for the ebp2-14 brx1- synthetic lethal phenotype. These ebp2-14 brx1 mutants were defective in processing of 27S pre-rRNA and production of 60S subunits, under conditions where each single mutant was not. Ebp2 and Brx1 exhibit a strong two-hybrid interaction, which is eliminated by some combinations of brx1 and ebp2 mutations. In one such mutant, Ebp2 and Brx1 can still associate with pre-ribosomes, but subunit maturation is perturbed. Depletion of either Ebp2 or Brx1 revealed that Brx1 requires Ebp2 for its stable association with pre-ribosomes, but Ebp2 does not depend on the presence of Brx1 to enter pre-ribosomes. These results suggest that assembly of 60S ribosomal subunits requires cooperation of Ebp2 with Brx1, together with other molecules present in pre-ribosomes, potentially including several found in assembly subcomplexes with Brx1 and Ebp2.
Collapse
Affiliation(s)
- Kaori Shimoji
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jelena Jakovljevic
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kanako Tsuchihashi
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Yuka Umeki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kun Wan
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Suzuka Kawasaki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jason Talkish
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - John L. Woolford
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- *To whom correspondence should be addressed. Tel: +81 824 247 923; Fax: +81 824 247 923;
| | - Keiko Mizuta
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- *To whom correspondence should be addressed. Tel: +81 824 247 923; Fax: +81 824 247 923;
| |
Collapse
|
40
|
Friederichs JM, Ghosh S, Smoyer CJ, McCroskey S, Miller BD, Weaver KJ, Delventhal KM, Unruh J, Slaughter BD, Jaspersen SL. The SUN protein Mps3 is required for spindle pole body insertion into the nuclear membrane and nuclear envelope homeostasis. PLoS Genet 2011; 7:e1002365. [PMID: 22125491 PMCID: PMC3219597 DOI: 10.1371/journal.pgen.1002365] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/13/2011] [Indexed: 01/23/2023] Open
Abstract
The budding yeast spindle pole body (SPB) is anchored in the nuclear envelope so that it can simultaneously nucleate both nuclear and cytoplasmic microtubules. During SPB duplication, the newly formed SPB is inserted into the nuclear membrane. The mechanism of SPB insertion is poorly understood but likely involves the action of integral membrane proteins to mediate changes in the nuclear envelope itself, such as fusion of the inner and outer nuclear membranes. Analysis of the functional domains of the budding yeast SUN protein and SPB component Mps3 revealed that most regions are not essential for growth or SPB duplication under wild-type conditions. However, a novel dominant allele in the P-loop region, MPS3-G186K, displays defects in multiple steps in SPB duplication, including SPB insertion, indicating a previously unknown role for Mps3 in this step of SPB assembly. Characterization of the MPS3-G186K mutant by electron microscopy revealed severe over-proliferation of the inner nuclear membrane, which could be rescued by altering the characteristics of the nuclear envelope using both chemical and genetic methods. Lipid profiling revealed that cells lacking MPS3 contain abnormal amounts of certain types of polar and neutral lipids, and deletion or mutation of MPS3 can suppress growth defects associated with inhibition of sterol biosynthesis, suggesting that Mps3 directly affects lipid homeostasis. Therefore, we propose that Mps3 facilitates insertion of SPBs in the nuclear membrane by modulating nuclear envelope composition.
Collapse
Affiliation(s)
| | - Suman Ghosh
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Christine J. Smoyer
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Scott McCroskey
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Brandon D. Miller
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kyle J. Weaver
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kym M. Delventhal
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jay Unruh
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Brian D. Slaughter
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sue L. Jaspersen
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|