1
|
Kang P, Liu P, Hu Y, Kim J, Kumar A, Dorneich-Hayes MK, Murzyn W, Anderson ZJ, Frank LN, Kavlock N, Hoffman E, Martin CC, Miao T, Shimell M, Powell-Coffman JA, O’Connor MB, Perrimon N, Bai H. NF-κB-mediated developmental delay extends lifespan in Drosophila. Proc Natl Acad Sci U S A 2025; 122:e2420811122. [PMID: 40339121 PMCID: PMC12088391 DOI: 10.1073/pnas.2420811122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/09/2025] [Indexed: 05/10/2025] Open
Abstract
Developmental time (or time to maturity) strongly correlates with an animal's maximum lifespan, with late-maturing individuals often living longer. However, the genetic mechanisms underlying this phenomenon remain largely unknown. This may be because most previously identified longevity genes regulate growth rate rather than developmental time. To address this gap, we genetically manipulated prothoracicotropic hormone (PTTH), the primary regulator of developmental timing in Drosophila, to explore the genetic link between developmental time and longevity. Loss of PTTH delays developmental timing without altering the growth rate. Intriguingly, PTTH mutants exhibit extended lifespan despite their larger body size. This lifespan extension depends on ecdysone signaling, as feeding 20-hydroxyecdysone to PTTH mutants reverses the effect. Mechanistically, loss of PTTH blunts age-dependent chronic inflammation, specifically in fly hepatocytes (oenocytes). Developmental transcriptomics reveal that NF-κB signaling activates during larva-to-adult transition, with PTTH inducing this signaling via ecdysone. Notably, time-restricted and oenocyte-specific silencing of Relish (an NF-κB homolog) at early 3rd instar larval stages significantly prolongs adult lifespan while delaying pupariation. Our study establishes an aging model that uncouples developmental time from growth rate, highlighting NF-κB signaling as a key developmental program in linking developmental time to adult lifespan.
Collapse
Affiliation(s)
- Ping Kang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA50011
| | - Peiduo Liu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA50011
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA55455
| | - Jinoh Kim
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA50011
| | - Ankur Kumar
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA50011
| | | | - Wren Murzyn
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA50011
| | - Zenessa J. Anderson
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA50011
| | - Lexi N. Frank
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA50011
| | - Nicholas Kavlock
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA50011
| | - Elizabeth Hoffman
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA50011
| | - Chad C. Martin
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA50011
| | - Ting Miao
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA50011
| | - MaryJane Shimell
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN02115
| | - Jo Anne Powell-Coffman
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA50011
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN02115
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA55455
- HHMI, Boston, MA02115
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA50011
| |
Collapse
|
2
|
Zeng B, Grayson H, Sun J. GATA factor Serpent promotes phagocytosis in non-professional phagocytes during Drosophila oogenesis. Development 2025; 152:dev204464. [PMID: 40136017 PMCID: PMC12070059 DOI: 10.1242/dev.204464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
Clearance of dying cells is essential for tissue homeostasis and requires both professional and non-professional phagocytes; however, it is unclear what promotes phagocytosis by non-professional phagocytes. Follicle cells of Drosophila egg chambers function as non-professional phagocytes to clear large germ cell debris in mid and late oogenesis, providing an excellent model for the study of non-professional phagocytes. Here, we demonstrate that GATA factor Serpent (Srp) plays an indispensable role in promoting the phagocytic capacity of follicle cells in both processes. Srp is upregulated in follicle cells of degenerating mid-stage egg chambers, and its knockdown results in incomplete clearance of germ cell debris and premature follicle cell death. In addition, Srp is upregulated in stretch follicle cells and is essential for clearing the nurse cell nuclei in late oogenesis. Genetic analysis reveals that Srp acts downstream of JNK signaling to upregulate the expression of the phagocytic receptor Draper as well as other components in the corpse processing machinery. Our findings highlight the crucial role for Srp in non-professional phagocytes during Drosophila oogenesis, which may also be conserved across species.
Collapse
Affiliation(s)
- Baosheng Zeng
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Haley Grayson
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Jianjun Sun
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
3
|
Demir E. Drosophila fruit fly an in vivo model to determine hazardous effects following exposure to nanoplastics utilizing the One Health approach. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025:1-4. [PMID: 40252091 DOI: 10.1080/10937404.2025.2494992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Affiliation(s)
- Eşref Demir
- Vocational School of Health Services, Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Antalya Bilim University, Antalya, Türkiye
| |
Collapse
|
4
|
Dong L, Zhu L, Cheng Z, Bai Y, Li P, Yang H, Tang S, Crickmore N, Zhou X, Guo Z, Zhang Y. Characterization of an Ecdysone Oxidase from Plutella xylostella (L.) and Its Role in Bt Cry1Ac Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1193-1202. [PMID: 39743923 DOI: 10.1021/acs.jafc.4c10298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Understanding the molecular mechanisms underlying insect resistance to Bacillus thuringiensis (Bt) pesticidal proteins is crucial for sustainable pest management. Here, we found that downregulation of the Plutella xylostella ecdysone oxidase gene (PxEO) in the normal feeding stages contributes to increased 20-hydroxyecdysone (20E) titer and mediates resistance to the Bt Cry1Ac toxin. The PxEO gene was cloned and its expression was significantly downregulated in the midgut of Bt-resistant and Cry1Ac-selected P. xylostella. Silencing of the PxEO gene significantly reduced Cry1Ac susceptibility, and downregulation of the PxEO gene is closely linked to Cry1Ac resistance in P. xylostella. The PxEO protein metabolized ecdysone (E) and 20E in vitro, and its reduction elevated 20E titers and activated the MAPK-mediated trans-regulatory mechanism known to directly cause the resistance phenotype. Together with our recently reported 20E-degrading glucose dehydrogenase, this finding highlights a robust, multipronged, approach developed by this insect in its 20E-mediated defense against harmful agents.
Collapse
Affiliation(s)
- Lina Dong
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liuhong Zhu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhouqiang Cheng
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Bai
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peixuan Li
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hanchi Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shouwen Tang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QE, U.K
| | - Xuguo Zhou
- Department of Entomology, School of Integrative Biology, College of Liberal Arts and Sciences, University of Illinois Urbana, Champaign, Illinois 61801-3795, United States
| | - Zhaojiang Guo
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Vieira CS, Bisogno S, Salvemini M, Loza Telleria E, Volf P. Azadirachtin disrupts ecdysone signaling and alters sand fly immunity. Parasit Vectors 2024; 17:526. [PMID: 39707409 DOI: 10.1186/s13071-024-06589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/17/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Leishmaniasis is a group of neglected vector-borne diseases transmitted by phlebotomine sand flies. Leishmania parasites must overcome various defenses in the sand fly midgut, including the insects's immune response. Insect immunity is regulated by the ecdysone hormone, which binds to its nuclear receptor (EcR) and activates the transcription of genes involved in insect immunity. However, the role of ecdysone in sand fly immunity has never been studied. Phlebotomus perniciosus is a natural vector of Leishmania infantum; here, we manipulated its neuroendocrine system using azadirachtin (Aza), a natural compound known to affect ecdysone synthesis. METHODS Phlebotomus perniciosus larvae and adult females were fed on food containing either Aza alone or Aza plus ecdysone, and the effects on mortality and ecdysis were evaluated. Genes related to ecdysone signaling and immunity were identified in P. perniciosus, and the expression of antimicrobial peptides (AMPs), EcR, the ecdysone-induced genes Eip74EF and Eip75B, and the transcription factor serpent were analyzed using quantitative polymerase chain reaction (PCR). RESULTS Aza treatment inhibited molting of first-instar (L1) larvae to L2, with only 10% of larvae molting compared to 95% in the control group. Serpent and Eip74EF, attacin, defensin 1, and defensin 2 genes were downregulated by Aza treatment in larvae. Similarly, Aza-treated adult females also presented suppression of ecdysone signaling-related genes and the AMPs attacin and defensin 2. Notably, all gene repression caused by Aza was reversed by adding ecdysone concomitantly with Aza to the larval or female food, indicating that these genes are effective markers for ecdysone repression. CONCLUSIONS These results highlight the critical role of ecdysone in regulating the development and immunity of P. perniciosus, which potentially could interfere with Leishmania infection.
Collapse
Affiliation(s)
- Cecilia Stahl Vieira
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Sara Bisogno
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Erich Loza Telleria
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Ghassah M, Polunina YA, Chmykhalo VK, Lebedeva LA, Shidlovskii YV, Kachaev ZM. Ecdysone promotes gene- and pathogen-specific immune responses to Micrococcus luteus and Bacillus subtilis in Drosophila S2 cells. JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104710. [PMID: 39288896 DOI: 10.1016/j.jinsphys.2024.104710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
In Drosophila, the 20-hydroxyecdysone (20E) hormone regulates numerous essential biological processes. Here, we studied the contribution of 20E to the activity of immune signaling pathways and antimicrobial activity using the model Drosophila S2 cells. We found that while 20E alone has no essential effect on this system, pretreating S2 cells with 20E followed by incubation with Escherichia coli or Micrococcus luteus stimulates the induction of a limited number of antimicrobial peptide (AMP) genes, such as Diptericin (Dpt) and Drosomycin (Drs). Contrary to this, cells pretreatment with 20E simulates the activity of numerous Bacillus subtilis-induced AMP genes. Interestingly, it also significantly promotes the expression of components of both the Toll (Dif, Dorsal, etc.) and the IMD pathways (Relish, IMD, etc.) in the presence of Bacillus subtilis. Unexpectedly, simultaneous treatment of S2 cells by 20E and all three bacteria shows another pattern of activity and leads to a suppression of Drosocin (Dro) induction, in particular. Our study reveals that the contribution of 20E to immune genes activity varies for different genes and depends on the mode of 20E interplay with the pathogen and the nature of the pathogen itself.
Collapse
Affiliation(s)
- Mona Ghassah
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation; School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russian Federation.
| | - Yulia A Polunina
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Victor K Chmykhalo
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Lyubov A Lebedeva
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Yulii V Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation; Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russian Federation
| | - Zaur M Kachaev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation.
| |
Collapse
|
7
|
Shidlovskii YV, Ulianova YA, Shaposhnikov AV, Kolesnik VV, Pravednikova AE, Stepanov NG, Chetverina D, Saccone G, Lebedeva LA, Chmykhalo VK, Giordano E. Subunits Med12 and Med13 of Mediator Cooperate with Subunits SAYP and Bap170 of SWI/SNF in Active Transcription in Drosophila. Int J Mol Sci 2024; 25:12781. [PMID: 39684492 DOI: 10.3390/ijms252312781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
SAYP and Bap170, subunits of the SWI/SNF remodeling complex, have the ability to support enhancer-dependent transcription when artificially recruited to the promoter on a transgene. We found that the phenomenon critically depends on two subunits of the Mediator kinase module, Med12 and Med13 but does not require the two other subunits of the module (Cdk8 and CycC) or other subunits of the core part of the complex. A cooperation of the above proteins in active transcription was also observed at endogenous loci, but the contribution of the subunits to the activity of a particular gene differed in different loci. The factors SAYP/Bap170 and Med12/Med13 did not form sufficiently stable interactions in the extract, and their cooperation was apparently local at regulatory elements, the presence of SAYP and Bap170 in a locus being necessary for stable recruitment of Med12 and Med13 to the locus. In addition to the above factors, the Nelf-A protein was found to participate in the process. The cooperation of the factors, independent of enzymatic activities of the complexes they are part of, appears to be a novel mechanism that maintains promoter activity and may be used in many loci of the genome. Extended intrinsically disordered regions of the factors were assumed to sustain the mechanism.
Collapse
Affiliation(s)
- Yulii V Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Biology and General Genetics, Sechenov University, 119992 Moscow, Russia
| | - Yulia A Ulianova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexander V Shaposhnikov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Valeria V Kolesnik
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anna E Pravednikova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nikita G Stepanov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Biology and General Genetics, Sechenov University, 119992 Moscow, Russia
| | - Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Giuseppe Saccone
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | - Lyubov A Lebedeva
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Victor K Chmykhalo
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ennio Giordano
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| |
Collapse
|
8
|
Tang T, Sun S, Wang R, Li M, Wang Y, Li F, Wang Y, Liu F. MdSVWC1, a new pattern recognition receptor triggers multiple defense mechanisms against invading bacteria in Musca domestica. BMC Biol 2024; 22:242. [PMID: 39443921 PMCID: PMC11515477 DOI: 10.1186/s12915-024-02042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Single-domain von Willebrand factor type C (SVWC) constitute a protein family predominantly identified in arthropods, characterized by a SVWC domain and involved in diverse physiological processes such as host defense, stress resistance, and nutrient metabolism. Nevertheless, the physiological mechanisms underlying these functions remain inadequately comprehended. RESULTS A massive expansion of the SVWC gene family in Musca domestica (MdSVWC) was discovered, with a count of 35. MdSVWC1 was selected as the representative of the SVWC family for functional analysis, which led to the identification of the immune function of MdSVWC1 as a novel pattern recognition receptor. MdSVWC1 is highly expressed in both the fat body and intestines and displays acute induction upon bacterial infection. Recombinant MdSVWC1 binds to surfaces of both bacteria and yeast through the recognition of multiple pathogen-associated molecular patterns and exhibits Ca2+-dependent agglutination activity. MdSVWC1 mutant flies exhibited elevated mortality and hindered bacterial elimination following bacterial infection as a result of reduced hemocyte phagocytic capability and weakened expression of antimicrobial peptide (AMP) genes. In contrast, administration of recombinant MdSVWC1 provided protection to flies from bacterial challenges by promoting phagocytosis and AMP genes expression, thereby preventing bacterial colonization. MdSPN16, a serine protease inhibitor, was identified as a target protein of MdSVWC1. It was postulated that the interaction of MdSVWC1 with MdSPN16 would result in the activation of an extracellular proteolytic cascade, which would then initiate the Toll signaling pathway and facilitate the expression of AMP genes. CONCLUSIONS MdSVWC1 displays activity as a soluble pattern recognition receptor that regulates cellular and humoral immunity by recognizing microbial components and facilitating host defense.
Collapse
Affiliation(s)
- Ting Tang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Siyu Sun
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Ruirui Wang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Mengnan Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yongpeng Wang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Feifei Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yun Wang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Fengsong Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China.
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China.
| |
Collapse
|
9
|
Li J, Ma Y, Wu Z, Li J, Wang F, Yang Z, Xi Y, Yang D, Jiang Y, Yi Q, Huang S. The involvement of tumor necrosis factor receptor-associated factor 6 in regulating immune response by NF-κB at pre-molt stage of Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109842. [PMID: 39153580 DOI: 10.1016/j.fsi.2024.109842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Molting is a crucial biological process of crustaceans. Crustaceans go through three separate stages throughout their molting process, including pre-molt, post-molt and inter-molt. However, the exact mechanism of immunological modulation during molting remains unclear. Tumor necrosis factor receptor-associated factor 6 (TRAF6) has been extensively documented to participate in immune defense. In the present study, a TRAF6 gene with two TRAF-type zinc finger domains was identified from Eriocheir sinensis (designed as EsTRAF6), and its role in regulating immune response during molting process was explored. The mRNA expression level of EsTRAF6 at pre-molt stage was higher than that at post-molt stage and inter-molt stage. After Aeromonas hydrophila stimulation, the expression levels of EsTRAF6, EsRelish and anti-lipopolysaccharide factors (ALFs) genes exhibited a considerable increase at three molting stages. Subsequently, the expression patterns of EsTRAF6 and EsRelish in response to the treatment with 20-hydroxyecdysone (20E) were examined. The mRNA expression of EsTRAF6 and EsRelish were significantly increased at 12 h after 20E injection. Additionally, the protein expression level of TRAF6 was also up-regulated in 20E group compared to control group. Furthermore, the role of EsTRAF6 in regulating the anti- ALFs expression at pre-molt stage post A. hydrophila stimulation was investigated. Following the inhibition of the EsTRAF6 transcript using RNAi or the injection of inhibitor (TMBPS), there was a notable decrease of the EsALF1, EsALF2 and EsALF3 transcripts. Moreover, a significant reduction in the phosphorylation level of NF-κB at pre-molt stage was observed after A. hydrophila stimulation in TRAF6-inhibited crabs. Collectively, our results suggest that EsTRAF6 could be induced by 20E and promoted the EsALFs expression by activating NF-κB at pre-molt stage, which provides a novel insight into the research of immune regulatory mechanism during the process of molting of crustaceans.
Collapse
Affiliation(s)
- Jialin Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Ma
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zihao Wu
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jiaming Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Fengchi Wang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zhichao Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuting Xi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Dazuo Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Yusheng Jiang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China
| | - Qilin Yi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China.
| | - Shu Huang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China.
| |
Collapse
|
10
|
Schlomann BH, Pai TW, Sandhu J, Imbert GF, Graham TG, Garcia HG. Spatial microenvironments tune immune response dynamics in the Drosophila larval fat body. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612587. [PMID: 39345471 PMCID: PMC11429692 DOI: 10.1101/2024.09.12.612587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Immune responses in tissues display intricate patterns of gene expression that vary across space and time. While such patterns have been increasingly linked to disease outcomes, the mechanisms that generate them and the logic behind them remain poorly understood. As a tractable model of spatial immune responses, we investigated heterogeneous expression of antimicrobial peptides in the larval fly fat body, an organ functionally analogous to the liver. To capture the dynamics of immune response across the full tissue at single-cell resolution, we established live light sheet fluorescence microscopy of whole larvae. We discovered that expression of antimicrobial peptides occurs in a reproducible spatial pattern, with enhanced expression in the anterior and posterior lobes of the fat body. This pattern correlates with microbial localization via blood flow but is not caused by it: loss of heartbeat suppresses microbial transport but leaves the expression pattern unchanged. This result suggests that regions of the tissue most likely to encounter microbes via blood flow are primed to produce antimicrobials. Spatial transcriptomics revealed that these immune microenvironments are defined by genes spanning multiple biological processes, including lipid-binding proteins that regulate host cell death by the immune system. In sum, the larval fly fat body exhibits spatial compartmentalization of immune activity that resembles the strategic positioning of immune cells in mammals, such as in the liver, gut, and lymph nodes. This finding suggests that tissues may share a conserved spatial organization that optimizes immune responses for antimicrobial efficacy while preventing excessive self-damage.
Collapse
Affiliation(s)
- Brandon H. Schlomann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
| | - Ting-Wei Pai
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jazmin Sandhu
- Department of Physics, University of California, Berkeley, CA, USA
| | - Genesis Ferrer Imbert
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
| | - Thomas G.W. Graham
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Hernan G. Garcia
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
- Institute for Quantitative Biosciences-QB3, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA, USA
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
- Graduate Program in Bioengineering, University of California, Berkeley, CA, USA
| |
Collapse
|
11
|
Qu J, Feng Y, Zou X, Zhou Y, Cao W. Transcriptome and proteome analyses reveal genes and signaling pathways involved in the response to two insect hormones in the insect-fungal pathogen Hirsutella satumaensis. mSystems 2024; 9:e0016624. [PMID: 38984826 PMCID: PMC11334460 DOI: 10.1128/msystems.00166-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/27/2024] [Indexed: 07/11/2024] Open
Abstract
The insect hormones ecdysone (20E) and juvenile hormone III (JH) have been demonstrated to stimulate the secretion of conidia mucilage and pigments in Hirsutella satumaensis. However, the underlying mechanisms remain elusive. Here, comparative transcriptome and proteome analyses were performed to identify the fungal genes and proteins of H. satumaensis that are up- or downregulated in response to insect hormones. A total of 17,407 unigenes and 1,016 proteins in conidia mucilage were identified. The genes involved in response to the hormones were classified into four functional groups: (1) stress response-related genes that are required for the removal of reactive oxygen species (glutathione synthetase, c7144) and genes involved in the response to osmotic stress in the hemocoel, such as those encoding proteins involved in the G, mTOR, and MAPK signaling pathways (2); insect hormone metabolic genes, including genes encoding ecdysteroid UDP-glucosyltransferase, ecdysteroid-22-kinase, and a key aldehyde dehydrogenase in a juvenile hormone synthesis pathway (3); secretory proteins that share homology with those of the host Bombyx mori, including fibrohexamerin, sericin 1, metalloprotease 1 protein, and silk gum protein, which were revealed by the omics data; and (4) proteins related to amino sugar metabolism and oxidative phosphorylation that were specifically expressed in mucilage in response to 20E and JH, respectively. These findings revealed that H. satumaensis can mount effective responses by modulating the expression of genes involved in the detoxification, adaptation, and evasion of insect hormone-mediated immune responses, providing fresh insights into fungal pathogen-host insect interactions.IMPORTANCEInsect hormones are highly important for the regulation of insect growth, development, and immune system function. Thus, the expansion of entomopathogenic fungi (EPF) could be affected by these hormones when they inhabit the host hemocoel. However, the molecular basis of EPF in response to insect hormones has yet to be determined. Our results revealed that EPF are impacted by 20E and JH, both of which act as signals, as these hormones lead to changes in metabolic pathways of the fungus, thus demonstrating a direct relationship between the fungus and the hormones. Furthermore, adaptive strategies, such as the use of ecdysone-inactivating enzymes and secreted filamentous proteins in H. satumaensis, which strongly resemble those of the host insect, have been discovered, thus illustrating the importance of adaptation to insect hormones for a better understanding of the interaction between insects and EPF.
Collapse
Affiliation(s)
- Jiaojiao Qu
- College of Tea Sciences, Guizhou University, Guiyang, China
| | - Yongli Feng
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Xiao Zou
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Yeming Zhou
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Wei Cao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|
12
|
Galambos N, Vincent-Monegat C, Vallier A, Parisot N, Heddi A, Zaidman-Rémy A. Cereal weevils' antimicrobial peptides: at the crosstalk between development, endosymbiosis and immune response. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230062. [PMID: 38497254 PMCID: PMC10945404 DOI: 10.1098/rstb.2023.0062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/12/2023] [Indexed: 03/19/2024] Open
Abstract
Interactions between animals and microbes are ubiquitous in nature and strongly impact animal physiology. These interactions are shaped by the host immune system, which responds to infections and contributes to tailor the associations with beneficial microorganisms. In many insects, beneficial symbiotic associations not only include gut commensals, but also intracellular bacteria, or endosymbionts. Endosymbionts are housed within specialized host cells, the bacteriocytes, and are transmitted vertically across host generations. Host-endosymbiont co-evolution shapes the endosymbiont genome and host immune system, which not only fights against microbial intruders, but also ensures the preservation of endosymbionts and the control of their load and location. The cereal weevil Sitophilus spp. is a remarkable model in which to study the evolutionary adaptation of the immune system to endosymbiosis owing to its binary association with a unique, relatively recently acquired nutritional endosymbiont, Sodalis pierantonius. This Gram-negative bacterium has not experienced the genome size shrinkage observed in long-term endosymbioses and has retained immunogenicity. We focus here on the sixteen antimicrobial peptides (AMPs) identified in the Sitophilus oryzae genome and their expression patterns in different tissues, along host development or upon immune challenges, to address their potential functions in the defensive response and endosymbiosis homeostasis along the insect life cycle. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- N. Galambos
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
| | | | - A. Vallier
- INRAE, INSA Lyon, BF2I, UMR203, 69621 Villeurbanne, France
| | - N. Parisot
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
| | - A. Heddi
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
| | - A. Zaidman-Rémy
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
- Institut universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
13
|
Zhou L, Meng G, Zhu L, Ma L, Chen K. Insect Antimicrobial Peptides as Guardians of Immunity and Beyond: A Review. Int J Mol Sci 2024; 25:3835. [PMID: 38612644 PMCID: PMC11011964 DOI: 10.3390/ijms25073835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/29/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Antimicrobial peptides (AMPs), as immune effectors synthesized by a variety of organisms, not only constitute a robust defense mechanism against a broad spectrum of pathogens in the host but also show promising applications as effective antimicrobial agents. Notably, insects are significant reservoirs of natural AMPs. However, the complex array of variations in types, quantities, antimicrobial activities, and production pathways of AMPs, as well as evolution of AMPs across insect species, presents a significant challenge for immunity system understanding and AMP applications. This review covers insect AMP discoveries, classification, common properties, and mechanisms of action. Additionally, the types, quantities, and activities of immune-related AMPs in each model insect are also summarized. We conducted the first comprehensive investigation into the diversity, distribution, and evolution of 20 types of AMPs in model insects, employing phylogenetic analysis to describe their evolutionary relationships and shed light on conserved and distinctive AMP families. Furthermore, we summarize the regulatory pathways of AMP production through classical signaling pathways and additional pathways associated with Nitric Oxide, insulin-like signaling, and hormones. This review advances our understanding of AMPs as guardians in insect immunity systems and unlocks a gateway to insect AMP resources, facilitating the use of AMPs to address food safety concerns.
Collapse
Affiliation(s)
- Lizhen Zhou
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou 225009, China;
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Guanliang Meng
- Zoological Research Museum Alexander Koenig, Leibniz Institute for the Analysis of Biodiversity Change, 53113 Bonn, Germany;
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Li Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu 030810, China
| | - Kangkang Chen
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
14
|
Li B, Wang D, Xie X, Chen X, Liang G, Xing D, Zhao T, Wu J, Zhou X, Li C. Mosquito E-20-Monooxygenase Gene Knockout Increases Dengue Virus Replication in Aedes aegypti Cells. Viruses 2024; 16:525. [PMID: 38675868 PMCID: PMC11054288 DOI: 10.3390/v16040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
E-20-monooxygenase (E20MO) is an enzymatic product of the shade (shd) locus (cytochrome p450, E20MO). Initially discovered in Drosophila, E20MO facilitates the conversion of ecdysone (E) into 20-hydroxyecdysone (20E) and is crucial for oogenesis. Prior research has implicated 20E in growth, development, and insecticide resistance. However, little attention has been given to the association between the E20MO gene and DENV2 infection. The transcriptome of Ae. aegypti cells (Aag2 cells) infected with DENV2 revealed the presence of the E20MO gene. The subsequent quantification of E20MO gene expression levels in Aag2 cells post-DENV infection was carried out. A CRISPR/Cas9 system was utilized to create an E20MO gene knockout cell line (KO), which was then subjected to DENV infection. Analyses of DENV2 copies in KO and wild-type (WT) cells were conducted at different days post-infection (dpi). Plasmids containing E20MO were constructed and transfected into KO cells, with pre- and post-transfection viral copy comparisons. Gene expression levels of E20MO increased after DENV infection. Subsequently, a successful generation of an E20MO gene knockout cell line and the verification of code-shifting mutations at both DNA and RNA levels were achieved. Furthermore, significantly elevated DENV2 RNA copies were observed in the mid-infection phase for the KO cell line. Viral RNA copies were lower in cells transfected with plasmids containing E20MO, compared to KO cells. Through knockout and plasmid complementation experiments in Aag2 cells, the role of E20MO in controlling DENV2 replication was demonstrated. These findings contribute to our understanding of the intricate biological interactions between mosquitoes and arboviruses.
Collapse
Affiliation(s)
- Bo Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Di Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiaoxue Xie
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiaoli Chen
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Guorui Liang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jiahong Wu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Xinyu Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Chunxiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
15
|
Xiong P, Wang WW, Liu XS, Wang YF, Wang JL. A CTL - Lys immune function maintains insect metamorphosis by preventing gut bacterial dysbiosis and limiting opportunistic infections. BMC Biol 2024; 22:54. [PMID: 38448930 PMCID: PMC10918859 DOI: 10.1186/s12915-024-01855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Gut bacteria are beneficial to the host, many of which must be passed on to host offspring. During metamorphosis, the midgut of holometabolous insects undergoes histolysis and remodeling, and thus risks losing gut bacteria. Strategies employed by holometabolous insects to minimize this risk are obscure. How gut bacteria affect host insects after entering the hemocoel and causing opportunistic infections remains largely elusive. RESULTS We used holometabolous Helicoverpa armigera as a model and found low Lactobacillus load, high level of a C-type lectin (CTL) gene CD209 antigen-like protein 2 (CD209) and its downstream lysozyme 1 (Lys1) in the midgut of the wandering stage. CD209 or Lys1 depletion increased the load of midgut Lactobacillus, which further translocate to the hemocoel. In particular, CD209 or Lys1 depletion, injection of Lactobacillus plantarum, or translocation of midgut L. plantarum into the hemocoel suppressed 20-hydroxyecdysone (20E) signaling and delayed pupariation. Injection of L. plantarum decreased triacylglycerol and cholesterol storage, which may result in insufficient energy and 20E available for pupariation. Further, Lysine-type peptidoglycan, the major component of gram-positive bacterial cell wall, contributed to delayed pupariation and decreased levels of triacylglycerols, cholesterols, and 20E, in both H. armigera and Drosophila melanogaster. CONCLUSIONS A mechanism by which (Lactobacillus-induced) opportunistic infections delay insect metamorphosis was found, namely by disturbing the homeostasis of lipid metabolism and reducing 20E production. Moreover, the immune function of CTL - Lys was characterized for insect metamorphosis by maintaining gut homeostasis and limiting the opportunistic infections.
Collapse
Affiliation(s)
- Pei Xiong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wen-Wen Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xu-Sheng Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yu-Feng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
16
|
Touchard A, Barassé V, Malgouyre JM, Treilhou M, Klopp C, Bonnafé E. The genome of the ant Tetramorium bicarinatum reveals a tandem organization of venom peptides genes allowing the prediction of their regulatory and evolutionary profiles. BMC Genomics 2024; 25:84. [PMID: 38245722 PMCID: PMC10800049 DOI: 10.1186/s12864-024-10012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/13/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Venoms have evolved independently over a hundred times in the animal kingdom to deter predators and/or subdue prey. Venoms are cocktails of various secreted toxins, whose origin and diversification provide an appealing system for evolutionary researchers. Previous studies of the ant venom of Tetramorium bicarinatum revealed several Myrmicitoxin (MYRTX) peptides that gathered into seven precursor families suggesting different evolutionary origins. Analysis of the T. bicarinatum genome enabling further genomic approaches was necessary to understand the processes underlying the evolution of these myrmicitoxins. RESULTS Here, we sequenced the genome of Tetramorium bicarinatum and reported the organisation of 44 venom peptide genes (vpg). Of the eleven chromosomes that make up the genome of T. bicarinatum, four carry the vpg which are organized in tandem repeats. This organisation together with the ML evolutionary analysis of vpg sequences, is consistent with evolution by local duplication of ancestral genes for each precursor family. The structure of the vpg into two or three exons is conserved after duplication events while the promoter regions are the least conserved parts of the vpg even for genes with highly identical sequences. This suggests that enhancer sequences were not involved in duplication events, but were recruited from surrounding regions. Expression level analysis revealed that most vpg are highly expressed in venom glands, although one gene or group of genes is much more highly expressed in each family. Finally, the examination of the genomic data revealed that several genes encoding transcription factors (TFs) are highly expressed in the venom glands. The search for binding sites (BS) of these TFs in the vpg promoters revealed hot spots of GATA sites in several vpg families. CONCLUSION In this pioneering investigation on ant venom genes, we provide a high-quality assembly genome and the annotation of venom peptide genes that we think can fosters further genomic research to understand the evolutionary history of ant venom biochemistry.
Collapse
Affiliation(s)
- Axel Touchard
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Valentine Barassé
- BTSB-UR 7417, Université Fédérale de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000, Albi, France
| | - Jean-Michel Malgouyre
- BTSB-UR 7417, Université Fédérale de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000, Albi, France
| | - Michel Treilhou
- BTSB-UR 7417, Université Fédérale de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000, Albi, France
| | - Christophe Klopp
- INRAE, BioinfOmics, Université Fédérale de Toulouse, GenoToul Bioinformatics Facility, Sigenae, 31326, Castanet-Tolosan, France
| | - Elsa Bonnafé
- BTSB-UR 7417, Université Fédérale de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000, Albi, France.
| |
Collapse
|
17
|
Arora G, Tang X, Cui Y, Yang J, Chuang YM, Joshi J, Sajid A, Dong Y, Cresswell P, Dimopoulos G, Fikrig E. mosGILT controls innate immunity and germ cell development in Anopheles gambiae. BMC Genomics 2024; 25:42. [PMID: 38191283 PMCID: PMC10775533 DOI: 10.1186/s12864-023-09887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/09/2023] [Indexed: 01/10/2024] Open
Abstract
Gene-edited mosquitoes lacking a gamma-interferon-inducible lysosomal thiol reductase-like protein, namely (mosGILTnull) have lower Plasmodium infection, which is linked to impaired ovarian development and immune activation. The transcriptome of mosGILTnull Anopheles gambiae was therefore compared to wild type (WT) mosquitoes by RNA-sequencing to delineate mosGILT-dependent pathways. Compared to WT mosquitoes, mosGILTnull A. gambiae demonstrated altered expression of genes related to oogenesis, 20-hydroxyecdysone synthesis, as well as immune-related genes. Serendipitously, the zero population growth gene, zpg, an essential regulator of germ cell development was found to be one of the most downregulated genes in mosGILTnull mosquitoes. These results provide a crucial missing link between two previous studies on the role of zpg and mosGILT in ovarian development. This study further demonstrates that mosGILT has the potential to serve as a target for the biological control of mosquito vectors and to influence the Plasmodium life cycle within the vector.
Collapse
Affiliation(s)
- Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA.
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Jing Yang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
- Current Affiliation: Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Jayadev Joshi
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Peter Cresswell
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, 06510, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA.
| |
Collapse
|
18
|
Romanov SE, Shloma VV, Maksimov DA, Koryakov DE. SetDB1 and Su(var)3-9 are essential for late stages of larval development of Drosophila melanogaster. Chromosome Res 2023; 31:35. [PMID: 38099968 DOI: 10.1007/s10577-023-09743-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Methylation of H3K9 histone residue is a marker of gene silencing in eukaryotes. Three enzymes responsible for adding this modification - G9a, SetDB1/Egg, and Su(var)3-9 - are known in Drosophila. To understand how simultaneous mutations of SetDB1 and Su(var)3-9 may affect the fly development, appropriate combinations were obtained. Double mutants egg; Su(var)3-9 displayed pronounced embryonic lethality, slower larval growth and died before or during metamorphosis. Analysis of transcription in larval salivary glands and wing imaginal disks indicated that the effect of double mutation is tissue-specific. In salivary gland chromosomes, affected genes display low H3K9me2 enrichment and are rarely bound by SetDB1 or Su(var)3-9. We suppose that each of these enzymes directly or indirectly controls its own set of gene targets in different organs, and double mutation results in an imbalanced developmental program. This also indicates that SetDB1 and Su(var)3-9 may affect transcription via H3K9-independent mechanisms. Unexpectedly, in double and triple mutants, amount of di- and tri-methylated H3K9 is drastically reduced, but not completely absent. We hypothesize that this residual methylation implies the existence of additional H3K9-specific methyltransferase in Drosophila.
Collapse
Affiliation(s)
- Stanislav E Romanov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Viktor V Shloma
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Daniil A Maksimov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Dmitry E Koryakov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia.
| |
Collapse
|
19
|
Chen YR, Yang HJ, Cha JM, Zhang XX, Fan D. Expression patterns and antifungal function study of KaSPI in Mythimna separata. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:756-766. [PMID: 37730215 DOI: 10.1017/s000748532300041x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Kazal-type serine protease inhibitors (KaSPI) play important roles in insect growth, development, digestion, metabolism and immune defence. In this study, based on the transcriptome of Mythimna separata, the cDNA sequence of MsKaSPI with Kazal domain was uploaded to GenBank (MN931651). Spatial and temporal expression analysis showed that MsKaSPI was expressed at different developmental stages and different tissues, and it was induced by 20-hydroxyecdysone in third-instar larvae of M. separata. After 24 h infection by Beauveria bassiana, the expression level of MsKaSPI and the corresponding MsKaSPI content were significantly up-regulated, being 6.42-fold and 1.91-fold to the control group, respectively, while the activities of serine protease, trypsin and chymotrypsin were inhibited. After RNA interference interfered with MsKaSPI for 6 h, the expression decreased by 73.44%, the corresponding content of MsKaSPI protein decreased by 55.66% after 12 h, and the activities of serine protease and trypsin were significantly enhanced. Meanwhile, both the larval and pupal stages of M. separata were prolonged, the weights were reduced and the number of eggs per female decreased by 181. Beauveria bassiana infection also increased the mortality of MsKaSPI-silenced M. separata by 18.96%. These prove MsKaSPI can not only result in slow growth and low fecundity of M. separata by regulating the activity of related protease, but also participate in the resistance to pathogenic fungi by regulating the serine protease inhibitor content and the activities of related serine protease.
Collapse
Affiliation(s)
- Ya-Ru Chen
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hong-Jia Yang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Jin-Myong Cha
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
- Kyeungsang Sariwon Agricultural University, Pyong Yang 95003, DPR of Korea
| | - Xin-Xin Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Dong Fan
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
20
|
Dhungana P, Wei X, Meuti M, Sim C. Identification of CYCLE targets that contribute diverse features of circadian rhythms in the mosquito Culex pipiens. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101140. [PMID: 37690215 PMCID: PMC10841209 DOI: 10.1016/j.cbd.2023.101140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Culex pipiens demonstrates robust circadian rhythms in adult eclosion, flight activity, mating, and development. These rhythmic patterns are believed to be controlled by the endogenous light-entrainable circadian clock that consists of positive and negative regulators working in a transcription-translation feedback loop. Moreover, these mosquitoes undergo seasonal diapause in exposure to the short photoperiod of late summer or early fall. However, the exact genetic and cellular mechanism behind the clock gene-mediated activity pattern, seasonal time measurement, and subsequent diapause initiation still need to be unraveled. To determine the possible linkage between clock genes and downstream processes, here we employed ChIP-sequencing to identify the direct targets of one of the core clock proteins, Cycle (CYC). The nearest genes with peaks mapping to their 1Kb upstream region of the transcription start site were extracted and scanned for consensus E box sequences, resulting in a dataset comprising the target genes possibly regulated by CYC. Based on the highest fold enrichment and functional relevance, we identified genes relating to five gene categories of potential interest, including peptide/receptors, neurotransmission, olfaction, immunity, and reproductive growth. Of these, we validated fourteen genes with ChIP-qPCR and qRT-PCR. These genes showed a significantly high expression in dusk compared to dawn in concert with the activity level of the CYC transcription factor and are thus strong candidates for mediating circadian rhythmicity and possibly regulating seasonal shifts in mosquito reproductive activity.
Collapse
Affiliation(s)
- Prabin Dhungana
- Department of Biology, Baylor University, Waco, TX 76798, USA. https://twitter.com/@Prabin_988
| | - Xueyan Wei
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Megan Meuti
- Department of Entomology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA. https://twitter.com/@MeganMeuti
| | - Cheolho Sim
- Department of Biology, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
21
|
Hwang SH, Jang HA, Kojour MAM, Yun K, Lee YS, Han YS, Jo YH. Effects of TmTak1 silencing on AMP production as an Imd pathway component in Tenebrio molitor. Sci Rep 2023; 13:18914. [PMID: 37919359 PMCID: PMC10622451 DOI: 10.1038/s41598-023-45978-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Mealworms beetles, Tenebrio molitor, are the limelight next-generation food for humans due to their high nutrient contents. Since Tenebrio molitor is used as feed for pets and livestock in addition to their ability to decompose polystyrene and plastic waste, it is recognized as an insect with an industrial core value. Therefore, it is important to study the immune mechanism related to the development and infection of mealworms for mass breeding purposes. The immune deficiency (Imd) signaling is one of the main pathways with pivotal roles in the production of antimicrobial peptides (AMPs). Transforming growth factor-β activated kinase (TAK1) is one of the Imd pathway components, forms a complex with TAK1 binding protein 2 (TAB2) to ultimately help activate the transcription factor Relish and eventually induce host to produce AMPs. Relatively, little has been revealed about TAK1 in insect models, especially in the T. molitor. Therefore, this study was conducted to elucidate the function of TmTak1 in T. molitor. Our results showed that the highest and lowest mRNA expression of TmTak1 were found in egg and young larvae respectively. The tissue-specific expression patterns were reported in the gut of T. molitor larvae and the fat bodies of adults. Systemic microbial challenge illustrated TmTak1 high expression following the fungal infection in all dissected tissues except for the whole body. However, silencing TmTak1 experiments showed that the survivability of T. molitor larvae affected significantly following Escherichia coli infection. Accordingly, AMP induction after TmTak1 knock down was mainly reported in the integument and the fat bodies.
Collapse
Affiliation(s)
- Su Hyeon Hwang
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ho Am Jang
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, Republic of Korea
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Maryam Ali Mohammadie Kojour
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Keunho Yun
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong Seok Lee
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, Republic of Korea
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Yeon Soo Han
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong Hun Jo
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, Republic of Korea.
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, Republic of Korea.
| |
Collapse
|
22
|
Du XX, Cao SK, Xiao HY, Yang CJ, Zeng AP, Chen G, Yu H. Feeding Spodoptera exigua larvae with gut-derived Escherichia sp. increases larval juvenile hormone levels inhibiting cannibalism. Commun Biol 2023; 6:1086. [PMID: 37884600 PMCID: PMC10603045 DOI: 10.1038/s42003-023-05466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Feed quality influences insect cannibalistic behavior and gut microbial communities. In the present study, Spodoptera exigua larvae were fed six different artificial diets, and one of these diets (Diet 3) delayed larval cannibalistic behavior and reduced the cannibalism ratio after ingestion. Diet 3-fed larvae had the highest gut bacterial load (1.396 ± 0.556 × 1014 bacteria/mg gut), whereas Diet 2-fed larvae had the lowest gut bacterial load (3.076 ± 1.368 × 1012 bacteria/mg gut). The gut bacterial composition and diversity of different diet-fed S. exigua larvae varied according to the 16S rRNA gene sequence analysis. Enterobacteriaceae was specific to the Diet 3-fed larval gut. Fifteen culturable bacterial isolates were obtained from the midgut of Diet 3-fed larvae. Of these, ten belonged to Escherichia sp. After administration with Diet 1- or 2-fed S. exigua larvae, two bacterial isolates (SePC-12 and -37) delayed cannibalistic behavior in both tested larval groups. Diet 2-fed larvae had the lowest Juvenile hormone (JH) concentration and were more aggressive against intraspecific predation. However, SePC-12 loading increased the JH hormone levels in Diet 2-fed larvae and inhibited their cannibalism. Bacteria in the larval midgut are involved in the stabilization of JH levels, thereby regulating host larval cannibalistic behavior.
Collapse
Affiliation(s)
- Xing-Xing Du
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Sheng-Kai Cao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Hua-Yan Xiao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Chang-Jin Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Ai-Ping Zeng
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Gong Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Huan Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China.
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
23
|
Arch M, Vidal M, Fuentes E, Abat AS, Cardona PJ. The reproductive status determines tolerance and resistance to Mycobacterium marinum in Drosophila melanogaster. Evol Med Public Health 2023; 11:332-347. [PMID: 37868078 PMCID: PMC10590161 DOI: 10.1093/emph/eoad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/27/2023] [Indexed: 10/24/2023] Open
Abstract
Sex and reproductive status of the host have a major impact on the immune response against infection. Our aim was to understand their impact on host tolerance or resistance in the systemic Mycobacterium marinum infection of Drosophila melanogaster. We measured host survival and bacillary load at time of death, as well as expression by quantitative real-time polymerase chain reaction of immune genes (diptericin and drosomycin). We also assessed the impact of metabolic and hormonal regulation in the protection against infection by measuring expression of upd3, impl2 and ecR. Our data showed increased resistance in actively mating flies and in mated females, while reducing their tolerance to infection. Data suggests that Toll and immune deficiency (Imd) pathways determine tolerance and resistance, respectively, while higher basal levels of ecR favours the stimulation of the Imd pathway. A dual role has been found for upd3 expression, linked to increased/decreased mycobacterial load at the beginning and later in infection, respectively. Finally, impl2 expression has been related to increased resistance in non-actively mating males. These results allow further assessment on the differences between sexes and highlights the role of the reproductive status in D. melanogaster to face infections, demonstrating their importance to determine resistance and tolerance against M. marinum infection.
Collapse
Affiliation(s)
- Marta Arch
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Catalonia, Spain
| | - Maria Vidal
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Esther Fuentes
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Catalonia, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, 08916 Badalona, Catalonia, Spain
| | - Anmaw Shite Abat
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Department of Veterinary Paraclinical Studies, University of Gondar, Gondar, Ethiopia
| | - Pere-Joan Cardona
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Catalonia, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, 08916 Badalona, Catalonia, Spain
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
24
|
Zheng Z, Liu S, Lin Z, Aweya JJ, Zheng Z, Zhao Y, Chen X, Li S, Zhang Y. Kruppel homolog 1 modulates ROS production and antimicrobial peptides expression in shrimp hemocytes during infection by the Vibrio parahaemolyticus strain that causes AHPND. Front Immunol 2023; 14:1246181. [PMID: 37711612 PMCID: PMC10497957 DOI: 10.3389/fimmu.2023.1246181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023] Open
Abstract
Shrimp aquaculture has been seriously affected by acute hepatopancreatic necrosis disease (AHPND), caused by a strain of Vibrio parahaemolyticus that carries the Pir toxin plasmids (V. parahaemolyticus (AHPND)). In this study, the transcription factor, Kruppel homolog 1-like of Peneaus vannamei (PvKr-h1), was significantly induced in shrimp hemocytes after V. parahaemolyticus (AHPND) challenge, suggesting that PvKr-h1 is involved in shrimp immune response. Knockdown of PvKr-h1 followed by V. parahaemolyticus (AHPND) challenge increased bacterial abundance in shrimp hemolymph coupled with high shrimp mortality. Moreover, transcriptome and immunofluorescence analyses revealed that PvKr-h1 silencing followed by V. parahaemolyticus (AHPND) challenge dysregulated the expression of several antioxidant-related enzyme genes, such as Cu-Zu SOD, GPX, and GST, and antimicrobial peptide genes, i.e., CRUs and PENs, and reduced ROS activity and nuclear translocation of Relish. These data reveal that PvKr-h1 regulates shrimps' immune response to V. parahaemolyticus (AHPND) infection by suppressing antioxidant-related enzymes, enhancing ROS production and promoting nuclei import of PvRelish to stimulate antimicrobial peptide genes expression.
Collapse
Affiliation(s)
- Zhou Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
- Department of Medical Laboratory and Department of Reproductive Medicine, Luohu Clinical College of Shantou University Medical College, Shantou University, Shantou, China
| | - Shangjie Liu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
- Department of Medical Laboratory and Department of Reproductive Medicine, Luohu Clinical College of Shantou University Medical College, Shantou University, Shantou, China
| | - Zhongyang Lin
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, China
| | - Shengkang Li
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| |
Collapse
|
25
|
Belavilas-Trovas A, Tastsoglou S, Dong S, Kefi M, Tavadia M, Mathiopoulos KD, Dimopoulos G. Long non-coding RNAs regulate Aedes aegypti vector competence for Zika virus and reproduction. PLoS Pathog 2023; 19:e1011440. [PMID: 37319296 DOI: 10.1371/journal.ppat.1011440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play critical regulatory roles in various cellular and metabolic processes in mosquitoes and all other organisms studied thus far. In particular, their involvement in essential processes such as reproduction makes them potential targets for the development of novel pest control approaches. However, their function in mosquito biology remains largely unexplored. To elucidate the role of lncRNAs in mosquitoes' reproduction and vector competence for arboviruses, we have implemented a computational and experimental pipeline to mine, screen, and characterize lncRNAs related to these two biological processes. Through analysis of publicly available Zika virus (ZIKV) infection-regulated Aedes aegypti transcriptomes, at least six lncRNAs were identified as being significantly upregulated in response to infection in various mosquito tissues. The roles of these ZIKV-regulated lncRNAs (designated Zinc1, Zinc2, Zinc3, Zinc9, Zinc10 and Zinc22), were further investigated by dsRNA-mediated silencing studies. Our results show that silencing of Zinc1, Zinc2, and Zinc22 renders mosquitoes significantly less permissive to ZIKV infection, while silencing of Zinc22 also reduces fecundity, indicating a potential role for Zinc22 in trade-offs between vector competence and reproduction. We also found that silencing of Zinc9 significantly increases fecundity but has no effect on ZIKV infection, suggesting that Zinc9 may be a negative regulator of oviposition. Our work demonstrates that some lncRNAs play host factor roles by facilitating viral infection in mosquitoes. We also show that lncRNAs can influence both mosquito reproduction and permissiveness to virus infection, two biological systems with important roles in mosquito vectorial capacity.
Collapse
Affiliation(s)
- Alexandros Belavilas-Trovas
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - Spyros Tastsoglou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Mary Kefi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Mihra Tavadia
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Kostas D Mathiopoulos
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
26
|
Abstract
Endocrine signaling networks control diverse biological processes and life history traits across metazoans. In both invertebrate and vertebrate taxa, steroid hormones regulate immune system function in response to intrinsic and environmental stimuli, such as microbial infection. The mechanisms of this endocrine-immune regulation are complex and constitute an ongoing research endeavor facilitated by genetically tractable animal models. The 20-hydroxyecdysone (20E) is the major steroid hormone in arthropods, primarily studied for its essential role in mediating developmental transitions and metamorphosis; 20E also modulates innate immunity in a variety of insect taxa. This review provides an overview of our current understanding of 20E-mediated innate immune responses. The prevalence of correlations between 20E-driven developmental transitions and innate immune activation are summarized across a range of holometabolous insects. Subsequent discussion focuses on studies conducted using the extensive genetic resources available in Drosophila that have begun to reveal the mechanisms underlying 20E regulation of immunity in the contexts of both development and bacterial infection. Lastly, I propose directions for future research into 20E regulation of immunity that will advance our knowledge of how interactive endocrine networks coordinate animals' physiological responses to environmental microbes.
Collapse
Affiliation(s)
- Scott A. Keith
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
27
|
O’Neal A, Singh N, Rolandelli A, Laukaitis HJ, Wang X, Shaw D, Young B, Narasimhan S, Dutta S, Snyder G, Samaddar S, Marnin L, Butler L, Mendes M, Cabrera Paz F, Valencia L, Sundberg E, Fikrig E, Pal U, Weber D, Pedra J. Croquemort elicits activation of the immune deficiency pathway in ticks. Proc Natl Acad Sci U S A 2023; 120:e2208673120. [PMID: 37155900 PMCID: PMC10193931 DOI: 10.1073/pnas.2208673120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 03/27/2023] [Indexed: 05/10/2023] Open
Abstract
The immune deficiency (IMD) pathway directs host defense in arthropods upon bacterial infection. In Pancrustacea, peptidoglycan recognition proteins sense microbial moieties and initiate nuclear factor-κB-driven immune responses. Proteins that elicit the IMD pathway in non-insect arthropods remain elusive. Here, we show that an Ixodes scapularis homolog of croquemort (Crq), a CD36-like protein, promotes activation of the tick IMD pathway. Crq exhibits plasma membrane localization and binds the lipid agonist 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol. Crq regulates the IMD and jun N-terminal kinase signaling cascades and limits the acquisition of the Lyme disease spirochete B. burgdorferi. Additionally, nymphs silenced for crq display impaired feeding and delayed molting to adulthood due to a deficiency in ecdysteroid synthesis. Collectively, we establish a distinct mechanism for arthropod immunity outside of insects and crustaceans.
Collapse
Affiliation(s)
- Anya J. O’Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Hanna J. Laukaitis
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Xiaowei Wang
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Dana K. Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA99164
| | - Brianna D. Young
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Sukanya Narasimhan
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT06510
| | - Shraboni Dutta
- Department of Veterinary Medicine, University of Maryland, College Park, MD20742
| | - Greg A. Snyder
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Sourabh Samaddar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Liron Marnin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - L. Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - M. Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Francy E. Cabrera Paz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Luisa M. Valencia
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Eric J. Sundberg
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA30322
| | - Erol Fikrig
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT06510
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD20742
| | - David J. Weber
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Joao H. F. Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| |
Collapse
|
28
|
Ye C, Behnke JA, Hardin KR, Zheng JQ. Drosophila melanogaster as a model to study age and sex differences in brain injury and neurodegeneration after mild head trauma. Front Neurosci 2023; 17:1150694. [PMID: 37077318 PMCID: PMC10106652 DOI: 10.3389/fnins.2023.1150694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
Repetitive physical insults to the head, including those that elicit mild traumatic brain injury (mTBI), are a known risk factor for a variety of neurodegenerative conditions including Alzheimer's disease (AD), Parkinson's disease (PD), and chronic traumatic encephalopathy (CTE). Although most individuals who sustain mTBI typically achieve a seemingly full recovery within a few weeks, a subset experience delayed-onset symptoms later in life. As most mTBI research has focused on the acute phase of injury, there is an incomplete understanding of mechanisms related to the late-life emergence of neurodegeneration after early exposure to mild head trauma. The recent adoption of Drosophila-based brain injury models provides several unique advantages over existing preclinical animal models, including a tractable framework amenable to high-throughput assays and short relative lifespan conducive to lifelong mechanistic investigation. The use of flies also provides an opportunity to investigate important risk factors associated with neurodegenerative conditions, specifically age and sex. In this review, we survey current literature that examines age and sex as contributing factors to head trauma-mediated neurodegeneration in humans and preclinical models, including mammalian and Drosophila models. We discuss similarities and disparities between human and fly in aging, sex differences, and pathophysiology. Finally, we highlight Drosophila as an effective tool for investigating mechanisms underlying head trauma-induced neurodegeneration and for identifying therapeutic targets for treatment and recovery.
Collapse
Affiliation(s)
- Changtian Ye
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph A. Behnke
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine R. Hardin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - James Q. Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
29
|
Zhang R, Chen X, Wang Y, Bai X, Yang Q, Zhong Y, Yu XQ, Jin F, Yang W. BmMD-2A responds to 20-hydroxyecdysone and regulates Bombyx mori silkworm innate immunity in larva-to-pupa metamorphosis. INSECT SCIENCE 2023; 30:411-424. [PMID: 35871306 DOI: 10.1111/1744-7917.13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
20E-hydroxyecdysone (20E) plays important roles in larval molting and metamorphosis in insects and is also involved in the insect innate immune response. Insect metamorphosis is a highly successful strategy for environmental adaptation and is the most vulnerable stage during which the insect is susceptible to various pathogens. 20E regulates a series of antimicrobial peptides (AMPs) through the immunodeficiency (IMD) pathway activation in Drosophila; nevertheless, whether other immune pathways are involved in 20E-regulated insect immunity is unknown. Our previous studies showed that BmMD-2A is a member of the MD-2-related lipid recognition (ML) family of proteins that are involved in the Bombyx mori innate immunity Toll signaling pathway. In this study, we further demonstrate that BmMD-2A is also positively regulated by 20E, and the BmMD-2A neutralization experiment suggested that 20E activates some downstream immune effect factors, the AMP genes against Escherichia coli and Staphylococcus aureus, through the regulation of BmMD-2A in larval metamorphosis, implying that B. mori may use the Toll-ML signaling pathway to maintain innate immune balance in the larval-pupal metamorphosis stage, which is a different innate immunity pathway regulated by 20E compared to the IMD pathway in Drosophila.
Collapse
Affiliation(s)
- Ruonan Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xue Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xu Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qiong Yang
- The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yangjin Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fengliang Jin
- Guangdong Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wanying Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
30
|
Sneed SD, Dwivedi SB, DiGate C, Denecke S, Povelones M. Aedes aegypti Malpighian tubules are immunologically activated following systemic Toll activation. Parasit Vectors 2022; 15:469. [PMID: 36522779 PMCID: PMC9753289 DOI: 10.1186/s13071-022-05567-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Canine heartworm is a widespread and potentially fatal mosquito-borne disease caused by infections with the parasitic nematode, Dirofilaria immitis. We have previously shown that systemic activation of the Toll immune pathway via silencing of the negative regulator Cactus in Aedes aegypti blocks parasite development in the Malpighian tubules (MT), the mosquito renal organ. However, it was not established whether the MT were directly responding to Toll activation or were alternatively responding to upregulated proteins or other changes to the hemolymph driven by other tissues. Distinguishing these possibilities is crucial for developing more precise strategies to block D. immitis while potentially avoiding the fitness cost to the mosquito associated with Cactus silencing. METHODS This study defines the transcriptional response of the MT and changes to the hemolymph proteome of Ae. aegypti after systemic Toll activation via intra-thoracic injection of double-stranded Cactus (dsCactus) RNA. RESULTS Malpighian tubules significantly increased expression of the Toll pathway target genes that significantly overlapped expression changes occurring in whole mosquitoes. A significant overlap between the transcriptional response of the MT and proteins upregulated in the hemolymph was also observed. CONCLUSIONS Our data show that MT are capable of RNA interference-mediated gene silencing and directly respond to dsCactus treatment by upregulating targets of the canonical Toll pathway. Although not definitive, the strong correspondence between the MT transcriptional response and the hemolymph proteomic responses provides evidence that the MT may contribute to mosquito humoral immunity.
Collapse
Affiliation(s)
- Sarah D. Sneed
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Sutopa B. Dwivedi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Cameron DiGate
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Shane Denecke
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Michael Povelones
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
31
|
Lu MY, Chtarbanova S. The role of micro RNAs (miRNAs) in the regulation of Drosophila melanogaster's innate immunity. Fly (Austin) 2022; 16:382-396. [PMID: 36412256 PMCID: PMC9683055 DOI: 10.1080/19336934.2022.2149204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs ~19-22 nt long which post-transcriptionally regulate gene expression. Their ability to exhibit dynamic expression patterns coupled with their wide variety of targets allows miRNAs to regulate many processes, including the innate immune response of Drosophila melanogaster. Recent studies have identified miRNAs in Drosophila which are differentially expressed during infection with different pathogens as well as miRNAs that may affect immune signalling when differentially expressed. This review provides an overview of miRNAswhich have been identified to play a role in the immune response of Drosophila through targeting of the Toll and IMD signalling pathways and other immune processes. It will also explore the role of miRNAs in fine-tuning the immune response in Drosophila and highlight current gaps in knowledge regarding the role of miRNAs in immunity and areas for further research.
Collapse
Affiliation(s)
- Max Yang Lu
- Department of Biological Sciences, the University of Alabama, Tuscaloosa, AL, USA
| | - Stanislava Chtarbanova
- Department of Biological Sciences, the University of Alabama, Tuscaloosa, AL, USA,Center for Convergent Bioscience & Medicine, University of Alabama, Tuscaloosa, AL, USA,Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL, USA,CONTACT Stanislava Chtarbanova Department of Biological Sciences, the University of Alabama, 300, Hackberry Ln, Tuscaloosa, AL-35487, USA
| |
Collapse
|
32
|
Jugder BE, Batista JH, Gibson JA, Cunningham PM, Asara JM, Watnick PI. Vibrio cholerae high cell density quorum sensing activates the host intestinal innate immune response. Cell Rep 2022; 40:111368. [PMID: 36130487 PMCID: PMC9534793 DOI: 10.1016/j.celrep.2022.111368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/17/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
Quorum sensing fundamentally alters the interaction of Vibrio cholerae with aquatic environments, environmental hosts, and the human intestine. At high cell density, the quorum-sensing regulator HapR represses not only expression of cholera toxin and the toxin co-regulated pilus, virulence factors essential in human infection, but also synthesis of the Vibrio polysaccharide (VPS) exopolysaccharide-based matrix required for abiotic and biotic surface attachment. Here, we describe a feature of V. cholerae quorum sensing that shifts the host-pathogen interaction toward commensalism. By repressing pathogen consumptive anabolic metabolism and, in particular, tryptophan uptake, V. cholerae HapR stimulates host intestinal serotonin production. This, in turn, activates host intestinal innate immune signaling to promote host survival.
Collapse
Affiliation(s)
- Bat-Erdene Jugder
- Division of Infectious Diseases, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Juliana H Batista
- Division of Infectious Diseases, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Jacob A Gibson
- Division of Infectious Diseases, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Biological and Biomedical Sciences Program, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Paul M Cunningham
- Division of Infectious Diseases, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - John M Asara
- Division of Signal Transduction/Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Blackfan Circle, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Paula I Watnick
- Division of Infectious Diseases, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA.
| |
Collapse
|
33
|
Cammarata-Mouchtouris A, Acker A, Goto A, Chen D, Matt N, Leclerc V. Dynamic Regulation of NF-κB Response in Innate Immunity: The Case of the IMD Pathway in Drosophila. Biomedicines 2022; 10:2304. [PMID: 36140409 PMCID: PMC9496462 DOI: 10.3390/biomedicines10092304] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Metazoans have developed strategies to protect themselves from pathogenic attack. These preserved mechanisms constitute the immune system, composed of innate and adaptive responses. Among the two kinds, the innate immune system involves the activation of a fast response. NF-κB signaling pathways are activated during infections and lead to the expression of timely-controlled immune response genes. However, activation of NF-κB pathways can be deleterious when uncontrolled. Their regulation is necessary to prevent the development of inflammatory diseases or cancers. The similarity of the NF-κB pathways mediating immune mechanisms in insects and mammals makes Drosophila melanogaster a suitable model for studying the innate immune response and learning general mechanisms that are also relevant for humans. In this review, we summarize what is known about the dynamic regulation of the central NF-κB-pathways and go into detail on the molecular level of the IMD pathway. We report on the role of the nuclear protein Akirin in the regulation of the NF-κB Relish immune response. The use of the Drosophila model allows the understanding of the fine-tuned regulation of this central NF-κB pathway.
Collapse
Affiliation(s)
| | - Adrian Acker
- Institut de Biologie Moléculaire et Cellulaire (IBMC), UPR9022, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Akira Goto
- Institut de Biologie Moléculaire et Cellulaire (IBMC), UPR9022, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Di Chen
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Nicolas Matt
- Institut de Biologie Moléculaire et Cellulaire (IBMC), UPR9022, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Vincent Leclerc
- Institut de Biologie Moléculaire et Cellulaire (IBMC), UPR9022, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
34
|
Sidak-Loftis LC, Rosche KL, Pence N, Ujczo JK, Hurtado J, Fisk EA, Goodman AG, Noh SM, Peters JW, Shaw DK. The Unfolded-Protein Response Triggers the Arthropod Immune Deficiency Pathway. mBio 2022; 13:e0070322. [PMID: 35862781 PMCID: PMC9426425 DOI: 10.1128/mbio.00703-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
The insect immune deficiency (IMD) pathway is a defense mechanism that senses and responds to Gram-negative bacteria. Ticks lack genes encoding upstream components that initiate the IMD pathway. Despite this deficiency, core signaling molecules are present and functionally restrict tick-borne pathogens. The molecular events preceding activation remain undefined. Here, we show that the unfolded-protein response (UPR) initiates the IMD network. The endoplasmic reticulum (ER) stress receptor IRE1α is phosphorylated in response to tick-borne bacteria but does not splice the mRNA encoding XBP1. Instead, through protein modeling and reciprocal pulldowns, we show that Ixodes IRE1α complexes with TRAF2. Disrupting IRE1α-TRAF2 signaling blocks IMD pathway activation and diminishes the production of reactive oxygen species. Through in vitro, in vivo, and ex vivo techniques, we demonstrate that the UPR-IMD pathway circuitry limits the Lyme disease-causing spirochete Borrelia burgdorferi and the rickettsial agents Anaplasma phagocytophilum and A. marginale (anaplasmosis). Altogether, our study uncovers a novel linkage between the UPR and the IMD pathway in arthropods. IMPORTANCE The ability of an arthropod to harbor and transmit pathogens is termed "vector competency." Many factors influence vector competency, including how arthropod immune processes respond to the microbe. Divergences in innate immunity between arthropods are increasingly being reported. For instance, although ticks lack genes encoding key upstream molecules of the immune deficiency (IMD) pathway, it is still functional and restricts causative agents of Lyme disease (Borrelia burgdorferi) and anaplasmosis (Anaplasma phagocytophilum). How the IMD pathway is activated in ticks without classically defined pathway initiators is not known. Here, we found that a cellular stress response network, the unfolded-protein response (UPR), functions upstream to induce the IMD pathway and restrict transmissible pathogens. Collectively, this explains how the IMD pathway can be activated in the absence of canonical pathway initiators. Given that the UPR is highly conserved, UPR-initiated immunity may be a fundamental principle impacting vector competency across arthropods.
Collapse
Affiliation(s)
- Lindsay C. Sidak-Loftis
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Kristin L. Rosche
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Natasha Pence
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Jessica K. Ujczo
- United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, Washington, USA
| | - Joanna Hurtado
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Elis A. Fisk
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Susan M. Noh
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, Washington, USA
| | - John W. Peters
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Dana K. Shaw
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
35
|
Yoo TJ, Sup Shim M, Bang J, Kim JH, Jae Lee B. SPS1 deficiency-triggered PGRP-LC and Toll expression controls innate immunity in Drosophila S2 cells. Biol Open 2022; 11:275744. [PMID: 35723425 PMCID: PMC9364239 DOI: 10.1242/bio.059295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/14/2022] [Indexed: 12/29/2022] Open
Abstract
Selenophosphate synthetase 1 (SPS1) is an essential gene for the cell growth and embryogenesis in Drosophila melanogaster. We have previously reported that SPS1 deficiency stimulates the expression of genes responsible for the innate immune system, including antimicrobial peptides (AMPs), in Drosophila S2 cells. However, the underlying mechanism has not been elucidated. Here, we investigated the immune pathways that control the SPS1-deficiency-induced expression of AMPs in S2 cells. It was found that the activation of AMP expression is regulated by both immune deficiency (IMD) and the Toll pathway. Double knockdown of the upstream genes of each pathway with SPS1 showed that the peptidoglycan recognition protein-LC (PGRP-LC) and Toll genes are targeted by SPS1 for regulating these pathways. We also found that the IMD and Toll pathway regulate AMP expression by cross-talking. The levels of PGRP-LC and Toll mRNAs were upregulated upon Sps1 knockdown (6.4±0.36 and 3.2±0.45-fold, respectively, n=3). Overexpression of each protein also upregulated AMPs. Interestingly, PGRP-LC overexpression upregulated AMP more than Toll overexpression. These data strongly suggest that SPS1 controls the innate immune system of D. melanogaster through regulating PGRP-LC and Toll expression.
Collapse
Affiliation(s)
- Tack-Jin Yoo
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Myoung Sup Shim
- Department of Ophthalmology, Duke Eye Center, Duke Eye Center, Duke University, Durham, NC 27705, USA
| | - Jeyoung Bang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Jin-Hong Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Byeong Jae Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea,Author for correspondence ()
| |
Collapse
|
36
|
Yu S, Luo F, Xu Y, Zhang Y, Jin LH. Drosophila Innate Immunity Involves Multiple Signaling Pathways and Coordinated Communication Between Different Tissues. Front Immunol 2022; 13:905370. [PMID: 35911716 PMCID: PMC9336466 DOI: 10.3389/fimmu.2022.905370] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The innate immune response provides the first line of defense against invading pathogens, and immune disorders cause a variety of diseases. The fruit fly Drosophila melanogaster employs multiple innate immune reactions to resist infection. First, epithelial tissues function as physical barriers to prevent pathogen invasion. In addition, macrophage-like plasmatocytes eliminate intruders through phagocytosis, and lamellocytes encapsulate large particles, such as wasp eggs, that cannot be phagocytosed. Regarding humoral immune responses, the fat body, equivalent to the mammalian liver, secretes antimicrobial peptides into hemolymph, killing bacteria and fungi. Drosophila has been shown to be a powerful in vivo model for studying the mechanism of innate immunity and host-pathogen interactions because Drosophila and higher organisms share conserved signaling pathways and factors. Moreover, the ease with which Drosophila genetic and physiological characteristics can be manipulated prevents interference by adaptive immunity. In this review, we discuss the signaling pathways activated in Drosophila innate immunity, namely, the Toll, Imd, JNK, JAK/STAT pathways, and other factors, as well as relevant regulatory networks. We also review the mechanisms by which different tissues, including hemocytes, the fat body, the lymph gland, muscles, the gut and the brain coordinate innate immune responses. Furthermore, the latest studies in this field are outlined in this review. In summary, understanding the mechanism underlying innate immunity orchestration in Drosophila will help us better study human innate immunity-related diseases.
Collapse
|
37
|
Deng Z, Yang Y, Luo J, Zhang B, Liu J, Shui G, Jiao R, Wei C. An Integrated Transcriptomics and Lipidomics Analysis Reveals That Ergosterol Is Required for Host Defense Against Bacterial Infection in Drosophila. Front Immunol 2022; 13:933137. [PMID: 35874695 PMCID: PMC9301368 DOI: 10.3389/fimmu.2022.933137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Animals adjust their lipid metabolism states in response to pathogens infection. However, the underlying molecular mechanisms for how lipid metabolism responds to infection remain to be elusive. In this study, we assessed the temporal changes of lipid metabolism profiles during infection by an integrated transcriptomics and lipidomics analysis. Ergosterol is identified to be required for proper host defense to pathogens. Notably, ergosterol level is increased in the hemolymph upon bacterial infection. We show that the increase of ergosterol level by food supplement or genetic depletion of Acsl, a long-chain fatty acid-CoA synthetase, promotes host survival against bacterial challenges. Together, our results suggest a critical role of lipid metabolism adaption in the process of host defense against invading pathogens.
Collapse
Affiliation(s)
- Zihao Deng
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yanyang Yang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiazhen Luo
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Biling Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiyong Liu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Renjie Jiao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Renjie Jiao, ; Chuanxian Wei,
| | - Chuanxian Wei
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Renjie Jiao, ; Chuanxian Wei,
| |
Collapse
|
38
|
Zhang MM, Luo LL, Liu Y, Wang GJ, Zheng HH, Liu XS, Wang JL. Calcium and integrin-binding protein 1-like interacting with an integrin α-cytoplasmic domain facilitates cellular immunity in Helicoverpa armigera. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104379. [PMID: 35231466 DOI: 10.1016/j.dci.2022.104379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Integrins are transmembrane receptor heterodimers composed of α and β subunits. They are known to mediate extracellular signals to promote cell adhesion and spreading, and are therefore essential for cellular immunity. However, proteins that bind to integrin cytoplasmic domains and mediate intracellular signaling to promote cell adhesion require identification. Calcium and integrin-binding protein 1 (CIB1) that binds to the integrin α-cytoplasmic domain has rarely been examined in insects. In this study, we found that 20-hydroxyecdysone promoted cell phagocytosis and spreading in Helicoverpa armigera. Transcriptomic analyses of hemocytes identified an integrin α gene (HaINTα-PS1) whose expression could be induced by either 20-hydroxyecdysone injection or bead challenge. Isothermal titration calorimetry assays showed that H. armigera CIB1-like (HaCIB1-like) weakly bound to the cytoplasmic domain of HaINTα-PS1 in the presence of calcium. HaINTα-PS1 or HaCIB1-like knockdown inhibited hemocytic encapsulation and phagocytosis, and plasmatocyte spreading. Moreover, HaCIB1-like overexpression in a H. armigera epidermal cell line overexpanded cells and impaired cell phagocytosis. Thus, insect CIB1-like potentially interacted with integrin α-cytoplasmic domain and facilitated cell adhesion. This study enriches our understanding of the molecular mechanism underlying integrin-mediated cellular immunity in insects.
Collapse
Affiliation(s)
- Ming-Ming Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ling-Ling Luo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yu Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Gui-Jie Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Huan-Huan Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xu-Sheng Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
39
|
Feng M, Swevers L, Sun J. Hemocyte Clusters Defined by scRNA-Seq in Bombyx mori: In Silico Analysis of Predicted Marker Genes and Implications for Potential Functional Roles. Front Immunol 2022; 13:852702. [PMID: 35281044 PMCID: PMC8914287 DOI: 10.3389/fimmu.2022.852702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Within the hemolymph, insect hemocytes constitute a heterogeneous population of macrophage-like cells that play important roles in innate immunity, homeostasis and development. Classification of hemocytes in different subtypes by size, morphology and biochemical or immunological markers has been difficult and only in Drosophila extensive genetic analysis allowed the construction of a coherent picture of hemocyte differentiation from pro-hemocytes to granulocytes, crystal cells and plasmatocytes. However, the advent of high-throughput single cell technologies, such as single cell RNA sequencing (scRNA-seq), is bound to have a high impact on the study of hemocytes subtypes and their phenotypes in other insects for which a sophisticated genetic toolbox is not available. Instead of averaging gene expression across all cells as occurs in bulk-RNA-seq, scRNA-seq allows high-throughput and specific visualization of the differentiation status of individual cells. With scRNA-seq, interesting cell types can be identified in heterogeneous populations and direct analysis of rare cell types is possible. Next to its ability to profile the transcriptomes of individual cells in tissue samples, scRNA-seq can be used to propose marker genes that are characteristic of different hemocyte subtypes and predict their functions. In this perspective, the identities of the different marker genes that were identified by scRNA-seq analysis to define 13 distinct cell clusters of hemocytes in larvae of the silkworm, Bombyx mori, are discussed in detail. The analysis confirms the broad division of hemocytes in granulocytes, plasmatocytes, oenocytoids and perhaps spherulocytes but also reveals considerable complexity at the molecular level and highly specialized functions. In addition, predicted hemocyte marker genes in Bombyx generally show only limited convergence with the genes that are considered characteristic for hemocyte subtypes in Drosophila.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
40
|
Hutfilz C. Endocrine Regulation of Lifespan in Insect Diapause. Front Physiol 2022; 13:825057. [PMID: 35242054 PMCID: PMC8886022 DOI: 10.3389/fphys.2022.825057] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Diapause is a physiological adaptation to conditions that are unfavorable for growth or reproduction. During diapause, animals become long-lived, stress-resistant, developmentally static, and non-reproductive, in the case of diapausing adults. Diapause has been observed at all developmental stages in both vertebrates and invertebrates. In adults, diapause traits weaken into adaptations such as hibernation, estivation, dormancy, or torpor, which represent evolutionarily diverse versions of the traditional diapause traits. These traits are regulated through modifications of the endocrine program guiding development. In insects, this typically includes changes in molting hormones, as well as metabolic signals that limit growth while skewing the organism's energetic demands toward conservation. While much work has been done to characterize these modifications, the interactions between hormones and their downstream consequences are incompletely understood. The current state of diapause endocrinology is reviewed here to highlight the relevance of diapause beyond its use as a model to study seasonality and development. Specifically, insect diapause is an emerging model to study mechanisms that determine lifespan. The induction of diapause represents a dramatic change in the normal progression of age. Hormones such as juvenile hormone, 20-hydroxyecdysone, and prothoracicotropic hormone are well-known to modulate this plasticity. The induction of diapause-and by extension, the cessation of normal aging-is coordinated by interactions between these pathways. However, research directly connecting diapause endocrinology to the biology of aging is lacking. This review explores connections between diapause and aging through the perspective of endocrine signaling. The current state of research in both fields suggests appreciable overlap that will greatly contribute to our understanding of diapause and lifespan determination.
Collapse
|
41
|
Zhang K, Shen L, Wang X, Yang H, Zhang X, Pan G, Li C, Ji H, Abbas MN, Li C, Cui H. Scavenger receptor C regulates antimicrobial peptide expression by activating toll signaling in silkworm, Bombyx mori. Int J Biol Macromol 2021; 191:396-404. [PMID: 34547317 DOI: 10.1016/j.ijbiomac.2021.09.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/26/2021] [Accepted: 09/13/2021] [Indexed: 01/19/2023]
Abstract
Scavenger receptor is pattern-recognition receptor (PRR) that plays a crucial function in host defense against pathogens. Scavenger receptor C (SR-C) is present only in invertebrates and its function has not been studied in detail. In this study, an SR-C homologous gene from the silkworm, Bombyx mori, was identified and characterized. SR-C was largely expressed in hemocytes and Malpighian tubules, with continuous expression in hemocytes. The peak expression was observed in hemocytes during molting and wandering stages both at mRNA and protein levels. Furthermore, immunofluorescence demonstrated it to be mainly distributed in the cell membranes of hemocytes, including oenocytoids and granulocytes. The recombinant SR-C protein (rSR-C) could bind to different types of bacteria and pathogen-associated molecular patterns (PAMPs), with strong binding to gram-positive bacteria and Lys-type peptidoglycans. The overexpression of SR-C induced the expression of genes related to the Toll pathway and antibacterial peptides. While the knockdown of SR-C reduced the expression of AMPs and inhibited the Toll pathway, it impaired the bacterial clearance ability of silkworm larvae, thus decreasing silkworm larvae's survival rate. Altogether, SR-C is a PRR that protect silkworms against bacterial pathogens by enhancing the expression of AMPs expression via the Toll pathway in hemocytes.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, China
| | - Li Shen
- Department of Pathology, Chongqing General Hospital, University of Chinese Academy of Sciences, China
| | - Xue Wang
- Department of Pathology, Chongqing General Hospital, University of Chinese Academy of Sciences, China
| | - He Yang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, China
| | - Xiaolin Zhang
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, China
| | - Haoyan Ji
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, China
| | - Cong Li
- School of River and Ocean, Chongqing Jiaotong University, 400074, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, China; Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing 400716, China.
| |
Collapse
|
42
|
Nunes C, Koyama T, Sucena É. Co-option of immune effectors by the hormonal signalling system triggering metamorphosis in Drosophila melanogaster. PLoS Genet 2021; 17:e1009916. [PMID: 34843450 PMCID: PMC8659296 DOI: 10.1371/journal.pgen.1009916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/09/2021] [Accepted: 10/29/2021] [Indexed: 11/24/2022] Open
Abstract
Insect metamorphosis is triggered by the production, secretion and degradation of 20-hydroxyecdysone (ecdysone). In addition to its role in developmental regulation, increasing evidence suggests that ecdysone is involved in innate immunity processes, such as phagocytosis and the induction of antimicrobial peptide (AMP) production. AMP regulation includes systemic responses as well as local responses at surface epithelia that contact with the external environment. At pupariation, Drosophila melanogaster increases dramatically the expression of three AMP genes, drosomycin (drs), drosomycin-like 2 (drsl2) and drosomycin-like 5 (drsl5). We show that the systemic action of drs at pupariation is dependent on ecdysone signalling in the fat body and operates via the ecdysone downstream target, Broad. In parallel, ecdysone also regulates local responses, specifically through the activation of drsl2 expression in the gut. Finally, we confirm the relevance of this ecdysone dependent AMP expression for the control of bacterial load by showing that flies lacking drs expression in the fat body have higher bacterial persistence over metamorphosis. In contrast, local responses may be redundant with the systemic effect of drs since reduction of ecdysone signalling or of drsl2 expression has no measurable negative effect on bacterial load control in the pupa. Together, our data emphasize the importance of the association between ecdysone signalling and immunity using in vivo studies and establish a new role for ecdysone at pupariation, which impacts developmental success by regulating the immune system in a stage-dependent manner. We speculate that this co-option of immune effectors by the hormonal system may constitute an anticipatory mechanism to control bacterial numbers in the pupa, at the core of metamorphosis evolution.
Collapse
Affiliation(s)
- Catarina Nunes
- Evolution and Development Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Takashi Koyama
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Élio Sucena
- Evolution and Development Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
43
|
Hou J, Yu J, Qin Z, Liu X, Zhao X, Hu X, Yu R, Wang Q, Yang J, Shi Y, Chen L. Guadipyr, a new insecticide, induces microbiota dysbiosis and immune disorders in the midgut of silkworms (Bombyx mori). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117531. [PMID: 34126519 DOI: 10.1016/j.envpol.2021.117531] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Guadipyr, which combines neonicotinoid and semicarbazone functional groups in one molecule, exhibits good activity on several pests and high acute and chronic toxicity to silkworms (Bombyx mori). In this report, the effects of low-dose guadipyr on the midgut microbiota and immune system of silkworms were studied. Results showed that the structure and richness of the midgut microbiota of silkworms were altered after being treated with 5.25 mg/L (1/10 of LC50) of guadipyr. The abundance of Pseudomonas was evidently increased, whereas Curvibacter was substantially reduced, which might be related to the growth and immunity of silkworms. The expression of key genes in the Toll, IMD, and JAK/STAT pathways, which ultimately led to the downregulation of antimicrobial peptide genes (AMPs), such as CecA, Defensin1, Leb, and glv2, was reduced upon guadipyr exposure. Simultaneously, the suppression of steroid hormone 20-hydroxyecdysone receptor and response genes, such as BR-C Z4, was detected in the exposed groups. The decreased expression of these immune regulatory pathway-related and 20-hydroxyecdysone signal pathway-related genes indicated that the immune system of silkworms was affected by low-dose guadipyr. Our results revealed the negative effects of guadipyr on silkworms and highlighted the unneglectable toxicity of low-dose guadipyr to this economic insect. Given the risk, it is necessary to control the application of guadipyr in or around the mulberry fields.
Collapse
Affiliation(s)
- Jiayin Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Jianzhong Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Zhaohai Qin
- China Agricultural University, College of Science, Department of Applied Chemistry, Beijing, 100083, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xiuqing Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Ruixian Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Jingying Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yan Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
44
|
Tang R, Huang W, Guan J, Liu Q, Beerntsen BT, Ling E. Drosophila H2Av negatively regulates the activity of the IMD pathway via facilitating Relish SUMOylation. PLoS Genet 2021; 17:e1009718. [PMID: 34370736 PMCID: PMC8376203 DOI: 10.1371/journal.pgen.1009718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/19/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Insects depend on the innate immune response for defense against a wide array of pathogens. Central to Drosophila immunity are antimicrobial peptides (AMPs), released into circulation when pathogens trigger either of the two widely studied signal pathways, Toll or IMD. The Toll pathway responds to infection by Gram-positive bacteria and fungi while the IMD pathway is activated by Gram-negative bacteria. During activation of the IMD pathway, the NF-κB-like transcription factor Relish is phosphorylated and then cleaved, which is crucial for IMD-dependent AMP gene induction. Here we show that loss-of-function mutants of the unconventional histone variant H2Av upregulate IMD-dependent AMP gene induction in germ-free Drosophila larvae and adults. After careful dissection of the IMD pathway, we found that Relish has an epistatic relationship with H2Av. In the H2Av mutant larvae, SUMOylation is down-regulated, suggesting a possible role of SUMOylation in the immune phenotype. Eventually we demonstrated that Relish is mostly SUMOylated on amino acid K823. Loss of the potential SUMOylation site leads to significant auto-activation of Relish in vivo. Further work indicated that H2Av regulates Relish SUMOylation after physically interacting with Su(var)2-10, the E3 component of the SUMOylation pathway. Biochemical analysis suggested that SUMOylation of Relish prevents its cleavage and activation. Our findings suggest a new mechanism by which H2Av can negatively regulate, and thus prevent spontaneous activation of IMD-dependent AMP production, through facilitating SUMOylation of the NF-κB like transcription factor Relish. Toll and IMD signaling pathways should be involved in the production of antimicrobial peptides in animals upon infection. Immunity responses are energy consuming. Thus, these two pathways are fine-tuned. Animal H2A variant histones are involved in many physiological functions. In Drosophila, the production of antibacterial peptides is out of control in the mutant of H2A variant (H2Av810). After careful examination, we found that Relish, the transcription factor of the IMD pathway, was activated in this mutant. Eventually we demonstrate that Relish can be SUMOylated with the involvement of H2Av. Loss of the main SUMOylation site in Relish induces it to auto-activate following over-expression. Therefore, H2Av is a negative regulator of the IMD signaling pathway by maintaining the normal level of Relish SUMOylation in Drosophila.
Collapse
Affiliation(s)
- Ruijuan Tang
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jingmin Guan
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qiuning Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, China
| | - Brenda T. Beerntsen
- Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
45
|
Ramesh P, Dey NS, Kanwal A, Mandal S, Mandal L. Relish plays a dynamic role in the niche to modulate Drosophila blood progenitor homeostasis in development and infection. eLife 2021; 10:67158. [PMID: 34292149 PMCID: PMC8363268 DOI: 10.7554/elife.67158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Immune challenges demand the gearing up of basal hematopoiesis to combat infection. Little is known about how during development, this switch is achieved to take care of the insult. Here, we show that the hematopoietic niche of the larval lymph gland of Drosophila senses immune challenge and reacts to it quickly through the nuclear factor-κB (NF-κB), Relish, a component of the immune deficiency (Imd) pathway. During development, Relish is triggered by ecdysone signaling in the hematopoietic niche to maintain the blood progenitors. Loss of Relish causes an alteration in the cytoskeletal architecture of the niche cells in a Jun Kinase-dependent manner, resulting in the trapping of Hh implicated in progenitor maintenance. Notably, during infection, downregulation of Relish in the niche tilts the maintenance program toward precocious differentiation, thereby bolstering the cellular arm of the immune response.
Collapse
Affiliation(s)
- Parvathy Ramesh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Nidhi Sharma Dey
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Aditya Kanwal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Sudip Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Molecular Cell and Developmental Biology Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Lolitika Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
46
|
Jugder BE, Kamareddine L, Watnick PI. Microbiota-derived acetate activates intestinal innate immunity via the Tip60 histone acetyltransferase complex. Immunity 2021; 54:1683-1697.e3. [PMID: 34107298 DOI: 10.1016/j.immuni.2021.05.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/05/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023]
Abstract
Microbe-derived acetate activates the Drosophila immunodeficiency (IMD) pathway in a subset of enteroendocrine cells (EECs) of the anterior midgut. In these cells, the IMD pathway co-regulates expression of antimicrobial and enteroendocrine peptides including tachykinin, a repressor of intestinal lipid synthesis. To determine whether acetate acts on a cell surface pattern recognition receptor or an intracellular target, we asked whether acetate import was essential for IMD signaling. Mutagenesis and RNA interference revealed that the putative monocarboxylic acid transporter Tarag was essential for enhancement of IMD signaling by dietary acetate. Interference with histone deacetylation in EECs augmented transcription of genes regulated by the steroid hormone ecdysone including IMD targets. Reduced expression of the histone acetyltransferase Tip60 decreased IMD signaling and blocked rescue by dietary acetate and other sources of intracellular acetyl-CoA. Thus, microbe-derived acetate induces chromatin remodeling within enteroendocrine cells, co-regulating host metabolism and intestinal innate immunity via a Tip60-steroid hormone axis that is conserved in mammals.
Collapse
Affiliation(s)
- Bat-Erdene Jugder
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Layla Kamareddine
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Paula I Watnick
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Zhu S, Feng X, Keyhani NO, Liu Y, Jin D, Tong S, Pei Y, Fan Y. Manipulation of host ecdysteroid hormone levels facilitates infection by the fungal insect pathogen, Metarhizium rileyi. Environ Microbiol 2021; 23:5087-5101. [PMID: 33734541 DOI: 10.1111/1462-2920.15454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 11/27/2022]
Abstract
Entomopathogenic fungi such as Metarhizium rileyi and Beauveria bassiana are widely used insect biological control agents. Little, however, is known concerning genetic or enzymatic factors that differentiate the mechanisms employed by these two fungal pathogens to infect target hosts. Infection by either of these organisms is known to increase levels of the growth and molting hormone, ecdysone, which also regulates the expression of a number of innate immune pathways. M. rileyi, but not B. bassiana, has apparently evolved an ecdysteroid-22-oxidase (MrE22O) that inactivate ecdysone. We show that deletion of MrE22O impaired virulence compared with the wild-type strain, with an increase in ecdysone titer seen in hosts that was coupled to an increase in the expression of antimicrobial genes. An M. rileyi strain engineered to overexpress MrE22O (MrE22OOE ), as well as trans-expression in B. bassiana (Bb::MrE220OE ) resulted, in strains displaying enhanced virulence and dampening of host immune responses compared with their respective wild-type parental strains. These results indicate that ecdysone plays an important role in mediating responses to fungal infection and that some insect pathogenic fungi have evolved mechanisms for targeting this hormone as a means for facilitating infection.
Collapse
Affiliation(s)
- Shengan Zhu
- State Key Laboratory of Silkworm Genome Biology, Biotechnology Research Center, Southwest University, Beibei, Chongqing, China
| | - Xueyao Feng
- State Key Laboratory of Silkworm Genome Biology, Biotechnology Research Center, Southwest University, Beibei, Chongqing, China
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Yu Liu
- State Key Laboratory of Silkworm Genome Biology, Biotechnology Research Center, Southwest University, Beibei, Chongqing, China
| | - Dan Jin
- State Key Laboratory of Silkworm Genome Biology, Biotechnology Research Center, Southwest University, Beibei, Chongqing, China
| | - Sheng Tong
- State Key Laboratory of Silkworm Genome Biology, Biotechnology Research Center, Southwest University, Beibei, Chongqing, China
| | - Yan Pei
- State Key Laboratory of Silkworm Genome Biology, Biotechnology Research Center, Southwest University, Beibei, Chongqing, China
| | - Yanhua Fan
- State Key Laboratory of Silkworm Genome Biology, Biotechnology Research Center, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
48
|
Talyuli OAC, Bottino-Rojas V, Polycarpo CR, Oliveira PL, Paiva-Silva GO. Non-immune Traits Triggered by Blood Intake Impact Vectorial Competence. Front Physiol 2021; 12:638033. [PMID: 33737885 PMCID: PMC7960658 DOI: 10.3389/fphys.2021.638033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Blood-feeding arthropods are considered an enormous public health threat. They are vectors of a plethora of infectious agents that cause potentially fatal diseases like Malaria, Dengue fever, Leishmaniasis, and Lyme disease. These vectors shine due to their own physiological idiosyncrasies, but one biological aspect brings them all together: the requirement of blood intake for development and reproduction. It is through blood-feeding that they acquire pathogens and during blood digestion that they summon a collection of multisystemic events critical for vector competence. The literature is focused on how classical immune pathways (Toll, IMD, and JAK/Stat) are elicited throughout the course of vector infection. Still, they are not the sole determinants of host permissiveness. The dramatic changes that are the hallmark of the insect physiology after a blood meal intake are the landscape where a successful infection takes place. Dominant processes that occur in response to a blood meal are not canonical immunological traits yet are critical in establishing vector competence. These include hormonal circuitries and reproductive physiology, midgut permeability barriers, midgut homeostasis, energy metabolism, and proteolytic activity. On the other hand, the parasites themselves have a role in the outcome of these blood triggered physiological events, consistently using them in their favor. Here, to enlighten the knowledge on vector-pathogen interaction beyond the immune pathways, we will explore different aspects of the vector physiology, discussing how they give support to these long-dated host-parasite relationships.
Collapse
Affiliation(s)
- Octavio A C Talyuli
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Bottino-Rojas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla R Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Secreted virulence factors from Heterorhabditis bacteriophora highlight its utility as a model parasite among Clade V nematodes. Int J Parasitol 2021; 51:321-325. [PMID: 33421438 DOI: 10.1016/j.ijpara.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 11/23/2022]
Abstract
Much of the available knowledge of entomopathogenic virulence factors has been gleaned from studies in the nematode parasite Steinernema carpocapsae, but there is good reason to complement this knowledge with similar studies in Heterorhabditis bacteriophora. Three candidate virulence factors from H. bacteriophora have recently been characterised, and each was demonstrated to contribute to infection. This information can be used not only to advance efforts in the biocontrol of insect pests, but also to make inferences about the emergence of parasitism among Clade V nematodes.
Collapse
|
50
|
Chang MM, Wang YH, Yang QT, Wang XL, Wang M, Raikhel AS, Zou Z. Regulation of antimicrobial peptides by juvenile hormone and its receptor, Methoprene-tolerant, in the mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 128:103509. [PMID: 33264664 DOI: 10.1016/j.ibmb.2020.103509] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
The trade-off between reproduction and immunity has been established for a number of insect species. However, the regulatory mechanisms governing this event is not well understood. In the mosquito Aedes aegypti, the vector of dangerous human arboviral diseases, juvenile hormone (JH) is required for the female post-eclosion development and reproductive maturation. In this study, we have revealed the JH negative effect on the expression of immunity-related genes, such as antimicrobial peptides (AMPs), during the post-eclosion phase of the female mosquito gonadotrophic reproductive cycle. Mosquitoes treated with JH became more sensitive to microbial infection. Mosquitoes subjected to the RNA interference knockdown (RNAi) of the JH receptor, Methoprene-tolerant (Met), showed increased expression of several AMP genes. Met binds to the E-box-like recognition motifs in the regulatory region of the diptericin (Dpt) gene, indicating that JH can suppress the Dpt gene expression through its receptor Met. Hence, JH is involved in the modulation of immune responses during the post-eclosion phase of reproduction. The RNAi knockdown of the peptidoglycan recognition protein (PGRP-LC) led to a significant reduction of the Dpt transcript level, indicating the PGRP-LC activating role on this AMP gene. Thus, Dpt appeared to be under the dual regulation of both the JH and the immune deficiency (IMD) signaling pathways. Our study provides a better understanding of how JH regulates insect immunity in adult mosquitoes.
Collapse
Affiliation(s)
- Meng-Meng Chang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing-Tai Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Li Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mao Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Alexander S Raikhel
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 311300, China.
| |
Collapse
|