1
|
Heraud-Farlow JE, Taylor SR, Chalk AM, Escudero A, Hu SB, Goradia A, Sun T, Li Q, Nikolic I, Li JB, Fidalgo M, Guallar D, Simpson KJ, Walkley CR. GGNBP2 regulates MDA5 sensing triggered by self double-stranded RNA following loss of ADAR1 editing. Sci Immunol 2024; 9:eadk0412. [PMID: 39576872 DOI: 10.1126/sciimmunol.adk0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 06/05/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024]
Abstract
Adenosine-to-inosine (A-to-I) editing of double-stranded RNA (dsRNA) by ADAR1 is an essential modifier of the immunogenicity of cellular dsRNA. The role of MDA5 in sensing unedited cellular dsRNA and the downstream activation of type I interferon (IFN) signaling are well established. However, we have an incomplete understanding of pathways that modify the response to unedited dsRNA. We performed a genome-wide CRISPR screen and showed that GGNBP2, CNOT10, and CNOT11 interact and regulate sensing of unedited cellular dsRNA. We found that GGNBP2 acts between dsRNA transcription and its cytoplasmic sensing by MDA5. GGNBP2 loss prevented induction of type I IFN and autoinflammation after the loss of ADAR1 editing activity by modifying the subcellular distribution of endogenous A-to-I editing substrates and reducing cytoplasmic dsRNA load. These findings reveal previously undescribed pathways to modify diseases associated with ADAR mutations and may be determinants of response or resistance to small-molecule ADAR1 inhibitors.
Collapse
Affiliation(s)
- Jacki E Heraud-Farlow
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Scott R Taylor
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Alistair M Chalk
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Adriana Escudero
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC) - Health Research Institute (IDIS), Santiago de Compostela 15782, Spain
| | - Shi-Bin Hu
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ankita Goradia
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Tao Sun
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Qin Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Iva Nikolic
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology and Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Miguel Fidalgo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC) - Health Research Institute (IDIS), Santiago de Compostela 15782, Spain
| | - Diana Guallar
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC) - Health Research Institute (IDIS), Santiago de Compostela 15782, Spain
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology and Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
2
|
Schiefer S, Hale BG. Proximal protein landscapes of the type I interferon signaling cascade reveal negative regulation by PJA2. Nat Commun 2024; 15:4484. [PMID: 38802340 PMCID: PMC11130243 DOI: 10.1038/s41467-024-48800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Deciphering the intricate dynamic events governing type I interferon (IFN) signaling is critical to unravel key regulatory mechanisms in host antiviral defense. Here, we leverage TurboID-based proximity labeling coupled with affinity purification-mass spectrometry to comprehensively map the proximal human proteomes of all seven canonical type I IFN signaling cascade members under basal and IFN-stimulated conditions. This uncovers a network of 103 high-confidence proteins in close proximity to the core members IFNAR1, IFNAR2, JAK1, TYK2, STAT1, STAT2, and IRF9, and validates several known constitutive protein assemblies, while also revealing novel stimulus-dependent and -independent associations between key signaling molecules. Functional screening further identifies PJA2 as a negative regulator of IFN signaling via its E3 ubiquitin ligase activity. Mechanistically, PJA2 interacts with TYK2 and JAK1, promotes their non-degradative ubiquitination, and limits the activating phosphorylation of TYK2 thereby restraining downstream STAT signaling. Our high-resolution proximal protein landscapes provide global insights into the type I IFN signaling network, and serve as a valuable resource for future exploration of its functional complexities.
Collapse
Affiliation(s)
- Samira Schiefer
- Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH and University of Zurich, 8057, Zurich, Switzerland
| | - Benjamin G Hale
- Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
3
|
Yang K, Jeltema D, Yan N. Innate immune sensing of macromolecule homeostasis. Adv Immunol 2024; 161:17-51. [PMID: 38763701 DOI: 10.1016/bs.ai.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The innate immune system uses a distinct set of germline-encoded pattern recognition receptors to recognize molecular patterns initially thought to be unique to microbial invaders, named pathogen-associated molecular patterns. The concept was later further developed to include similar molecular patterns originating from host cells during tissue damage, known as damage-associated molecular patterns. However, recent advances in the mechanism of monogenic inflammatory diseases have highlighted a much more expansive repertoire of cellular functions that are monitored by innate immunity. Here, we summarize several examples in which an innate immune response is triggered when homeostasis of macromolecule in the cell is disrupted in non-infectious or sterile settings. These ever-growing sensing mechanisms expand the repertoire of innate immune recognition, positioning it not only as a key player in host defense but also as a gatekeeper of cellular homeostasis. Therapeutics inspired by these advances to restore cellular homeostasis and correct the immune system could have far-reaching implications.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Devon Jeltema
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
4
|
Wei K, Gao Y, Wang B, Qu YX. Methylation recognition protein YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) regulates the proliferation, migration and invasion of osteosarcoma by regulating m6A level of CCR4-NOT transcription complex subunit 7 (CNOT7). Bioengineered 2022; 13:5236-5250. [PMID: 35156522 PMCID: PMC8973933 DOI: 10.1080/21655979.2022.2037381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
N6-methyladenosine (m6A) is one of the most significant modifications in human mRNAs. Emerging evidence indicates that m6A participates in the initiation and development of malignant tumors. Nevertheless, the biological roles and mechanism of m6A in osteosarcoma (OS) remain unclear. The purpose of this study was to investigate the role and mechanism of the methylation recognition protein-YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) in OS. The YTHDF1 expression in OS was detected by qRT-PCR and Western blot assay. M6A quantification was utilized to measure the methylation level of OS. Cell counting kit-8 (CCK8), 5-Ethynyl-2’-deoxyuridine (EdU) assay and transwell experiments were conducted to confirm the biological effects of YTHDF1 on OS cells. The bioinformatics websites and in vitro assays were conducted to analyze the downstream targets of YTHDF1 was upregulated in OS tissues at mRNA and protein level. The results showed that the expression level of YTHDF1 might be closely associated with the poor prognosis for OS patients. Inhibition of YTHDF1 could suppress the proliferation, migration and invasion of the OS cells. Moreover, we found that CCR4-NOT transcription complex subunit 7 (CNOT7) might be the potential target of YTHDF1, which was upregulated in OS tissues. YTHDF1 could recognize the m6A sites of CONT7 and promote its expression in an m6A manner. Moreover, methyltransferase-like 3 (METTL3) could promote the m6A level of CONT7. YTHDF1 was upregulated in OS and could promote cell proliferation, migration and invasion. The METTL3-CONT7-YTHDF1 regulatory axis might be the potential target for the prognosis and therapy of OS.
Collapse
Affiliation(s)
- Kang Wei
- The First Department of Orthopadics, Changzhou Traditional Chinese Medical Hospital, Changzhou, China
| | - Yi Gao
- The First Department of Orthopadics, Changzhou Traditional Chinese Medical Hospital, Changzhou, China
| | - Bin Wang
- The First Department of Orthopadics, Changzhou Traditional Chinese Medical Hospital, Changzhou, China
| | - Yu-Xing Qu
- The First Department of Orthopadics, Changzhou Traditional Chinese Medical Hospital, Changzhou, China
| |
Collapse
|
5
|
Berti FCB, Mathias C, Garcia LE, Gradia DF, de Araújo-Souza PS, Cipolla GA, de Oliveira JC, Malheiros D. Comprehensive analysis of ceRNA networks in HPV16- and HPV18-mediated cervical cancers reveals XIST as a pivotal competing endogenous RNA. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166172. [PMID: 34048924 DOI: 10.1016/j.bbadis.2021.166172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Abstract
Cervical cancer (CC) is one of the most common cancers in women worldwide, being closely related to high-risk human papillomavirus (HR-HPVs). After a particular HR-HPV infects a cervical cell, transcriptional changes in the host cell are expected, including the regulation of lncRNAs, miRNAs, and mRNAs. Such transcripts may work independently or integrated in complex molecular networks - as in competing endogenous RNA (ceRNA) networks. In our research, we gathered transcriptome data from samples of HPV16/HPV18 cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), from The Cancer Genome Atlas (TCGA) project. Using GDCRNATools, we identified ceRNA networks that differentiate HPV16- from HPV18-mediated CESC. For HPV16-CESC, three lncRNA-mRNA co-expressed pairs were reported, all led by the X-inactive specific transcript (XIST): XIST | DLG5, XIST | LGR4, and XIST | ZNF81. The XIST | LGR4 and XIST | ZNF81 pairs shared 11 miRNAs, suggesting an increased impact on their final biological effect. XIST also stood out as an important lncRNA in HPV18-CESC, leading 35 of the 42 co-expressed pairs. Some mRNAs, such as ADAM9 and SLC38A2, emerged as important players in the ceRNA regulatory networks due to sharing a considerable amount of miRNAs with XIST. Furthermore, some XIST-associated axes, namely XIST | miR-23a-3p | LGR4 and XIST | miR-30b-5p or miR-30c-5p or miR-30e-5p I ADAM9, had a significant impact on the overall survival of HPV16- and HPV18-CESC patients, respectively. Together, these data suggest that XIST has an important role in HPV-mediated tumorigenesis, which may implicate different molecular signatures between HPV16 and HPV18-associated tumors.
Collapse
Affiliation(s)
- Fernanda Costa Brandão Berti
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Carolina Mathias
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Leandro Encarnação Garcia
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Daniela Fiori Gradia
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Patrícia Savio de Araújo-Souza
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Immunogenetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Gabriel Adelman Cipolla
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Jaqueline Carvalho de Oliveira
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Danielle Malheiros
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil.
| |
Collapse
|
6
|
Yu J, Hu X, Chen X, Zhou Q, Jiang Q, Shi Z, Zhu H. CNOT7 modulates biological functions of ovarian cancer cells via AKT signaling pathway. Life Sci 2021; 268:118996. [PMID: 33412213 DOI: 10.1016/j.lfs.2020.118996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
AIMS CNOT7 plays an important role in many biological processes, providing attractive opportunities for the treatment of malignant tumors. However, the functions and mechanism of CNOT7 in ovarian cancer (OC) have not been elucidated. The purpose of this study was to assess the role of CNOT7 in OC. MATERIALS AND METHODS SKOV3 and A2780 cells were chosen as the cell lines for the experiments of this manuscript via the analysis of the expression of CNOT7 protein and the mRNA level in ovarian surface epithelium (OSE) cells, SKOV3, HO8910 and A2780 cells. The expression of CNOT7 was detected by western blot assays and RT-PCR in A2780 and SKOV3 cells. The MTT assays, colony formation assays and EdU assays were used to measure cell proliferation when CNOT7 was knocked down or overexpressed in A2780 and SKOV3 cells. Furthermore, cell migration and invasion ability were achieved from transwell assays. Cell cycle and apoptosis rate after small interference RNA-CNOT7 (siRNA-CNOT7) were detected by flow cytometry assays. Finally, the cell proliferation, migration and invasion ability were detected when A2780 and SKOV3 cells with CNOT7 overexpression were treated with LY294002. KEY FINDINGS The expression of CNOT7 protein in OC cells, including SKOV3, HO8910 and A2780 cells were significantly higher than that in OSE cells (P < 0.05). The mRNA level of CNOT7 in HO8910 and A2780 cells were significantly higher than that in OSE cells (P < 0.01). However, the mRNA level of CNOT7 in SKOV3 cells was no significant difference compared with OSE cells (P > 0.05). The results suggested that knockdown of CNOT7 could inhibit the cell proliferation, migration and invasion ability in A2780 and SKOV3 cells, and increase cell apoptosis and autophagy. The expression of apoptosis-related molecules (PARP, Caspase3 and Caspase9) and autophagy-related protein (LC3B) were up-regulated after CNOT7 knockdown, while the expression of cycle-related protein (CDK6) and the anti-apoptotic gene (Bcl2) were downregulated. Meanwhile, the opposite results were observed when CNOT7 was overexpressed in A2780 and SKOV3 cells. It is worth noting that the effect of CNOT7 overexpression in A2780 and SKOV3 cells could be partially or completely eliminated by treatment with AKT inhibitor LY294002. SIGNIFICANCE CNOT7 has a carcinogenic effect in OC, and the carcinogenic effect may be achieved via the AKT signaling pathway.
Collapse
Affiliation(s)
- Jiangtao Yu
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Xiaoli Hu
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Xiuxiu Chen
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Qiangyong Zhou
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Qi Jiang
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Zhengzheng Shi
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China.
| | - Haiyan Zhu
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China; Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200126, People's Republic of China.
| |
Collapse
|
7
|
Miao Y, Lu J, Fan B, Sun L. MicroRNA-126-5p Inhibits the Migration of Breast Cancer Cells by Directly Targeting CNOT7. Technol Cancer Res Treat 2020; 19:1533033820977545. [PMID: 33256566 PMCID: PMC7711228 DOI: 10.1177/1533033820977545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: To assess the effect of microRNA-126-5p (miR-126-5p) on the migration of the
breast cancer MCF7 cell line. Methods: GSE143564 was downloaded from the Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo) to identify the
differentially expressed miRNAs between breast cancer and adjacent tissues.
Quantitative reverse transcription PCR (RT-qPCR) was used to assess
miR-126-5p levels in the normal 184A1 breast cell line and the breast cancer
MCF7 cell line. The MCF7 cell line was then transfected with miR-126-5p
mimics or corresponding negative control (NC-mimic). The proliferation and
migration abilities of the MCF7 cell line were measured by methyl thiazolyl
tetrazolium (MTT), Transwell and scratch healing assays. CCR4-NOT
transcription complex and subunit 7 (CNOT7) expression levels in the
NC-mimic and miR-126-5p mimic groups were measured by Western blot analysis.
Bioinformatic analysis and a dual-luciferase reporter assay were performed
to identify the miR-126-5p target gene. Results: One hundred forty-eight differentially expressed miRNAs (downregulated = 55,
upregulated = 93) were identified. MiR-126-5p expression in the MCF7 cell
line was significantly downregulated relative to that of 184A1 cell line (P
< 0.05). Compared with that observed in the control and NC-mimic groups,
cell proliferation in the miR-126-5p mimic group was significantly decreased
at 48 and 72 h posttransfection (P < 0.05). In addition, the scratch
healing rate and number of membrane-piercing cells in the miR-126-5p
overexpression group were lower than those detected in the control and NC
groups (P < 0.05). Furthermore, miR-126-5p could reduce the luciferase
activity for the wild-type CNOT7 gene 3’-untranslated region (UTR) reporter
(P < 0.05) but had no effect on the mutant 3’UTR reporter (P > 0.05).
Compared with that observed in the NC and control groups, the levels of
CNOT7 in the miR-126-5p overexpression group decreased (P < 0.05). Conclusion: Upregulation of miR-126-5p can inhibit the migration of the breast cancer
MCF7 cell line, which may involve its direct targeting of the 3’UTR of
CNOT7.
Collapse
Affiliation(s)
- Yuying Miao
- Department of Breast Surgery Ward, Jingjiang People's Hospital, Jingjiang, China
| | - Jiang Lu
- Department of Breast Surgery Ward, Jingjiang People's Hospital, Jingjiang, China
| | - Baozhen Fan
- Department of Breast Surgery Ward, Jingjiang People's Hospital, Jingjiang, China
| | - Lecan Sun
- Department of Blood Hernia Minimally Invasive Surgery, XuZhou Central Hospital, Xuzhou, China
| |
Collapse
|
8
|
Ren C, Ren X, Cao D, Zhao H, Zhai Z, Li H, Li Y, Fu X, He J, Zhao H. CNOT7 depletion reverses natural killer cell resistance by modulating the tumor immune microenvironment of hepatocellular carcinoma. FEBS Open Bio 2020; 10:847-860. [PMID: 32160402 PMCID: PMC7193174 DOI: 10.1002/2211-5463.12836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/13/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022] Open
Abstract
A major obstacle to effective cancer immunotherapy is the tumor immune microenvironment. Natural killer (NK) cell resistance has been suggested as a primary cause of poor prognosis in hepatocellular carcinoma (HCC), which seemingly correlates with CNOT7 overexpression. CNOT7, a cytoplasmic mRNA deadenylase that is highly expressed in HCC, may regulate cytokine transforming growth factor‐β1 (TGF‐β1) secretion by controlling nuclear factor‐κB subunit p65 trafficking. CNOT7 depletion suppresses TGF‐β1 secretion in HCC and promotes interferon‐γ (IFN‐γ) secretion by NK cells, and we previously demonstrated that CNOT7 depletion reversed IFN‐γ resistance in HCC cells. Therefore, we hypothesized that CNOT7 depletion might reverse NK cell resistance by influencing the tumor immune microenvironment of HCC. To test this hypothesis, we examined the correlation between CNOT7, STAT1, TGF‐β1 and IFN‐γ expression with hepatitis B virus‐related cirrhosis and HCC with hepatitis B virus‐related cirrhosis. We found that modulation of CNOT7 expression alters TGF‐β1 secretion in HCC and IFN‐γ secretion in NK cells. We also examined the effects of NK cells in HepG2 cells with CNOT7 knockdown, which showed that NK cell surface CD107a expression is up‐regulated and caspase‐3 expression is significantly enhanced in CNOT7‐deficient HepG2 cells. Overall, our results show that knockdown of CNOT7 expression reverses NK cell resistance in HCC cells. Therefore, CNOT7 depletion has potential as a new adjuvant therapy in immunotherapy for HCC.
Collapse
Affiliation(s)
| | - Xiaojing Ren
- Graduate College of Shanxi Medical University, TaiYuan, China
| | | | - Haichao Zhao
- Graduate College of Shanxi Medical University, TaiYuan, China
| | | | - Huiyu Li
- Shanxi Bethune Hospital, TaiYuan, China
| | - Yanjun Li
- Shanxi Bethune Hospital, TaiYuan, China
| | - Xifeng Fu
- Shanxi Bethune Hospital, TaiYuan, China
| | | | | |
Collapse
|
9
|
A Quantitative Genetic Interaction Map of HIV Infection. Mol Cell 2020; 78:197-209.e7. [PMID: 32084337 DOI: 10.1016/j.molcel.2020.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/10/2020] [Accepted: 02/02/2020] [Indexed: 12/16/2022]
Abstract
We have developed a platform for quantitative genetic interaction mapping using viral infectivity as a functional readout and constructed a viral host-dependency epistasis map (vE-MAP) of 356 human genes linked to HIV function, comprising >63,000 pairwise genetic perturbations. The vE-MAP provides an expansive view of the genetic dependencies underlying HIV infection and can be used to identify drug targets and study viral mutations. We found that the RNA deadenylase complex, CNOT, is a central player in the vE-MAP and show that knockout of CNOT1, 10, and 11 suppressed HIV infection in primary T cells by upregulating innate immunity pathways. This phenotype was rescued by deletion of IRF7, a transcription factor regulating interferon-stimulated genes, revealing a previously unrecognized host signaling pathway involved in HIV infection. The vE-MAP represents a generic platform that can be used to study the global effects of how different pathogens hijack and rewire the host during infection.
Collapse
|
10
|
Sinha BK. Role of Oxygen and Nitrogen Radicals in the Mechanism of Anticancer Drug Cytotoxicity. JOURNAL OF CANCER SCIENCE & THERAPY 2020; 12:10-18. [PMID: 32494339 PMCID: PMC7269165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Because of the emergence of drug-resistant tumor cells, successful treatments of human malignancies have been difficult to achieve in the clinic. In spite of various approaches to overcome multi drug resistance, it has remained challenging and elusive. It is, therefore, necessary to define and understand the mechanisms of drug-induced tumor cell killing for the future development of anticancer agents and for rationally designed combination chemotherapies. The clinically active antitumor drugs, topotecan, doxorubicin, etoposide, and procarbazine are currently used for the treatment of human tumors. Therefore, a great deal research has been carried to understand mechanisms of actions of these agents both in the laboratory and in the clinic. These drugs are also extensively metabolized in tumor cells to various reactive species and generate oxygen free radical species (ROS) that initiate lipid peroxidation and induce DNA damage. However, the roles of ROS in the mechanism of cytotoxicity remain unappreciated in the clinic. In addition to ROS, various reactive nitrogen species (RNS) are also formed in tumor cells and in vivo. However, the importance of RNS in cancer treatment is not clear and has remained poorly defined. This review discusses the current understanding of the formation and the significance of ROS and RNS in the mechanisms of various clinically active anticancer drugs.
Collapse
Affiliation(s)
- Birandra Kumar Sinha
- Laboratory of Toxicology and Toxicokinetics, National Cancer Institute at National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
11
|
Translation Efficiency and Degradation of ER-Associated mRNAs Modulated by ER-Anchored poly(A)-Specific Ribonuclease (PARN). Cells 2020; 9:cells9010162. [PMID: 31936572 PMCID: PMC7017053 DOI: 10.3390/cells9010162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/21/2022] Open
Abstract
Translation is spatiotemporally regulated and endoplasmic reticulum (ER)-associated mRNAs are generally in efficient translation. It is unclear whether the ER-associated mRNAs are deadenylated or degraded on the ER surface in situ or in the cytosol. Here, we showed that ER possessed active deadenylases, particularly the poly(A)-specific ribonuclease (PARN), in common cell lines and mouse tissues. Consistently, purified recombinant PARN exhibited a strong ability to insert into the Langmuir monolayer and liposome. ER-anchored PARN was found to be able to reshape the poly(A) length profile of the ER-associated RNAs by suppressing long poly(A) tails without significantly influencing the cytosolic RNAs. The shortening of long poly(A) tails did not affect global translation efficiency, which suggests that the non-specific action of PARN towards long poly(A) tails was beyond the scope of translation regulation on the ER surface. Transcriptome sequencing analysis indicated that the ER-anchored PARN trigged the degradation of a small subset of ER-enriched transcripts. The ER-anchored PARN modulated the translation of its targets by redistributing ribosomes to heavy polysomes, which suggests that PARN might play a role in dynamic ribosome reallocation. During DNA damage response, MK2 phosphorylated PARN-Ser557 to modulate PARN translocation from the ER to cytosol. The ER-anchored PARN modulated DNA damage response and thereby cell viability by promoting the decay of ER-associated MDM2 transcripts with low ribosome occupancy. These findings revealed that highly regulated communication between mRNA degradation rate and translation efficiency is present on the ER surface in situ and PARN might contribute to this communication by modulating the dynamic ribosome reallocation between transcripts with low and high ribosome occupancies.
Collapse
|
12
|
Abstract
The Ccr4-Not complex is an essential multi-subunit protein complex that plays a fundamental role in eukaryotic mRNA metabolism and has a multitude of different roles that impact eukaryotic gene expression . It has a conserved core of three Not proteins, the Ccr4 protein, and two Ccr4 associated factors, Caf1 and Caf40. A fourth Not protein, Not4, is conserved, but is only a stable subunit of the complex in yeast. Certain subunits have been duplicated during evolution, with functional divergence, such as Not3 in yeast, and Ccr4 or Caf1 in human. However the complex includes only one homolog for each protein. In addition, species-specific subunits are part of the complex, such as Caf130 in yeast or Not10 and Not11 in human. Two conserved catalytic functions are associated with the complex, deadenylation and ubiquitination . The complex adopts an L-shaped structure, in which different modules are bound to a large Not1 scaffold protein. In this chapter we will summarize our current knowledge of the architecture of the complex and of the structure of its constituents.
Collapse
Affiliation(s)
- Martine A Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, Switzerland.
| | - Olesya O Panasenko
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, Switzerland
| |
Collapse
|
13
|
Combined Transcriptome and Proteome Analysis of Immortalized Human Keratinocytes Expressing Human Papillomavirus 16 (HPV16) Oncogenes Reveals Novel Key Factors and Networks in HPV-Induced Carcinogenesis. mSphere 2019; 4:4/2/e00129-19. [PMID: 30918060 PMCID: PMC6437273 DOI: 10.1128/msphere.00129-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human papillomavirus (HPV)-associated cancers still remain a big health problem, especially in developing countries, despite the availability of prophylactic vaccines. Although HPV oncogenes have been intensively investigated for decades, a study applying recent advances in RNA-Seq and quantitative proteomic approaches to a precancerous model system with well-defined HPV oncogene expression alongside HPV-negative parental cells has been missing until now. Here, combined omics analyses reveal global changes caused by the viral oncogenes in a less biased way and allow the identification of novel factors and key cellular networks potentially promoting malignant transformation. In addition, this system also provides a basis for mechanistic research on novel key factors regulated by HPV oncogenes, especially those that are confirmed in vivo in cervical cancer as well as in head and neck cancer patient samples from TCGA data sets. Although the role of high-risk human papillomaviruses (hrHPVs) as etiological agents in cancer development has been intensively studied during the last decades, there is still the necessity of understanding the impact of the HPV E6 and E7 oncogenes on host cells, ultimately leading to malignant transformation. Here, we used newly established immortalized human keratinocytes with a well-defined HPV16 E6E7 expression cassette to get a more complete and less biased overview of global changes induced by HPV16 by employing transcriptome sequencing (RNA-Seq) and stable isotope labeling by amino acids in cell culture (SILAC). This is the first study combining transcriptome and proteome data to characterize the impact of HPV oncogenes in human keratinocytes in comparison with their virus-negative counterparts. To enhance the informative value and accuracy of the RNA-Seq data, four different bioinformatic workflows were used. We identified potential novel upstream regulators (e.g., CNOT7, SPDEF, MITF, and PAX5) controlling distinct clusters of genes within the HPV-host cell network as well as distinct factors (e.g., CPPED1, LCP1, and TAGLN) with essential functions in cancer. Validated results in this study were compared to data sets from The Cancer Genome Atlas (TCGA), demonstrating that several identified factors were also differentially expressed in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) and HPV-positive head and neck squamous cell carcinomas (HNSCs). This highly integrative approach allows the identification of novel HPV-induced cellular changes that are also reflected in cancer patients, providing a promising omics data set for future studies in both basic and translational research. IMPORTANCE Human papillomavirus (HPV)-associated cancers still remain a big health problem, especially in developing countries, despite the availability of prophylactic vaccines. Although HPV oncogenes have been intensively investigated for decades, a study applying recent advances in RNA-Seq and quantitative proteomic approaches to a precancerous model system with well-defined HPV oncogene expression alongside HPV-negative parental cells has been missing until now. Here, combined omics analyses reveal global changes caused by the viral oncogenes in a less biased way and allow the identification of novel factors and key cellular networks potentially promoting malignant transformation. In addition, this system also provides a basis for mechanistic research on novel key factors regulated by HPV oncogenes, especially those that are confirmed in vivo in cervical cancer as well as in head and neck cancer patient samples from TCGA data sets.
Collapse
|
14
|
A protein-interaction network of interferon-stimulated genes extends the innate immune system landscape. Nat Immunol 2019; 20:493-502. [DOI: 10.1038/s41590-019-0323-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/16/2019] [Indexed: 12/26/2022]
|
15
|
Farshchian M, Matin MM, Armant O, Geerts D, Dastpak M, Nakhaei-Rad S, Tajeran M, Jebelli A, Shahriyari M, Bahrami M, Fallah A, Yaghoobi V, Mirahmadi M, Abbaszadegan MR, Bahrami AR. Suppression of dsRNA response genes and innate immunity following Oct4, Stella, and Nanos2 overexpression in mouse embryonic fibroblasts. Cytokine 2018; 106:1-11. [DOI: 10.1016/j.cyto.2018.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 11/29/2022]
|
16
|
Chapat C, Chettab K, Simonet P, Wang P, De La Grange P, Le Romancer M, Corbo L. Alternative splicing of CNOT7 diversifies CCR4-NOT functions. Nucleic Acids Res 2017; 45:8508-8523. [PMID: 28591869 PMCID: PMC5737658 DOI: 10.1093/nar/gkx506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
The CCR4-associated factor CAF1, also called CNOT7, is a catalytic subunit of the CCR4–NOT complex, which has been implicated in all aspects of the mRNA life cycle, from mRNA synthesis in the nucleus to degradation in the cytoplasm. In human cells, alternative splicing of the CNOT7 gene yields a second CNOT7 transcript leading to the formation of a shorter protein, CNOT7 variant 2 (CNOT7v2). Biochemical characterization indicates that CNOT7v2 interacts with CCR4–NOT subunits, although it does not bind to BTG proteins. We report that CNOT7v2 displays a distinct expression profile in human tissues, as well as a nuclear sub-cellular localization compared to CNOT7v1. Despite a conserved DEDD nuclease domain, CNOT7v2 is unable to degrade a poly(A) tail in vitro and preferentially associates with the protein arginine methyltransferase PRMT1 to regulate its activity. Using both in vitro and in cellulo systems, we have also demonstrated that CNOT7v2 regulates the inclusion of CD44 variable exons. Altogether, our findings suggest a preferential involvement of CNOT7v2 in nuclear processes, such as arginine methylation and alternative splicing, rather than mRNA turnover. These observations illustrate how the integration of a splicing variant inside CCR4–NOT can diversify its cell- and tissue-specific functions.
Collapse
Affiliation(s)
- Clément Chapat
- Univ. Lyon, Université Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Kamel Chettab
- Univ. Lyon, Université Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Pierre Simonet
- Univ. Lyon, Université Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Peng Wang
- McGill University, Department of Biochemistry, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
| | | | - Muriel Le Romancer
- Univ. Lyon, Université Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Laura Corbo
- Univ. Lyon, Université Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| |
Collapse
|
17
|
Bhattacharya S, Rosenberg AF, Peterson DR, Grzesik K, Baran AM, Ashton JM, Gill SR, Corbett AM, Holden-Wiltse J, Topham DJ, Walsh EE, Mariani TJ, Falsey AR. Transcriptomic Biomarkers to Discriminate Bacterial from Nonbacterial Infection in Adults Hospitalized with Respiratory Illness. Sci Rep 2017; 7:6548. [PMID: 28747714 PMCID: PMC5529430 DOI: 10.1038/s41598-017-06738-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/16/2017] [Indexed: 02/02/2023] Open
Abstract
Lower respiratory tract infection (LRTI) commonly causes hospitalization in adults. Because bacterial diagnostic tests are not accurate, antibiotics are frequently prescribed. Peripheral blood gene expression to identify subjects with bacterial infection is a promising strategy. We evaluated whole blood profiling using RNASeq to discriminate infectious agents in adults with microbiologically defined LRTI. Hospitalized adults with LRTI symptoms were recruited. Clinical data and blood was collected, and comprehensive microbiologic testing performed. Gene expression was measured using RNASeq and qPCR. Genes discriminatory for bacterial infection were identified using the Bonferroni-corrected Wilcoxon test. Constrained logistic models to predict bacterial infection were fit using screened LASSO. We enrolled 94 subjects who were microbiologically classified; 53 as “non-bacterial” and 41 as “bacterial”. RNAseq and qPCR confirmed significant differences in mean expression for 10 genes previously identified as discriminatory for bacterial LRTI. A novel dimension reduction strategy selected three pathways (lymphocyte, α-linoleic acid metabolism, IGF regulation) including eleven genes as optimal markers for discriminating bacterial infection (naïve AUC = 0.94; nested CV-AUC = 0.86). Using these genes, we constructed a classifier for bacterial LRTI with 90% (79% CV) sensitivity and 83% (76% CV) specificity. This novel, pathway-based gene set displays promise as a method to distinguish bacterial from nonbacterial LRTI.
Collapse
Affiliation(s)
- Soumyaroop Bhattacharya
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester School Medicine, Rochester, NY, USA
| | - Alex F Rosenberg
- Division of Allergy Immunology & Rheumatology, Department of Medicine, University of Rochester School Medicine, Rochester, NY, USA
| | - Derick R Peterson
- Department of Biostatistics and Computational Biology, University of Rochester School Medicine, Rochester, NY, USA
| | - Katherine Grzesik
- Department of Biostatistics and Computational Biology, University of Rochester School Medicine, Rochester, NY, USA
| | - Andrea M Baran
- Department of Biostatistics and Computational Biology, University of Rochester School Medicine, Rochester, NY, USA
| | - John M Ashton
- Genomics Research Center, University of Rochester School Medicine, Rochester, NY, USA
| | - Steven R Gill
- Genomics Research Center, University of Rochester School Medicine, Rochester, NY, USA
| | - Anthony M Corbett
- Department of Biostatistics and Computational Biology, University of Rochester School Medicine, Rochester, NY, USA
| | - Jeanne Holden-Wiltse
- Department of Biostatistics and Computational Biology, University of Rochester School Medicine, Rochester, NY, USA
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School Medicine, Rochester, NY, USA.,Department of Microbiology and Immunology, University of Rochester School Medicine, Rochester, NY, USA
| | - Edward E Walsh
- Division of Infectious Diseases, Department of Medicine, University of Rochester School Medicine and Rochester General Hospital, Rochester, NY, USA
| | - Thomas J Mariani
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester School Medicine, Rochester, NY, USA
| | - Ann R Falsey
- Division of Infectious Diseases, Department of Medicine, University of Rochester School Medicine and Rochester General Hospital, Rochester, NY, USA.
| |
Collapse
|
18
|
Sinha BK. Nitric oxide: Friend or Foe in Cancer Chemotherapy and Drug Resistance: A Perspective. ACTA ACUST UNITED AC 2016; 8:244-251. [PMID: 31844487 DOI: 10.4172/1948-5956.1000421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A successful treatment of cancers in the clinic has been difficult to achieve because of the emergence of drug resistant tumor cells. While various approaches have been tried to overcome multi-drug resistance, it has remained a major road block in achieving complete success in the clinic. Extensive research has identified various mechanisms, including overexpression of P-glycoprotein 170, modifications in activating or detoxification enzymes (phase I and II enzymes), and mutation and/or decreases in target enzymes in cancer cells. However, nitric oxide and/or nitric oxide-related species have not been considered an important player in cancer treatment and or drug resistance. Here, we examine the significance of nitric oxide in the treatment and resistance mechanisms of various anticancer drugs. Furthermore, we describe the significance of recently reported effects of nitric oxide on topoisomerases and the development of resistance to topoisomerase-poisons in tumor cells.
Collapse
Affiliation(s)
- Birandra K Sinha
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| |
Collapse
|
19
|
Nair S, Bist P, Dikshit N, Krishnan MN. Global functional profiling of human ubiquitome identifies E3 ubiquitin ligase DCST1 as a novel negative regulator of Type-I interferon signaling. Sci Rep 2016; 6:36179. [PMID: 27782195 PMCID: PMC5080589 DOI: 10.1038/srep36179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/12/2016] [Indexed: 12/28/2022] Open
Abstract
Type I interferon (IFN-I) mediated innate immune response controls virus infections by inducing the expression of interferon stimulated genes (ISGs). Although ubiquitination plays key roles in immune signaling regulation, a human genome-wide understanding of the role of E3 ubiquitin ligases in interferon mediated ISG induction is lacking. Here, we report a genome-wide profiling of the effect of ectopic expression of 521 E3 ubiquitin ligases and substrate recognition subunits encoded in the human genome (which constitutes 84.4% of all ubiquitination related genes encoded in the human genome, hereafter termed Human Ubiquitome) on IFNβ mediated induction of interferon stimulated DNA response element (ISRE) driven reporter activity. We identified 96 and 42 genes of the human ubiquitome as novel negative and positive regulators of interferon signaling respectively. Furthermore, we characterized DCST1 as a novel E3 ubiquitin ligase negatively regulating interferon response. Ectopic expression and gene silencing of DCST1 respectively attenuated and increased ISRE reporter activity. DCST1 regulated Type I interferon signaling by interacting with and promoting ubiquitination-mediated degradation of STAT2, an essential component of antiviral gene induction. In summary, this study provided a systems level view on the role of human ubiquitination associated genes in Type I interferon response.
Collapse
Affiliation(s)
- Sajith Nair
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Pradeep Bist
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Neha Dikshit
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Manoj N Krishnan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| |
Collapse
|
20
|
Ukleja M, Valpuesta JM, Dziembowski A, Cuellar J. Beyond the known functions of the CCR4-NOT complex in gene expression regulatory mechanisms: New structural insights to unravel CCR4-NOT mRNA processing machinery. Bioessays 2016; 38:1048-58. [PMID: 27502453 DOI: 10.1002/bies.201600092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Large protein assemblies are usually the effectors of major cellular processes. The intricate cell homeostasis network is divided into numerous interconnected pathways, each controlled by a set of protein machines. One of these master regulators is the CCR4-NOT complex, which ultimately controls protein expression levels. This multisubunit complex assembles around a scaffold platform, which enables a wide variety of well-studied functions from mRNA synthesis to transcript decay, as well as other tasks still being identified. Solving the structure of the entire CCR4-NOT complex will help to define the distribution of its functions. The recently published three-dimensional reconstruction of the complex, in combination with the known crystal structures of some of the components, has begun to address this. Methodological improvements in structural biology, especially in cryoelectron microscopy, encourage further structural and protein-protein interaction studies, which will advance our comprehension of the gene expression machinery.
Collapse
Affiliation(s)
- Marta Ukleja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland. .,Faculty of Biology, Department of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland. .,Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain. .,Institute of Structural and Molecular Biology, University College London and Birkbeck, London, UK.
| | - José María Valpuesta
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Biology, Department of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Jorge Cuellar
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
21
|
Marriott AS, Vasieva O, Fang Y, Copeland NA, McLennan AG, Jones NJ. NUDT2 Disruption Elevates Diadenosine Tetraphosphate (Ap4A) and Down-Regulates Immune Response and Cancer Promotion Genes. PLoS One 2016; 11:e0154674. [PMID: 27144453 PMCID: PMC4856261 DOI: 10.1371/journal.pone.0154674] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/18/2016] [Indexed: 01/04/2023] Open
Abstract
Regulation of gene expression is one of several roles proposed for the stress-induced nucleotide diadenosine tetraphosphate (Ap4A). We have examined this directly by a comparative RNA-Seq analysis of KBM-7 chronic myelogenous leukemia cells and KBM-7 cells in which the NUDT2 Ap4A hydrolase gene had been disrupted (NuKO cells), causing a 175-fold increase in intracellular Ap4A. 6,288 differentially expressed genes were identified with P < 0.05. Of these, 980 were up-regulated and 705 down-regulated in NuKO cells with a fold-change ≥ 2. Ingenuity® Pathway Analysis (IPA®) was used to assign these genes to known canonical pathways and functional networks. Pathways associated with interferon responses, pattern recognition receptors and inflammation scored highly in the down-regulated set of genes while functions associated with MHC class II antigens were prominent among the up-regulated genes, which otherwise showed little organization into major functional gene sets. Tryptophan catabolism was also strongly down-regulated as were numerous genes known to be involved in tumor promotion in other systems, with roles in the epithelial-mesenchymal transition, proliferation, invasion and metastasis. Conversely, some pro-apoptotic genes were up-regulated. Major upstream factors predicted by IPA® for gene down-regulation included NFκB, STAT1/2, IRF3/4 and SP1 but no major factors controlling gene up-regulation were identified. Potential mechanisms for gene regulation mediated by Ap4A and/or NUDT2 disruption include binding of Ap4A to the HINT1 co-repressor, autocrine activation of purinoceptors by Ap4A, chromatin remodeling, effects of NUDT2 loss on transcript stability, and inhibition of ATP-dependent regulatory factors such as protein kinases by Ap4A. Existing evidence favors the last of these as the most probable mechanism. Regardless, our results suggest that the NUDT2 protein could be a novel cancer chemotherapeutic target, with its inhibition potentially exerting strong anti-tumor effects via multiple pathways involving metastasis, invasion, immunosuppression and apoptosis.
Collapse
MESH Headings
- Cell Line, Tumor
- Dinucleoside Phosphates/metabolism
- Down-Regulation
- Gene Expression Profiling
- Gene Knockout Techniques
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Phosphoric Monoester Hydrolases/deficiency
- Phosphoric Monoester Hydrolases/genetics
Collapse
Affiliation(s)
- Andrew S. Marriott
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
| | - Olga Vasieva
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
| | - Yongxiang Fang
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
| | - Nikki A. Copeland
- Division of Biomedical and Life Sciences, University of Lancaster, Lancaster, Lancashire, United Kingdom
| | - Alexander G. McLennan
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
- * E-mail: (AGM); (NJJ)
| | - Nigel J. Jones
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
- * E-mail: (AGM); (NJJ)
| |
Collapse
|
22
|
Schraivogel D, Schindler SG, Danner J, Kremmer E, Pfaff J, Hannus S, Depping R, Meister G. Importin-β facilitates nuclear import of human GW proteins and balances cytoplasmic gene silencing protein levels. Nucleic Acids Res 2015; 43:7447-61. [PMID: 26170235 PMCID: PMC4551936 DOI: 10.1093/nar/gkv705] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 07/01/2015] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) guide Argonaute (Ago) proteins to distinct target mRNAs leading to translational repression and mRNA decay. Ago proteins interact with a member of the GW protein family, referred to as TNRC6A-C in mammals, which coordinate downstream gene-silencing processes. The cytoplasmic functions of TNRC6 and Ago proteins are reasonably well established. Both protein families are found in the nucleus as well. Their detailed nuclear functions, however, remain elusive. Furthermore, it is not clear which import routes Ago and TNRC6 proteins take into the nucleus. Using different nuclear transport assays, we find that Ago as well as TNRC6 proteins shuttle between the cytoplasm and the nucleus. While import receptors might function redundantly to transport Ago2, we demonstrate that TNRC6 proteins are imported by the Importin-β pathway. Finally, we show that nuclear localization of both Ago2 and TNRC6 proteins can depend on each other suggesting actively balanced cytoplasmic Ago – TNRC6 levels.
Collapse
Affiliation(s)
- Daniel Schraivogel
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Susann G Schindler
- Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Johannes Danner
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Marchioninistraße 25, 81377 Munich, Germany
| | - Janina Pfaff
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Stefan Hannus
- Intana Biosciences GmbH, Lochhamerstrasse 29A, 82152 Martinsried/Planegg, Germany
| | - Reinhard Depping
- Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
23
|
Shirai YT, Suzuki T, Morita M, Takahashi A, Yamamoto T. Multifunctional roles of the mammalian CCR4-NOT complex in physiological phenomena. Front Genet 2014; 5:286. [PMID: 25191340 PMCID: PMC4139912 DOI: 10.3389/fgene.2014.00286] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/04/2014] [Indexed: 01/12/2023] Open
Abstract
The carbon catabolite repression 4 (CCR4)–negative on TATA-less (NOT) complex serves as one of the major deadenylases of eukaryotes. Although it was originally identified and characterized in yeast, recent studies have revealed that the CCR4–NOT complex also exerts important functions in mammals, -including humans. However, there are some differences in the composition and functions of the CCR4–NOT complex between mammals and yeast. It is noteworthy that each subunit of the CCR4–NOT complex has unique, multifunctional roles and is responsible for various physiological phenomena. This heterogeneity and versatility of the CCR4–NOT complex makes an overall understanding of this complex difficult. Here, we describe the functions of each subunit of the mammalian CCR4–NOT complex and discuss the molecular mechanisms by which it regulates homeostasis in mammals. Furthermore, a possible link between the disruption of the CCR4–NOT complex and various diseases will be discussed. Finally, we propose that the analysis of mice with each CCR4–NOT subunit knocked out is an effective strategy for clarifying its complicated functions and networks in mammals.
Collapse
Affiliation(s)
- Yo-Taro Shirai
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University Onna-son, Japan
| | - Toru Suzuki
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University Onna-son, Japan
| | - Masahiro Morita
- Department of Biochemistry, McGill University Montreal, QC, Canada ; Goodman Cancer Research Centre, McGill University Montreal, QC, Canada
| | - Akinori Takahashi
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University Onna-son, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University Onna-son, Japan
| |
Collapse
|
24
|
Chapat C, Corbo L. Novel roles of the CCR4-NOT complex. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:883-901. [PMID: 25044499 DOI: 10.1002/wrna.1254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 12/21/2022]
Abstract
The CCR4-NOT complex is a multi-subunit protein complex evolutionarily conserved across eukaryotes which regulates several aspects of gene expression. A fascinating model is emerging in which this complex acts as a regulation platform, controlling gene products 'from birth to death' through the coordination of different cellular machineries involved in diverse cellular functions. Recently the CCR4-NOT functions have been extended to the control of the innate immune response through the regulation of interferon signaling. Thus, a more comprehensive picture of how CCR4-NOT allows the rapid adaptation of cells to external stress, from transcription to mRNA and protein decay, is presented and discussed here. Overall, CCR4-NOT permits the efficient and rapid adaptation of cellular gene expression in response to changes in environmental conditions and stimuli.
Collapse
Affiliation(s)
- Clément Chapat
- Université Lyon 1, Lyon, France; CNRS UMR 5286, Lyon, France; Inserm U1052, Lyon, France; Cancer Research Center of Lyon, Centre Léon Bérard, Lyon, France
| | | |
Collapse
|
25
|
Tumor microenvironment-based feed-forward regulation of NOS2 in breast cancer progression. Proc Natl Acad Sci U S A 2014; 111:6323-8. [PMID: 24733928 DOI: 10.1073/pnas.1401799111] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inflammation is widely recognized as an inducer of cancer progression. The inflammation-associated enzyme, inducible nitric oxide synthase (NOS2), has emerged as a candidate oncogene in estrogen receptor (ER)-negative breast cancer, and its increased expression is associated with disease aggressiveness and poor survival. Although these observations implicate NOS2 as an attractive therapeutic target, the mechanisms of both NOS2 induction in tumors and nitric oxide (NO)-driven cancer progression are not fully understood. To enhance our mechanistic understanding of NOS2 induction in tumors and its role in tumor biology, we used stimulants of NOS2 expression in ER(-) and ER(+) breast cancer cells and examined downstream NO-dependent effects. Herein, we show that up-regulation of NOS2 occurs in response to hypoxia, serum withdrawal, IFN-γ, and exogenous NO, consistent with a feed-forward regulation of NO production by the tumor microenvironment in breast cancer biology. Moreover, we found that key indicators of an aggressive cancer phenotype including increased S100 calcium binding protein A8, IL-6, IL-8, and tissue inhibitor matrix metalloproteinase-1 are up-regulated by these NOS2 stimulants, whereas inhibition of NOS2 in MDA-MB-231 breast cancer cells suppressed these markers. Moreover, NO altered cellular migration and chemoresistance of MDA-MB-231 cells to Taxol. Most notably, MDA-MB-231 tumor xenographs and cell metastases from the fat pad to the brain were significantly suppressed by NOS2 inhibition in nude mice. In summary, these results link elevated NOS2 to signals from the tumor microenvironment that arise with cancer progression and show that NO production regulates chemoresistance and metastasis of breast cancer cells.
Collapse
|