1
|
Wang X, Luo J, Wu L, Luo H, Guo F. deepTAD: an approach for identifying topologically associated domains based on convolutional neural network and transformer model. Brief Bioinform 2025; 26:bbaf127. [PMID: 40131313 PMCID: PMC11934553 DOI: 10.1093/bib/bbaf127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
MOTIVATION Topologically associated domains (TADs) play a key role in the 3D organization and function of genomes, and accurate detection of TADs is essential for revealing the relationship between genomic structure and function. Most current methods are developed to extract features in Hi-C interaction matrix to identify TADs. However, due to complexities in Hi-C contact matrices, it is difficult to directly extract features associated with TADs, which prevents current methods from identifying accurate TADs. RESULTS In this paper, a novel method is proposed, deepTAD, which is developed based on a convolutional neural network (CNN) and transformer model. First, based on Hi-C contact matrix, deepTAD utilizes CNN to directly extract features associated with TAD boundaries. Next, deepTAD takes advantage of the transformer model to analyze the variation features around TAD boundaries and determines the TAD boundaries. Second, deepTAD uses the Wilcoxon rank-sum test to further identify false-positive boundaries. Finally, deepTAD computes cosine similarity among identified TAD boundaries and assembles TAD boundaries to obtain hierarchical TADs. The experimental results show that TAD boundaries identified by deepTAD have a significant enrichment of biological features, including structural proteins, histone modifications, and transcription start site loci. Additionally, when evaluating the completeness and accuracy of identified TADs, deepTAD has a good performance compared with other methods. The source code of deepTAD is available at https://github.com/xiaoyan-wang99/deepTAD.
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Software, Henan Polytechnic University, 2001 Century Road, Jiaozuo 454003, China
| | - Junwei Luo
- School of Software, Henan Polytechnic University, 2001 Century Road, Jiaozuo 454003, China
| | - Lili Wu
- School of Software, Henan Polytechnic University, 2001 Century Road, Jiaozuo 454003, China
| | - Huimin Luo
- School of Computer and Information Engineering, Henan University, North Section of Jinming Avenue, Kaifeng 475001, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, 932 Lushan South Road, Changsha 410083, China
| |
Collapse
|
2
|
Giles KA, Taberlay PC, Cesare AJ, Jones MJK. Roles for the 3D genome in the cell cycle, DNA replication, and double strand break repair. Front Cell Dev Biol 2025; 13:1548946. [PMID: 40083661 PMCID: PMC11903485 DOI: 10.3389/fcell.2025.1548946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Large eukaryotic genomes are packaged into the restricted area of the nucleus to protect the genetic code and provide a dedicated environment to read, copy and repair DNA. The physical organisation of the genome into chromatin loops and self-interacting domains provides the basic structural units of genome architecture. These structural arrangements are complex, multi-layered, and highly dynamic and influence how different regions of the genome interact. The role of chromatin structures during transcription via enhancer-promoter interactions is well established. Less understood is how nuclear architecture influences the plethora of chromatin transactions during DNA replication and repair. In this review, we discuss how genome architecture is regulated during the cell cycle to influence the positioning of replication origins and the coordination of DNA double strand break repair. The role of genome architecture in these cellular processes highlights its critical involvement in preserving genome integrity and cancer prevention.
Collapse
Affiliation(s)
- Katherine A. Giles
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Phillippa C. Taberlay
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Anthony J. Cesare
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW, Australia
| | - Mathew J. K. Jones
- Faculty of Medicine, Frazer Institute, University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Göbel AM, Zhou S, Wang Z, Tzourtzou S, Himmelbach A, Zheng S, Pradillo M, Liu C, Jiang H. Mutations of PDS5 genes enhance TAD-like domain formation Arabidopsis thaliana. Nat Commun 2024; 15:9308. [PMID: 39468060 PMCID: PMC11519323 DOI: 10.1038/s41467-024-53760-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
In eukaryotes, topologically associating domains (TADs) organize the genome into functional compartments. While TAD-like structures are common in mammals and many plants, they are challenging to detect in Arabidopsis thaliana. Here, we demonstrate that Arabidopsis PDS5 proteins play a negative role in TAD-like domain formation. Through Hi-C analysis, we show that mutations in PDS5 genes lead to the widespread emergence of enhanced TAD-like domains throughout the Arabidopsis genome, excluding pericentromeric regions. These domains exhibit increased chromatin insulation and enhanced chromatin interactions, without significant changes in gene expression or histone modifications. Our results suggest that PDS5 proteins are key regulators of genome architecture, influencing 3D chromatin organization independently of transcriptional activity. This study provides insights into the unique chromatin structure of Arabidopsis and the broader mechanisms governing plant genome folding.
Collapse
Affiliation(s)
- Anna-Maria Göbel
- Department of Epigenetics, Institute of Biology, University of Hohenheim, Garbenstrasse 30, Stuttgart, Germany
| | - Sida Zhou
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam-Golm, Germany
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Zhidan Wang
- Department of Epigenetics, Institute of Biology, University of Hohenheim, Garbenstrasse 30, Stuttgart, Germany
| | - Sofia Tzourtzou
- Department of Epigenetics, Institute of Biology, University of Hohenheim, Garbenstrasse 30, Stuttgart, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Shiwei Zheng
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam-Golm, Germany
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense, Madrid, Spain
| | - Chang Liu
- Department of Epigenetics, Institute of Biology, University of Hohenheim, Garbenstrasse 30, Stuttgart, Germany.
| | - Hua Jiang
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam-Golm, Germany.
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| |
Collapse
|
4
|
Groves IJ, O’Connor CM. Loopy virus or controlled contortionist? 3D regulation of HCMV gene expression by CTCF-driven chromatin interactions. J Virol 2024; 98:e0114824. [PMID: 39212383 PMCID: PMC11495066 DOI: 10.1128/jvi.01148-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Three-dimensional chromatin control of eukaryotic transcription is pivotal for regulating gene expression. This additional layer of epigenetic regulation is also utilized by DNA viruses, including herpesviruses. Dynamic, spatial genomic organization often involves looping of chromatin anchored by host-encoded CCCTC-binding factor (CTCF) and other factors, which control crosstalk between promoters and enhancers. Herein, we review the contribution of CTCF-mediated looping in regulating transcription during herpesvirus infection, with a specific focus on the betaherpesvirus, human cytomegalovirus (HCMV).
Collapse
Affiliation(s)
- Ian J. Groves
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christine M. O’Connor
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Moon KW, Kim DG, Ryu JK. Anisotropic scrunching of SMC with a baton-pass mechanism. Commun Biol 2024; 7:881. [PMID: 39030299 PMCID: PMC11271495 DOI: 10.1038/s42003-024-06557-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/04/2024] [Indexed: 07/21/2024] Open
Abstract
DNA-loop extrusion is considered to be a universal principle of structural maintenance of chromosome (SMC) proteins with regard to chromosome organization. Despite recent advancements in structural dynamics studies that involve the use of cryogenic-electron microscopy (Cryo-EM), atomic force microscopy (AFM), etc., the precise molecular mechanism underlying DNA-loop extrusion by SMC proteins remains the subject of ongoing discussions. In this context, we propose a scrunching model that incorporates the anisotropic motion of SMC folding with a baton-pass mechanism, offering a potential explanation of how a "DNA baton" is transferred from the hinge domain to a DNA pocket via an anisotropic hinge motion. This proposed model provides insights into how SMC proteins unidirectionally extrude DNA loops in the direction of loop elongation while also maintaining the stability of a DNA loop throughout the dynamic process of DNA-loop extrusion.
Collapse
Affiliation(s)
- Kyoung-Wook Moon
- Department of Physics and Astronomy, Seoul National University, Seoul, South Korea
| | - Do-Gyun Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, South Korea
| | - Je-Kyung Ryu
- Department of Physics and Astronomy, Seoul National University, Seoul, South Korea.
- Institute of Applied Physics of Seoul National University, Seoul, South Korea.
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
- Department of Biological Sciences, Seoul National University, Seoul, South Korea.
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, South Korea.
| |
Collapse
|
6
|
Lu Z, Wang Y, Assumpção ALFV, Liu P, Kopp A, Saka S, Mcilwain SJ, Viny AD, Brand M, Pan X. Yin Yang 1 regulates cohesin complex protein SMC3 in mouse hematopoietic stem cells. Blood Adv 2024; 8:3076-3091. [PMID: 38531064 PMCID: PMC11222949 DOI: 10.1182/bloodadvances.2023011411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
ABSTRACT Yin Yang 1 (YY1) and structural maintenance of chromosomes 3 (SMC3) are 2 critical chromatin structural factors that mediate long-distance enhancer-promoter interactions and promote developmentally regulated changes in chromatin architecture in hematopoietic stem/progenitor cells (HSPCs). Although YY1 has critical functions in promoting hematopoietic stem cell (HSC) self-renewal and maintaining HSC quiescence, SMC3 is required for proper myeloid lineage differentiation. However, many questions remain unanswered regarding how YY1 and SMC3 interact with each other and affect hematopoiesis. We found that YY1 physically interacts with SMC3 and cooccupies with SMC3 at a large cohort of promoters genome wide, and YY1 deficiency deregulates the genetic network governing cell metabolism. YY1 occupies the Smc3 promoter and represses SMC3 expression in HSPCs. Although deletion of 1 Smc3 allele partially restores HSC numbers and quiescence in YY1 knockout mice, Yy1-/-Smc3+/- HSCs fail to reconstitute blood after bone marrow transplant. YY1 regulates HSC metabolic pathways and maintains proper intracellular reactive oxygen species levels in HSCs, and this regulation is independent of the YY1-SMC3 axis. Our results establish a distinct YY1-SMC3 axis and its impact on HSC quiescence and metabolism.
Collapse
Affiliation(s)
- Zhanping Lu
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
| | - Yinghua Wang
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
| | - Anna L. F. V. Assumpção
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
| | - Peng Liu
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Audrey Kopp
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sahitya Saka
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
| | - Sean J. Mcilwain
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Aaron D. Viny
- Division of Hematology & Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY
| | - Marjorie Brand
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Xuan Pan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
| |
Collapse
|
7
|
Serra F, Nieto-Aliseda A, Fanlo-Escudero L, Rovirosa L, Cabrera-Pasadas M, Lazarenkov A, Urmeneta B, Alcalde-Merino A, Nola EM, Okorokov AL, Fraser P, Graupera M, Castillo SD, Sardina JL, Valencia A, Javierre BM. p53 rapidly restructures 3D chromatin organization to trigger a transcriptional response. Nat Commun 2024; 15:2821. [PMID: 38561401 PMCID: PMC10984980 DOI: 10.1038/s41467-024-46666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Activation of the p53 tumor suppressor triggers a transcriptional program to control cellular response to stress. However, the molecular mechanisms by which p53 controls gene transcription are not completely understood. Here, we uncover the critical role of spatio-temporal genome architecture in this process. We demonstrate that p53 drives direct and indirect changes in genome compartments, topologically associating domains, and DNA loops prior to one hour of its activation, which escort the p53 transcriptional program. Focusing on p53-bound enhancers, we report 340 genes directly regulated by p53 over a median distance of 116 kb, with 74% of these genes not previously identified. Finally, we showcase that p53 controls transcription of distal genes through newly formed and pre-existing enhancer-promoter loops in a cohesin dependent manner. Collectively, our findings demonstrate a previously unappreciated architectural role of p53 as regulator at distinct topological layers and provide a reliable set of new p53 direct target genes that may help designs of cancer therapies.
Collapse
Affiliation(s)
- François Serra
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | | | | | | | - Mónica Cabrera-Pasadas
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Barcelona Supercomputing Center, Barcelona, Spain
| | | | - Blanca Urmeneta
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | | | - Emanuele M Nola
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Andrei L Okorokov
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Peter Fraser
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Mariona Graupera
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Jose L Sardina
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Alfonso Valencia
- Barcelona Supercomputing Center, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Biola M Javierre
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain.
- Institute for Health Science Research Germans Trias i Pujol, Barcelona, Spain.
| |
Collapse
|
8
|
Jeong D, Shi G, Li X, Thirumalai D. Structural basis for the preservation of a subset of topologically associating domains in interphase chromosomes upon cohesin depletion. eLife 2024; 12:RP88564. [PMID: 38502563 PMCID: PMC10950330 DOI: 10.7554/elife.88564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Compartment formation in interphase chromosomes is a result of spatial segregation between euchromatin and heterochromatin on a few megabase pairs (Mbp) scale. On the sub-Mbp scales, topologically associating domains (TADs) appear as interacting domains along the diagonal in the ensemble averaged Hi-C contact map. Hi-C experiments showed that most of the TADs vanish upon deleting cohesin, while the compartment structure is maintained, and perhaps even enhanced. However, closer inspection of the data reveals that a non-negligible fraction of TADs is preserved (P-TADs) after cohesin loss. Imaging experiments show that, at the single-cell level, TAD-like structures are present even without cohesin. To provide a structural basis for these findings, we first used polymer simulations to show that certain TADs with epigenetic switches across their boundaries survive after depletion of loops. More importantly, the three-dimensional structures show that many of the P-TADs have sharp physical boundaries. Informed by the simulations, we analyzed the Hi-C maps (with and without cohesin) in mouse liver and human colorectal carcinoma cell lines, which affirmed that epigenetic switches and physical boundaries (calculated using the predicted 3D structures using the data-driven HIPPS method that uses Hi-C as the input) explain the origin of the P-TADs. Single-cell structures display TAD-like features in the absence of cohesin that are remarkably similar to the findings in imaging experiments. Some P-TADs, with physical boundaries, are relevant to the retention of enhancer-promoter/promoter-promoter interactions. Overall, our study shows that preservation of a subset of TADs upon removing cohesin is a robust phenomenon that is valid across multiple cell lines.
Collapse
Affiliation(s)
- Davin Jeong
- Department of Chemistry, University of Texas at AustinAustinUnited States
| | - Guang Shi
- Department of Chemistry, University of Texas at AustinAustinUnited States
| | - Xin Li
- Department of Chemistry, University of Texas at AustinAustinUnited States
| | - D Thirumalai
- Department of Chemistry, University of Texas at AustinAustinUnited States
- Department of Physics, University of Texas at AustinAustinUnited States
| |
Collapse
|
9
|
Groves IJ, Matthews SM, O’Connor CM. Host-encoded CTCF regulates human cytomegalovirus latency via chromatin looping. Proc Natl Acad Sci U S A 2024; 121:e2315860121. [PMID: 38408244 PMCID: PMC10927566 DOI: 10.1073/pnas.2315860121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a prevalent pathogen that establishes life-long latent infection in hematopoietic cells. While this infection is usually asymptomatic, immune dysregulation leads to viral reactivation, which can cause significant morbidity and mortality. However, the mechanisms underpinning reactivation remain incompletely understood. The HCMV major immediate early promoter (MIEP)/enhancer is a key factor in this process, as its transactivation from a repressed to active state helps drive viral gene transcription necessary for reactivation from latency. Numerous host transcription factors bind the MIE locus and recruit repressive chromatin modifiers, thus impeding virus reactivation. One such factor is CCCTC-binding protein (CTCF), a highly conserved host zinc finger protein that mediates chromatin conformation and nuclear architecture. However, the mechanisms by which CTCF contributes to HCMV latency were previously unexplored. Here, we confirm that CTCF binds two convergent sites within the MIE locus during latency in primary CD14+ monocytes, and following cellular differentiation, CTCF association is lost as the virus reactivates. While mutation of the MIE enhancer CTCF binding site does not impact viral lytic growth in fibroblasts, this mutant virus fails to maintain latency in myeloid cells. Furthermore, we show the two convergent CTCF binding sites allow looping to occur across the MIEP, supporting transcriptional repression during latency. Indeed, looping between the two sites diminishes during virus reactivation, concurrent with activation of MIE transcription. Taken together, our data reveal that three-dimensional chromatin looping aids in the regulation of HCMV latency and provides insight into promoter/enhancer regulation that may prove broadly applicable across biological systems.
Collapse
Affiliation(s)
- Ian J. Groves
- Infection Biology Program, Sheikha Fatima bint Mubarak Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH44195
- Case Comprehensive Cancer Center, Cleveland, OH44106
| | - Stephen M. Matthews
- Infection Biology Program, Sheikha Fatima bint Mubarak Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
- Case Comprehensive Cancer Center, Cleveland, OH44106
| | - Christine M. O’Connor
- Infection Biology Program, Sheikha Fatima bint Mubarak Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH44195
- Case Comprehensive Cancer Center, Cleveland, OH44106
| |
Collapse
|
10
|
Hua D, Gu M, Zhang X, Du Y, Xie H, Qi L, Du X, Bai Z, Zhu X, Tian D. DiffDomain enables identification of structurally reorganized topologically associating domains. Nat Commun 2024; 15:502. [PMID: 38218905 PMCID: PMC10787792 DOI: 10.1038/s41467-024-44782-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Topologically associating domains (TADs) are critical structural units in three-dimensional genome organization of mammalian genome. Dynamic reorganizations of TADs between health and disease states are associated with essential genome functions. However, computational methods for identifying reorganized TADs are still in the early stages of development. Here, we present DiffDomain, an algorithm leveraging high-dimensional random matrix theory to identify structurally reorganized TADs using high-throughput chromosome conformation capture (Hi-C) contact maps. Method comparison using multiple real Hi-C datasets reveals that DiffDomain outperforms alternative methods for false positive rates, true positive rates, and identifying a new subtype of reorganized TADs. Applying DiffDomain to Hi-C data from different cell types and disease states demonstrates its biological relevance. Identified reorganized TADs are associated with structural variations and epigenomic changes such as changes in CTCF binding sites. By applying to a single-cell Hi-C data from mouse neuronal development, DiffDomain can identify reorganized TADs between cell types with reasonable reproducibility using pseudo-bulk Hi-C data from as few as 100 cells per condition. Moreover, DiffDomain reveals differential cell-to-population variability and heterogeneous cell-to-cell variability in TADs. Therefore, DiffDomain is a statistically sound method for better comparative analysis of TADs using both Hi-C and single-cell Hi-C data.
Collapse
Affiliation(s)
- Dunming Hua
- Department of Biostatistics and Systems Biology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 510275, China
- Department of Biostatistics and Systems Biology, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Ming Gu
- Department of Biostatistics and Systems Biology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 510275, China
- Department of Biostatistics and Systems Biology, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiao Zhang
- Department of Biostatistics and Systems Biology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 510275, China
- Department of Biostatistics and Systems Biology, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yanyi Du
- Department of Biostatistics and Systems Biology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 510275, China
- Department of Biostatistics and Systems Biology, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Hangcheng Xie
- Department of Biostatistics and Systems Biology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 510275, China
- Department of Biostatistics and Systems Biology, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Li Qi
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Xiangjun Du
- Department of Biostatistics and Systems Biology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 510275, China
- Department of Biostatistics and Systems Biology, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhidong Bai
- KLASMOE & School of Mathematics and Statistics, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Xiaopeng Zhu
- MyCellome LLC., Allison Park, PA, 15101, USA
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Dechao Tian
- Department of Biostatistics and Systems Biology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 510275, China.
- Department of Biostatistics and Systems Biology, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
11
|
He J, Yan A, Chen B, Huang J, Kee K. 3D genome remodeling and homologous pairing during meiotic prophase of mouse oogenesis and spermatogenesis. Dev Cell 2023; 58:3009-3027.e6. [PMID: 37963468 DOI: 10.1016/j.devcel.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023]
Abstract
During meiosis, the chromatin and transcriptome undergo prominent switches. Although recent studies have explored the genome reorganization during spermatogenesis, the chromatin remodeling in oogenesis and characteristics of homologous pairing remain largely elusive. We comprehensively compared chromatin structures and transcriptomes at successive substages of meiotic prophase in both female and male mice using low-input high-through chromosome conformation capture (Hi-C) and RNA sequencing (RNA-seq). Compartments and topologically associating domains (TADs) gradually disappeared and slowly recovered in both sexes. We found that homologs adopted different sex-conserved pairing strategies prior to and after the leptotene-to-zygotene transition, changing from long interspersed nuclear element (LINE)-enriched compartments B to short interspersed nuclear element (SINE)-enriched compartments A. We complemented marker genes and predicted the sex-specific meiotic sterile genes for each substage. This study provides valuable insights into the similarities and distinctions between sexes in chromosome architecture, homologous pairing, and transcriptome during meiotic prophase of both oogenesis and spermatogenesis.
Collapse
Affiliation(s)
- Jing He
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - An Yan
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Bo Chen
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Jiahui Huang
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Kehkooi Kee
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
12
|
Pezic D, Weeks S, Varsally W, Dewari PS, Pollard S, Branco MR, Hadjur S. The N-terminus of Stag1 is required to repress the 2C program by maintaining rRNA expression and nucleolar integrity. Stem Cell Reports 2023; 18:2154-2173. [PMID: 37802073 PMCID: PMC10679541 DOI: 10.1016/j.stemcr.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023] Open
Abstract
Our understanding of how STAG proteins contribute to cell identity and disease have largely been studied from the perspective of chromosome topology and protein-coding gene expression. Here, we show that STAG1 is the dominant paralog in mouse embryonic stem cells (mESCs) and is required for pluripotency. mESCs express a wide diversity of naturally occurring Stag1 isoforms, resulting in complex regulation of both the levels of STAG paralogs and the proportion of their unique terminal ends. Skewing the balance of these isoforms impacts cell identity. We define a novel role for STAG1, in particular its N-terminus, in regulating repeat expression, nucleolar integrity, and repression of the two-cell (2C) state to maintain mESC identity. Our results move beyond protein-coding gene regulation via chromatin loops to new roles for STAG1 in nucleolar structure and function, and offer fresh perspectives on how STAG proteins, known to be cancer targets, contribute to cell identity and disease.
Collapse
Affiliation(s)
- Dubravka Pezic
- Department of Cancer Biology, Cancer Institute, University College London, 72 Huntley Street, London, UK
| | - Samuel Weeks
- Department of Cancer Biology, Cancer Institute, University College London, 72 Huntley Street, London, UK
| | - Wazeer Varsally
- Department of Cancer Biology, Cancer Institute, University College London, 72 Huntley Street, London, UK
| | - Pooran S Dewari
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Cancer Research UK Scotland Centre, Edinburgh, UK
| | - Steven Pollard
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Cancer Research UK Scotland Centre, Edinburgh, UK
| | - Miguel R Branco
- Blizard Institute, Faculty of Medicine and Dentistry, QMUL, London, UK
| | - Suzana Hadjur
- Department of Cancer Biology, Cancer Institute, University College London, 72 Huntley Street, London, UK.
| |
Collapse
|
13
|
Kaur P, Lu X, Xu Q, Irvin EM, Pappas C, Zhang H, Finkelstein IJ, Shi Z, Tao YJ, Yu H, Wang H. High-speed AFM imaging reveals DNA capture and loop extrusion dynamics by cohesin-NIPBL. J Biol Chem 2023; 299:105296. [PMID: 37774974 PMCID: PMC10656236 DOI: 10.1016/j.jbc.2023.105296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023] Open
Abstract
3D chromatin organization plays a critical role in regulating gene expression, DNA replication, recombination, and repair. While initially discovered for its role in sister chromatid cohesion, emerging evidence suggests that the cohesin complex (SMC1, SMC3, RAD21, and SA1/SA2), facilitated by NIPBL, mediates topologically associating domains and chromatin loops through DNA loop extrusion. However, information on how conformational changes of cohesin-NIPBL drive its loading onto DNA, initiation, and growth of DNA loops is still lacking. In this study, high-speed atomic force microscopy imaging reveals that cohesin-NIPBL captures DNA through arm extension, assisted by feet (shorter protrusions), and followed by transfer of DNA to its lower compartment (SMC heads, RAD21, SA1, and NIPBL). While binding at the lower compartment, arm extension leads to the capture of a second DNA segment and the initiation of a DNA loop that is independent of ATP hydrolysis. The feet are likely contributed by the C-terminal domains of SA1 and NIPBL and can transiently bind to DNA to facilitate the loading of the cohesin complex onto DNA. Furthermore, high-speed atomic force microscopy imaging reveals distinct forward and reverse DNA loop extrusion steps by cohesin-NIPBL. These results advance our understanding of cohesin by establishing direct experimental evidence for a multistep DNA-binding mechanism mediated by dynamic protein conformational changes.
Collapse
Affiliation(s)
- Parminder Kaur
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA.
| | - Xiaotong Lu
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Qi Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang Province, P.R. China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, P.R. China
| | | | - Colette Pappas
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Hongshan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Zhubing Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang Province, P.R. China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, P.R. China
| | - Yizhi Jane Tao
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Hongtao Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang Province, P.R. China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, P.R. China
| | - Hong Wang
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA; Toxicology Program, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
14
|
Moon KW, Ryu JK. Current working models of SMC-driven DNA-loop extrusion. Biochem Soc Trans 2023; 51:1801-1810. [PMID: 37767565 DOI: 10.1042/bst20220898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Structural maintenance of chromosome (SMC) proteins play a key roles in the chromosome organization by condensing two meters of DNA into cell-sized structures considered as the SMC protein extrudes DNA loop. Recent sequencing-based high-throughput chromosome conformation capture technique (Hi-C) and single-molecule experiments have provided direct evidence of DNA-loop extrusion. However, the molecular mechanism by which SMCs extrude a DNA loop is still under debate. Here, we review DNA-loop extrusion studies with single-molecule assays and introduce recent structural studies of how the ATP-hydrolysis cycle is coupled to the conformational changes of SMCs for DNA-loop extrusion. In addition, we explain the conservation of the DNA-binding sites that are vital for dynamic DNA-loop extrusion by comparing Cryo-EM structures of SMC complexes. Based on this information, we compare and discuss four compelling working models that explain how the SMC complex extrudes a DNA loop.
Collapse
Affiliation(s)
- Kyoung-Wook Moon
- Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Je-Kyung Ryu
- Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
15
|
Chen J, Floyd EN, Dawson DS, Rankin S. Cornelia de Lange Syndrome mutations in SMC1A cause cohesion defects in yeast. Genetics 2023; 225:iyad159. [PMID: 37650609 PMCID: PMC10550314 DOI: 10.1093/genetics/iyad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
Cornelia de Lange Syndrome (CdLS) is a developmental disorder characterized by limb truncations, craniofacial abnormalities, and cognitive delays. CdLS is caused mainly by mutations in genes encoding subunits or regulators of the cohesin complex. Cohesin plays 2 distinct roles in chromosome dynamics as follows: it promotes looping, organization, and compaction of individual chromosomes, and it holds newly replicated sister chromatids together until cell division. CdLS-associated mutations result in altered gene expression likely by affecting chromosome architecture. Whether CdLS mutations cause phenotypes through impact on sister chromatid cohesion is less clear. Here, we show that CdLS-associated mutations introduced into the SMC1A gene of budding yeast had measurable impacts on sister chromatid cohesion, mitotic progression, and DNA damage sensitivity. These data suggest that sister chromatid cohesion-related defects may contribute to phenotypes seen in CdLS affected individuals.
Collapse
Affiliation(s)
- Jingrong Chen
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
| | - Erin N Floyd
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
| | - Dean S Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Susannah Rankin
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
16
|
Chen Y, Zhou T, Liao Z, Gao W, Wu J, Zhang S, Li Y, Liu H, Zhou H, Xu C, Su P. Hnrnpk is essential for embryonic limb bud development as a transcription activator and a collaborator of insulator protein Ctcf. Cell Death Differ 2023; 30:2293-2308. [PMID: 37608075 PMCID: PMC10589297 DOI: 10.1038/s41418-023-01207-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
Proper development of the limb bud relies on the concordance of various signals, but its molecular mechanisms have not yet been fully illustrated. Here we report that heterogeneous nuclear ribonucleoprotein K (hnRNPK) is essential for limb bud development. Its ablation in the limb bud results in limbless forelimbs and severe deformities of the hindlimbs. In terms of mechanism, hnRNPK functions as a transcription activator for the vital genes involved in the three regulatory axes of limb bud development. Simultaneously, for the first time we elucidate that hnRNPK binds to and coordinates with the insulator protein CCCTC binding factor (CTCF) to maintain a three-dimensional chromatin architecture. Ablation of hnRNPK weakens the binding strength of CTCF to topologically associating domain (TAD) boundaries, then leading to the loose TADs, and decreased interactions between promoters and enhancers, and further decreased transcription of developmental genes. Our study establishes a fundamental and novel role of hnRNPK in regulating limb bud development.
Collapse
Affiliation(s)
- Yuyu Chen
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Taifeng Zhou
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhiheng Liao
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenjie Gao
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Jinna Wu
- Department of Breast Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Shun Zhang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yongyong Li
- Precision Medicine Institute, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hengyu Liu
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hang Zhou
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Caixia Xu
- Research Center for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Peiqiang Su
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
17
|
Agarwal A, Korsak S, Choudhury A, Plewczynski D. The dynamic role of cohesin in maintaining human genome architecture. Bioessays 2023; 45:e2200240. [PMID: 37603403 DOI: 10.1002/bies.202200240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Recent advances in genomic and imaging techniques have revealed the complex manner of organizing billions of base pairs of DNA necessary for maintaining their functionality and ensuring the proper expression of genetic information. The SMC proteins and cohesin complex primarily contribute to forming higher-order chromatin structures, such as chromosomal territories, compartments, topologically associating domains (TADs) and chromatin loops anchored by CCCTC-binding factor (CTCF) protein or other genome organizers. Cohesin plays a fundamental role in chromatin organization, gene expression and regulation. This review aims to describe the current understanding of the dynamic nature of the cohesin-DNA complex and its dependence on cohesin for genome maintenance. We discuss the current 3C technique and numerous bioinformatics pipelines used to comprehend structural genomics and epigenetics focusing on the analysis of Cohesin-centred interactions. We also incorporate our present comprehension of Loop Extrusion (LE) and insights from stochastic modelling.
Collapse
Affiliation(s)
- Abhishek Agarwal
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Sevastianos Korsak
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | | | - Dariusz Plewczynski
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
18
|
Zhang H, Shi Z, Banigan EJ, Kim Y, Yu H, Bai XC, Finkelstein IJ. CTCF and R-loops are boundaries of cohesin-mediated DNA looping. Mol Cell 2023; 83:2856-2871.e8. [PMID: 37536339 DOI: 10.1016/j.molcel.2023.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/10/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
Cohesin and CCCTC-binding factor (CTCF) are key regulatory proteins of three-dimensional (3D) genome organization. Cohesin extrudes DNA loops that are anchored by CTCF in a polar orientation. Here, we present direct evidence that CTCF binding polarity controls cohesin-mediated DNA looping. Using single-molecule imaging, we demonstrate that a critical N-terminal motif of CTCF blocks cohesin translocation and DNA looping. The cryo-EM structure of the cohesin-CTCF complex reveals that this CTCF motif ahead of zinc fingers can only reach its binding site on the STAG1 cohesin subunit when the N terminus of CTCF faces cohesin. Remarkably, a C-terminally oriented CTCF accelerates DNA compaction by cohesin. DNA-bound Cas9 and Cas12a ribonucleoproteins are also polar cohesin barriers, indicating that stalling may be intrinsic to cohesin itself. Finally, we show that RNA-DNA hybrids (R-loops) block cohesin-mediated DNA compaction in vitro and are enriched with cohesin subunits in vivo, likely forming TAD boundaries.
Collapse
Affiliation(s)
- Hongshan Zhang
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Zhubing Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Edward J Banigan
- Department of Physics, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yoori Kim
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Hongtao Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Xiao-Chen Bai
- Department of Biophysics, Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ilya J Finkelstein
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
19
|
Corsi F, Rusch E, Goloborodko A. Loop extrusion rules: the next generation. Curr Opin Genet Dev 2023; 81:102061. [PMID: 37354885 DOI: 10.1016/j.gde.2023.102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/26/2023]
Abstract
The interphase genome of vertebrates contains roughly 100 000 dynamic loops formed by cohesins. These loops are thought to play important roles in many functions, but their exact contribution in each case remains hotly disputed. The key challenge in studying these loops is the lack of a single experimental technique that could reliably and comprehensively visualize their locations and dynamics. Yet, we can infer them using theoretical models that integrate complementary experimental observations. Modeling proved instrumental in showing that cohesins form loops via extrusion. The loop extrusion model made numerous successful qualitative and quantitative predictions and inspired many experiments. However, it also demonstrated limited accuracy in predicting contact maps. Recent research suggests that the original model did not fully account for the intricate details of the mechanism of loop extrusion and its complex regulation. Here, we review the progress in visualizing extrusion and characterizing the cohesin cofactors. These discoveries can be summarized as 'rules' of cohesin movement along chromosomes and incorporated into the next generation of models. Such improved models will enable more accurate inferences of positions and dynamics of cohesin loops and generate better predictions for designing experiments.
Collapse
Affiliation(s)
- Flavia Corsi
- Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria. https://twitter.com/@flavia_corsi
| | - Emma Rusch
- Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria. https://twitter.com/@emma__rush
| | - Anton Goloborodko
- Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
20
|
Li H, He X, Kurowski L, Zhang R, Zhao D, Zeng J. Improving comparative analyses of Hi-C data via contrastive self-supervised learning. Brief Bioinform 2023; 24:bbad193. [PMID: 37287135 DOI: 10.1093/bib/bbad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/12/2023] [Accepted: 04/27/2023] [Indexed: 06/09/2023] Open
Abstract
Hi-C is a widely applied chromosome conformation capture (3C)-based technique, which has produced a large number of genomic contact maps with high sequencing depths for a wide range of cell types, enabling comprehensive analyses of the relationships between biological functionalities (e.g. gene regulation and expression) and the three-dimensional genome structure. Comparative analyses play significant roles in Hi-C data studies, which are designed to make comparisons between Hi-C contact maps, thus evaluating the consistency of replicate Hi-C experiments (i.e. reproducibility measurement) and detecting statistically differential interacting regions with biological significance (i.e. differential chromatin interaction detection). However, due to the complex and hierarchical nature of Hi-C contact maps, it remains challenging to conduct systematic and reliable comparative analyses of Hi-C data. Here, we proposed sslHiC, a contrastive self-supervised representation learning framework, for precisely modeling the multi-level features of chromosome conformation and automatically producing informative feature embeddings for genomic loci and their interactions to facilitate comparative analyses of Hi-C contact maps. Comprehensive computational experiments on both simulated and real datasets demonstrated that our method consistently outperformed the state-of-the-art baseline methods in providing reliable measurements of reproducibility and detecting differential interactions with biological meanings.
Collapse
Affiliation(s)
- Han Li
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084 Beijing, China
| | - Xuan He
- Machine Learning Department, Silexon AI Technology Co., Ltd., 210000 Nanjing, China
| | - Lawrence Kurowski
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084 Beijing, China
| | - Ruotian Zhang
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084 Beijing, China
| | - Dan Zhao
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084 Beijing, China
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
21
|
Erdel F. Phase transitions in heterochromatin organization. Curr Opin Struct Biol 2023; 80:102597. [PMID: 37087823 DOI: 10.1016/j.sbi.2023.102597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023]
Abstract
Heterochromatin formation has been proposed to involve phase transitions on the level of the three-dimensional folding of heterochromatin regions and the liquid-liquid demixing of heterochromatin proteins. Here, I outline the hallmarks of such transitions and the current challenges to detect them in living cells. I further discuss the abundance and properties of prominent heterochromatin proteins and relate them to their potential role in driving phase transitions. Recent data from mouse fibroblasts indicate that pericentric heterochromatin is organized via a reordering transition on the level of heterochromatin regions that does not necessarily involve liquid-liquid demixing of heterochromatin proteins. Evaluating key hallmarks of the different candidate phase transition mechanisms across cell types and species will be needed to complete the current picture.
Collapse
Affiliation(s)
- Fabian Erdel
- MCD, Center for Integrative Biology (CBI), CNRS, UPS, Toulouse, France.
| |
Collapse
|
22
|
Porter H, Li Y, Neguembor MV, Beltran M, Varsally W, Martin L, Cornejo MT, Pezić D, Bhamra A, Surinova S, Jenner RG, Cosma MP, Hadjur S. Cohesin-independent STAG proteins interact with RNA and R-loops and promote complex loading. eLife 2023; 12:e79386. [PMID: 37010886 PMCID: PMC10238091 DOI: 10.7554/elife.79386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 04/02/2023] [Indexed: 04/04/2023] Open
Abstract
Most studies of cohesin function consider the Stromalin Antigen (STAG/SA) proteins as core complex members given their ubiquitous interaction with the cohesin ring. Here, we provide functional data to support the notion that the SA subunit is not a mere passenger in this structure, but instead plays a key role in the localization of cohesin to diverse biological processes and promotes loading of the complex at these sites. We show that in cells acutely depleted for RAD21, SA proteins remain bound to chromatin, cluster in 3D and interact with CTCF, as well as with a wide range of RNA binding proteins involved in multiple RNA processing mechanisms. Accordingly, SA proteins interact with RNA, and R-loops, even in the absence of cohesin. Our results place SA1 on chromatin upstream of the cohesin ring and reveal a role for SA1 in cohesin loading which is independent of NIPBL, the canonical cohesin loader. We propose that SA1 takes advantage of structural R-loop platforms to link cohesin loading and chromatin structure with diverse functions. Since SA proteins are pan-cancer targets, and R-loops play an increasingly prevalent role in cancer biology, our results have important implications for the mechanistic understanding of SA proteins in cancer and disease.
Collapse
Affiliation(s)
- Hayley Porter
- Research Department of Cancer Biology, Cancer Institute, University College London, London, United Kingdom
| | - Yang Li
- Research Department of Cancer Biology, Cancer Institute, University College London, London, United Kingdom
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Manuel Beltran
- Regulatory Genomics Group, Cancer Institute, University College London, London, United Kingdom
| | - Wazeer Varsally
- Research Department of Cancer Biology, Cancer Institute, University College London, London, United Kingdom
| | - Laura Martin
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Manuel Tavares Cornejo
- Regulatory Genomics Group, Cancer Institute, University College London, London, United Kingdom
| | - Dubravka Pezić
- Research Department of Cancer Biology, Cancer Institute, University College London, London, United Kingdom
| | - Amandeep Bhamra
- Proteomics Research Translational Technology Platform, Cancer Institute, University College London, London, United Kingdom
| | - Silvia Surinova
- Proteomics Research Translational Technology Platform, Cancer Institute, University College London, London, United Kingdom
| | - Richard G Jenner
- Regulatory Genomics Group, Cancer Institute, University College London, London, United Kingdom
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Suzana Hadjur
- Research Department of Cancer Biology, Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
23
|
Banigan EJ, Tang W, van den Berg AA, Stocsits RR, Wutz G, Brandão HB, Busslinger GA, Peters JM, Mirny LA. Transcription shapes 3D chromatin organization by interacting with loop extrusion. Proc Natl Acad Sci U S A 2023; 120:e2210480120. [PMID: 36897969 PMCID: PMC10089175 DOI: 10.1073/pnas.2210480120] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/03/2022] [Indexed: 03/12/2023] Open
Abstract
Cohesin folds mammalian interphase chromosomes by extruding the chromatin fiber into numerous loops. "Loop extrusion" can be impeded by chromatin-bound factors, such as CTCF, which generates characteristic and functional chromatin organization patterns. It has been proposed that transcription relocalizes or interferes with cohesin and that active promoters are cohesin loading sites. However, the effects of transcription on cohesin have not been reconciled with observations of active extrusion by cohesin. To determine how transcription modulates extrusion, we studied mouse cells in which we could alter cohesin abundance, dynamics, and localization by genetic "knockouts" of the cohesin regulators CTCF and Wapl. Through Hi-C experiments, we discovered intricate, cohesin-dependent contact patterns near active genes. Chromatin organization around active genes exhibited hallmarks of interactions between transcribing RNA polymerases (RNAPs) and extruding cohesins. These observations could be reproduced by polymer simulations in which RNAPs were moving barriers to extrusion that obstructed, slowed, and pushed cohesins. The simulations predicted that preferential loading of cohesin at promoters is inconsistent with our experimental data. Additional ChIP-seq experiments showed that the putative cohesin loader Nipbl is not predominantly enriched at promoters. Therefore, we propose that cohesin is not preferentially loaded at promoters and that the barrier function of RNAP accounts for cohesin accumulation at active promoters. Altogether, we find that RNAP is an extrusion barrier that is not stationary, but rather, translocates and relocalizes cohesin. Loop extrusion and transcription might interact to dynamically generate and maintain gene interactions with regulatory elements and shape functional genomic organization.
Collapse
Affiliation(s)
- Edward J. Banigan
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Wen Tang
- Research Institute of Molecular Pathology, Vienna BioCenter1030Vienna, Austria
| | - Aafke A. van den Berg
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Roman R. Stocsits
- Research Institute of Molecular Pathology, Vienna BioCenter1030Vienna, Austria
| | - Gordana Wutz
- Research Institute of Molecular Pathology, Vienna BioCenter1030Vienna, Austria
| | - Hugo B. Brandão
- Graduate Program in Biophysics, Harvard University, Cambridge, MA02138
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- The Broad Institute of MIT and Harvard, Cambridge, MA02142
| | - Georg A. Busslinger
- Research Institute of Molecular Pathology, Vienna BioCenter1030Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna1090, Austria
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna1090, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology, Vienna BioCenter1030Vienna, Austria
| | - Leonid A. Mirny
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
24
|
A de novo transcription-dependent TAD boundary underpins critical multiway interactions during antibody class switch recombination. Mol Cell 2023; 83:681-697.e7. [PMID: 36736317 DOI: 10.1016/j.molcel.2023.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/04/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023]
Abstract
Interactions between transcription and cohesin-mediated loop extrusion can influence 3D chromatin architecture. However, their relevance in biology is unclear. Here, we report a direct role for such interactions in the mechanism of antibody class switch recombination (CSR) at the murine immunoglobulin heavy chain locus (Igh). Using Tri-C to measure higher-order multiway interactions on single alleles, we find that the juxtaposition (synapsis) of transcriptionally active donor and acceptor Igh switch (S) sequences, an essential step in CSR, occurs via the interaction of loop extrusion complexes with a de novo topologically associating domain (TAD) boundary formed via transcriptional activity across S regions. Surprisingly, synapsis occurs predominantly in proximity to the 3' CTCF-binding element (3'CBE) rather than the Igh super-enhancer, suggesting a two-step mechanism whereby transcription of S regions is not topologically coupled to synapsis, as has been previously proposed. Altogether, these insights advance our understanding of how 3D chromatin architecture regulates CSR.
Collapse
|
25
|
de Wit E, Nora EP. New insights into genome folding by loop extrusion from inducible degron technologies. Nat Rev Genet 2023; 24:73-85. [PMID: 36180596 DOI: 10.1038/s41576-022-00530-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 01/24/2023]
Abstract
Chromatin folds into dynamic loops that often span hundreds of kilobases and physically wire distant loci together for gene regulation. These loops are continuously created, extended and positioned by structural maintenance of chromosomes (SMC) protein complexes, such as condensin and cohesin, and their regulators, including CTCF, in a highly dynamic process known as loop extrusion. Genetic loss of extrusion factors is lethal, complicating their study. Inducible protein degradation technologies enable the depletion of loop extrusion factors within hours, leading to the rapid reconfiguration of chromatin folding. Here, we review how these technologies have changed our understanding of genome organization, upsetting long-held beliefs on its role in transcription. Finally, we examine recent models that attempt to reconcile observations after chronic versus acute perturbations, and discuss future developments in this rapidly developing field of research.
Collapse
Affiliation(s)
- Elzo de Wit
- Division of Gene Regulation, Oncode Institute, Amsterdam, the Netherlands.
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Elphège P Nora
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
26
|
A novel intergenic enhancer that regulates Bdnf expression in developing cortical neurons. iScience 2022; 26:105695. [PMID: 36582820 PMCID: PMC9792897 DOI: 10.1016/j.isci.2022.105695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/29/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuronal differentiation and survival and is implicated in the pathogenesis of many neurological disorders. Here, we identified a novel intergenic enhancer located 170 kb from the Bdnf gene, which promotes the expression of Bdnf transcript variants during mouse neuronal differentiation and activity. Following Bdnf activation, enhancer-promoter contacts increase, and the region moves away from the repressive nuclear periphery. Bdnf enhancer activity is necessary for neuronal clustering and dendritogenesis in vitro, and for cortical development in vivo. Our findings provide the first evidence of a regulatory mechanism whereby the activation of a distal enhancer promotes Bdnf expression during brain development.
Collapse
|
27
|
Wang J, Li X, Dong Q, Li C, Li J, Li N, Ding B, Wang X, Yu Y, Wang T, Zhang Z, Yu Y, Lang M, Zeng Z, Liu B, Gong L. Chromatin architectural alterations due to null mutation of a major CG methylase in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2396-2410. [PMID: 36194511 DOI: 10.1111/jipb.13378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Associations between 3D chromatin architectures and epigenetic modifications have been characterized in animals. However, any impact of DNA methylation on chromatin architecture in plants is understudied, which is confined to Arabidopsis thaliana. Because plant species differ in genome size, composition, and overall chromatin packing, it is unclear to what extent findings from A. thaliana hold in other species. Moreover, the incomplete chromatin architectural profiles and the low-resolution high-throughput chromosome conformation capture (Hi-C) data from A. thaliana have hampered characterizing its subtle chromatin structures and their associations with DNA methylation. We constructed a high-resolution Hi-C interaction map for the null OsMET1-2 (the major CG methyltransferase in rice) mutant (osmet1-2) and isogenic wild-type rice (WT). Chromatin structural changes occurred in osmet1-2, including intra-/inter-chromosomal interactions, compartment transition, and topologically associated domains (TAD) variations. Our findings provide novel insights into the potential function of DNA methylation in TAD formation in rice and confirmed DNA methylation plays similar essential roles in chromatin packing in A. thaliana and rice.
Collapse
Affiliation(s)
- Jinbin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaochong Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Qianli Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Changping Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Juzuo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Baoxu Ding
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaofei Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572025, China
| | - Yanan Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yiyang Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Man Lang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zixian Zeng
- Department of Biological Science, College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
28
|
Koh YE, Choi EH, Kim JW, Kim KP. The Kleisin Subunits of Cohesin are Involved in the Fate Determination of Embryonic Stem Cells. Mol Cells 2022; 45:820-832. [PMID: 36172976 PMCID: PMC9676991 DOI: 10.14348/molcells.2022.2042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/20/2022] [Accepted: 07/24/2022] [Indexed: 11/27/2022] Open
Abstract
As a potential candidate to generate an everlasting cell source to treat various diseases, embryonic stem cells are regarded as a promising therapeutic tool in the regenerative medicine field. Cohesin, a multi-functional complex that controls various cellular activities, plays roles not only in organizing chromosome dynamics but also in controlling transcriptional activities related to self-renewal and differentiation of stem cells. Here, we report a novel role of the α-kleisin subunits of cohesin (RAD21 and REC8) in the maintenance of the balance between these two stem-cell processes. By knocking down REC8, RAD21, or the non-kleisin cohesin subunit SMC3 in mouse embryonic stem cells, we show that reduction in cohesin level impairs their self-renewal. Interestingly, the transcriptomic analysis revealed that knocking down each cohesin subunit enables the differentiation of embryonic stem cells into specific lineages. Specifically, embryonic stem cells in which cohesin subunit RAD21 were knocked down differentiated into cells expressing neural alongside germline lineage markers. Thus, we conclude that cohesin appears to control the fate determination of embryonic stem cells.
Collapse
Affiliation(s)
- Young Eun Koh
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
- Genexine Inc., Bio Innovation Park, Seoul 07789, Korea
| | - Eui-Hwan Choi
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Jung-Woong Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Keun Pil Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
29
|
Luppino JM, Field A, Nguyen SC, Park DS, Shah PP, Abdill RJ, Lan Y, Yunker R, Jain R, Adelman K, Joyce EF. Co-depletion of NIPBL and WAPL balance cohesin activity to correct gene misexpression. PLoS Genet 2022; 18:e1010528. [PMID: 36449519 PMCID: PMC9744307 DOI: 10.1371/journal.pgen.1010528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/12/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
The relationship between cohesin-mediated chromatin looping and gene expression remains unclear. NIPBL and WAPL are two opposing regulators of cohesin activity; depletion of either is associated with changes in both chromatin folding and transcription across a wide range of cell types. However, a direct comparison of their individual and combined effects on gene expression in the same cell type is lacking. We find that NIPBL or WAPL depletion in human HCT116 cells each alter the expression of ~2,000 genes, with only ~30% of the genes shared between the conditions. We find that clusters of differentially expressed genes within the same topologically associated domain (TAD) show coordinated misexpression, suggesting some genomic domains are especially sensitive to both more or less cohesin. Finally, co-depletion of NIPBL and WAPL restores the majority of gene misexpression as compared to either knockdown alone. A similar set of NIPBL-sensitive genes are rescued following CTCF co-depletion. Together, this indicates that altered transcription due to reduced cohesin activity can be functionally offset by removal of either its negative regulator (WAPL) or the physical barriers (CTCF) that restrict loop-extrusion events.
Collapse
Affiliation(s)
- Jennifer M. Luppino
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrew Field
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Ludwig Center at Harvard, Boston, Massachusetts, United States of America
| | - Son C. Nguyen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Daniel S. Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Parisha P. Shah
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Richard J. Abdill
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yemin Lan
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rebecca Yunker
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rajan Jain
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Ludwig Center at Harvard, Boston, Massachusetts, United States of America
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts, United States of America
| | - Eric F. Joyce
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
30
|
Liu R, Li X, Zhang X, Ren R, Sun Y, Tian X, Zhang Q, Zhao S, Yu M, Cao J. Long-range interaction within the chromatin domain determines regulatory patterns in porcine skeletal muscle. Genomics 2022; 114:110482. [PMID: 36113676 DOI: 10.1016/j.ygeno.2022.110482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 01/14/2023]
Abstract
Spatial chromatin structure is crucial for understanding the early growth and development of porcine skeletal muscle. However, its characteristic of 3D architecture and elaborate regulation of gene transcription remains unclear. In this study, ChIA-PET method is used to study the changes of early chromatin three-dimensional structure in skeletal muscle of lean type Yorkshire pig and fat type Meishan pig. Integrating the in situ Hi-C data revealed the 3D architecture and long-range interaction of the porcine muscle. The results showed the CTCF/RNAPII mediated long-range interaction shapes the different chromatin architecture and dominates the unique regulation of enhancers. In addition, the results revealed that key myogenic genes like ssc-mir-1 had a unique enhancer regulation function in myogenesis. Interestingly, the FGF6 gene is of breed-specific regulation, implying the difference between two breeds in skeletal muscle development. Our research thus may provide a clue for the porcine genetic improvement of skeletal muscle.
Collapse
Affiliation(s)
- Ru Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolong Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqian Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruimin Ren
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohuan Tian
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhua Cao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China; 3D Genomics Research Center, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
31
|
Luppino JM, Field A, Nguyen SC, Park DS, Shah PP, Abdill RJ, Lan Y, Yunker R, Jain R, Adelman K, Joyce EF. Co-depletion of NIPBL and WAPL balance cohesin activity to correct gene misexpression. PLoS Genet 2022. [PMID: 36449519 DOI: 10.1101/2022.04.19.488785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
The relationship between cohesin-mediated chromatin looping and gene expression remains unclear. NIPBL and WAPL are two opposing regulators of cohesin activity; depletion of either is associated with changes in both chromatin folding and transcription across a wide range of cell types. However, a direct comparison of their individual and combined effects on gene expression in the same cell type is lacking. We find that NIPBL or WAPL depletion in human HCT116 cells each alter the expression of ~2,000 genes, with only ~30% of the genes shared between the conditions. We find that clusters of differentially expressed genes within the same topologically associated domain (TAD) show coordinated misexpression, suggesting some genomic domains are especially sensitive to both more or less cohesin. Finally, co-depletion of NIPBL and WAPL restores the majority of gene misexpression as compared to either knockdown alone. A similar set of NIPBL-sensitive genes are rescued following CTCF co-depletion. Together, this indicates that altered transcription due to reduced cohesin activity can be functionally offset by removal of either its negative regulator (WAPL) or the physical barriers (CTCF) that restrict loop-extrusion events.
Collapse
Affiliation(s)
- Jennifer M Luppino
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrew Field
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Ludwig Center at Harvard, Boston, Massachusetts, United States of America
| | - Son C Nguyen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Daniel S Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Parisha P Shah
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Richard J Abdill
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yemin Lan
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rebecca Yunker
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rajan Jain
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Ludwig Center at Harvard, Boston, Massachusetts, United States of America
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts, United States of America
| | - Eric F Joyce
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
32
|
Fujita Y, Pather SR, Ming GL, Song H. 3D spatial genome organization in the nervous system: From development and plasticity to disease. Neuron 2022; 110:2902-2915. [PMID: 35777365 PMCID: PMC9509413 DOI: 10.1016/j.neuron.2022.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/15/2022] [Accepted: 06/03/2022] [Indexed: 01/03/2023]
Abstract
Chromatin is organized into multiscale three-dimensional structures, including chromosome territories, A/B compartments, topologically associating domains, and chromatin loops. This hierarchically organized genomic architecture regulates gene transcription, which, in turn, is essential for various biological processes during brain development and adult plasticity. Here, we review different aspects of spatial genome organization and their functions in regulating gene expression in the nervous system, as well as their dysregulation in brain disorders. We also highlight new technologies to probe and manipulate chromatin architecture and discuss how investigating spatial genome organization can lead to a better understanding of the nervous system and associated disorders.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo City, Shimane 693-8501, Japan.
| | - Sarshan R Pather
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Dehingia B, Milewska M, Janowski M, Pękowska A. CTCF shapes chromatin structure and gene expression in health and disease. EMBO Rep 2022; 23:e55146. [PMID: 35993175 PMCID: PMC9442299 DOI: 10.15252/embr.202255146] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
CCCTC-binding factor (CTCF) is an eleven zinc finger (ZF), multivalent transcriptional regulator, that recognizes numerous motifs thanks to the deployment of distinct combinations of its ZFs. The great majority of the ~50,000 genomic locations bound by the CTCF protein in a given cell type is intergenic, and a fraction of these sites overlaps with transcriptional enhancers. Furthermore, a proportion of the regions bound by CTCF intersect genes and promoters. This suggests multiple ways in which CTCF may impact gene expression. At promoters, CTCF can directly affect transcription. At more distal sites, CTCF may orchestrate interactions between regulatory elements and help separate eu- and heterochromatic areas in the genome, exerting a chromatin barrier function. In this review, we outline how CTCF contributes to the regulation of the three-dimensional structure of chromatin and the formation of chromatin domains. We discuss how CTCF binding and architectural functions are regulated. We examine the literature implicating CTCF in controlling gene expression in development and disease both by acting as an insulator and a factor facilitating regulatory elements to efficiently interact with each other in the nuclear space.
Collapse
Affiliation(s)
- Bondita Dehingia
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Małgorzata Milewska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Marcin Janowski
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| |
Collapse
|
34
|
Bauer M, Payer B, Filion GJ. Causality in transcription and genome folding: Insights from X inactivation. Bioessays 2022; 44:e2200105. [PMID: 36028473 DOI: 10.1002/bies.202200105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022]
Abstract
The spatial organization of genomes is becoming increasingly understood. In mammals, where it is most investigated, this organization ties in with transcription, so an important research objective is to understand whether gene activity is a cause or a consequence of genome folding in space. In this regard, the phenomena of X-chromosome inactivation and reactivation open a unique window of investigation because of the singularities of the inactive X chromosome. Here we focus on the cause-consequence nexus between genome conformation and transcription and explain how recent results about the structural changes associated with inactivation and reactivation of the X chromosome shed light on this problem.
Collapse
Affiliation(s)
- Moritz Bauer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Guillaume J Filion
- Dept. Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
35
|
Wang M, Tu X. The Genetics and Epigenetics of Ventricular Arrhythmias in Patients Without Structural Heart Disease. Front Cardiovasc Med 2022; 9:891399. [PMID: 35783865 PMCID: PMC9240357 DOI: 10.3389/fcvm.2022.891399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/25/2022] [Indexed: 12/19/2022] Open
Abstract
Ventricular arrhythmia without structural heart disease is an arrhythmic disorder that occurs in structurally normal heart and no transient or reversible arrhythmia factors, such as electrolyte disorders and myocardial ischemia. Ventricular arrhythmias without structural heart disease can be induced by multiple factors, including genetics and environment, which involve different genetic and epigenetic regulation. Familial genetic analysis reveals that cardiac ion-channel disorder and dysfunctional calcium handling are two major causes of this type of heart disease. Genome-wide association studies have identified some genetic susceptibility loci associated with ventricular tachycardia and ventricular fibrillation, yet relatively few loci associated with no structural heart disease. The effects of epigenetics on the ventricular arrhythmias susceptibility genes, involving non-coding RNAs, DNA methylation and other regulatory mechanisms, are gradually being revealed. This article aims to review the knowledge of ventricular arrhythmia without structural heart disease in genetics, and summarizes the current state of epigenetic regulation.
Collapse
|
36
|
Abstract
One of the most fundamental questions in developmental biology is how one fertilized cell can give rise to a fully mature organism and how gene regulation governs this process. Precise spatiotemporal gene expression is required for development and is believed to be achieved through a complex interplay of sequence-specific information, epigenetic modifications, trans-acting factors, and chromatin folding. Here we review the role of chromatin folding during development, the mechanisms governing 3D genome organization, and how it is established in the embryo. Furthermore, we discuss recent advances and debated questions regarding the contribution of the 3D genome to gene regulation during organogenesis. Finally, we describe the mechanisms that can reshape the 3D genome, including disease-causing structural variations and the emerging view that transposable elements contribute to chromatin organization.
Collapse
Affiliation(s)
- Juliane Glaser
- RG Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Stefan Mundlos
- RG Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
- Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, 10178 Berlin, Germany
| |
Collapse
|
37
|
Chen Y, Chen Q, Yuan K, Zhu J, Fang Y, Yan Q, Wang C. A Novel de Novo Variant in 5' UTR of the NIPBL Associated with Cornelia de Lange Syndrome. Genes (Basel) 2022; 13:740. [PMID: 35627125 PMCID: PMC9140414 DOI: 10.3390/genes13050740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Cornelia de Lange syndrome (CdLS) is a genetic syndrome characterized by intellectual disability, special facial features, growth retardation, feeding difficulties, and multiple organ system abnormalities. NIPBL variants occur in approximately 80% of CdLS cases. Aims: We report a novel de novo heterozygous pathogenic variant in the NIPBL and its association with CdLS. We also examined the key regulatory sequences of the 5′ untranslated region in NIPBL mRNA. Few studies have reported mutation sites in the 5′ untranslated region (UTR) of the NIPBL that result in CdLS. Methods: The patient’s medical history, clinical manifestations, physical examination, laboratory examination, Griffiths development assessment scale—Chinese version, and cardiac B-ultrasound were examined. Mutation screening was conducted using trio whole exome sequencing (trio-WES) and Sanger sequencing. Quantitative PCR was performed to measure the NIPBL expression in peripheral blood mononuclear cells. A Dual-Luciferase reporter assay was conducted to evaluate the transcription of truncated mutants. Results: The proband showed characteristics of CdLS including thick eyebrows, a concave nasal ridge, long and smooth philtrum, downturned corners of the mouth, intellectual disability, postnatal growth retardation, and a short fifth toe. A novel de novo heterozygous pathogenic variant in the NIPBL (c.-467C > T) was identified. A Dual-Luciferase reporter gene assay showed that SPO1 (-490 bp to -360 bp) and SPO3 (-490 bp to -401 bp) induced the highest activity. Conclusions: We found a novel de novo heterozygous pathogenic variant (c.-467C > T) in the NIPBL resulting in CdLS. Our findings expand the spectrum of pathogenic mutations for CdLS. Our in vitro experiments elucidated important regulatory sequences in the 5′ UTR of the NIPBL.
Collapse
Affiliation(s)
- Yonghua Chen
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Y.C.); (Q.C.); (K.Y.); (J.Z.); (Y.F.)
| | - Qingqing Chen
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Y.C.); (Q.C.); (K.Y.); (J.Z.); (Y.F.)
| | - Ke Yuan
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Y.C.); (Q.C.); (K.Y.); (J.Z.); (Y.F.)
| | - Jianfang Zhu
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Y.C.); (Q.C.); (K.Y.); (J.Z.); (Y.F.)
| | - Yanlan Fang
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Y.C.); (Q.C.); (K.Y.); (J.Z.); (Y.F.)
| | - Qingfeng Yan
- College of Life Science, Zhejiang University, Hangzhou 310027, China;
| | - Chunlin Wang
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Y.C.); (Q.C.); (K.Y.); (J.Z.); (Y.F.)
| |
Collapse
|
38
|
Cummings CT, Rowley MJ. Implications of Dosage Deficiencies in CTCF and Cohesin on Genome Organization, Gene Expression, and Human Neurodevelopment. Genes (Basel) 2022; 13:583. [PMID: 35456389 PMCID: PMC9030571 DOI: 10.3390/genes13040583] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023] Open
Abstract
Properly organizing DNA within the nucleus is critical to ensure normal downstream nuclear functions. CTCF and cohesin act as major architectural proteins, working in concert to generate thousands of high-intensity chromatin loops. Due to their central role in loop formation, a massive research effort has been dedicated to investigating the mechanism by which CTCF and cohesin create these loops. Recent results lead to questioning the direct impact of CTCF loops on gene expression. Additionally, results of controlled depletion experiments in cell lines has indicated that genome architecture may be somewhat resistant to incomplete deficiencies in CTCF or cohesin. However, heterozygous human genetic deficiencies in CTCF and cohesin have illustrated the importance of their dosage in genome architecture, cellular processes, animal behavior, and disease phenotypes. Thus, the importance of considering CTCF or cohesin levels is especially made clear by these heterozygous germline variants that characterize genetic syndromes, which are increasingly recognized in clinical practice. Defined primarily by developmental delay and intellectual disability, the phenotypes of CTCF and cohesin deficiency illustrate the importance of architectural proteins particularly in neurodevelopment. We discuss the distinct roles of CTCF and cohesin in forming chromatin loops, highlight the major role that dosage of each protein plays in the amplitude of observed effects on gene expression, and contrast these results to heterozygous mutation phenotypes in murine models and clinical patients. Insights highlighted by this comparison have implications for future research into these newly emerging genetic syndromes.
Collapse
Affiliation(s)
- Christopher T. Cummings
- Munroe-Meyer Institute, Department of Genetic Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - M. Jordan Rowley
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
39
|
Kanemaki MT. Ligand-induced degrons for studying nuclear functions. Curr Opin Cell Biol 2022; 74:29-36. [DOI: 10.1016/j.ceb.2021.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/21/2023]
|
40
|
McGarvey AC, Kopp W, Vučićević D, Mattonet K, Kempfer R, Hirsekorn A, Bilić I, Gil M, Trinks A, Merks AM, Panáková D, Pombo A, Akalin A, Junker JP, Stainier DY, Garfield D, Ohler U, Lacadie SA. Single-cell-resolved dynamics of chromatin architecture delineate cell and regulatory states in zebrafish embryos. CELL GENOMICS 2022; 2:100083. [PMID: 36777038 PMCID: PMC9903790 DOI: 10.1016/j.xgen.2021.100083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/24/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022]
Abstract
DNA accessibility of cis-regulatory elements (CREs) dictates transcriptional activity and drives cell differentiation during development. While many genes regulating embryonic development have been identified, the underlying CRE dynamics controlling their expression remain largely uncharacterized. To address this, we produced a multimodal resource and genomic regulatory map for the zebrafish community, which integrates single-cell combinatorial indexing assay for transposase-accessible chromatin with high-throughput sequencing (sci-ATAC-seq) with bulk histone PTMs and Hi-C data to achieve a genome-wide classification of the regulatory architecture determining transcriptional activity in the 24-h post-fertilization (hpf) embryo. We characterized the genome-wide chromatin architecture at bulk and single-cell resolution, applying sci-ATAC-seq on whole 24-hpf stage zebrafish embryos, generating accessibility profiles for ∼23,000 single nuclei. We developed a genome segmentation method, ScregSeg (single-cell regulatory landscape segmentation), for defining regulatory programs, and candidate CREs, specific to one or more cell types. We integrated the ScregSeg output with bulk measurements for histone post-translational modifications and 3D genome organization and identified new regulatory principles between chromatin modalities prevalent during zebrafish development. Sci-ATAC-seq profiling of npas4l/cloche mutant embryos identified novel cellular roles for this hematovascular transcriptional master regulator and suggests an intricate mechanism regulating its expression. Our work defines regulatory architecture and principles in the zebrafish embryo and establishes a resource of cell-type-specific genome-wide regulatory annotations and candidate CREs, providing a valuable open resource for genomics, developmental, molecular, and computational biology.
Collapse
Affiliation(s)
- Alison C. McGarvey
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Quantitative Developmental Biology, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Wolfgang Kopp
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin 10115, Germany
| | - Dubravka Vučićević
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Rieke Kempfer
- Epigenetic Regulation and Chromatin Architecture, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,Institute for Biology, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Antje Hirsekorn
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Ilija Bilić
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Marine Gil
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Alexandra Trinks
- IRI Life Sciences, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Anne Margarete Merks
- Electrochemical Signaling in Development and Disease, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 13125, Germany
| | - Daniela Panáková
- Electrochemical Signaling in Development and Disease, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 13125, Germany
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,Institute for Biology, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Altuna Akalin
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin 10115, Germany
| | - Jan Philipp Junker
- Quantitative Developmental Biology, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Didier Y.R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - David Garfield
- IRI Life Sciences, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Uwe Ohler
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Institute for Biology, Humboldt Universität Berlin, Berlin 10115, Germany,Corresponding author
| | - Scott Allen Lacadie
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Berlin Institute of Health, Berlin 10178, Germany,Corresponding author
| |
Collapse
|
41
|
Wang R, Chen F, Chen Q, Wan X, Shi M, Chen AK, Ma Z, Li G, Wang M, Ying Y, Liu Q, Li H, Zhang X, Ma J, Zhong J, Chen M, Zhang MQ, Zhang Y, Chen Y, Zhu D. MyoD is a 3D genome structure organizer for muscle cell identity. Nat Commun 2022; 13:205. [PMID: 35017543 PMCID: PMC8752600 DOI: 10.1038/s41467-021-27865-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
The genome exists as an organized, three-dimensional (3D) dynamic architecture, and each cell type has a unique 3D genome organization that determines its cell identity. An unresolved question is how cell type-specific 3D genome structures are established during development. Here, we analyzed 3D genome structures in muscle cells from mice lacking the muscle lineage transcription factor (TF), MyoD, versus wild-type mice. We show that MyoD functions as a “genome organizer” that specifies 3D genome architecture unique to muscle cell development, and that H3K27ac is insufficient for the establishment of MyoD-induced chromatin loops in muscle cells. Moreover, we present evidence that other cell lineage-specific TFs might also exert functional roles in orchestrating lineage-specific 3D genome organization during development. Pioneer transcription factors (TFs) have been proposed to act as protein anchors to orchestrate cell type-specific 3D genome architecture. MyoD is a pioneer TF for myogenic lineage specification. Here the authors provide further support for the role of MyoD in 3D genome architecture in muscle stem cells by comparing MyoD knockout and wild-type mice.
Collapse
Affiliation(s)
- Ruiting Wang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Fengling Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, 100084, Beijing, China
| | - Qian Chen
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Xin Wan
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Minglei Shi
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Antony K Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, 100871, Beijing, China
| | - Zhao Ma
- Department of Biomedical Engineering, College of Future Technology, Peking University, 100871, Beijing, China.,Department of Biomedical Engineering, College of Engineering, Peking University, 100871, Beijing, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellent in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Science, 100049, Beijing, China
| | - Min Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellent in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Science, 100049, Beijing, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Future Technology, Peking University, 100871, Beijing, China.,Department of Biomedical Engineering, College of Engineering, Peking University, 100871, Beijing, China
| | - Qinyao Liu
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Hu Li
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510320, Guangzhou, China
| | - Xu Zhang
- Beijing institute of collaborative innovation, 100094, Beijing, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Jiayun Zhong
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Meihong Chen
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, 100084, Beijing, China. .,MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Medicine, Tsinghua University, 100084, Beijing, China. .,Department of Biological Sciences, Center for Systems Biology, The University of Texas, Dallas 800 West Campbell Road, RL11, Richardson, TX, 75080-3021, USA.
| | - Yong Zhang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China.
| | - Yang Chen
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China. .,MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, 100084, Beijing, China. .,MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Medicine, Tsinghua University, 100084, Beijing, China.
| | - Dahai Zhu
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510320, Guangzhou, China.
| |
Collapse
|
42
|
El Dika M, Fritz AJ, Toor RH, Rodriguez PD, Foley SJ, Ullah R, Nie D, Banerjee B, Lohese D, Glass KC, Frietze S, Ghule PN, Heath JL, Imbalzano AN, van Wijnen A, Gordon J, Lian JB, Stein JL, Stein GS, Stein GS. Epigenetic-Mediated Regulation of Gene Expression for Biological Control and Cancer: Fidelity of Mechanisms Governing the Cell Cycle. Results Probl Cell Differ 2022; 70:375-396. [PMID: 36348115 PMCID: PMC9703624 DOI: 10.1007/978-3-031-06573-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cell cycle is governed by stringent epigenetic mechanisms that, in response to intrinsic and extrinsic regulatory cues, support fidelity of DNA replication and cell division. We will focus on (1) the complex and interdependent processes that are obligatory for control of proliferation and compromised in cancer, (2) epigenetic and topological domains that are associated with distinct phases of the cell cycle that may be altered in cancer initiation and progression, and (3) the requirement for mitotic bookmarking to maintain intranuclear localization of transcriptional regulatory machinery to reinforce cell identity throughout the cell cycle to prevent malignant transformation.
Collapse
Affiliation(s)
- Mohammed El Dika
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Andrew J. Fritz
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rabail H. Toor
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | | - Stephen J. Foley
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rahim Ullah
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Daijing Nie
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Bodhisattwa Banerjee
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Dorcas Lohese
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Karen C. Glass
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Pharmacology, Burlington, VT 05405
| | - Seth Frietze
- University of Vermont, College of Nursing and Health Sciences, Burlington, VT 05405
| | - Prachi N. Ghule
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jessica L. Heath
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405,University of Vermont, Larner College of Medicine, Department of Pediatrics, Burlington, VT 05405
| | - Anthony N. Imbalzano
- UMass Chan Medical School, Department of Biochemistry and Molecular Biotechnology, Worcester, MA 01605
| | - Andre van Wijnen
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jonathan Gordon
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jane B. Lian
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Janet L. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Gary S. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | |
Collapse
|
43
|
Bailey CG, Gupta S, Metierre C, Amarasekera PMS, O'Young P, Kyaw W, Laletin T, Francis H, Semaan C, Sharifi Tabar M, Singh KP, Mullighan CG, Wolkenhauer O, Schmitz U, Rasko JEJ. Structure-function relationships explain CTCF zinc finger mutation phenotypes in cancer. Cell Mol Life Sci 2021; 78:7519-7536. [PMID: 34657170 PMCID: PMC8629902 DOI: 10.1007/s00018-021-03946-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/29/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
CCCTC-binding factor (CTCF) plays fundamental roles in transcriptional regulation and chromatin architecture maintenance. CTCF is also a tumour suppressor frequently mutated in cancer, however, the structural and functional impact of mutations have not been examined. We performed molecular and structural characterisation of five cancer-specific CTCF missense zinc finger (ZF) mutations occurring within key intra- and inter-ZF residues. Functional characterisation of CTCF ZF mutations revealed a complete (L309P, R339W, R377H) or intermediate (R339Q) abrogation as well as an enhancement (G420D) of the anti-proliferative effects of CTCF. DNA binding at select sites was disrupted and transcriptional regulatory activities abrogated. Molecular docking and molecular dynamics confirmed that mutations in residues specifically contacting DNA bases or backbone exhibited loss of DNA binding. However, R339Q and G420D were stabilised by the formation of new primary DNA bonds, contributing to gain-of-function. Our data confirm that a spectrum of loss-, change- and gain-of-function impacts on CTCF zinc fingers are observed in cell growth regulation and gene regulatory activities. Hence, diverse cellular phenotypes of mutant CTCF are clearly explained by examining structure-function relationships.
Collapse
Affiliation(s)
- Charles G Bailey
- Cancer and Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany
- Chhattisgarh Swami Vivekanand Technical University, Bhilai, Chhattisgarh, 491107, India
| | - Cynthia Metierre
- Cancer and Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Punkaja M S Amarasekera
- Cancer and Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Patrick O'Young
- Cancer and Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Wunna Kyaw
- Cancer and Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Tatyana Laletin
- Cancer and Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Habib Francis
- Cancer and Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Crystal Semaan
- Cancer and Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Mehdi Sharifi Tabar
- Cancer and Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Krishna P Singh
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany
| | - Charles G Mullighan
- Department of Pathology and Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105-3678, USA
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany
- Chhattisgarh Swami Vivekanand Technical University, Bhilai, Chhattisgarh, 491107, India
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Ulf Schmitz
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Computational Biomedicine Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - John E J Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
44
|
Fallatah B, Shuaib M, Adroub S, Paytuví-Gallart A, Della Valle F, Nadeef S, Lanzuolo C, Orlando V. Ago1 controls myogenic differentiation by regulating eRNA-mediated CBP-guided epigenome reprogramming. Cell Rep 2021; 37:110066. [PMID: 34852230 DOI: 10.1016/j.celrep.2021.110066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/05/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023] Open
Abstract
The role of chromatin-associated RNAi components in the nucleus of mammalian cells and in particular in the context of developmental programs remains to be elucidated. Here, we investigate the function of nuclear Argonaute 1 (Ago1) in gene expression regulation during skeletal muscle differentiation. We show that Ago1 is required for activation of the myogenic program by supporting chromatin modification mediated by developmental enhancer activation. Mechanistically, we demonstrate that Ago1 directly controls global H3K27 acetylation (H3K27ac) by regulating enhancer RNA (eRNA)-CREB-binding protein (CBP) acetyltransferase interaction, a key step in enhancer-driven gene activation. In particular, we show that Ago1 is specifically required for myogenic differentiation 1 (MyoD) and downstream myogenic gene activation, whereas its depletion leads to failure of CBP acetyltransferase activation and blocking of the myogenic program. Our work establishes a role of the mammalian enhancer-associated RNAi component Ago1 in epigenome regulation and activation of developmental programs.
Collapse
Affiliation(s)
- Bodor Fallatah
- King Abdullah University of Science and Technology, KAUST Environmental Epigenetics Research Program, Biological and Environmental Sciences and Engineering Division, Thuwal 23955, Saudi Arabia
| | - Muhammad Shuaib
- King Abdullah University of Science and Technology, KAUST Environmental Epigenetics Research Program, Biological and Environmental Sciences and Engineering Division, Thuwal 23955, Saudi Arabia
| | - Sabir Adroub
- King Abdullah University of Science and Technology, KAUST Environmental Epigenetics Research Program, Biological and Environmental Sciences and Engineering Division, Thuwal 23955, Saudi Arabia
| | | | - Francesco Della Valle
- King Abdullah University of Science and Technology, KAUST Environmental Epigenetics Research Program, Biological and Environmental Sciences and Engineering Division, Thuwal 23955, Saudi Arabia
| | - Seba Nadeef
- King Abdullah University of Science and Technology, KAUST Environmental Epigenetics Research Program, Biological and Environmental Sciences and Engineering Division, Thuwal 23955, Saudi Arabia
| | - Chiara Lanzuolo
- Institute of Biomedical Technologies, National Research Council, 20090 Milan, Italy; National Institute of Molecular Genetics (INGM) "Romeo ed Enrica Invernizzi," Chromatin and Nuclear Architecture Laboratory, 20122 Milan, Italy
| | - Valerio Orlando
- King Abdullah University of Science and Technology, KAUST Environmental Epigenetics Research Program, Biological and Environmental Sciences and Engineering Division, Thuwal 23955, Saudi Arabia.
| |
Collapse
|
45
|
Goel VY, Hansen AS. The macro and micro of chromosome conformation capture. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2021; 10:e395. [PMID: 32987449 PMCID: PMC8236208 DOI: 10.1002/wdev.395] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
The 3D organization of the genome facilitates gene regulation, replication, and repair, making it a key feature of genomic function and one that remains to be properly understood. Over the past two decades, a variety of chromosome conformation capture (3C) methods have delineated genome folding from megabase-scale compartments and topologically associating domains (TADs) down to kilobase-scale enhancer-promoter interactions. Understanding the functional role of each layer of genome organization is a gateway to understanding cell state, development, and disease. Here, we discuss the evolution of 3C-based technologies for mapping 3D genome organization. We focus on genomics methods and provide a historical account of the development from 3C to Hi-C. We also discuss ChIP-based techniques that focus on 3D genome organization mediated by specific proteins, capture-based methods that focus on particular regions or regulatory elements, 3C-orthogonal methods that do not rely on restriction digestion and proximity ligation, and methods for mapping the DNA-RNA and RNA-RNA interactomes. We consider the biological discoveries that have come from these methods, examine the mechanistic contributions of CTCF, cohesin, and loop extrusion to genomic folding, and detail the 3D genome field's current understanding of nuclear architecture. Finally, we give special consideration to Micro-C as an emerging frontier in chromosome conformation capture and discuss recent Micro-C findings uncovering fine-scale chromatin organization in unprecedented detail. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics.
Collapse
Affiliation(s)
- Viraat Y. Goel
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Anders S. Hansen
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
46
|
The Cohesin Complex and Its Interplay with Non-Coding RNAs. Noncoding RNA 2021; 7:ncrna7040067. [PMID: 34707078 PMCID: PMC8552073 DOI: 10.3390/ncrna7040067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
The cohesin complex is a multi-subunit protein complex initially discovered for its role in sister chromatid cohesion. However, cohesin also has several other functions and plays important roles in transcriptional regulation, DNA double strand break repair, and chromosome architecture thereby influencing gene expression and development in organisms from yeast to man. While most of these functions rely on protein–protein interactions, post-translational protein, as well as DNA modifications, non-coding RNAs are emerging as additional players that facilitate and modulate the function or expression of cohesin and its individual components. This review provides a condensed overview about the architecture as well as the function of the cohesin complex and highlights its multifaceted interplay with both short and long non-coding RNAs.
Collapse
|
47
|
Shiimori M, Nukiwa R, Imai Y. Dynamics of the host chromatin three-dimensional response to influenza virus infection. Int Immunol 2021; 33:541-545. [PMID: 34282455 DOI: 10.1093/intimm/dxab043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/19/2021] [Indexed: 11/14/2022] Open
Abstract
The spatial organization of chromatin is known to be highly dynamic in response to environmental stress. However, it remains unknown how chromatin dynamics contributes to or modulates the pathogenesis of immune and infectious diseases. Influenza virus is a single-stranded RNA virus, and transcription and replication of the virus genome occur in the nucleus. Since viral infection is generally associated with virus-driven hijack of the host cellular machineries, influenza virus may utilize and/or affect the nuclear system. In this review article, we focus on recent studies showing that the three-dimensional structure of chromatin changes with influenza virus infection, which affects the pathology of infection. Also, we discuss studies showing the roles of epigenetics in influenza virus infection. Understanding how this affects immune responses may lead to novel strategies to combat immune and infectious diseases.
Collapse
Affiliation(s)
- Masami Shiimori
- Laboratory of Regulation for Intractable Infectious Diseases, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Ryota Nukiwa
- Laboratory of Regulation for Intractable Infectious Diseases, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Yumiko Imai
- Laboratory of Regulation for Intractable Infectious Diseases, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
- Laboratory for Infectious Systems, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
48
|
Waidmann S, Petutschnig E, Rozhon W, Molnár G, Popova O, Mechtler K, Jonak C. GSK3-mediated phosphorylation of DEK3 regulates chromatin accessibility and stress tolerance in Arabidopsis. FEBS J 2021; 289:473-493. [PMID: 34492159 DOI: 10.1111/febs.16186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/19/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022]
Abstract
Chromatin dynamics enable the precise control of transcriptional programmes. The balance between restricting and opening of regulatory sequences on the DNA needs to be adjusted to prevailing conditions and is fine-tuned by chromatin remodelling proteins. DEK is an evolutionarily conserved chromatin architectural protein regulating important chromatin-related processes. However, the molecular link between DEK-induced chromatin reconfigurations and upstream signalling events remains unknown. Here, we show that ASKβ/AtSK31 is a salt stress-activated glycogen synthase kinase 3 (GSK3) from Arabidopsis thaliana that phosphorylates DEK3. This specific phosphorylation alters nuclear DEK3 protein complex composition and affects nucleosome occupancy and chromatin accessibility that is translated into changes in gene expression, contributing to salt stress tolerance. These findings reveal that DEK3 phosphorylation is critical for chromatin function and cellular stress response and provide a mechanistic example of how GSK3-based signalling is directly linked to chromatin, facilitating a transcriptional response.
Collapse
Affiliation(s)
- Sascha Waidmann
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Elena Petutschnig
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Wilfried Rozhon
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Gergely Molnár
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Tulln, Austria
| | - Olga Popova
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Vienna BioCenter, Austria
| | - Claudia Jonak
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria.,AIT Austrian Institute of Technology, Center for Health & Bioresources, Tulln, Austria
| |
Collapse
|
49
|
Boltsis I, Grosveld F, Giraud G, Kolovos P. Chromatin Conformation in Development and Disease. Front Cell Dev Biol 2021; 9:723859. [PMID: 34422840 PMCID: PMC8371409 DOI: 10.3389/fcell.2021.723859] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
Chromatin domains and loops are important elements of chromatin structure and dynamics, but much remains to be learned about their exact biological role and nature. Topological associated domains and functional loops are key to gene expression and hold the answer to many questions regarding developmental decisions and diseases. Here, we discuss new findings, which have linked chromatin conformation with development, differentiation and diseases and hypothesized on various models while integrating all recent findings on how chromatin architecture affects gene expression during development, evolution and disease.
Collapse
Affiliation(s)
- Ilias Boltsis
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Guillaume Giraud
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
- Cancer Research Center of Lyon – INSERM U1052, Lyon, France
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
50
|
Janowski M, Milewska M, Zare P, Pękowska A. Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals (Basel) 2021; 14:765. [PMID: 34451862 PMCID: PMC8399958 DOI: 10.3390/ph14080765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/26/2022] Open
Abstract
Neurological disorders (NDs) comprise a heterogeneous group of conditions that affect the function of the nervous system. Often incurable, NDs have profound and detrimental consequences on the affected individuals' lives. NDs have complex etiologies but commonly feature altered gene expression and dysfunctions of the essential chromatin-modifying factors. Hence, compounds that target DNA and histone modification pathways, the so-called epidrugs, constitute promising tools to treat NDs. Yet, targeting the entire epigenome might reveal insufficient to modify a chosen gene expression or even unnecessary and detrimental to the patients' health. New technologies hold a promise to expand the clinical toolkit in the fight against NDs. (Epi)genome engineering using designer nucleases, including CRISPR-Cas9 and TALENs, can potentially help restore the correct gene expression patterns by targeting a defined gene or pathway, both genetically and epigenetically, with minimal off-target activity. Here, we review the implication of epigenetic machinery in NDs. We outline syndromes caused by mutations in chromatin-modifying enzymes and discuss the functional consequences of mutations in regulatory DNA in NDs. We review the approaches that allow modifying the (epi)genome, including tools based on TALENs and CRISPR-Cas9 technologies, and we highlight how these new strategies could potentially change clinical practices in the treatment of NDs.
Collapse
Affiliation(s)
| | | | | | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Street, 02-093 Warsaw, Poland; (M.J.); (M.M.); (P.Z.)
| |
Collapse
|